
SINGLE TIMER

The KA555/i is a highly stable controller capable of producing accurate timing pulses. With monostable operation, the time delay is controlled by one external and one capacitor. With a table operation, the frequency and duty cycle are accurately controlled with two external resistors and one capacitor.

FEATURES

- High Current Drive Capability (= 200mA)
- Adjustable Duty Cycle
- Temperature Stability Of 0.005%/℃
- Timing From μSec To Hours
- Turn Off Time Less Than 2 µ Sec

APPLICATIONS

- Precision Timing
- Pulse Generation
- . Time Delay Generation
- Sequential Timing

ORDERING INFORMATION

Device	Package	Operating Temperature			
KA555 8 DIP KA555D 8 SOP		0 ~ +70℃			
					KA555I
KA555ID	8 SOP	-40 ~ +65 C			

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

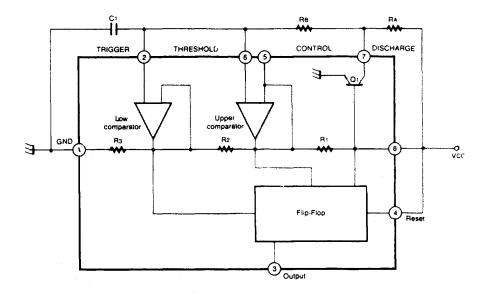
Characteristic	Symbol	Value	Unit
Supply Voltage	Vcc	16	V
Lead Temperature (soldering 10sec)	TLEAD	300	r
Power Dissipation	Po	600	mW
Operating Temperature Range KA555	-	0~+70	r
KA555i	Tope	- 40 ~ + 85	r.
Storage Temperature Range	T _{STG}	- 65 ~ + 150	υ

ELECTRICAL CHARACTERISTICS

 $(T_A = 25 \text{ T}, V_{CC} = 5 - 15 \text{V}, \text{ unless otherwise specified})$

Characterstic	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	Vcc		4.5		16	٧
Supply Current	loc	V _{cc} = 5V, R _L = ∞		3	6	mA
* (low stable)		V _{CC} = 15V, R _L = ∞		7.5	15	mA
Timing Error						
(Monsotable)				ŀ		
² Initial Accuraty	ACCUR	RA = 1KQ to		1.0	3.0	%
Drift with Temperature	AVAT	100KΩ		50		ppm/℃
Drift with Supply Voltage	∆V∆Vcc	C = 0.1 µF		0.1	0.5	%∧
* Timing Error						
(astable)		R _A = 1KQ to		l		
² Intial Accurary	ACCUR	100K.₽		2.25		%
Drift with Temkperature	AVAT	C = 0.1 #F	i	150		ppm/℃
Drift with Supply Voltage	∆V∆Vcc			0.3	l	%∧
Control Voltage	Vc	Vcc = 15V	9.0	10.0	11.0	V
COURTON ACHINGS		V _{cc} = 5V	2.6	3.33	4.0	٧
Threshold Voltage	V _{TH}	V _{CC} = 15 V		10.0		٧
I ULARUOIG AOHAGA		V _{cc} = 5V		3.33		٧
* ³ Threshold Current	lyes			0.1	0.25	μΑ
Trigger Voltage	V _{TR}	V _{CC} = 5V	1.1	1.67	2.2	٧
Trigger Voltage	V _{TR}	V _{CC} = 15V	4.5	5	5.6	٧
Trigger Current	I _{TR}	V _{TR} = 0V		0.01	2.0	μ A
Reset Voltage	V _{RST}		0.4	0.7	1.0	V
Reset Current	IRST			0.1	0.4	mA

