
S3C9654/C9658/P9658 PRODUCT OVERVIEW

1-1

1 PRODUCT OVERVIEW

SAM88RCRI PRODUCT FAMILY

Samsung's SAM88RCRI family of 8-bit single-chip CMOS microcontrollers offer fast and efficient CPU, a wide
range of integrated peripherals, and supports OTP device.

A dual address/data bus architecture and bit- or nibble-configurable I/O ports provide a flexible programming
environment for applications with varied memory and I/O requirements. Timer/counters with selectable operating
modes are included to support real-time operations.

S3C9654/C9658/P9658 MICROCONTROLLER

The S3C9654/C9658/P9658 microcontroller with USB function can be used in a wide range of general purpose
applications. It is especially suitable for mouse or joystick controller and is available in 16, 18, 20-pin DIP and
SOP package.

The S3C9654/C9658/P9658 single-chip 8-bit microcontroller is fabricated using an advanced CMOS process. It is
built around the powerful SAM88RCRI CPU core.

Stop and Idle power-down modes were implemented to reduce power consumption. To increase on-chip register
space, the size of the internal register file was logically expanded. The S3C9654/C9658/P9658 has 4/8 Kbytes of
program memory on-chip (S3C9654/C9658), and 208 bytes of RAM including 16 bytes of working register.

Using the SAM88RCRI design approach, the following peripherals were integrated with the SAM88RCRI core:

— Three configurable I/O ports (14 pin, at 20 pin)

— 14-bit programmable pins for external interrupts (at 20 pin)

— 8-bit timer/counter with two operating modes

OTP

The S3C9654/C9658 microcontroller is also available in OTP (One Time Programmable) version. S3P9658
microcontroller has an on-chip 4/8 Kbyte one-time-programmable EPROM instead of masked ROM. The
S3P9658 is comparable to S3C9654/C9658, both in function and in pin configuration.

PRODUCT OVERVIEW S3C9654/C9658/P9658

1-2

FEATURES

CPU

• SAM88RCRI CPU core

Memory

• 4-K byte internal program memory
(ROM S3C9654)

• 8-K byte internal program memory
(ROM S3P9658/C9658)

• 208-byte RAM

• 16 bytes of working register

Instruction Set

• 41 instructions

• IDLE and STOP instructions added for power-
down modes

Instruction Execution Time

• 0.66 µs at 6 MHz fOSC

Interrupts

• 14 interrupt sources with one vector (20 pin)

• 12 interrupt sources with one vector (18 pin)

• 10 interrupt sources with one vector (16 pin)

• One level, one vector interrupt structure

Oscillation Circuit Options

• 6 MHz crystal/ceramic oscillator

• External clock source

• RC oscillator

• Embedded oscillation capacitor (XI, XO, 33pF)

General I/O

• 14 bit-programmable I/O pins (20 pin)

• 12 bit-programmable I/O pins (18 pin)

• 10 bit-programmable I/O pins (16 pin)

Sub Oscillator

• Internal RC sub oscillator

• Auto interrupt wake-up

Timer/Counter

• One 8-bit basic timer for watchdog function and
programmable oscillation stabilization interval
generation function

• One 8-bit timer/counter with Compare/Overflow
counter

USB Serial Bus

• Compatible to USB low speed (1.5 Mbps) device
1.0 specification.

• Serial bus interface engine (SIE)

— Packet decoding/generation

— CRC generation and checking

— NRZI encoding/decoding and bit-stuffing

• Two 8-byte receive/transmit USB buffer

Operating Temperature Range

• – 0°C to + 85°C

Operating Voltage Range

• 4.0 V to 5.25 V

Package Types

• 16, 18, 20 pin DIP

• 16, 18, 20 pin SOP

Comparator

• 6-channel mode, 32 step resolution

• 5-channel mode, external reference

• Low EMI design

Low Voltage Reset

• Low voltage Reset

• Power on Reset

High Sink Current Pin for LED

• P0.0 (VOL: 0.4 V, 50mA)

S3C9654/C9658/P9658 PRODUCT OVERVIEW

1-3

BLOCK DIAGRAM

SAM88RCRI CPU

Port I/O and
Interrupt Control

8K (4K)
ROM

208 Byte
RAM

SUB
OSC

Basic
Timer

Timer 0

XIN

XOUT
OSC

TEST

RESET

NOTE: 16, 18, 20 DIP and SOP.

LVR
USB
SIE

P2.1/D+/INT2

P2.0/D-/INT2

Port 1/
Compa
-rator

P1.0/CIN0/INT1
P1.1/CIN0/INT1
P1.2/CIN0/INT1
P1.3/CIN0/INT1
P1.4/CIN0/INT1
P1.5/CIN0/INT1

Port 0
P0.2/INT0 (note)

P0.3/INT0 (note)

P0.4/INT0 (note)

P0.5/INT0 (note)

P0.0/INT0
P0.1/INT0

Figure 1-1. Block Diagram

PRODUCT OVERVIEW S3C9654/C9658/P9658

1-4

PIN ASSIGNMENTS

S3C9654/
S3C9658

P0.3/INT0

VDD

P2.0/D-/INT2

P2.1/D+/INT2

RESET

XIN

XOUT

TEST

P0.1/INT0

P0.5/INT0

20

19

18

17

16

15

14

13

12

11

 P0.2/INT0

VSS

P0.0/INT0

P1.0/COM0/INT1

P1.1/COM1/INT1

P1.2/COM2/INT1

P1.3/COM3/INT1

P1.4/COM4/INT1

P1.5/COM5/INT1

P0.4/INT0

1

2

3

4

5

6

7

8

9

10

 P0.2/INT0

VSS

P0.0/INT0

P1.0/COM0/INT1

P1.1/COM1/INT1

P1.2/COM2/INT1

P1.3/COM3/INT1

P1.4/COM4/INT1

P1.5/COM5/INT1

P0.4/INT0

Figure 1-2. Pin Assignment (20 Pin)

S3C9654/C9658/P9658 PRODUCT OVERVIEW

1-5

S3C9654/
S3C9658

P0.3/INT0

VDD

P2.0/D-/INT2

P2.1/D+/INT2

RESET

XIN

XOUT

TEST

P0.1/INT0

18

17

16

15

14

13

12

11

10

P0.2/INT0

VSS

P0.0/INT0

P1.0/COM0/INT1

P1.1/COM1/INT1

P1.2/COM2/INT1

P1.3/COM3/INT1

P1.4/COM4/INT1

P1.5/COM5/INT1

1

2

3

4

5

6

7

8

9

Figure 1-3. Pin Assignment (18 Pin)

S3C9654/
S3C9658

VDD

P2.0/D-/INT2

P2.1/D+/INT2

RESET

XIN

XOUT

TEST

P0.1/INT0

16

15

14

13

12

11

10

9

VSS

P0.0/INT0

P1.0/COM0/INT1

P1.1/COM1/INT1

P1.2/COM2/INT1

P1.3/COM3/INT1

P1.4/COM4/INT1

P1.5/COM5/INT1

1

2

3

4

5

6

7

8

Figure 1-4. Pin Assignment (16 Pin)

PRODUCT OVERVIEW S3C9654/C9658/P9658

1-6

Table 1-1. Signal Descriptions

Pin Names Pin
Type

Pin Description Circuit
Number

Pin
Numbers

Share
Pins

P0.0 I/O Bit-programmable I/O port for Schmitt trigger
input or n-ch open drain output (50 mA).
Pull-up resistor is assignable to input pin by
software and is automatically disabled for
output pin. Port 0 can be individually configured
as external interrupt input.

SK 3 INT0

P0.1–P0.5 I/O Bit-programmable I/O port for Schmitt trigger
input or push-pull output. Pull-up resistors
individually assignable to input pins by software
and are automatically disabled for output pins.
Port 0 can be individually configured as
external interrupt inputs.

D 1, 10, 11,
12, 20

INT0

P1.0–P1.5 I/O Bit-programmable I/O port for Schmitt trigger
input or push-pull output. Pull-up resistors are
individually assignable to input pins by
software. Port 1 can be configured as
comparator input or external interrupt inputs.
Pull-down resistors are individually assignable.
(in comparator input)

CP 4–9 CIN0-5
INT1

P2.0/D-
–

P2.1/D+

I/O Bit-programmable I/O port for Schmitt trigger
input or n-ch open drain output. Pull-up
resistors are individually assignable to input
pins by software and are automatically disabled
for output pins. Port 2 can be individually
configured as external interrupt inputs. Also it
can be configured as an USB ports.

CP 17, 18 INT2

XOUT, XIN – System clock input and output pin
(crystal/ceramic oscillator, or external clock
source)

– 14, 15 –

INT0 I External interrupt for bit-programmable port 0 D 1, 3, 10,
11, 12, 20

Port 0

INT1 I External interrupt for bit-programmable port 1 D 4–9 Port 1

INT2 I External interrupt for bit-programmable port 2 D 17, 18 Port 2

VDD – Power input pin – 19 –

VSS – VSS is a ground power for CPU core. – 2 –

RESET 1 Reset input pin (Pull-up register embedded) – 16 –

S3C9654/C9658/P9658 PRODUCT OVERVIEW

1-7

Table 1-2. Pin Circuit Assignments for the S3C9654/C9658/P9658

Circuit Number Circuit Type S3C9654/C9658/P9658 Assignments

C O

D I/O Port 0.1–5, INT0, INT1, INT2

SK I/O Port 0.0

CP I/O Port 1, Port 2

NOTE: Diagrams of circuit types C–D, and F-8 are presented below.

P-Channel

N-Channel

VDD

Out

Output
DIsable

Data

Figure 1-5. Pin Circuit Type C

I/O
Output

DIsable

Data
Circuit
Type C

Pull-up
Enable

VDD

Data

Figure 1-6. Pin Circuit Type D

PRODUCT OVERVIEW S3C9654/C9658/P9658

1-8

VSS

Pull-up
Registor

VDD

I/O

Pull-up Enable

Output
Disable

Output
Data

Mode Input Data

Output

Input

D0

D1

MUX
D0

D1

Input
Data

Figure 1-7. Pin Circuit Type SK

I/O
Circuit
Type C

VDD

Output
DIsable

Data

Pull-up
Enable

Data

Input
Enable

Analog/
External VREF

Input D+/D-

Figure 1-8. Pin Circuit Type CP

S3C9654/C9658/P9658 PRODUCT OVERVIEW

1-9

DM1

S3C9654/
S3C9658/S3P9658

XI

XOUT
14

VDD

VSS

19

2

C_BULK+
-

P0.1/INT0

P0.3/INT0
20

P0.2/INT0
1

15 12

17
P2.1/D+/INT2

18
P2.0/D-/INT2

P1.0/COM0/INT1
4

5

TEST

RESET (note)

13

16

P0.4/INT0

P0.5/INT0

10

11

6

7

8

9

T_Z

3

VDD

P0.0/INT0

VSS

VSS

VSS

SW1

SW3

SW2

Button

Button

Button

T_X

T_Y

VDD

VDD

R_Z

D_Z

To
Host

P1.1/COM1/INT1

P1.2/COM2/INT1

P1.3/COM3/INT1

P1.4/COM4/INT1

P1.5/COM5/INT1

VDD

D_X

D_Y

R_XYVSS

VDD

D-

D+

X
I

NOTE: RESET Pin is connected to internal Pull-up register after power on reset.
If RESET Pin is low, S3C9654/C9658/P9658 goes to reset.

VSS

Figure 1-9. USB Mouse Circuit Diagram

PRODUCT OVERVIEW S3C9654/C9658/P9658

1-10

NOTES

S3C9654/C9658/P9658 ADDRESS SPACES

2-1

2 ADDRESS SPACES

OVERVIEW

The S3C9654/C9658/P9658 microcontroller has two kinds of address space:

— Program memory (ROM)

— Internal register file

A 13-bit address bus supports both program memory. Special instructions and related internal logic determine
when the 13-bit bus carries addresses for program memory. A separate 8-bit register bus carries addresses and
data between the CPU and the internal register file.

The S3C9654/C9658 has 4/8 Kbytes of mask-programmable program memory on-chip. The
S3C9654/C9658/P9658 microcontroller has 192 bytes general-purpose registers in its internal register file. Forty-
eight bytes in the register file are mapped for system and peripheral control functions.

ADDRESS SPACES S3C9654/C9658/P9658

2-2

PROGRAM MEMORY (ROM)

NORMAL OPERATING MODE (INTERNAL ROM)

The S3C9654/C9658/P9658 has 4/8 Kbytes of internal mask-programmable program memory. The first 2 bytes
of the ROM (0000H–0001H) are an interrupt vector address. The program reset address in the ROM is 0100H.

4.096

256

1000H

0100H

0

4 K byte
Internal
Program
Memory

Area

Interrupt
Vector

1

2 0002H

0001H

Program Start

0000H

8.192

256

2000H

0100H

0

8 K byte
Internal
Program
Memory

Area

Interrupt
Vector

1

2 0002H

0001H

Program Start

0000H

S3C9654 S3C9658/P9658

Figure 2-1. S3C9654/C9658/P9658 Program Memory Address Space

S3C9654/C9658/P9658 ADDRESS SPACES

2-3

REGISTER ARCHITECTURE

The upper 64 bytes of the S3C9654/C9658/P9658's internal register file are addressed as working registers,
system control registers and peripheral control registers. The lower 192 bytes of internal register file (00H–BFH)
is called the general purpose register space.

For many SAM88RCRI microcontrollers, the addressable area of the internal register file is further expanded by
the additional of one or more register pages at general purpose register space (00H–BFH). This register file
expansion is not implemented in the S3C9654/C9658/P9658.

FFH

C0H

~

BFH

00H

192 Bytes

64 Bytes of
Common Area

D0H
CFH

E0H
DFH

Working Registers

System Control
Registers

Peripheral Control
Registers

General Purpose
Register File

and Stack Area

Figure 2-2. Internal Register File Organization

ADDRESS SPACES S3C9654/C9658/P9658

2-4

COMMON WORKING REGISTER AREA (C0H–CFH)

The SAM88RCRI register architecture provides an efficient method of working register addressing that takes full
advantage of shorter instruction formats to reduce execution time.

This16-byte address range is called common area. That is, locations in this area can be used as working registers
by operations that address any location on any page in the register file. Typically, these working registers serve
as temporary buffers for data operations between different pages. However, because the S3C9654/C9658/P9658
uses only page 0, you can use the common area for any internal data operation.

The Register (R) addressing mode can be used to access this area

Registers are addressed either as a single 8-bit register or as a paired 16-bit register. In 16-bit register pairs, the
address of the first 8-bit register is always an even number and the address of the next register is an odd number.
The most significant byte of the 16-bit data is always stored in the even-numbered register; the least significant
byte is always stored in the next (+ 1) odd-numbered register.

MSB

Rn

LSB

Rn + 1

n = Even address

Figure 2-3. 16-Bit Register Pairs

++ PROGRAMMING TIP — Addressing the Common Working Register Area

As the following examples show, you should access working registers in the common area, locations C0H–CFH,
using working register addressing mode only.

Examples: 1. LD 0C2H,40H ; Invalid addressing mode!

Use working register addressing instead:

LD R2,40H ; R2 (C2H) ← the value in location 40H

2. ADD 0C3H,#45H ; Invalid addressing mode!

Use working register addressing instead:

ADD R3,#45H ; R3 (C3H) ← R3 + 45H

S3C9654/C9658/P9658 ADDRESS SPACES

2-5

SYSTEM STACK

KS86-series microcontrollers use the system stack for subroutine calls and returns and to store data. The PUSH
and POP instructions are used to control system stack operations. The S3C9654/C9658/P9658 architecture
supports stack operations in the internal register file.

STACK OPERATIONS

Return addresses for procedure calls and interrupts and data are stored on the stack. The contents of the PC are
saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents
of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to
their original locations. The stack address is always decremented before a push operation and incremented after
a pop operation. The stack pointer (SP) always points to the stack frame stored on the top of the stack, as shown
in Figure 2-4.

Stack contents
after a call
instruction

Stack contents
after an
interrupt

Top of
stack Flags

PCH

PCL
PCL

PCH
Top of
stack

Low Address

High Address

Figure 2-4. Stack Operations

STACK POINTER (SP)

Register location D9H contains the 8-bit stack pointer (SP) that is used for system stack operations. After a reset,
the SP value is undetermined.

Because only internal memory space is implemented in the KS86C6104/P6104, the SP must be initialized to an
8-bit value in the range 00H–BFH.

NOTE

In case a Stack Pointer is initialized to 00H, it is decreased to FFH when stack operation starts. This
means that a Stack Pointer access invalid stack area.