ELECTRICAL CHARACTERISTICS


 $(T_A = 25\%, V_{CC} = 5 \sim 15V, unless otherwise specified)$

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Low Output Voltage	Vol	V _{cc} = 15V				
		Isank = 10mA	1	0.06	0.25	v
		I _{SMK} = 50mA		0.3	0.75	V
		V _{cc} = 5V				
		Isink = 5mA		0.05	0.35	l v
		V _{cc} * 15V				
		Isource = 200mA		12.5	ł	l v
High Output Voltage	V _{ОН}	Isource = 100mA	12.75	13.3		V
		V _{cc} = 5V				
		Isource = 100mA	2.75	3.3	06 0.25 0.75 0.35 0.35	V
Rise Time of Output	t _R			100		nsec
Fall Time of Output	1 _F	T		100		nsec
Discharge Leakage Current	ILKG			20	100	nA

Notes

- 1. Supply current when output is high is typically 1mA less at Vcc = 5V
- 2. Tested at Vcc = 5.0V and Vcc = 15V
- 3. This will determine maximum value of $R_A + R_B$ for 15V operation, the max total $R = 20M\Omega$, and for 5V operation the max total $R = 6.7M\Omega$

APPLICATION CIRCUIT

APPLICATION NOTE

The application circuit shows astable mode.

Pin 6 (threshold) is tied to Pin 2 (trigger) and Pin 4 (reset) is tied to V_{CC} (Pin 8).

The external capacitor C; of Pin 8 and Pin 2 charges through Rs, Rs and discharges through Rs only.

In the internal circuit of the KA555 one input of the upper compartor is the 2/3 V_{CC} (• R₁ =R₂=R₃, another input if it is connected Pin 6.

As soon as charging C₁ is higher than 2/3 Vec, discharge transistor Q₁ turns on and C₁ discharges to collector of transistor Q₁.

Therefore, the flip-flop circuit is reset and output is low.

One input of lower comparator is the 1/3 V_{CC}, discharge transistor Q₁ turn off and C₁ charges through R_A and R_B. Therefore, the flip-flop circuit is set and output is high.

So to say, when C_1 charges through R_A and R_1 output is high and when C_1 discharges through R_B output is low. The charge time (output is high) T_1 is 0.693 ($R_A + R_B$) C_1 and the discharge time (output is low) T_2 is 0.693 ($R_B C_1$).

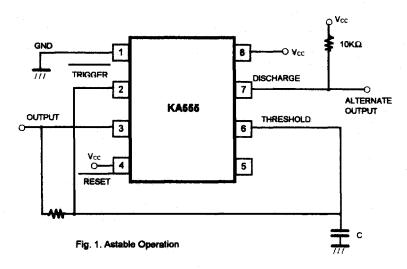
$$(i_n \frac{V_{CC}-1/3V_{CC}}{V_{CC}-2/3V_{CC}} = 0.693)$$

Thus the total period time T is given by

T=T1+T2 = 0.693 (RA+2RB) C1.

Then the frequency of astable mode is given by

$$f = \frac{1}{T} = \frac{1.44}{(R_A + 2R_S)C_1}$$


The duty cycle is given by

$$D.C = \frac{T_2}{T} = \frac{R_S}{R_A + 2R_B}$$

If you make use of the KA556 you can make two astable modes.

Astable Operation

The KA555 can free run as a multivibrator by triggering itself; refer to Fig.2. The output can swing from V_{DD} to GND and have 50% duty cycle square wave. Less than 1% frequency deviation can be observed, over a voltage range of 2 to 5V. f-1/1.4RC

Monostable Operation

The KA555 can be used as a one-short, i.e. monostable multivibrator. Initially, because the inside discharge transtor is on state, extermal timing capactor is held to GND potential. Upon application of a negative TRIGGER pulse pin 2, the intern discharge transistor is off state and the voltage across the capacitor increases with time constant $T = R_AC$ and OUTPUT goes to high state. When the voltage across the capacitor equals $2/3V_{CC}$ the inner comparator is reset by THRESHOLD input and the discharge transistor goes to on state, which in turn discharges the capacitor rapidly and drives the OUTPUT to its low state.

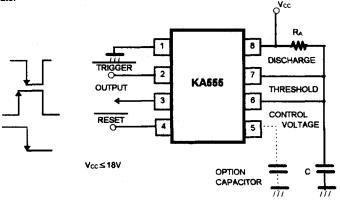


Fig. 2. Monostable Operation