ADDRESS SPACES S3C9654/C9658/P9658

2-6

++ PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP

The following example shows you how to perform stack operations in the internal register file using PUSH and
POP instructions:

LD SP,#0C0H ; SP ← C0H (Normally, the SP is set to 0C0H by the
; initialization routine)

•
•
•

PUSH SYM ; Stack address 0BFH ← SYM
PUSH CCON ; Stack address 0BEH ← CCON
PUSH 20H ; Stack address 0BDH ← 20H
PUSH R3 ; Stack address 0BCH ← R3
•
•
•

POP R3 ; R3 ← Stack address 0BCH
POP 20H ; 20H ← Stack address 0BDH
POP CCON ; CCON ← Stack address 0BEH
POP SYM ; SYM ← Stack address 0BFH

S3C9654/C9658/P9658 ADDRESSING MODES

3-1

3 ADDRESSING MODES

OVERVIEW

Instructions that are stored in program memory are fetched for execution using the program counter. Instructions
indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to
determine the location of the data operand. The operands specified in SAM88RCRI instructions may be condition
codes, immediate data, or a location in the register file, program memory, or data memory.

The SAM88RCRI instruction set supports six explicit addressing modes. Not all of these addressing modes are
available for each instruction. The addressing modes and their symbols are as follows:

— Register (R)

— Indirect Register (IR)

— Indexed (X)

— Direct Address (DA)

— Relative Address (RA)

— Immediate (IM)

ADDRESSING MODES S3C9654/C9658/P9658

3-2

REGISTER ADDRESSING MODE (R)

In Register addressing mode, the operand is the content of a specified register (see Figure 3-1). Working register
addressing differs from Register addressing because it uses a 16-byte working register space in the register file
and a 4-bit register within that space (see Figure 3-2).

dst

Value used in
Instruction Execution

OPCODE

OPERAND

8-bit Register
File Address

Point to One
Rigister in Register

FileOne-Operand
Instruction
(Example)

Sample Instruction:

DEC CNTR ; Where CNTR is the label of an 8-bit register address

Program Memory Register File

Figure 3-1. Register Addressing

dst

OPCODE

4-Bit
Working Register

Point to the
Woking Register

(1 of 16)Two-Operand
Instruction
(Example)

Sample Instruction:

ADD R1, R2 ; Where R1 = C1H and R2 = C2H

Program Memory

Register File

src
4 LSBs

OPERAND

CFH

C0H

.

.

.

.

Figure 3-2. Working Register Addressing

S3C9654/C9658/P9658 ADDRESSING MODES

3-3

INDIRECT REGISTER ADDRESSING MODE (IR)

In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of
the operand. Depending on the instruction used, the actual address may point to a register in the register file, to
program memory (ROM), or to an external memory space (see Figures 3-3 through 3-6).

You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to
indirectly address another memory location.

8-Bit Register
File Address

One-Operand
Instruction
(Example)

dst

Address of Operand
used by Instruction

OPCODE

ADDRESS
Point to One

Rigister in Register
File

Sample Instruction:

RL @SHIFT ; Where SHIFT is the label of an 8-Bit register address

Program Memory Register File

Value used in
Instruction Execution

OPERAND

Figure 3-3. Indirect Register Addressing to Register File

ADDRESSING MODES S3C9654/C9658/P9658

3-4

INDIRECT REGISTER ADDRESSING MODE (Continued)

dst

OPCODE

PAIR
Points to

Rigister Pair

Example
Instruction

References
Program
Memory

Sample Instructions:

CALL @RR2
JP @RR2

Program Memory

Register File

Value used in
Instruction

OPERAND

REGISTER

Program Memory

16-Bit
Address
Points to
Program
Memory

Figure 3-4. Indirect Register Addressing to Program Memory

S3C9654/C9658/P9658 ADDRESSING MODES

3-5

INDIRECT REGISTER ADDRESSING MODE (Continued)

dst

OPCODE

OPERAND

4-Bit
Working
Register
Address

Point to the
Woking Register

(1 of 16)

Sample Instruction:

OR R6, @R2

Program Memory

Register File

src
4 LSBs

Value used in
Instruction

OPERAND

CFH

C0H

.

.

.

.

Figure 3-5. Indirect Working Register Addressing to Register File

ADDRESSING MODES S3C9654/C9658/P9658

3-6

INDIRECT REGISTER ADDRESSING MODE (Concluded)

dst

OPCODE

4-Bit Working
Register Address

Sample Instructions:

LCD R5,@RR6 ; Program memory access
LDE R3,@RR14 ; External data memory access
LDE @RR4, R8 ; External data memory access

Program Memory

Register File

src

Value used in
Instruction

OPERAND

Example Instruction
References either

Program Memory or
Data Memory

Program Memory
or

Data Memory

Next 3 Bits Point
 to Working

 Register Pair
(1 of 8)

LSB Selects

Register
Pair

16-Bit
address
points to
program
memory
or data
memory

CFH

.

.

.

.

C0H

Figure 3-6. Indirect Working Register Addressing to Program or Data Memory

S3C9654/C9658/P9658 ADDRESSING MODES

3-7

INDEXED ADDRESSING MODE (X)

Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to
calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access
locations in the internal register file or in external memory.

In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range of
–128 to +127. This applies to external memory accesses only (see Figure 3-8).

For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained
in a working register. For external memory accesses, the base address is stored in the working register pair
designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to the base address
(see Figure 3-9).

The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction
(LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory, external
program memory, and for external data memory, when implemented.

dst

OPCODE
Two-Operand

Instruction
Example

Point to One of the
Woking Register

(1 of 16)

Sample Instruction:

LD R0, #BASE[R1] ; Where BASE is an 8-bit immediate value

Program Memory

Register File

4 LSBs

Value used in
Instruction

OPERAND

INDEX

Base Address

~ ~

~ ~
+

src

Figure 3-7. Indexed Addressing to Register File

ADDRESSING MODES S3C9654/C9658/P9658

3-8

INDEXED ADDRESSING MODE (Continued)

Point to Working
Register Pair

(1 of 8)

LSB Selects

16-Bit
address
added to
offset

dst

OPCODE

Program Memory

XS (OFFSET)
4-Bit Working

Register Address

Sample Instructions:

LDC R4, #04H[RR2] ; The values in the program address (RR2 + #04H)
 are loaded into register R4.

LDE R4,#04H[RR2] ; Identical operation to LDC example, except that
 external program memory is accessed.

NEXT 3 Bits
Register

Pair
src

8-Bits 16-Bits
+

Program Memory
or

Datamemory

OPERAND Value used in
Instruction16-Bits

Register File

Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset

S3C9654/C9658/P9658 ADDRESSING MODES

3-9

INDEXED ADDRESSING MODE (Concluded)

Point to Working
Register Pair

(1 of 8)

LSB Selects

16-Bit
address
added to
offset

Program Memory

4-Bit Working
Register Address

Sample Instructions:

LDC R4, #1000H[RR2] ; The values in the program address (RR2 + #1000H)
 are loaded into register R4.

LDE R4, #1000H[RR2] ; Identical operation to LDC example, except that
 external program memory is accessed.

NEXT 3 Bits Register
Pair

8-Bits 16-Bits
+

Program Memory
or

Datamemory

OPERAND Value used in
Instruction16-Bits

Register File

OPCODE

XLH (OFFSET)

XLL (OFFSET)

dst src

Figure 3-9. Indexed Addressing to Program or Data Memory with Long Offset

ADDRESSING MODES S3C9654/C9658/P9658

3-10

DIRECT ADDRESS MODE (DA)

In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call
(CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC
whenever a JP or CALL instruction is executed.

The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for
Load operations to program memory (LDC) or to external data memory (LDE), if implemented.

Sample Instructions:

LDC R5,1234H ; The values in the program address (1234H)
 are loaded into register R5.

LDE R5,1234H ; Identical operation to LDC example, except that
 external program memory is accessed.

dst/src

OPCODE

Program Memory

"0" or "1"

Lower Address Byte LSB Selects Program
Memory or Data Memory:
"0" = Program Memory
"1" = Data Memory

Memory
Address
Used

Upper Address Byte

Program or
Data Memory

Figure 3-10. Direct Addressing for Load Instructions

S3C9654/C9658/P9658 ADDRESSING MODES

3-11

DIRECT ADDRESS MODE (Continued)

OPCODE

Program Memory

Upper Address Byte

Program
Memory
Address
Used

Lower Address Byte

Sample Instructions:

JP C,JOB1 ; Where JOB1 is a 16-bit immediate address
CALL DISPLAY ; Where DISPLAY is a 16-bit immediate address

Next OPCODE

Figure 3-11. Direct Addressing for Call and Jump Instructions

ADDRESSING MODES S3C9654/C9658/P9658

3-12

RELATIVE ADDRESS MODE (RA)

In Relative Address (RA) mode, a two's-complement signed displacement between – 128 and + 127 is specified
in the instruction. The displacement value is then added to the current PC value. The result is the address of the
next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction
immediately following the current instruction.

The instructions that support RA addressing is JR.

OPCODE

Program Memory

Displacement

Program Memory
Address Used

Sample Instructions:

JR ULT,$ + OFFSET ; Where OFFSET is a value in the range + 127 to - 128

Next OPCODE

+
Signed
Displacement Value

Current Instruction

Current
PC Value

Figure 3-12. Relative Addressing

IMMEDIATE MODE (IM)

In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the
operand field itself. Immediate addressing mode is useful for loading constant values into registers.

(The Operand value is in the instruction)

OPCODE

Sample Instruction:

LD R0,#0AAH

Program Memory

OPERAND

Figure 3-13. Immediate Addressing

S3C9654/C9658/P9658 CONTROL REGISTERS

4-1

4 CONTROL REGISTERS

OVERVIEW

In this section, detailed descriptions of the S3C9654/C9658/P9658 control registers are presented in an easy-to-
read format. These descriptions will help familiarize you with the mapped locations in the register file. You can
also use them as a quick-reference source when writing application programs.

System and peripheral registers are summarized in Table 4-1. Figure 4-1 illustrates the important features of the
standard register description format.

Control register descriptions are arranged in alphabetical order according to register mnemonic. More information
about control registers is presented in the context of the various peripheral hardware descriptions in Part II of this
manual.

CONTROL REGISTERS S3C9654/C9658/P9658

4-2

Table 4-1. System and Peripheral Control Registers

Register Name Mnemonic Hex R/W

General purpose register file & Stack area – 00-BFH R/W

Working register area – C0H-CFH R/W

Timer 0 Counter register T0CNT D0H R

Timer 0 data register T0DATA D1H R/W

Timer 0 Control register T0CON D2H R/W

Location D3H is not mapped.

Clock control register CLKCON D4H R/W

System FLAG register FLAGS D5H R/W

Locations D6H–D8H are not mapped.

Stack pointer SP D9H R/W

Locations DAH–DBH are not mapped.

Basic timer control register BTCON DCH R/W

Basic timer counter BTCNT DDH R

Location DEH is not mapped.

System mode register SYM DFH R/W

Port 0 data register P0 E0H R/W

Port 1 data register P1 E1H R/W

Port 2 data register P2 E2H R/W

Port 1 pull-down control PDCON E3H R/W

Comparator control mode register CCON E4H R/W

Comparison result register CDATA E5H R

Port 0 low nibble control register P0CONL E6H R/W

Port 0 high nibble control register P0CONH E7H R/W

Port 1 high nibble control register P1CONH E8H R/W

Port 1 low nibble control register P1CONL E9H R/W

Port 0 interrupt control register P0INT EAH R/W

Port 0 interrupt pending register P0PND EBH R/W

Port 1 interrupt control register P1INT ECH R/W

Port 1 interrupt pending register P1PND EDH R/W

Port 2 control/interrupt control and pending register P2CONINT EEH R/W

Sub oscillator control register SUBCON EFH R/W

S3C9654/C9658/P9658 CONTROL REGISTERS

4-3

Table 4-1. System and Peripheral Control Registers (Continued)

Register Name Mnemonic Hex R/W

USB function address register FADDR F0H R/W

Control endpoint status register EP0CSR F1H R/W

Interrupt endpoint status register EP1CSR F2H R/W

Control endpoint byte count register EP0BCNT F3H R

Control endpoint FIFO register EP0FIFO F4H W

Interrupt endpoint FIFO register EP1FIFO F5H W

USB interrupt pending register USBPND F6H R/W

USB interrupt enable register USBINT F7H R/W

USB power management register PWRMGR F8H R/W

Locations F9H is not mapped

Locations FAH is not mapped

USB mode select register USBSEL FBH R/W

Locations FCH is not mapped

Sink current control register SNKCON FDH R/W

USB signal control XCON FEH R/W

USB reset register USBRST FFH R/W

NOTES:
1. RESET = value notation
2. “_” = Not used.
3. “x” = Undetermind value.

CONTROL REGISTERS S3C9654/C9658/P9658

4-4

FLAGS - System Flags Register

.7

.6

.5

Bit Identifier
RESET RESET Value
Read/Write

R = Read-only
W = Write-only
R/W = Read/write
' - ' = Not used

Bit number:
MSB = Bit 7
LSB = Bit 0

Addressing mode or
modes you can use to
modify register values

Description of the
effect of specific
bit settings

RESET value notation:
'-' = Not used
'x' = Undetermind value
'0' = Logic zero
'1' = Logic one

Bit number(s) that is/are appended to the
register name for bit addressing

D5H

Register address
(hexadecimal)Full Register name

Register
mnemonic

Name of individual
bit or bit function

.7 .6 .5 .4 .2.3 .1 .0

x
R/W

x
R/W

x
R/W

x
R/W

0
R/W

x
R/W

0
R/W

x
R/W

Carry Flag (C)

0 Operation dose not generate a carry or borrow condition

1 Operation generates carry-out or borrow into high-order bit7

Zero Flag

0 Operation result is a non-zero value

1 Operation result is zero

Sign Flag

0 Operation generates positive number (MSB = "0")

1 Operation generates negative number (MSB = "1")

Figure 4-1. Register Description Format

S3C9654/C9658/P9658 CONTROL REGISTERS

4-5

BTCON — Basic Timer Control Register DCH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 – .4 Watchdog Timer Enable Bits

1 0 1 0 Disable watchdog function

 Any other value Enable watchdog function

.3 – .2 Basic Timer Input Clock Selection Bits

0 0 fOSC/4096

0 1 fOSC/1024

1 0 fOSC/128

1 1 Non divided (fOSC)

.1 Basic Timer Counter Clear Bit (note)

0 No effect

1 Clear BTCNT

.0 Basic Timer Divider Clear Bit (note)

0 No effect

1 Clear both dividers

NOTE: When you write a "1" to BTCON.0 (or BTCON.1), the basic timer counter (or basic timer divider) is cleared. The bit
is then cleared automatically to "0".

CONTROL REGISTERS S3C9654/C9658/P9658

4-6

CCON — Comparator Mode Register E4H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 Comparator Enable Bit

0 Disable comparator

1 Enable comparator

.6 Conversion Time

0 Conversion time (6 × 192/fx)

1 Conversion time (4 × 12/fx)

.5 External Reference Voltage

0 Internal reference voltage

1 External reference voltage

.4 – .0 Reference voltage (Vref) selection

VDD × (n + 0.5)/24, n = 0 to 7

VDD × (0.3125 + (n – 7)/48), n = 8 to 23

VDD × (0.6458 + (n – 23)/24), n = 24 to 31

S3C9654/C9658/P9658 CONTROL REGISTERS

4-7

CLKCON — System Clock Control Register D4H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 – – 0 0 – – –

Read/Write R/W – – R/W R/W – – –

.7 Oscillator IRQ Wake-up Function Bit

0 Enable IRQ for main system oscillator wake-up in power down mode

1 Disable IRQ for main system oscillator wake-up in power down mode

.6 and .5 Not used for S3C9654/C9658/P9658

.4 and .3 CPU Clock (System Clock) Selection Bits

0 0 Divide by 16 (fOSC/16)

0 1 Divide by 8 (fOSC/8)

1 0 Divide by 2 (fOSC/2)

1 1 Non-divided clock (fOSC)

.2 – .0 Not used for S3C9654/C9658/P9658

CONTROL REGISTERS S3C9654/C9658/P9658

4-8

EP0CSR — Control Endpoint Status Register F1H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 SETUP_END Clear Bit

0 No effect (when write)

1 Clear SETUP_END (bit4) bit

.6 OUT_PKT_RDY Clear Bit

0 No effect (when write)

1 Clear OUT_PKT_RDY (bit0) bit

.5 STALL Signal Sending Bit

0 No effect (when write)

1 Send STALL signal to host

.4 Setup Transfer End Bit

0 No effect (when write)

1 SIE sets this bit when a control transfer ends before DATA_END (bit3) is set

.3 Setup Data End Bit

0 No effect (when write)

1 MCU set this bit after loading or unloading the last packet data into the FIFO

.2 STALL Signal Receive Bit

0 MCU clear this bit to end the STALL condition

1 SIE sets this bit if a control transaction is ended due to a protocol violation

.1 In Packet Ready Bit

0 SIE clear this bit once the packet has been successfully sent to the host

1 MCU sets this bit after writing a packet of data into Endpoint0 FIFO

.0 Out Packet Ready Bit

0 No effect (when write)

1 SIE sets this bit once a valid token is written to the FIFO

S3C9654/C9658/P9658 CONTROL REGISTERS

4-9

EP1CSR — Interrupt Endpoint Status Register F2H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 DATA_TOGGLE Clear Bit

0 No effect (when write)

1 Clears the data toggle sequence bit

.6 – .3 Maximum Packet Size Bits

0 No effect (when write)

1 Indicates the maximum packet size for interrupt endpoint

.2 FIFO Flush Bit

0 No effect (when write)

1 FIFO is flushed, and IN_PKT_RDY cleared

.1 Force STALL Bit

0 MCU clears this bit to end the STALL condition

1 Issues a STALL handshake to USB

.0 In Packet Ready Bit

0 SIE clear this bit once the packet has been successfully sent to the host

1 MCU sets this bit after writing a packet of data into Endpoint1 FIFO

CONTROL REGISTERS S3C9654/C9658/P9658

4-10

FLAGS — System Flags Register D5H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 – – – –

Read/Write R/W R/W R/W R/W – – – –

.7 Carry Flag (C)

0 Operation does not generate a carry or borrow condition

.6 Zero Flag (Z)

0 Operation result is a non-zero value

1 Operation result is zero

.5 Sign Flag (S)

0 Operation generates a positive number (MSB = "0")

1 Operation generates a negative number (MSB = "1")

.4 Overflow Flag (V)

0 Operation result is ≤ +127 or ≥ –128

1 Operation result is ≥ +127 or ≤ –128

.3 – .0 Not used for S3C9654/C9658/P9658

S3C9654/C9658/P9658 CONTROL REGISTERS

4-11

P0CONH — Port 0 Control Register (High Byte) (E7H, R/W)

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – – – 0 0 0 0

Read/Write – – – – R/W R/W R/W R/W

.7 – .4 Not used for S3C9654/C9658/P9658

.3 and .2 Port 0.5 Configuration Control Bits

0 0 Schmitt trigger input, rising edge external interrupt.

0 1 Schmitt trigger input, falling edge external interrupt with pull-up resistor

1 0 Output mode, push-pull

1 1 Not used

.1 and .0 Port 0.4 Configuration Control Bits

0 0 Schmitt trigger input, rising edge external interrupt.

0 1 Schmitt trigger input, falling edge external interrupt with pull-up resistor

1 0 Output mode, push-pull

1 1 Not used

CONTROL REGISTERS S3C9654/C9658/P9658

4-12

P0CONL — Port 0 Control Register (Low Byte) (E6H, R/W)

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 and .6 Port 0.3 Configuration Control Bits

0 0 Schmitt trigger input, rising edge external interrupt.

0 1 Schmitt trigger input, falling edge external interrupt with pull-up resistor

1 0 Output mode, push-pull

1 1 Not used

.5 and .4 Port 0.2 Configuration Control Bits

0 0 Schmitt trigger input, rising edge external interrupt.

0 1 Schmitt trigger input, falling edge external interrupt with pull-up resistor

1 0 Output mode, push-pull

1 1 Not used

.3 and .2 Port 0.1 Configuration Control Bits

0 0 Schmitt trigger input, rising edge external interrupt.

0 1 Schmitt trigger input, falling edge external interrupt with pull-up resistor

1 0 Output mode, push-pull

1 1 Not used

.1 and .0 Port 0.0 Configuration Control Bits

0 0 Input, rising edge external interrupt.

0 1 Input, falling edge external interrupt with pull-up resistor

1 0 Output mode, n-ch open drain

1 1 Not used

S3C9654/C9658/P9658 CONTROL REGISTERS

4-13

P0INT — Port 0 Interrupt Control Register (EAH, R/W)

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – 0 0 0 0 0 0

Read/Write – – R/W R/W R/W R/W R/W R/W

.7 and .6 Not used for S3C9654/C9658/P9658

.5 – .0 P0.5-P0.0 Interrupt Enable Bits

0 External interrupt disable

1 External interrupt enable

P0PND — Port 0 Interrupt Pending Register (EBH, R/W)

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – 0 0 0 0 0 0

Read/Write – – R/W R/W R/W R/W R/W R/W

.7 and .6 Not used for S3C9654/C9658/P9658

.5 – .0 P0.5-P0.0 Interrupt Pending Bit

0 No pending (when read)/clear pending bit (when write)

1 Pending (when read)/no effect (when write)

CONTROL REGISTERS S3C9654/C9658/P9658

4-14

P1CONH — Port 1 Control Register (High Byte) (E8H, R/W)

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – – – 0 0 0 0

Read/Write – – – – R/W R/W R/W R/W

.7 – .4 Not used for S3C9654/C9658/P9658

.3 and .2 Port 1.5 Configuration Control Bits

0 0 Schmitt trigger input, rising edge external interrupt.

0 1 Schmitt trigger input, falling edge external interrupt with pull-up resistor

1 0 Output mode, push-pull

1 1 Comparator input, analog input, (external reference voltage input)

.1 and .0 Port 1.4 Configuration Control Bits

0 0 Schmitt trigger input, rising edge external interrupt.

0 1 Schmitt trigger input, falling edge external interrupt with pull-up resistor

1 0 Output mode, push-pull

1 1 Comparator input, analog input

S3C9654/C9658/P9658 CONTROL REGISTERS

4-15

P1CONL — Port 1 Control Register (Low Byte) E9H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 and .6 Port 1.3 Configuration Control Bits

0 0 Schmitt trigger input, rising edge external interrupt.

0 1 Schmitt trigger input, falling edge external interrupt with pull-up resistor

1 0 Output mode, push-pull

1 1 Comparator input, analog input

.5 and .4 Port 1.2 Configuration Control Bits

0 0 Schmitt trigger input, rising edge external interrupt.

0 1 Schmitt trigger input, falling edge external interrupt with pull-up resistor

1 0 Output mode, push-pull

1 1 Comparator input, analog input

.3 and .2 Port 1.1 Configuration Control Bits

0 0 Schmitt trigger input, rising edge external interrupt.

0 1 Schmitt trigger input, falling edge external interrupt with pull-up resistor

1 0 Output mode, push-pull

1 1 Comparator input, analog input

.1 and .0 Port 1.0 Configuration Control Bits

0 0 Schmitt trigger input, rising edge external interrupt.

0 1 Schmitt trigger input, falling edge external interrupt with pull-up resistor

1 0 Output mode, push-pull

1 1 Comparator input, analog input

CONTROL REGISTERS S3C9654/C9658/P9658

4-16

P1INT — Port 1 Interrupt Control Register (ECH, R/W)

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – 0 0 0 0 0 0

Read/Write – – R/W R/W R/W R/W R/W R/W

.7 and .6 Not used for S3C9654/C9658/P9658

.5 – .0 P1.0-P1.5 Interrupt Enable Bit

0 External interrupt disable

1 External interrupt enable

P1PND — Port 1 Interrupt Pending Register EDH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – 0 0 0 0 0 0

Read/Write – – R/W R/W R/W R/W R/W R/W

.7 and .6 Not used for S3C9654/C9658/P9658

.5 – .0 P1.7 Interrupt Pending Bit

0 No pending (when read)/clear pending bit (when write)

1 Pending (when read)/no effect (when write)

S3C9654/C9658/P9658 CONTROL REGISTERS

4-17

P2CONINT — Port 2 Control/Interrupt Control and Pending Register EEH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 and .6 Port 2.1 Configuration Control Bits

0 0 Shcmitt trigger input, falling edge external interrupt

0 1 Shcmitt trigger input, falling edge external interrupt with pull-up

1 0 N-CH open drain output mode

1 1 N-CH open drain output mode with pull-up

.5 and .4 Port 2.0 Configuration Control Bits

0 0 Shcmitt trigger input, falling edge external interrupt

0 1 Shcmitt trigger input, falling edge external interrupt with pull-up

1 0 N-CH open drain output mode

1 1 N-CH open drain output mode with pull-up

.3 and .2 P2.1-P2.0 Interrupt Enable Bit

0 External interrupt disable

1 External interrupt enable

.1 and .0 P2.1-P2.0 Interrupt Pending Bit

0 No pending (When read)/clear pending bit (When write)

1 Pending (When read)/No effect (When write)

CONTROL REGISTERS S3C9654/C9658/P9658

4-18

PDCON — Port 1 Pull-down Resistor Control (E3H, R/W)

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – – – 0 0 0 0

Read/Write – – – – R/W R/W R/W R/W

.7 – .4 Not used for S3C9654/C9658/P9658

.3 "1" = Pull-down enable,"0" pull-down disable when P1 comparator input mode.

.2 – .0 Select pull-down resistor value from 5 kΩ–19 kΩ
2 kΩ/bit weight at VPORT = 2.5 V.

"0×08" = 19 kΩ
"0×0F" = 5 kΩ, when VPORT = 2.5 V

PWRMGR — USB Power Management Register (F8H)

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 – .2 Always logic zero

.1 RESUME Signal Sending Bit

0 RESUME signal is ended

1 While in suspend state, if the MCU wants to initiate a resume, it writes a 1 to
this register for 10 ms (maximum of 15 ms), and clears this register. In
suspend mode, if this bit is set to “1”, USB generates resume signaling.

.0 SUSPEND Status Bit

0 Cleared automatically when MCU writes a zero to RESUME signal sending bit
or when function receives resume signal from the host while in suspend mode

1 This bit is set when SUSPEND interrupt occur

S3C9654/C9658/P9658 CONTROL REGISTERS

4-19

SNKCON — Sink Current Control Register (FDH, R/W)

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – – – – – 0 0

Read/Write – – – – – – R/W R/W

.7 – .2 Not used for S3C9654/C9658/P9658

.1 – .0 Select sink current of the Port 0.0 n-ch open drain.
"0x00" = 30 mA, "0x01" = 40 mA, "0x02" = 50 mA, :"0x03": = 60 mA
when VPORT = 0.4 V

CONTROL REGISTERS S3C9654/C9658/P9658

4-20

SUBCON — SUB_Oscillator Control (EFH, R/W)

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – 0 – – 0 0 0 0

Read/Write – R/W – – R/W R/W R/W R/W

.7 Not used for S3C9654/C9658/P9658

.6 Sub_Oscillator Interrupt Pending Bit

0 No pending (when read)/clear pending (when write)

1 Pending (when read)/no effect (when write)

.5 – .4 Not used for S3C9654/C9658/P9658

.3 Sub_Oscillator Interrupt Enable Bit

0 Sub_oscillator disable, interrupt disable

1 Sub_oscillator enable, interrupt enable

.2 and .0 Sub_Oscillator Counter Input Clock Selection Bits

0 0 0 fOSC/2048

0 0 1 fOSC/3072

0 1 0 fOSC/4096

0 1 1 fOSC/6144

1 0 0 fOSC/8192

1 0 1 fOSC/12288

1 1 0 fOSC/16384

1 1 1 fOSC/24576

NOTE: fOSC= 130 KHz (Typ.) when VDD = 5.0 V, TA = 25 °C.

S3C9654/C9658/P9658 CONTROL REGISTERS

4-21

SYM — System Mode Register (DFH, R/W)

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – – – 0 0 0 0

Read/Write – – – – R/W R/W R/W R/W

.7 – .4 Not used for S3C9654/C9658/P9658

.3 Global Interrupt Enable Bit

0 Global interrupt processing disable

1 Global interrupt processing enable

.2 and .0 Page Select Bit

0 0 0 Page 0

0 0 1 Page 1 (Not allowed in S3C9654/C9658/P9658)

0 1 0 Page 2 (Not allowed in S3C9654/C9658/P9658)

0 0 1 Page 3 (Not allowed in S3C9654/C9658/P9658)

CONTROL REGISTERS S3C9654/C9658/P9658

4-22

T0CON — Timer 0 Control Register D2H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 and .6 T0 Counter Input Clock Selection Bits

0 0 fOSC/4096

0 1 fOSC/256

1 0 fOSC/8

1 1 Not used for S3C9654/C9658/P9658

.5 and .4 T0 Operating Mode Selection Bits

0 0 Interval timer mode (The counter is automatically cleared whenever
T0DATA value equals to T0CNT value)

0 1 Invalid selection

1 0

1 1 Overflow mode (OVF interrupt can occur)

.3 T0 Counter Clear Bit (T0CLR)

0 No effect

1 Clear T0 counter (when write)

.2 T0 Overflow Interrupt Enable Bit (T0OVF)

0 Disable T0 overflow interrupt

1 Enable T0 overflow interrupt

.1 T0 Match Interrupt Enable Bit (T0INT)

0 Disable T0 match interrupt

1 Enable T0 match interrupt

.0 T0 Interrupt Pending Bit (T0PND)

0 No interrupt pending (when read)/Clear this pending bit (when write)

1 Interrupt is pending(when read)/No effect(when write)

NOTE: When you write a "1" to T0CON.3, the timer 0 counter is cleared. The bit is then cleared automatically to "0".

S3C9654/C9658/P9658 CONTROL REGISTERS

4-23

USBINT — USB Interrupt Enable Register F7H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – – – – 0 1 1

Read/Write – – – – – R/W R/W R/W

.7 – .3 Not used for S3C9654/C9658/P9658

.2 SUSPEND/RESUME Interrupt Enable Bit

0 Disable SUSPEND and RESEME interrupt (default)

1 Enable SUSPEND and RESEME interrupt

.1 ENDPOINT1 Interrupt Pending Bit

0 Disable ENDPOINT 1 interrupt

1 Enable ENDPOINT 1 interrupt (default)

.0 ENDPOINT0 Interrupt Pending Bit

0 Disable ENDPOINT 0 interrupt

1 Enable ENDPOINT 0 interrupt (default)

CONTROL REGISTERS S3C9654/C9658/P9658

4-24

USBPND — USB Interrupt Pending Register F6H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – – – 0 0 0 0

Read/Write – – – – R/W R/W R/W R/W

.7 – .4 Not used for S3C9654/C9658/P9658

.3 RESUME Interrupt Pending Bit

0 No effect (once read, this bit is cleared automatically)

1 This bit is set, if RESUME signaling is received while in SUSPEND mode

.2 SUSPEND Interrupt Pending Bit

0 No effect (once read, this bit is cleared automatically)

1 This bit is set, when suspend signaling is received

.1 ENDPOINT1 Interrupt Pending Bit

0 No effect (once read, this bit is cleared automatically)

1 This bit is set, when endpoint1 needs to be serviced

.0 ENDPOINT0 Interrupt Pending Bit

0 No effect (once read, this bit is cleared automatically)

1 This bit is set, while endpoint 0 needs to serviced. It is set under the following
conditions:

— OUT_PKT_RDY is set
— IN_PKT_RDY get cleared
— SENT_STALL gets set
— DATA_END gets cleared
— SETUP_END gets set

S3C9654/C9658/P9658 CONTROL REGISTERS

4-25

USBRST — USB RESETRESET Register FFH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – – – – – – 1

Read/Write – – – – – – – R/W

.7 – .1 Not used for S3C9654/C9658/P9658

.0 USB Reset Signal Receive Bit

0 Clear reset signal bit

1 This bit is set when host send USB reset signal

USBSEL — PORT 2 MODE SELECT REGISTER FBH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – – – – – – 0

Read/Write – – – – – – – R/W

.7 – .1 Not used for S3C9654/C9658/P9658

.0 "0" = GPIO Port,
PS/2 mode,

"1" = USB Port
USB mode.

CONTROL REGISTERS S3C9654/C9658/P9658

4-26

XCON — USB Signal Control Register (FEH, R/W)

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – 0 0 0 0 0 0

Read/Write – – R/W R/W R/W R/W R/W R/W

NOTE: XCON register value advised by factory (The recommendable value is 1BH).

S3C9654/C9658/P9658 INTERRUPT STRUCTURE

5-1

5 INTERRUPT STRUCTURE

OVERVIEW

The SAM88RCRI interrupt structure has two basic components: a vector, and sources. The number of interrupt
sources can be serviced through a interrupt vector which is assigned in ROM address 0000H–0001H.

SOURCESVECTOR

S1

S2

S3

Sn

0000H
0001H

NOTES:
1. The SAM88RCRI interrupt has only one vector address (0000H-0001H).
2. The number of Sn value is expandable.

Figure 5-1. S3C9-Series Interrupt Type

INTERRUPT PROCESSING CONTROL POINTS

Interrupt processing can be controlled in two ways: globally, or by specific interrupt level and source. The system-
level control points in the interrupt structure are therefore:

— Global interrupt enable and disable (by EI and DI instructions)

— Interrupt source enable and disable settings in the corresponding peripheral control register(s)

ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)

The system mode register, SYM (DFH), is used to enable and disable interrupt processing.

SYM.3 is the enable and disable bit for global interrupt processing, which you can set by modifying SYM.3. An
Enable Interrupt (EI) instruction must be included in the initialization routine that follows a reset operation in order
to enable interrupt processing. Although you can manipulate SYM.3 directly to enable and disable interrupts
during normal operation, we recommend that you use the EI and DI instructions for this purpose.

INTERRUPT STRUCTURE S3C9654/C9658/P9658

5-2

INTERRUPT PENDING FUNCTION TYPES

When the interrupt service routine has executed, the application program's service routine must clear the
appropriate pending bit before the return from interrupt subroutine (IRET) occurs.

INTERRUPT PRIORITY

Because there is not a interrupt priority register in SAM87RI, the order of service is determined by a sequence of
source which is executed in interrupt service routine.

S

R

Q Interrupt Pending
Register

Global Interrupt
Control (EI, Di instruction)

Vector
Interrupt
Cycle

Interrpt priority
is determind by
software polling

method

"EI" Instruction
Execution

RESET

Source
Interrupts

Source
Interrupt

Enable

Figure 5-2. Interrupt Function Diagram

S3C9654/C9658/P9658 INTERRUPT STRUCTURE

5-3

INTERRUPT SOURCE SERVICE SEQUENCE

The interrupt request polling and servicing sequence is as follows:

1. A source generates an interrupt request by setting the interrupt request pending bit to "1".

2. The CPU generates an interrupt acknowledge signal.

3. The service routine starts and the source's pending flag is cleared to "0" by software.

4. Interrupt priority must be determined by software polling method.

INTERRUPT SERVICE ROUTINES

Before an interrupt request can be serviced, the following conditions must be met:

— Interrupt processing must be enabled (EI)

— Interrupt must be enabled at the interrupt's source (peripheral control register)

If all of the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle.
The CPU then initiates an interrupt machine cycle that completes the following processing sequence:

1. Reset (clear to "0") the global interrupt enable bit in the SYM register (DI)
to disable all subsequent interrupts.

2. Save the program counter and status flags to stack.

3. Branch to the interrupt vector to fetch the service routine's address.

4. Pass control to the interrupt service routine.

When the interrupt service routine is completed, an Interrupt Return instruction (IRET) occurs. The IRET restores
the PC and status flags and sets SYM.3 to "1"(EI), allowing the CPU to process the next interrupt request.

GENERATING INTERRUPT VECTOR ADDRESSES

The interrupt vector area in the ROM contains the address of the interrupt service routine. Vectored interrupt
processing follows this sequence:

1. Push the program counter's low-byte value to stack.

2. Push the program counter's high-byte value to stack.

3. Push the FLAGS register values to stack.

4. Fetch the service routine's high-byte address from the vector address 0000H.

5. Fetch the service routine's low-byte address from the vector address 0001H.

6. Branch to the service routine specified by the 16-bit vector address.

INTERRUPT STRUCTURE S3C9654/C9658/P9658

5-4

S3C9654/C9658/P9658 INTERRUPT STRUCTURE

The S3C9654/C9658/P9658 microcontroller has thirteen peripheral interrupt sources:

— Timer 0 match interrupt

— Timer 0 overflow interrupt

— Suspend interrupt

— Resume interrupt

— Two Endpoint interrupts for Endpoint 0 and Endpoint 1

— Three external interrupts for port 0, P0.0–P0.5

— Four external interrupts for port 1, P1.1–P1.5

— Five external interrupts for port 2, P2.0–P2.1 (PS/2 Mode only)

— Internal RC OSC interrupt.

Vector
0000H

SYM.3
(EI, DI)

T1CON.1

To Match Interrupt

T1CON.2

To Overflow Interrupt

Suspend
Interrupt

Resume Interrupt

Suspend/Resume
Interrupt Enable

P0.0-P0.5 Interrupt

P1.0-P1.5 Interrupt

Internal RC Interrupt

SUBCON.3

P0INT.x

P1INT.x

Endpoint 0 interrupt

Endpoint 1 interrupt

PS2 PAD Interrupt

P2INT.x

Enable_EP0

Enable_EP1

SUBCON.6

P0PND.0-6

P1PND.0-5

P2PND.3

EP0_PND

EP1_PND

T0CON.0

Suspend_
PND

Resume_
PND

Figure 5-3. S3C9654/C9658/P9658 Interrupt Structure

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-1

6 SAM88RCRI INSTRUCTION SET

OVERVIEW

The SAM88RCRI instruction set is designed to support the large register file. It includes a full complement of 8-
bit arithmetic and logic operations. There are 41 instructions. No special I/O instructions are necessary because
I/O control and data registers are mapped directly into the register file. Flexible instructions for bit addressing,
rotate, and shift operations complete the powerful data manipulation capabilities of the SAM88RCRI instruction
set.

REGISTER ADDRESSING

To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is
specified. Paired registers can be used to construct 13-bit program memory or data memory addresses. For
detailed information about register addressing, please refer to Section 2, "Address Spaces".

ADDRESSING MODES

There are six addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative (RA), and
Immediate (IM). For detailed descriptions of these addressing modes, please refer to Section 3, "Addressing
Modes".

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-2

Table 6-1. Instruction Group Summary

Mnemonic Operands Instruction

Load Instructions

CLR dst Clear

LD dst,src Load

LDC dst,src Load program memory

LDE dst,src Load external data memory

LDCD dst,src Load program memory and decrement

LDED dst,src Load external data memory and decrement

LDCI dst,src Load program memory and increment

LDEI dst,src Load external data memory and increment

POP dst Pop from stack

PUSH src Push to stack

Arithmetic Instructions

ADC dst,src Add with carry

ADD dst,src Add

CP dst,src Compare

DEC dst Decrement

INC dst Increment

SBC dst,src Subtract with carry

SUB dst,src Subtract

Logic Instructions

AND dst,src Logical AND

COM dst Complement

OR dst,src Logical OR

XOR dst,src Logical exclusive OR

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-3

Table 6-1. Instruction Group Summary (Continued)

Mnemonic Operands Instruction

Program Control Instructions

CALL dst Call procedure

IRET Interrupt return

JP cc,dst Jump on condition code

JP dst Jump unconditional

JR cc,dst Jump relative on condition code

RET Return

Bit Manipulation Instructions

TCM dst,src Test complement under mask

TM dst,src Test under mask

Rotate and Shift Instructions

RL dst Rotate left

RLC dst Rotate left through carry

RR dst Rotate right

RRC dst Rotate right through carry

SRA dst Shift right arithmetic

CPU Control Instructions

CCF Complement carry flag

DI Disable interrupts

EI Enable interrupts

IDLE Enter Idle mode

NOP No operation

RCF Reset carry flag

SCF Set carry flag

STOP Enter Stop mode

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-4

FLAGS REGISTER (FLAGS)

The FLAGS register contains eight bits that describe the current status of CPU operations. Four of these bits,
FLAGS.4 – FLAGS.7, can be tested and used with conditional jump instructions;

FLAGS register can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load
instruction. Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags
register. For example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of
the AND instruction. If the AND instruction uses the Flags register as the destination, then simultaneously, two
write will occur to the Flags register producing an unpredictable result.

.7 .6 .5 .4 .3 .2 .1 .0 LSBMSB

System Flags Register (FLAGS)
D5H, R/W

Not mapped
Carry flag (C)

Zero flag (Z)

Sign flag (S)

Overflow flag (V)

Figure 6-1. System Flags Register (FLAGS)

FLAG DESCRIPTIONS

Overflow Flag (FLAGS.4, V)

The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than – 128.
It is also cleared to "0" following logic operations.

Sign Flag (FLAGS.5, S)

Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the result. A
logic zero indicates a positive number and a logic one indicates a negative number.

Zero Flag (FLAGS.6, Z)

For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For operations that
test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is logic zero.

Carry Flag (FLAGS.7, C)

The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to the
bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the specified
register. Program instructions can set, clear, or complement the carry flag.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-5

INSTRUCTION SET NOTATION

Table 6-2. Flag Notation Conventions

Flag Description

C Carry flag

Z Zero flag

S Sign flag

V Overflow flag

0 Cleared to logic zero

1 Set to logic one

* Set or cleared according to operation

– Value is unaffected

x Value is undefined

Table 6-3. Instruction Set Symbols

Symbol Description

dst Destination operand

src Source operand

@ Indirect register address prefix

PC Program counter

FLAGS Flags register (D5H)

Immediate operand or register address prefix

H Hexadecimal number suffix

D Decimal number suffix

B Binary number suffix

opc Opcode

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-6

Table 6-4. Instruction Notation Conventions

Notation Description Actual Operand Range

cc Condition code See list of condition codes in Table 6-6.

r Working register only Rn (n = 0–15)

rr Working register pair RRp (p = 0, 2, 4, ..., 14)

R Register or working register reg or Rn (reg = 0–255, n = 0–15)

RR Register pair or working register pair reg or RRp (reg = 0–254, even number only, where
p = 0, 2, ..., 14)

Ir Indirect working register only @Rn (n = 0–15)

IR Indirect register or indirect working register @Rn or @reg (reg = 0–255, n = 0–15)

Irr Indirect working register pair only @RRp (p = 0, 2, ..., 14)

IRR Indirect register pair or indirect working
register pair

@RRp or @reg (reg = 0–254, even only, where
p = 0, 2, ..., 14)

X Indexed addressing mode #reg[Rn] (reg = 0–255, n = 0–15)

XS Indexed (short offset) addressing mode #addr[RRp] (addr = range –128 to +127, where
p = 0, 2, ..., 14)

xl Indexed (long offset) addressing mode #addr [RRp] (addr = range 0–8191, where
p = 0, 2, ..., 14)

da Direct addressing mode addr (addr = range 0–8191)

ra Relative addressing mode addr (addr = number in the range +127 to –128 that is
an offset relative to the address of the next instruction)

im Immediate addressing mode #data (data = 0–255)

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-7

Table 6-5. Opcode Quick Reference

OPCODE MAP

LOWER NIBBLE (HEX)

– 0 1 2 3 4 5 6 7

U 0 DEC
R1

DEC
IR1

ADD
r1,r2

ADD
r1,Ir2

ADD
R2,R1

ADD
IR2,R1

ADD
R1,IM

P 1 RLC
R1

RLC
IR1

ADC
r1,r2

ADC
r1,Ir2

ADC
R2,R1

ADC
IR2,R1

ADC
R1,IM

P 2 INC
R1

INC
IR1

SUB
r1,r2

SUB
r1,Ir2

SUB
R2,R1

SUB
IR2,R1

SUB
R1,IM

E 3 JP
IRR1

SBC
r1,r2

SBC
r1,Ir2

SBC
R2,R1

SBC
IR2,R1

SBC
R1,IM

R 4 OR
r1,r2

OR
r1,Ir2

OR
R2,R1

OR
IR2,R1

OR
R1,IM

5 POP
R1

POP
IR1

AND
r1,r2

AND
r1,Ir2

AND
R2,R1

AND
IR2,R1

AND
R1,IM

N 6 COM
R1

COM
IR1

TCM
r1,r2

TCM
r1,Ir2

TCM
R2,R1

TCM
IR2,R1

TCM
R1,IM

I 7 PUSH
R2

PUSH
IR2

TM
r1,r2

TM
r1,Ir2

TM
R2,R1

TM
IR2,R1

TM
R1,IM

B 8 LD
r1, x, r2

B 9 RL
R1

RL
IR1

LD
r2, x, r1

L A CP
r1,r2

CP
r1,Ir2

CP
R2,R1

CP
IR2,R1

CP
R1,IM

LDC
r1, Irr2, xL

E B CLR
R1

CLR
IR1

XOR
r1,r2

XOR
r1,Ir2

XOR
R2,R1

XOR
IR2,R1

XOR
R1,IM

LDC
r2, Irr2, xL

C RRC
R1

RRC
IR1

LDC
r1,Irr2

LD
r1, Ir2

H D SRA
R1

SRA
IR1

LDC
r2,Irr1

LD
IR1,IM

LD
Ir1, r2

E E RR
R1

RR
IR1

LDCD
r1,Irr2

LDCI
r1,Irr2

LD
R2,R1

LD
R2,IR1

LD
R1,IM

LDC
r1, Irr2, xs

X F CALL
IRR1

LD
IR2,R1

CALL
DA1

LDC
r2, Irr1, xs

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-8

Table 6-5. Opcode Quick Reference (Continued)

OPCODE MAP

LOWER NIBBLE (HEX)

– 8 9 A B C D E F

U 0 LD
r1,R2

LD
r2,R1

JR
cc,RA

LD
r1,IM

JP
cc,DA

INC
r1

P 1 ↓ ↓ ↓ ↓ ↓ ↓

P 2

E 3

R 4

5

N 6 IDLE

I 7 ↓ ↓ ↓ ↓ ↓ ↓ STOP

B 8 DI

B 9 EI

L A RET

E B IRET

C RCF

H D ↓ ↓ ↓ ↓ ↓ ↓ SCF

E E CCF

X F LD
r1,R2

LD
r2,R1

JR
cc,RA

LD
r1,IM

JP
cc,DA

INC
r1

NOP

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-9

CONDITION CODES

The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal"
after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.

The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump
instructions.

Table 6-6. Condition Codes

Binary Mnemonic Description Flags Set

0000 F Always false –

1000 T Always true –

0111 (1) C Carry C = 1

1111 (1) NC No carry C = 0

0110 (1) Z Zero Z = 1

1110 (1) NZ Not zero Z = 0

1101 PL Plus S = 0

0101 MI Minus S = 1

0100 OV Overflow V = 1

1100 NOV No overflow V = 0

0110 (1) EQ Equal Z = 1

1110 (1) NE Not equal Z = 0

1001 GE Greater than or equal (S XOR V) = 0

0001 LT Less than (S XOR V) = 1

1010 GT Greater than (Z OR (S XOR V)) = 0

0010 LE Less than or equal (Z OR (S XOR V)) = 1

1111 (1) UGE Unsigned greater than or equal C = 0

0111 (1) ULT Unsigned less than C = 1

1011 UGT Unsigned greater than (C = 0 AND Z = 0) = 1

0011 ULE Unsigned less than or equal (C OR Z) = 1

NOTES:
1. Indicate condition codes that are related to two different mnemonics but which test the same flag.

For example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used;
after a CP instruction, however, EQ would probably be used.

2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-10

INSTRUCTION DESCRIPTIONS

This section contains detailed information and programming examples for each instruction in the SAM88RCRI
instruction set. Information is arranged in a consistent format for improved readability and for fast referencing.
The following information is included in each instruction description:

— Instruction name (mnemonic)

— Full instruction name

— Source/destination format of the instruction operand

— Shorthand notation of the instruction's operation

— Textual description of the instruction's effect

— Specific flag settings affected by the instruction

— Detailed description of the instruction's format, execution time, and addressing mode(s)

— Programming example(s) explaining how to use the instruction

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-11

ADC — Add With Carry

ADC dst,src

Operation: dst ¨ dst + src + c

The source operand, along with the setting of the carry flag, is added to the destination operand
and the sum is stored in the destination. The contents of the source are unaffected. Two's-
complement addition is performed. In multiple precision arithmetic, this instruction permits the
carry from the addition of low-order operands to be carried into the addition of high-order
operands.

Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the
 result is of the opposite sign; cleared otherwise.
D: Always cleared to "0".
H: Set if there is a carry from the most significant bit of the low-order four bits of the result;
 cleared otherwise.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 12 r r

6 13 r lr

opc src dst 3 6 14 R R

6 15 R IR

opc dst src 3 6 16 R IM

Examples: Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and register
03H = 0AH:

ADC R1,R2 → R1 = 14H, R2 = 03H
ADC R1,@R2 → R1 = 1BH, R2 = 03H
ADC 01H,02H → Register 01H = 24H, register 02H = 03H
ADC 01H,@02H → Register 01H = 2BH, register 02H = 03H
ADC 01H,#11H → Register 01H = 32H

In the first example, destination register R1 contains the value 10H, the carry flag is set to "1",
and the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds
03H and the carry flag value ("1") to the destination value 10H, leaving 14H in register R1.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-12

ADD — Add

ADD dst,src

Operation: dst ¨ dst + src

The source operand is added to the destination operand and the sum is stored in the destination.
The contents of the source are unaffected. Two's-complement addition is performed.

Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the
 result is of the opposite sign; cleared otherwise.
D: Always cleared to "0".
H: Set if a carry from the low-order nibble occurred.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 02 r r

6 03 r lr

opc src dst 3 6 04 R R

6 05 R IR

opc dst src 3 6 06 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

ADD R1,R2 → R1 = 15H, R2 = 03H
ADD R1,@R2 → R1 = 1CH, R2 = 03H
ADD 01H,02H → Register 01H = 24H, register 02H = 03H
ADD 01H,@02H → Register 01H = 2BH, register 02H = 03H
ADD 01H,#25H → Register 01H = 46H

In the first example, destination working register R1 contains 12H and the source working register
R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H in
register R1.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-13

AND — Logical AND

AND dst,src

Operation: dst ¨ dst AND src

The source operand is logically ANDed with the destination operand. The result is stored in the
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits
in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the
source are unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 52 r r

6 53 r lr

opc src dst 3 6 54 R R

6 55 R IR

opc dst src 3 6 56 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

AND R1,R2 → R1 = 02H, R2 = 03H
AND R1,@R2 → R1 = 02H, R2 = 03H
AND 01H,02H → Register 01H = 01H, register 02H = 03H
AND 01H,@02H → Register 01H = 00H, register 02H = 03H
AND 01H,#25H → Register 01H = 21H

In the first example, destination working register R1 contains the value 12H and the source
working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source
operand 03H with the destination operand value 12H, leaving the value 02H in register R1.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-14

CALL — Call Procedure

CALL dst

Operation: SP ¨ SP – 1
@SP ¨ PCL
SP ¨ SP –1
@SP ¨ PCH
PC ¨ dst

The current contents of the program counter are pushed onto the top of the stack. The program
counter value used is the address of the first instruction following the CALL instruction. The
specified destination address is then loaded into the program counter and points to the first
instruction of a procedure. At the end of the procedure the return instruction (RET) can be used to
return to the original program flow. RET pops the top of the stack back into the program counter.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 3 14 F6 DA

opc dst 2 12 F4 IRR

Examples: Given: R0 = 15H, R1 = 21H, PC = 1A47H, and SP = 0B2H:

CALL 1521H → SP = 0B0H
(Memory locations 00H = 1AH, 01H = 4AH, where 4AH
is the address that follows the instruction.)

CALL @RR0 → SP = 0B0H (00H = 1AH, 01H = 49H)

In the first example, if the program counter value is 1A47H and the stack pointer contains the
value 0B2H, the statement "CALL 1521H" pushes the current PC value onto the top of the stack.
The stack pointer now points to memory location 00H. The PC is then loaded with the value
1521H, the address of the first instruction in the program sequence to be executed.

If the contents of the program counter and stack pointer are the same as in the first example, the
statement "CALL @RR0" produces the same result except that the 49H is stored in stack location
01H (because the two-byte instruction format was used). The PC is then loaded with the value
1521H, the address of the first instruction in the program sequence to be executed.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-15

CCF — Complement Carry Flag

CCF

Operation: C ¨ NOT C

The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic
zero; if C = "0", the value of the carry flag is changed to logic one.

Flags: C: Complemented.

No other flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 4 EF

Example: Given: The carry flag = "0":

CCF

If the carry flag = "0", the CCF instruction complements it in the FLAGS register (0D5H), changing
its value from logic zero to logic one.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-16

CLR — Clear

CLR dst

Operation: dst ¨ "0"

The destination location is cleared to "0".

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 B0 R

4 B1 IR

Examples: Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:

CLR 00H → Register 00H = 00H
CLR @01H → Register 01H = 02H, register 02H = 00H

In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H
value to 00H. In the second example, the statement "CLR @01H" uses Indirect Register (IR)
addressing mode to clear the 02H register value to 00H.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-17

COM — Complement

COM dst

Operation: dst ¨ NOT dst

The contents of the destination location are complemented (one's complement); all "1s" are
changed to "0s", and vice-versa.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 60 R

4 61 IR

Examples: Given: R1 = 07H and register 07H = 0F1H:

COM R1 → R1 = 0F8H
COM @R1 → R1 = 07H, register 07H = 0EH

In the first example, destination working register R1 contains the value 07H (00000111B). The
statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros,
and vice-versa, leaving the value 0F8H (11111000B).

In the second example, Indirect Register (IR) addressing mode is used to complement the value
of destination register 07H (11110001B), leaving the new value 0EH (00001110B).

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-18

CP — Compare

CP dst,src

Operation: dst – src

The source operand is compared to (subtracted from) the destination operand, and the
appropriate flags are set accordingly. The contents of both operands are unaffected by the
comparison.

Flags: C: Set if a "borrow" occurred (src > dst); cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the
 sign of the result is of the same as the sign of the source operand; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 A2 r r

6 A3 r lr

opc src dst 3 6 A4 R R

6 A5 R IR

opc dst src 3 6 A6 R IM

Examples: 1. Given: R1 = 02H and R2 = 03H:

CP R1,R2 → Set the C and S flags

Destination working register R1 contains the value 02H and source register R2 contains the value
03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1 value
(destination/minuend). Because a "borrow" occurs and the difference is negative, C and S are "1".

2. Given: R1 = 05H and R2 = 0AH:

CP R1,R2
JP UGE,SKIP
INC R1

SKIP LD R3,R1

In this example, destination working register R1 contains the value 05H which is less than the
contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C = "1"
and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1"
executes, the value 06H remains in working register R3.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-19

DEC — Decrement

DEC dst

Operation: dst ¨ dst – 1

The contents of the destination operand are decremented by one.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, dst value is –128(80H) and result value is
 +127(7FH); cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 00 R

4 01 IR

Examples: Given: R1 = 03H and register 03H = 10H:

DEC R1 → R1 = 02H
DEC @R1 → Register 03H = 0FH

In the first example, if working register R1 contains the value 03H, the statement "DEC R1"
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by
one, leaving the value 0FH.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-20

DI — Disable Interrupts

DI

Operation: SYM (2) ¨ 0

Bit zero of the system mode register, SYM.2, is cleared to "0", globally disabling all interrupt
processing. Interrupt requests will continue to set their respective interrupt pending bits, but the
CPU will not service them while interrupt processing is disabled.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 4 8F

Example: Given: SYM = 04H:

DI

If the value of the SYM register is 04H, the statement "DI" leaves the new value 00H in the
register and clears SYM.2 to "0", disabling interrupt processing.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-21

EI — Enable Interrupts

EI

Operation: SYM (2) ¨ 1

An EI instruction sets bit 2 of the system mode register, SYM.2 to "1". This allows interrupts to be
serviced as they occur. If an interrupt's pending bit was set while interrupt processing was
disabled (by executing a DI instruction), it will be serviced when you execute the EI instruction.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 4 9F

Example: Given: SYM = 00H:

EI

If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the
statement "EI" sets the SYM register to 04H, enabling all interrupts (SYM.2 is the enable bit for
global interrupt processing).

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-22

IDLE — Idle Operation

IDLE

Operation:

The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle
mode can be released by an interrupt request (IRQ) or an external reset operation.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc 1 4 6F – –

Example: The instruction

IDLE

stops the CPU clock but not the system clock.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-23

INC — Increment

INC dst

Operation: dst ¨ dst + 1

The contents of the destination operand are incremented by one.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is dst value is +127(7FH) and result is –128(80H);
 cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

dst | opc 1 4 rE r

r = 0 to
F

opc dst 2 4 20 R

4 21 IR

Examples: Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:

INC R0 → R0 = 1CH
INC 00H → Register 00H = 0DH
INC @R0 → R0 = 1BH, register 01H = 10H

In the first example, if destination working register R0 contains the value 1BH, the statement "INC
R0" leaves the value 1CH in that same register.

The next example shows the effect an INC instruction has on register 00H, assuming that it
contains the value 0CH.

In the third example, INC is used in Indirect Register (IR) addressing mode to increment the value
of register 1BH from 0FH to 10H.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-24

IRET — Interrupt Return

IRET IRET

Operation: FLAGS ¨ @SP
SP ¨ SP + 1
PC ¨ @SP
SP ¨ SP + 2
SYM(2) ¨ 1

This instruction is used at the end of an interrupt service routine. It restores the flag register and
the program counter. It also re-enables global interrupts.

Flags: All flags are restored to their original settings (that is, the settings before the interrupt occurred).

Format:

IRET
(Normal)

Bytes Cycles Opcode
(Hex)

opc 1 6 BF

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-25

JP — Jump

JP cc,dst (Conditional)

JP dst (Unconditional)

Operation: If cc is true, PC ¨ dst

The conditional JUMP instruction transfers program control to the destination address if the
condition specified by the condition code (cc) is true; otherwise, the instruction following the JP
instruction is executed. The unconditional JP simply replaces the contents of the PC with the
contents of the specified register pair. Control then passes to the statement addressed by the PC.

Flags: No flags are affected.

Format: (1)

(2)
Bytes Cycles Opcode

(Hex)
Addr Mode

dst

cc | opc dst 3 8 (3) ccD DA

cc = 0 to F

opc dst 2 8 30 IRR

NOTES:
1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.
2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the opcode are both four

bits.

Examples: Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:

JP C,LABEL_W → LABEL_W = 1000H, PC = 1000H
JP @00H → PC = 0120H

The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement
"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to
that location. Had the carry flag not been set, control would then have passed to the statement
immediately following the JP instruction.

The second example shows an unconditional JP. The statement "JP @00" replaces the contents
of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-26

JR — Jump Relative

JR cc,dst

Operation: If cc is true, PC ¨ PC + dst

If the condition specified by the condition code (cc) is true, the relative address is added to the
program counter and control passes to the statement whose address is now in the program
counter; otherwise, the instruction following the JR instruction is executed (See list of condition
codes).

The range of the relative address is +127, –128, and the original value of the program counter is
taken to be the address of the first instruction byte following the JR statement.

Flags: No flags are affected.

Format:

(1)
Bytes Cycles Opcode

(Hex)
Addr Mode

dst

cc | opc dst 2 6 (2) ccB RA

cc = 0 to F

NOTE: In the first byte of the two-byte instruction format, the condition code and the opcode are each four
bits.

Example: Given: The carry flag = "1" and LABEL_X = 1FF7H:

JR C,LABEL_X → PC = 1FF7H

If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will
pass control to the statement whose address is now in the PC. Otherwise, the program instruction
following the JR would be executed.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-27

LD — Load

LD dst,src

Operation: dst ¨ src

The contents of the source are loaded into the destination. The source's contents are unaffected.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

dst | opc src 2 4 rC r IM

4 r8 r R

src | opc dst 2 4 r9 R r

r = 0 to F

opc dst | src 2 4 C7 r lr

4 D7 Ir r

opc src dst 3 6 E4 R R

6 E5 R IR

opc dst src 3 6 E6 R IM

6 D6 IR IM

opc src dst 3 6 F5 IR R

opc dst | src x 3 6 87 r x [r]

opc src | dst x 3 6 97 x [r] r

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-28

LD — Load

LD (Continued)

Examples: Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H,
register 02H = 02H, LOOP = 30H, and register 3AH = 0FFH:

LD R0,#10H → R0 = 10H
LD R0,01H → R0 = 20H, register 01H = 20H
LD 01H,R0 → Register 01H = 01H, R0 = 01H
LD R1,@R0 → R1 = 20H, R0 = 01H
LD @R0,R1 → R0 = 01H, R1 = 0AH, register 01H = 0AH
LD 00H,01H → Register 00H = 20H, register 01H = 20H
LD 02H,@00H → Register 02H = 20H, register 00H = 01H
LD 00H,#0AH → Register 00H = 0AH
LD @00H,#10H → Register 00H = 01H, register 01H = 10H
LD @00H,02H → Register 00H = 01H, register 01H = 02, register 02H = 02H
LD R0,#LOOP[R1]→ R0 = 0FFH, R1 = 0AH
LD #LOOP[R0],R1→ Register 31H = 0AH, R0 = 01H, R1 = 0AH

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-29

LDC/LDE — Load Memory

LDC/LDE dst,src

Operation: dst ¨ src

This instruction loads a byte from program or data memory into a working register or vice-versa.
The source values are unaffected. LDC refers to program memory and LDE to data memory. The
assembler makes 'Irr' or 'rr' values an even number for program memory and an odd number for
data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

1. opc dst | src 2 10 C3 r Irr

2. opc src | dst 2 10 D3 Irr r

3. opc dst | src XS 3 12 E7 r XS [rr]

4. opc src | dst XS 3 12 F7 XS [rr] r

5. opc dst | src XLL XLH 4 14 A7 r XL [rr]

6. opc src | dst XLL XLH 4 14 B7 XL [rr] r

7. opc dst | 0000 DAL DAH 4 14 A7 r DA

8. opc src | 0000 DAL DAH 4 14 B7 DA r

9. opc dst | 0001 DAL DAH 4 14 A7 r DA

10. opc src | 0001 DAL DAH 4 14 B7 DA r

NOTES:
1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0–1.
2. For formats 3 and 4, the destination address 'XS [rr]' and the source address 'XS [rr]' are each one byte.
3. For formats 5 and 6, the destination address 'XL [rr] and the source address 'XL [rr]' are each two bytes.
4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set of values, used in

formats 9 and 10, are used to address data memory.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-30

LDC/LDE — Load Memory

LDC/LDE (Continued)

Examples: Given: R0 = 11H, R1 = 34H, R2 = 01H, R3 = 04H, R4 = 00H, R5 = 60H; Program memory
locations 0061 = AAH, 0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External
data memory locations 0061H = BBH, 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and
1104H = 98H:

LDC R0,@RR2 ; R0 ¨ contents of program memory location 0104H
; R0 = 1AH, R2 = 01H, R3 = 04H

LDE R0,@RR2 ; R0 ¨ contents of external data memory location 0104H
; R0 = 2AH, R2 = 01H, R3 = 04H

LDC * @RR2,R0 ; 11H (contents of R0) is loaded into program memory
; location 0104H (RR2),
; working registers R0, R2, R3 Æ no change

LDE @RR2,R0 ; 11H (contents of R0) is loaded into external data memory
; location 0104H (RR2),
; working registers R0, R2, R3 Æ no change

LDC R0,#01H[RR4] ; R0 ¨ contents of program memory location 0061H
; (01H + RR4),
; R0 = AAH, R2 = 00H, R3 = 60H

LDE R0,#01H[RR4] ; R0 ¨ contents of external data memory location 0061H
; (01H + RR4), R0 = BBH, R4 = 00H, R5 = 60H

LDC (note) #01H[RR4],R0 ; 11H (contents of R0) is loaded into program memory
; location 0061H (01H + 0060H)

LDE #01H[RR4],R0 ; 11H (contents of R0) is loaded into external data memory
; location 0061H (01H + 0060H)

LDC R0,#1000H[RR2] ; R0 ¨ contents of program memory location 1104H
; (1000H + 0104H), R0 = 88H, R2 = 01H, R3 = 04H

LDE R0,#1000H[RR2] ; R0 ¨ contents of external data memory location 1104H
; (1000H + 0104H), R0 = 98H, R2 = 01H, R3 = 04H

LDC R0,1104H ; R0 ¨ contents of program memory location 1104H,
; R0 = 88H

LDE R0,1104H ; R0 ¨ contents of external data memory location 1104H,
; R0 = 98H

LDC (note) 1105H,R0 ; 11H (contents of R0) is loaded into program memory
; location 1105H, (1105H) ¨ 11H

LDE 1105H,R0 ; 11H (contents of R0) is loaded into external data memory
; location 1105H, (1105H) ¨ 11H

NOTE: These instructions are not supported by masked ROM type devices.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-31

LDCD/LDED — Load Memory and Decrement

LDCD/LDED dst,src

Operation: dst ¨ src

rr ¨ rr – 1

These instructions are used for user stacks or block transfers of data from program or data
memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then decremented. The contents of the source are unaffected.

LDCD references program memory and LDED references external data memory. The assembler
makes ‘Irr’ an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 10 E2 r Irr

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = 0CDH, and
external data memory location 1033H = 0DDH:

LDCD R8,@RR6 ; 0CDH (contents of program memory location 1033H) is
; loaded into R8 and RR6 is decremented by one
; R8 = 0CDH, R6 = 10H, R7 = 32H (RR6 ← RR6 - 1)

LDED R8,@RR6 ; 0DDH (contents of data memory location 1033H) is
; loaded into R8 and RR6 is decremented by one
; (RR6 ← RR6 - 1) R8 = 0DDH, R6 = 10H, R7 = 32H

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-32

LDCI/LDEI — Load Memory and Increment

LDCI/LDEI dst,src

Operation: dst ¨ src

rr ¨ rr + 1

These instructions are used for user stacks or block transfers of data from program or data
memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then incremented automatically. The contents of the source are unaffected.

LDCI refers to program memory and LDEI refers to external data memory. The assembler makes
'Irr' even for program memory and odd for data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 10 E3 r Irr

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and
1034H = 0C5H; external data memory locations 1033H = 0DDH and 1034H = 0D5H:

LDCI R8,@RR6 ; 0CDH (contents of program memory location 1033H) is
; loaded into R8 and RR6 is incremented by one
; (RR6 ¨ RR6 + 1) R8 = 0CDH, R6 = 10H, R7 = 34H

LDEI R8,@RR6 ; 0DDH (contents of data memory location 1033H) is
; loaded into R8 and RR6 is incremented by one
; (RR6 ¨ RR6 + 1) R8 = 0DDH, R6 = 10H, R7 = 34H

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-33

NOP — No Operation

NOP

Operation: No action is performed when the CPU executes this instruction. Typically, one or more NOPs are
executed in sequence in order to effect a timing delay of variable duration.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 4 FF

Example: When the instruction

NOP

is encountered in a program, no operation occurs. Instead, there is a delay in instruction
execution time.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-34

OR — Logical OR

OR dst,src

Operation: dst ¨ dst OR src

The source operand is logically ORed with the destination operand and the result is stored in the
destination. The contents of the source are unaffected. The OR operation results in a "1" being
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is
stored.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 42 r r

6 43 r lr

opc src dst 3 6 44 R R

6 45 R IR

opc dst src 3 6 46 R IM

Examples: Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and register
08H = 8AH:

OR R0,R1 → R0 = 3FH, R1 = 2AH
OR R0,@R2 → R0 = 37H, R2 = 01H, register 01H = 37H
OR 00H,01H → Register 00H = 3FH, register 01H = 37H
OR 01H,@00H → Register 00H = 08H, register 01H = 0BFH
OR 00H,#02H → Register 00H = 0AH

In the first example, if working register R0 contains the value 15H and register R1 the value 2AH,
the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the result
(3FH) in destination register R0.

The other examples show the use of the logical OR instruction with the various addressing modes
and formats.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-35

POP — Pop From Stack

POP dst

Operation: dst ¨ @SP

SP ¨ SP + 1

The contents of the location addressed by the stack pointer are loaded into the destination. The
stack pointer is then incremented by one.

Flags: No flags affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 8 50 R

8 51 IR

Examples: Given: Register 00H = 01H, register 01H = 1BH, SP (0D9H) = 0BBH, and stack register
0BBH = 55H:

POP 00H → Register 00H = 55H, SP = 0BCH
POP @00H → Register 00H = 01H, register 01H = 55H, SP = 0BCH

In the first example, general register 00H contains the value 01H. The statement "POP 00H"
loads the contents of location 0BBH (55H) into destination register 00H and then increments the
stack pointer by one. Register 00H then contains the value 55H and the SP points to location
0BCH.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-36

PUSH — Push To Stack

PUSH src

Operation: SP ¨ SP – 1

@SP ¨ src

A PUSH instruction decrements the stack pointer value and loads the contents of the source (src)
into the location addressed by the decremented stack pointer. The operation then adds the new
value to the top of the stack.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc src 2 8 70 R

8 71 IR

Examples: Given: Register 40H = 4FH, register 4FH = 0AAH, SP = 0C0H:

PUSH 40H → Register 40H = 4FH, stack register 0BFH = 4FH,
SP = 0BFH

PUSH @40H → Register 40H = 4FH, register 4FH = 0AAH, stack register
0BFH = 0AAH, SP = 0BFH

In the first example, if the stack pointer contains the value 0C0H, and general register 40H the
value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0C0 to 0BFH. It then
loads the contents of register 40H into location 0BFH. Register 0BFH then contains the value 4FH
and SP points to location 0BFH.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-37

RCF — Reset Carry Flag

RCF RCF

Operation: C ¨ 0

The carry flag is cleared to logic zero, regardless of its previous value.

Flags: C: Cleared to "0".

No other flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 4 CF

Example: Given: C = "1" or "0":

The instruction RCF clears the carry flag (C) to logic zero.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-38

RET — Return

RET

Operation: PC ¨ @SP

SP ¨ SP + 2

The RET instruction is normally used to return to the previously executing procedure at the end of
a procedure entered by a CALL instruction. The contents of the location addressed by the stack
pointer are popped into the program counter. The next statement that is executed is the one that
is addressed by the new program counter value.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 8 AF

Example: Given: SP = 0BCH, (SP) = 101AH, and PC = 1234:

RET → PC = 101AH, SP = 0BEH

The statement "RET" pops the contents of stack pointer location 0BCH (10H) into the high byte of
the program counter. The stack pointer then pops the value in location 0BDH (1AH) into the PC's
low byte and the instruction at location 101AH is executed. The stack pointer now points to
memory location 0BEH.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-39

RL — Rotate Left

RL dst

Operation: C ¨ dst (7)

dst (0) ¨ dst (7)

dst (n + 1) ¨ dst (n), n = 0–6

The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is
moved to the bit zero (LSB) position and also replaces the carry flag.

C

7 0

Flags: C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during
 rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 90 R

4 91 IR

Examples: Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:

RL 00H → Register 00H = 55H, C = "1"
RL @01H → Register 01H = 02H, register 02H = 2EH, C = "0"

In the first example, if general register 00H contains the value 0AAH (10101010B), the statement
"RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H (01010101B)
and setting the carry and overflow flags.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-40

RLC — Rotate Left Through Carry

RLC dst

Operation: dst (0) ¨ C

C ¨ dst (7)

dst (n + 1) ¨ dst (n), n = 0–6

The contents of the destination operand with the carry flag are rotated left one bit position. The
initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.

C

7 0

Flags: C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during
 rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 10 R

4 11 IR

Examples: Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":

RLC 00H → Register 00H = 54H, C = "1"
RLC @01H → Register 01H = 02H, register 02H = 2EH, C = "0"

In the first example, if general register 00H has the value 0AAH (10101010B), the statement "RLC
00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag and the
initial value of the C flag replaces bit zero of register 00H, leaving the value 55H (01010101B).
The MSB of register 00H resets the carry flag to "1" and sets the overflow flag.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-41

RR — Rotate Right

RR dst

Operation: C ¨ dst (0)

dst (7) ¨ dst (0)

dst (n) ¨ dst (n + 1), n = 0–6

The contents of the destination operand are rotated right one bit position. The initial value of bit
zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).

C

7 0

Flags: C: Set if the bit rotated from the least significant bit position (bit zero) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during
 rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 E0 R

4 E1 IR

Examples: Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:

RR 00H → Register 00H = 98H, C = "1"
RR @01H → Register 01H = 02H, register 02H = 8BH, C = "1"

In the first example, if general register 00H contains the value 31H (00110001B), the statement
"RR 00H" rotates this value one bit position to the right. The initial value of bit zero is moved to
bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit zero also
resets the C flag to "1" and the sign flag and overflow flag are also set to "1".

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-42

RRC — Rotate Right Through Carry

RRC dst

Operation: dst (7) ¨ C

C ¨ dst (0)

dst (n) ¨ dst (n + 1), n = 0–6

The contents of the destination operand and the carry flag are rotated right one bit position. The
initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit
7 (MSB).

C

7 0

Flags: C: Set if the bit rotated from the least significant bit position (bit zero) was "1".
Z: Set if the result is "0" cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during
 rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 C0 R

4 C1 IR

Examples: Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = "0":

RRC 00H → Register 00H = 2AH, C = "1"
RRC @01H → Register 01H = 02H, register 02H = 0BH, C = "1"

In the first example, if general register 00H contains the value 55H (01010101B), the statement
"RRC 00H" rotates this value one bit position to the right. The initial value of bit zero ("1")
replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new
value 2AH (00101010B) in destination register 00H. The sign flag and overflow flag are both
cleared to "0".

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-43

SBC — Subtract With Carry

SBC dst,src

Operation: dst ¨ dst – src – c

The source operand, along with the current value of the carry flag, is subtracted from the
destination operand and the result is stored in the destination. The contents of the source are
unaffected. Subtraction is performed by adding the two's-complement of the source operand to
the destination operand. In multiple precision arithmetic, this instruction permits the carry
("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of
high-order operands.

Flags: C: Set if a borrow occurred (src > dst); cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign
 f the result is the same as the sign of the source; cleared otherwise.
D: Always set to "1".
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;
 set otherwise, indicating a "borrow".

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 32 r r

6 33 r lr

opc src dst 3 6 34 R R

6 35 R IR

opc dst src 3 6 36 R IM

Examples: Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and register
03H = 0AH:

SBC R1,R2 → R1 = 0CH, R2 = 03H
SBC R1,@R2 → R1 = 05H, R2 = 03H, register 03H = 0AH
SBC 01H,02H → Register 01H = 1CH, register 02H = 03H
SBC 01H,@02H → Register 01H = 15H,register 02H = 03H, register 03H = 0AH
SBC 01H,#8AH → Register 01H = 95H; C, S, and V = "1"

In the first example, if working register R1 contains the value 10H and register R2 the value 03H,
the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the
destination (10H) and then stores the result (0CH) in register R1.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-44

SCF — Set Carry Flag

SCF

Operation: C ¨ 1

The carry flag (C) is set to logic one, regardless of its previous value.

Flags: C: Set to "1".

No other flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 4 DF

Example: The statement

SCF

sets the carry flag to logic one.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-45

SRA — Shift Right Arithmetic

SRA dst

Operation: dst (7) ¨ dst (7)

C ¨ dst (0)

dst (n) ¨ dst (n + 1), n = 0–6

An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit
position 6.

C

7 6 0

Flags: C: Set if the bit shifted from the LSB position (bit zero) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 D0 R

4 D1 IR

Examples: Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":

SRA 00H → Register 00H = 0CD, C = "0"
SRA @02H → Register 02H = 03H, register 03H = 0DEH, C = "0"

In the first example, if general register 00H contains the value 9AH (10011010B), the statement
"SRA 00H" shifts the bit values in register 00H right one bit position. Bit zero ("0") clears the C
flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the
value 0CDH (11001101B) in destination register 00H.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-46

STOP — Stop Operation

STOP

Operation:

The STOP instruction stops both the CPU clock and system clock and causes the microcontroller
to enter Stop mode. During Stop mode, the contents of on-chip CPU registers, peripheral
registers, and I/O port control and data registers are retained. Stop mode can be released by an
external reset operation or External interrupt input. For the reset operation, the RESET pin must
be held to Low level until the required oscillation stabilization interval has elapsed.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc 1 4 7F – –

Example: The statement

STOP

halts all microcontroller operations.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-47

SUB — Subtract

SUB dst,src

Operation: dst ¨ dst – src

The source operand is subtracted from the destination operand and the result is stored in the
destination. The contents of the source are unaffected. Subtraction is performed by adding the
two's complement of the source operand to the destination operand.

Flags: C: Set if a "borrow" occurred; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the sign
 of the result is of the same as the sign of the source operand; cleared otherwise.
D: Always set to "1".
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;
 set otherwise indicating a "borrow".

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 22 r r

6 23 r lr

opc src dst 3 6 24 R R

6 25 R IR

opc dst src 3 6 26 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

SUB R1,R2 → R1 = 0FH, R2 = 03H
SUB R1,@R2 → R1 = 08H, R2 = 03H
SUB 01H,02H → Register 01H = 1EH, register 02H = 03H
SUB 01H,@02H → Register 01H = 17H, register 02H = 03H
SUB 01H,#90H → Register 01H = 91H; C, S, and V = "1"
SUB 01H,#65H → Register 01H = 0BCH; C and S = "1", V = "0"

In the first example, if working register R1 contains the value 12H and if register R2 contains the
value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination
value (12H) and stores the result (0FH) in destination register R1.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-48

TCM — Test Complement Under Mask

TCM dst,src

Operation: (NOT dst) AND src

This instruction tests selected bits in the destination operand for a logic one value. The bits to be
tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask). The TCM statement complements the destination operand, which is then ANDed with the
source mask. The zero (Z) flag can then be checked to determine the result. The destination and
source operands are unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 62 r r

6 63 r lr

opc src dst 3 6 64 R R

6 65 R IR

opc dst src 3 6 66 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and register
02H = 23H:

TCM R0,R1 → R0 = 0C7H, R1 = 02H, Z = "1"
TCM R0,@R1 → R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"
TCM 00H,01H → Register 00H = 2BH, register 01H = 02H, Z = "1"
TCM 00H,@01H → Register 00H = 2BH, register 01H = 02H,

register 02H = 23H, Z = "1"
TCM 00H,#34 → Register 00H = 2BH, Z = "0"

In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1
the value 02H (00000010B), the statement "TCM R0,R1" tests bit one in the destination register
for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one
and can be tested to determine the result of the TCM operation.

S3C9654/C9658/P9658 SAM88RCRI INSTRUCTION SET

6-49

TM — Test Under Mask

TM dst,src

Operation: dst AND src

This instruction tests selected bits in the destination operand for a logic zero value. The bits to be
tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to
determine the result. The destination and source operands are unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 72 r r

6 73 r lr

opc src dst 3 6 74 R R

6 75 R IR

opc dst src 3 6 76 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and register
02H = 23H:

TM R0,R1 → R0 = 0C7H, R1 = 02H, Z = "0"
TM R0,@R1 → R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"
TM 00H,01H → Register 00H = 2BH, register 01H = 02H, Z = "0"
TM 00H,@01H → Register 00H = 2BH, register 01H = 02H,

register 02H = 23H, Z = "0"
TM 00H,#54H → Register 00H = 2BH, Z = "1"

In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1
the value 02H (00000010B), the statement "TM R0,R1" tests bit one in the destination register for
a "0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic zero
and can be tested to determine the result of the TM operation.

SAM88RI INSTRUCTION SET S3C9654/C9658/P9658

6-50

XOR — Logical Exclusive OR

XOR dst,src

Operation: dst ¨ dst XOR src

The source operand is logically exclusive-ORed with the destination operand and the result is
stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever
the corresponding bits in the operands are different; otherwise, a "0" bit is stored.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 B2 r r

6 B3 r lr

opc src dst 3 6 B4 R R

6 B5 R IR

opc dst src 3 6 B6 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and register
02H = 23H:

XOR R0,R1 → R0 = 0C5H, R1 = 02H
XOR R0,@R1 → R0 = 0E4H, R1 = 02H, register 02H = 23H
XOR 00H,01H → Register 00H = 29H, register 01H = 02H
XOR 00H,@01H → Register 00H = 08H, register 01H = 02H,

register 02H = 23H
XOR 00H,#54H → Register 00H = 7FH

In the first example, if working register R0 contains the value 0C7H and if register R1 contains the
value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0 value
and stores the result (0C5H) in the destination register R0.

S3C9654/C9658/P9658 CLOCK CIRCUIT

7-1

7 CLOCK CIRCUIT

OVERVIEW

The S3C9654/C9658/P9658 has three oscillation circuit options, a crystal/ceramic oscillation and a RC oscillation
and an external clock source. The crystal or ceramic oscillation source provides a maximum 6 MHz clock. The
XIN and XOUT pins connect the oscillation source to the on-chip clock circuit. External clock and RC oscillation

and crystal/ceramic oscillator circuits are shown in Figures 7-1, 7-2, and 7-3.

S3C9654/
S3C9658
S3P9658

XOUT

XIN

Figure 7-1. External Oscillator

XIN

XOUT

R
S3C9654/
S3C9658
S3P9658

Figure 7-3. RC Oscillator

S3C9654/
S3C9658
S3P9658

XOUT

XIN

Figure 7-2. Main Oscillator Circuit
(Crystal/Ceramic Oscillator)

CLOCK CIRCUIT S3C9654/C9658/P9658

7-2

MAIN OSCILLATOR LOGIC

To increase processing speed and to reduce clock noise, non-divided logic is implemented for the main oscillator
circuit. For this reason, very high resolution waveforms (square signal edges) must be generated in order for the
CPU to efficiently process logic operations.

CLOCK STATUS DURING POWER-DOWN MODES

The two power-down modes, Stop mode and Idle mode, affect clock oscillation as follows:

— In Stop mode, the main oscillator "freezes," halting the CPU and peripherals. The contents of the register file
and current system register values are retained. RESET operation releases the Stop mode, and starts the
oscillator.

— In Idle mode, the internal clock signal is gated off to the CPU, but not to interrupt control and the timer. The
current CPU status is preserved, including stack pointer, program counter, and flags. Data in the register file
is retained. Idle mode is released by a RESET or by an interrupt (external or internally-generated).

SYSTEM CLOCK CONTROL REGISTER (CLKCON)

The system clock control register, CLKCON, is located in location D4H. It is read/write addressable and has the
following functions:

— Oscillator IRQ wake-up function enable/disable (CLKCON.7)

— Oscillator frequency divide-by value: non-divided, 2, 8, or 16 (CLKCON.4 and CLKCON.3)

The CLKCON register controls whether or not an external interrupt can be used to trigger a Stop mode release
(This is called the "IRQ wake-up" function). The IRQ wake-up enable bit is CLKCON.7.

After a RESET, the external interrupt oscillator wake-up function is enabled, the main oscillator is activated, and
the fOSC/16 (the slowest clock speed) is selected as the CPU clock. If necessary, you can then increase the
CPU clock speed to fOSC, fOSC/2 or fOSC/8.

S3C9654/C9658/P9658 CLOCK CIRCUIT

7-3

.7 .6 .5 .4 .3 .2 .1 .0 LSBMSB

System Clock Control Register (CLKCON)
D4H, R/W

No effect

Divide-by selection bits for
CPU clock frequency:
00 = fosc/16
01 = fosc/8
10 = fosc/2
11 = fosc(non-divided)

Oscillator IRQ wake-up enable bit:
0 = Enable IRQ for main system
 oscillator wake-up function
1 = Disable IRQ for main system
 oscillator wake-up function

No effect

Figure 7-4. System Clock Control Register (CLKCON)

CLOCK CIRCUIT S3C9654/C9658/P9658

7-4

Main
OSC

Noise
Filter

Oscillator
Wake-up

Oscillator
Stop

CLKCON.7

INT Pin

CLKCON.4-.3

1/2

1/8

1/16

M
U
X

Stop
Instruction

CUP Clock

Figure 7-5. System Clock Circuit Diagram

S3C9654/C9658/P9658 RESETRESET and POWER-DOWN

8-1

8 RESETRESET and POWER-DOWN

SYSTEM RESETRESET

OVERVIEW

Comparator Glitch Filter RESET

Reference
Voltage

Generator

Voltage
Divider

Start Up

NOTES:
1. Start Up Circuit: Start up reference voltage generator circuit when device powered.
2. Reference Voltage Generator: Supply voltage independent reference voltage generator.
 (Supply voltage must great then 2.5 V)
3. Voltage Divider: Divide supply voltage by "N" (N: integer, 2).
4. Comparator: Compare reference voltage and divided voltage.
5. Glitch Filter: Remove glitch and noise signal.

Figure 8-1. LVR (LVD) Architecture

RESETRESET and POWER-DOWN S3C9654/C9658/P9658

8-2

Vc (Compare Voltage)

Reference Voltage

Divide Voltage

VDD (Supply Voltage)

Normal Operation
Reset Operation

by LVR

NOTES:
1. LVR Operation Voltage Range: 2.3 V-6.0 V
2. LVR Detection Voltage Range: 3.4 V ±0.4 V
3. LVR Current Consumption:
 Less then 10 uA (normally 5 uA)
4. LVR Powered Reset Release Time:
 more then 500 usec (LVR only, typical)
5. LVR Simulation Conditions (Hspice Simulation)
 Temp: -40 - 80 °C
 Process Veriation: Worst to best conditions
 Test Voltage: 0.0 V-7.0 V
 Powered Slew Rate: 5 V/1 usec- 5 V/100 msec

Figure 8-2. LVR Characteristics

The following sequence of events occur during a RESET operation:

— All interrupts are disabled.

— The watchdog function (basic timer) is enabled.

— Ports 0 and 1 are set to Schmitt trigger input mode and all pull-up resistors are disabled.

— Peripheral control and data registers are disabled and RESET to their initial values.

— The program counter is loaded with the ROM RESET address, 0100H.

— When the programmed oscillation stabilization time interval has elapsed, the address stored in ROM location
0100H (and 0101H) is fetched and executed.

NOTE

To program the duration of the oscillation stabilization interval, you must make the appropriate settings to
the basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use the
basic timer watchdog function (which causes a system RESET if a basic timer counter overflow occurs),
you can disable it by writing '1010B' to the upper nibble of BTCON.

S3C9654/C9658/P9658 RESETRESET and POWER-DOWN

8-3

POWER-DOWN MODES

STOP MODE

Stop mode is invoked by the instruction STOP (opcode 7FH). In Stop mode, the operation of the CPU and all
peripherals is halted. That is, the on-chip main oscillator stops and the supply current is reduced to less than
120 µA. All system functions are halted when the clock "freezes," but data stored in the internal register file is
retained. Stop mode can be released in one of two ways: by a RESET signal or by an external interrupt.

Using RESETRESET to Release Stop Mode

Stop mode is released when the RESET signal is released and returns to High level. All system and peripheral
control registers are then RESET to their default values and the contents of all data registers are retained.
RESET operation automatically selects a slow clock (1/16) because CLKCON.3 and CLKCON.4 are cleared to
'00B'. After the oscillation stabilization interval has elapsed, the CPU executes the system initialization routine by
fetching the 16-bit address stored in ROM locations 0100H and 0101H.

Using an External Interrupt to Release Stop Mode

Only external interrupts with an RC-delay noise filter circuit can be used to release Stop mode (Clock-related
external interrupts cannot be used). External interrupts in the KS86C6504/P6508 interrupt structure does not
meet this criteria.

Note that when Stop mode is released by an external interrupt, the current values in system and peripheral
control registers are not changed. When you use an interrupt to release Stop mode, the CLKCON.3 and
CLKCON.4 register values remain unchanged, and the currently selected clock value is used. If you use an
external interrupt for Stop mode release, you can also program the duration of the oscillation stabilization
interval. To do this, you must make the appropriate control and clock settings before entering Stop mode.

The external interrupt is serviced when the Stop mode release occurs. Following the IRET from the service
routine, the instruction immediately following the one that initiated Stop mode is executed.

NOTE

Do not use the STOP mode when external clock source is being used as the oscillation circuit option.

IDLE MODE

Idle mode is invoked by the instruction IDLE (opcode 6FH). In Idle mode, CPU operations are halted while select
peripherals remain active. During Idle mode, the internal clock signal is gated off to the CPU, but not to interrupt
logic and timer/counters. Port pins retain the mode (input or output) they had at the time Idle mode was entered.

There are two ways to release Idle mode:

1. Execute RESET. All system and peripheral control registers are RESET to their default values and the
contents of all data registers are retained. The RESET automatically selects a slow clock (1/16) because
CLKCON.3 and CLKCON.4 are cleared to '00B'. If interrupts are masked, RESET is the only way to release
Idle mode.

2. Activate any enabled interrupt, causing Idle mode to be released. When you use an interrupt to release Idle
mode, the CLKCON.3 and CLKCON.4 register values remain unchanged, and the currently selected clock
value is used. The interrupt is then serviced. Following the IRET from the service routine, the instruction
immediately following the one that initiated Idle mode is executed.

NOTE

Only external interrupts that are not clock-related can be used to release Stop mode. To release Idle
mode, however, any type of interrupt (that is, internal or external) can be used.

RESETRESET and POWER-DOWN S3C9654/C9658/P9658

8-4

HARDWARE RESETRESET VALUES

Tables 8-1 through 8-3 list the values for CPU and system registers, peripheral control registers, and peripheral
data registers following a RESET operation in normal operating mode. The following notation is used in these
tables to represent specific RESET values:

— A "1" or a "0" shows the RESET bit value as logic one or logic zero, respectively.

— An 'x' means that the bit value is undefined following RESET.

— A dash ('–') means that the bit is either not used or not mapped.

Table 8-1. Register Values after RESETRESET

Register Name Mnemonic Address Bit Values After RESETRESET
7 6 5 4 3 2 1 0

General purpose register file & stack
area

– 00–7FH x x x x x x x x

Working register area – C0H–CFH x x x x x x x x

Timer 0 counter register T0CNT D0H 0 0 0 0 0 0 0 0

Timer 0 data register T0DATA D1H 1 1 1 1 1 1 1 1

Timer 0 control register T0CON D2H 0 0 0 0 0 0 0 0

Location D3H is not mapped.

Clock control register CLKCON D4H 0 0 0 0 0 0 0 0

System FLAG register FLAGS D5H 0 0 0 0 – – – –

Locations D6H–D8H are not mapped.

Stack pointer SP D9H – – – – – – – –

Locations DAH–DBH are not mapped.

Basic timer control register BTCON DCH 0 0 0 0 0 0 0 0

Basic timer counter register BTCNT DDH – – – – – – – –

Location DEH is not mapped.

System mode register SYM DFH – – – – 0 0 0 0

NOTE: The timer 0 counter, T0CNT, the basic timer counter, BTCNT, and comparison result, CDATA, are read-only. All
other registers are read/write addressable.

S3C9654/C9658/P9658 RESETRESET and POWER-DOWN

8-5

Table 8-1. Register Values after RESETRESET (Continued)

Bank 0 Register Name Mnemonic Address Bit Values After RESETRESET
7 6 5 4 3 2 1 0

Port 0 data register P0 E0H x x 0 0 0 0 0 0

Port 1 data register P1 E1H x x 0 0 0 0 0 0

Port 2 data register P2 E2H x x x x x x 0 0

Port 1 pull-down control PDCON E3H x x x x 0 0 0 0

Comparator control mode register CCON E4H 0 0 0 0 0 0 0 0

Comparison result register CDATA E5H x x 0 0 0 0 0 0

Port 0 low nibble control register P0CONL E6H 0 0 0 0 0 0 0 0

Port 0 high bit control register P0CONH E7H x x x x 0 0 0 0

Port 1 high bit control register P1CONH E8H x x x x 0 0 0 0

Port 1 low nibble control register P1CONL E9H 0 0 0 0 0 0 0 0

Port 0 interrupt control register P0INT EAH x x 0 0 0 0 0 0

Port 0 interrupt pending register P0PND EBH x x 0 0 0 0 0 0

Port 1 interrupt control register P1INT ECH x x 0 0 0 0 0 0

Port 1 interrupt pending register P1PND EDH x x 0 0 0 0 0 0

Port 2 control/interrupt control and
pending register

P2CONINT EEH 0 0 0 0 0 0 0 0

Sub oscillator control register SUBCON EFH x 0 x x 0 0 0 0

USB function address register FADDR F0H 0 0 0 0 0 0 0 0

Control endpoint status register EP0CSR F1H 0 0 0 0 0 0 0 0

Interrupt endpoint status register EP1CSR F2H 0 0 0 0 0 0 0 0

Control endpoint byte count register EP0BCNT F3H 0 0 0 0 0 0 0 0

Control endpoint FIFO register EP0FIFO F4H x x x x x x x x

Interrupt endpoint FIFO register EP1FIFO F5H x x x x x x x x

USB interrupt pending register USBPND F6H 0 0 0 0 0 0 0 0

USB interrupt enable register USBINT F7H 0 0 0 0 0 0 0 0

USB power management register PWRMGR F8H 0 0 0 0 0 0 0 0

Locations F9H–FAH are not mapped.

USB mode select register USBSEL FBH x x x x x x x 0

Locations FCH is not mapped.

Sink current control register SNKCON FDH x x x x x x 0 0

USB signal control XCON FEH x x 0 0 0 0 0 0

USB RESET register USBRST FFH x x x x x x x 0

RESETRESET and POWER-DOWN S3C9654/C9658/P9658

8-6

NOTES

S3C9654/C9658/P9658 I/O PORTS

9-1

9 I/O PORTS

OVERVIEW

The S3C9654/C9658/P9658 has two I/O ports (Port 0, Port 1, Port 2 at PS/2 Mode only), 14 pins total. You
access these ports directly by writing or reading port data register addresses.

For mouse applications, ports 1.0–1.5 are usually configured as mouse sensing input. Port 0 is used for button
data input.

Table 9-1. S3C9654/C9658/P9658 Port Configuration Overview

Port Function Description Programmability

P0.0 Bit-programmable I/O port for Schmitt trigger input or n-ch open drain
output (50 mA). Pull-up resistor is assignable to input pin by software and
is automatically disabled for output pin.
Port 0 can be individualy configured as external interrupt input.

Bit

P0.1 – P0.5 Bit-programmable I/O port for Schmitt trigger input or push-pull output.
Pull-up resistors are individually assignable to input pins by software and
are automatically disabled for output pins.
Port 0 can be individualy configured as external interrupt inputs.

Bit

P1.0 – P1.5 Bit-programmable I/O port for Schmitt trigger input or push-pull output.
Pull-up resistors are individually assignable to input pins by software.
Port 1 can be configured as comparator input or external interrupt inputs.
Pull-down resistors are individually assignable. (in comparator input).

Bit

P2.0/D-
–
P2.1/D+

Bit-programmable I/O port for Schmitt trigger input or n-ch open drain
output. Pull-up resistors are individually assignable to input pins by
software and are automatically disabled for output pins.
Port 2 can be individually configured as external interrupt pins.
Also it can be configured as an USB ports.

Bit

I/O PORTS S3C9654/C9658/P9658

9-2

PORT DATA REGISTERS

Table 9-2 gives you an overview of the port data register names, locations, and addressing characteristics. Data
registers for ports 0 and 1 have the structure shown in Figure 9-1.

Table 9-2. Port Data Register Summary

Register Name Mnemonic Hex R/W

Port 0 data register P0 E0H R/W

Port 1 data register P1 E1H R/W

Port 2 data register P2 E2H R/W

P0.4
P1.4

P0.3
P1.3

I/O Port nDATA Register (N = 0-2)

.5 .4 .3 .2 .1 .0MSB LSB

Pn.1
P0.2
P1.2

P0.5
P1.5

Pn.0

Figure 9-1. Port Data Register Format

S3C9654/C9658/P9658 I/O PORTS

9-3

PORT 0, PORT 1 AND PORT 2

Ports 0, 1 and 2 are bit-programmable, general-purpose, I/O ports. You can select Schmitt trigger input mode
with rising edge external interrupt or push-pull output mode. Port1.0 to Port1.5 can be configured as comparator
input.

You access ports 0, 1 and 2 directly by writing or reading the corresponding port data registers — P0 (E0H),
P1 (E1H) and P2 (E2H). RESET clears the port control registers P0CONH, P0CONL, P1CONH, P1CONL and
P2CONINT, to ‘00H’, configuring all port 0, port 1, port 2 pins as schmitt trigger inputs.

Port 0 Control Register
P0CONH, E7H, R/W

.3 .2 .1 .0MSB LSB

P0.5 P0.4

Schmitt trigger input, rising edge external interrupt.
Schmitt trigger input, falling edge ecxternal interrupt
with pull-up register.
Push-pull output mode.
Not used.

3, 1

0 0
0 1

1 0
1 1

2, 0 Port Mode Selection

Figure 9-2. Port 0 Control Registers (P0CONH)

Port 0 Control Register
P0CONL, E6H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

P0.0P0.1P0.2P0.3P0CONL

Schmitt trigger input, rising edge external interrupt.
Schmitt trigger input, falling edge ecxternal interrupt
with pull-up register.
Push-pull output mode.
(Output mode, n-channel open drain: port 0.0 only)
Not used.

Port Mode Selection

0 0
0 1

1 0

1 1

7, 5, 3, 1 6, 4, 2, 0

Figure 9-3. Port 0 Control Registers (P0CONL)

I/O PORTS S3C9654/C9658/P9658

9-4

Port 1 Control Registers
P1CONH, E8H, R/W, P1CONL, E9H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

P1.4P1.5P1CONH

P1CONL P1.1 P1.0P1.3 P1.2

Schmitt trigger input, rising edge external interrupt.
Schmitt trigger input, falling edge external interrupt
with pull-up register.
Push-pull output mode.
Comparator input.

Port Mode Selection

0 0
0 1

1 0
1 1

7, 5, 3, 1 6, 4, 2, 0

Figure 9-4. Control Registers (P1CONH, P1CONL)

++ PROGRAMMING TIP — Configuring S3C9654/C9658/P9658 Port Pins to Specification

This example shows how to configure ports 0–1 to specification. The programming parameters are as follows:

Examples: 1. Set port 0 push-pull output mode

LD P0CONL,#0AAH ; P0.1–P0.3 ← Push-pull output (P0.0 ← Open-drain output)

2. Set port 1.4–port 1.5 schmitt trigger input mode

LD P1CONH,#00H ; P1.4–P1.5 ← Schmitt trigger input

3. Set port 1.0–port 1.3 comparator input mode

LD P1CONL,#0FFH ; P1.0–P1.3 ← Comparator input

S3C9654/C9658/P9658 I/O PORTS

9-5

Port 2 Control Registers
P2CONINT, EEH, R/W

.3 .2 .1 .0MSB LSB

P2.1, P2.0
interrupt

enable bit

P2.0P2.1P2CONINT:

Schmitt trigger input, rising edge external interrupt.
Schmitt trigger input, falling edge ecxternal interrupt.
N-channel open drain output mode.
N-channel open drain output mode with pull-up.

Port Mode Selection

0 0
0 1
1 0
1 1

7, 5 6, 4

P2.1, P2.0
interrupt

enable bit

.7 .6 .5 .4

Figure 9-5. Port Control Registers (P2CONINT)

I/O PORTS S3C9654/C9658/P9658

9-6

NOTES

S3C9654/C9658/P9658 BASIC TIMER and TIMER 0

10-1

10 BASIC TIMER and TIMER 0

MODULE OVERVIEW

The S3C9654/C9658/P9658 has two default timers: an 8-bit basic timer and one 8-bit general-purpose
timer/counter. The 8-bit timer/counter is called timer 0.

Basic Timer (BT)

You can use the basic timer (BT) in two different ways:

— As a watchdog timer to provide an automatic reset mechanism in the event of a system malfunction.

— To signal the end of the required oscillation stabilization interval after a reset or a Stop mode release.

The functional components of the basic timer block are:

— Clock frequency divider (fOSC divided by 4096, 1024, or 128) with multiplexer

— 8-bit basic timer counter, BTCNT (DDH, read-only)

— Basic timer control register, BTCON (DCH, read/write)

Timer 0

Timer 0 has two operating modes, one of which you select by the appropriate T0CON setting:

— Interval timer mode

— Overflow mode

Timer 0 has the following functional components:

— Clock frequency divider (fOSC divided by 4096, 256, or 8) with multiplexer

— 8-bit counter (T0CNT), 8-bit comparator, and 8-bit reference data register (T0DATA)

— Timer 0 overflow interrupt (T0OVF) and match interrupt (T0INT) generation

— Timer 0 control register, T0CON

BASIC TIMER and TIMER 0 S3C9654/C9658/P9658

10-2

BASIC TIMER CONTROL REGISTER (BTCON)

The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer
counter and frequency dividers, and to enable or disable the watchdog timer function.

A reset clears BTCON to '00H'. This enables the watchdog function and selects a basic timer clock frequency of
fOSC/4096. To disable the watchdog function, you must write the signature code '1010B' to the basic timer
register control bits BTCON.7–BTCON.4.

The 8-bit basic timer counter, BTCNT, can be cleared at any time during normal operation by writing a "1" to
BTCON.1. To clear the frequency dividers for both the basic timer input clock and the timer 0 clock, you write a
"1" to BTCON.0.

.7 .6 .5 .4 .3 .2 .1 .0 LSBMSB

Basic Timer Control Register (BTCON)
DCH, R/W

Watchdog timer enable bits:
1010B = Disable watchdog function
Other value = Enable watchdog

 function

Basic timer counter clear bits:
0 = No effect
1 = Clear BTCNT

Basic timer input clock selection bits:
00 = fosc/4096
01 = fosc/1024
10 = fosc/128
11 = non divide

Divider clear bit for basic
timer and timer 0:
0 = No effect
1 = Clear both dividers

Figure 10-1. Basic Timer Control Register (BTCON)

S3C9654/C9658/P9658 BASIC TIMER and TIMER 0

10-3

BASIC TIMER FUNCTION DESCRIPTION

Watchdog Timer Function

You can program the basic timer overflow signal to generate a reset by setting BTCON.7–BTCON.4 to any value
other than '1010B' (The '1010B' value disables the watchdog function). A reset clears BTCON to '00H',
automatically enabling the watchdog timer function. A reset also selects the CPU clock (as determined by the
current CLKCON register setting) divided by 4096 as the BT clock.

A reset whenever a basic timer counter overflow occurs. During normal operation, the application program must
prevent the overflow, and the accompanying reset operation, from occurring. To do this, the BTCNT value must
be cleared (by writing a "1" to BTCON.1) at regular intervals.

If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation
will not be executed and a basic timer overflow will occur, initiating a reset. In other words, during normal
operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always
broken by a BTCNT clear instruction. If a malfunction does occur, a reset is triggered automatically.

Oscillation Stabilization Interval Timer Function

You can also use the basic timer to program a specific oscillation stabilization interval following a reset or when
Stop mode has been released by an external interrupt.

In Stop mode, whenever a reset or an external interrupt occurs, the oscillator starts. The BTCNT value then
starts increasing at the rate of fOSC/4096 (for reset), or at the rate of the preset clock source (for an external
interrupt). When BTCNT.4 is set, a signal is generated to indicate that the stabilization interval has elapsed and
to gate the clock signal off to the CPU so that it can resume normal operation.

In summary, the following events occur when Stop mode is released:

1. During Stop mode, a power-on reset or an external interrupt occurs to trigger the Stop mode release and
oscillation starts.

2. If a power-on reset occurred, the basic timer counter will increase at the rate of fOSC /4096. If an external
interrupt is used to release Stop mode, the BTCNT value increases at the rate of the preset clock source.

3. Clock oscillation stabilization interval begins and continues until bit 4 of the basic timer counter is set.

4. When a BTCNT.4 is set, normal CPU operation resumes.

Figure 10-2 and 10-3 show the oscillation stabilization time on RESET and STOP mode release, respectively.

BASIC TIMER and TIMER 0 S3C9654/C9658/P9658

10-4

Oscillation Stabilization Time Normal Operating mode

0.8 VDD

tWAIT = (4096x16)/fOSC

Basic timer increment and
CPU operations are IDLE mode

10000B

00000B

Reset Release Voltage

NOTE: Duration of the oscillator stabilization wait time, tWAIT, when it is released by a
Power-on-reset is 4096 x 16/fOSC.
tRST RC (R is external resistor and C is on chip capacitor)

VDD

RESET

Internal
 Reset

 Release

Oscillator
(XOUT)

BTCNT
clock

BTCNT
value

Oscillator Stabilization Time

trst ~ RC~

~~

0.8 VDD

Figure 10-2. Oscillation Stabilization Time on RESETRESET Pin Used

NOTE: See Figure 14-3. For LVD Reset

S3C9654/C9658/P9658 BASIC TIMER and TIMER 0

10-5

NOTE: Duration of the oscillator stabilzation wait time, tWAIT, it is released by an
interrupt is determined by the setting in basic timer control register, BTCON.

VDD

Oscillation Stabilization Time

RESET

External
Interrupt

Oscillator
(XOUT)

BTCNT
clock

BTCNT
Value tWAIT

Basic Timer Increment

10000B

STOP
Release

Signal

00000B

Normal
Operating

Mode

Normal
Operating

Mode

STOP Mode

STOP Mode
Release Signal

STOP
Instruction
Execution

BTCON.3 BTCON.2

0

0

1

1

0

1

0

1

tWAIT

(4096 x 16)/fosc

(1024 x 16)/fosc

(128 x 16)/fosc

Invalid setting

tWAIT (When fOSC is 6 MHz)

10.92 ms

2.7 ms

0.341 ms

Figure 10-3. Oscillation Stabilization Time on STOP Mode Release

BASIC TIMER and TIMER 0 S3C9654/C9658/P9658

10-6

TIMER 0 CONTROL REGISTER (T0CON)

T0CON is located at address D2H, and is read/write addressable.

A reset clears T0CON to '00H'. This sets timer 0 to normal interval match mode, selects an input clock frequency
of fOSC/4096, and disables the timer 0 overflow interrupt and match interrupt. You can clear the timer 0 counter
at any time during normal operation by writing a "1" to T0CON.3.

The timer 0 overflow interrupt can be enabled by writing a "1" to T0CON.1. When a timer 0 overflow interrupt
occurs and is serviced by the CPU, the pending condition must be cleared by software by writing a "0" to the
timer 0 interrupt pending bit, T0CON.0.

To enable the timer 0 match interrupt, you must write T0CON.1 to "1". To detect an interrupt pending condition,
the application program polls T0CON.0. When a "1" is detected, a timer 0 match/ capture interrupt is pending.
When the interrupt request has been serviced, the pending condition must be cleared by software by writing a "0"
to the timer 0 interrupt pending bit, T0CON.0.

Timer 0 interrupt pending bit:
0 = No interrupt pending
0 = Clear pending bit (when write)
1 = Interrupt is pending (when read)
 No effect (when write)

.7 .6 .5 .4 .3 .2 .1 .0 LSBMSB

Timer 0 Control Register (T0CON)
D2H, R/W

Timer 0 input clock selection bits:
00 = fosc/4096
01 = fosc/256
10 = fosc/8
11 = Invalid selection

Timer 0 operating mode selection bits:
00 = Interval match mode
01 = Invalid selection
10 = Invalid selection
11 = Overflow mode

Timer 0 counter clear bit:
0 = No effect
1 = Clear the Timer 0 counter (when write)

Timer 0 match interrupt enable bit:
0 = Disable match interrupt
1 = Enable match interrupt

Timer 0 overflow interrupt enable bit:
0 = Disable overflow interrupt
1 = Enable overflow interrupt

Figure 10-4. Timer 0 Control Register (T0CON)

S3C9654/C9658/P9658 BASIC TIMER and TIMER 0

10-7

TIMER 0 FUNCTION DESCRIPTION

Interval Match Mode

In interval match mode, a match signal is generated when the counter value is identical to the value written to
the T0 reference data register, T0DATA. The match signal generates a timer 0 match interrupt and then clears
the counter. If for example, you write the value '10H' to T0DATA, the counter will increment until it reaches '10H'.
At this point, the T0 match interrupt is generated, the counter value is reset and counting resumes.

Overflow Mode

In overflow mode, a overflow signal is generated regardless of the value written to the T0 reference data register
when the counter value is overflowed. The overflow signal generates a timer 0 overflow interrupt and then T0
counter is cleared.

Counter

Comparator

CLK

T0INT

T0DATA Buffer Register

R

Match

Data Bus

8

T0DATA

8

When 8-Bit counter is cleared,
this buffer is open

Data Bus

T0PND

T0OVF

Figure 10-5. Simplified Timer 0 Function Diagram: Interval Timer Mode

BASIC TIMER and TIMER 0 S3C9654/C9658/P9658

10-8

8-Bit Up Counter
(BTCNT, Read-Only)

OVF

Bit 1
RESET or
STOP

RESET

Data Bus

When BTCNT.4 is set after releasing from
RESET or STOP mode, CPU clock starts.

Bits 7, 6, 5, 4

Write '1010xxxxB' to disable.

Basic Timer Control Register

Timer 0 Control Register

8-Bit Counter
(T0CNT, Read-Only)

8-Bit Comparator

T0DATA Buffer Register

R

Data Bus

T0DATA

8

Data Bus

When 8-Bit counter is cleared.
this buffer is open

8

8

8

Match/
Overflow

Bits 5, 4

Overflow

Bit 3
T0CLR

Match
Signal

Bit 2
OVINT

Bit 1
T0INT

Bit 0
IRQ

Bits 7, 6

Bits 3, 2

XIN

Bit 0

fOSC

1/128

1/4096

1/1024

1/8

1/256

1/4096

DIV

R

DIV

R

Figure 10-6. Basic Timer and Timer 0 Block Diagram

S3C9654/C9658/P9658 UNIVERSAL SERIAL BUS

11-1

11 UNIVERSAL SERIAL BUS

OVERVIEW

Universal Serial Bus (USB) is a communication architecture that supports data transfer between a host computer
and a wide range of PC peripherals. USB is actually a cable bus in which the peripherals share its bandwidth
through a host scheduled token based protocol.

The USB module in S3C9654/C9658/P9658 is designed to serve at a low speed transfer rate (1.5 Mbs) USB
device as described in the Universal Serial Bus Specification Revision 1.0. S3C9654/C9658/P9658 can be briefly
describe as a microcontroller with SAM 87RCRI core with an on-chip USB peripheral as can be seen in
figure 11-1.

The S3C9654/C9658/P9658 comes equipped with Serial Interface Engine (SIE), which handles the
communication protocol of the USB. The S3C9654/C9658/P9658 supports the following control logic: packet
decoding/generation, CRC generation/checking, NRZI encoding/decoding, Sync detection, EOP (end of packet)
detection and bit stuffing.

S3C9654/C9658/P9658 supports two types of data transfers; control and interrupt. Two endpoints are used in this
device; Endpoint 0 and Endpoint 1. Please refer to the USB specification revision 1.0 for detail description of
USB.

SAM88RCRI
CORE

Data Bus

Transceiver

Voltage Regulator

SIE
(Serial Interface

Engine)

Endpoint 0 FIFO

Endpoint 1 FIFO

D+ D-

Figure 11-1. USB Peripheral Interface

UNIVERSAL SERIAL BUS S3C9654/C9658/P9658

11-2

Serial Bus Interface Engine (SIE)

The Serial Interface Engine interfaces to the USB serial data and handles, deserialization/serialization of data,
NRZI encoding/decoding, clock extraction, CRC generation and checking, bit stuffing and other specifications
pertaining to the USB protocol such as handling inter packet time out and PID decoding.

Control Logic

The USB control logic manages data movements between the CPU and the transceiver by manipulating the
transceiver and the endpoint register. This includes both transmit and receive operations on the USB. The logic
contains byte count buffers for transmit operations that load the active transmit endpoint's byte count and use
this to determine the number of bytes to transfer. The same buffer is used for receive transactions to count the
number of bytes received and transfer that number to the receive endpoint's byte count register at the end of the
transaction.

The control logic in S3C9654/C9658/P9658, when transmitting, manages parallel to serial conversion, packet
generation, CRC generation, NRZI encoding and bit stuffing.

When receiving, the control logic in S3C9654/C9658/P9658 handles Sync detection, packet decoding, EOP (end
of packet) detection, bit (un)stuffing, NRZI decoding, CRC checking and serial to parallel conversion

Bus Protocol

All bus transactions involve the transmission of packets. S3C9654/C9658/P9658 supports three packet types;
Token, Data and Handshake. Each transaction starts when the host controller sends a Token Packet to the USB
device. The Token packets are generated by the USB host and decoded by the USB device. A Token Packet
includes the type description, direction of the transaction, USB device address and the endpoint number.

Data and Handshake packets are both decoded and generated by the USB device. In any transaction, the data is
transferred from the host to a device or from a device to the host. The transaction source then sends a Data
Packet or indicates that it has no data to transfer. The destination then responds with a Handshake Packet
indicating whether the transfer was successful.

Data Transfer Types

USB data transfer occurs between the host software and a specific endpoint on the USB device. An endpoint
supports a specific type of data transfer. The S3C9654/C9658/P9658 supports two data transfer endpoints:
control and interrupt.

Control transfer configures and assigns an address to the device when detected. Control transfer also supports
status transaction, returning status information from device to host.

Interrupt transfer refers to a small, spontaneous data transfer from USB device to host.

Endpoints

Communication flows between the host software and the endpoints on the USB device. Each endpoint on a
device has an identifier number. In addition to the endpoint number, each endpoint supports a specific transfer
type. S3C9654/C9658/P9658 supports two endpoints: Endpoint 0 supports control transfer, and Endpoint 1
supports interrupt transfer.

S3C9654/C9658/P9658 UNIVERSAL SERIAL BUS

11-3

STRUCTURE OF USB AND PS/2 COMBINATIONAL PORT

USB Signal Transceiver
(With Pull-up)

PS/2 Signal Transceiver
(With Pull-up)

DM

DP

Voltage Regulator
(3.3 V Generation)

USB Control

PS/2 Control
(P2CONINT)

Pull-up Enable

USB Enable

[A] [B]

[C]

NOTE: That block explain USB block can be enabled or disabled with pull-up by s/w.
Voltage regulator also disabled automatically when USB block was disabled.
And PS/2 block can be controlled by software with pull-up.

Figure 11-2. Block Diagram of USB and PS/2 Transceiver

UNIVERSAL SERIAL BUS S3C9654/C9658/P9658

11-4

STRUCTURE OF VOLTAGE REGULATOR

Enable

Reference
Voltage

Generator
3.3 V Out

Current
Amplifier

A B

NOTE: This blcok can give a explanation how it can be controlled automatically.
When the 3.3 voltage regulator be enable by software, voltage regulator will operating
to cover fluctuation of the line load, sometimes the line is not stabled and the driving
ability will be dropped.
As it operating in the normal stage without any peak, power will be supplied with 8 mA,
and when the operating.
Current consumption go to peak, it was designed to cover by 50 mA.
It means any kind of load problem will be compensated with above design.

Figure 11-3. Block Diagram of Voltage Regulator

S3C9654/C9658/P9658 UNIVERSAL SERIAL BUS

11-5

STRUCTURE OF USB SIGNAL TRANSMITTER

CTRL

D-

D+

Bias
Clamp

A B

V33IN

Control
Sinals

Enable

DM
TX/RX

C

D

DM

DP

Pull-up Control

R, 1.5 KΩ

NOTE: We didn't used the by-pass capacitor on the 3.3 V out, since the 3.3 V regulator and clamp
circuit will give a solution through the feedback.
USB block was designed to cover the line load, the typical value designed is 300 pF (max: 650 pF).
The calmp block operating after it detect the voltage variation
(actually the current fluctuation will be feedback into voltage variation, di/dt to dv/dt variation.
Bias control the slope.
Control signals means NRZI, EOP, XCON, IN/OUT.
Enable is for the Tx, Rx.
Internal pull-up resistor will be 1.5 KΩ

DP
TX/RX

Figure 11-4. Block Diagram of USB Signal Transceiver

UNIVERSAL SERIAL BUS S3C9654/C9658/P9658

11-6

STRUCTURE OF PS/2 SIGNAL TRANSMITTER

VDD

DM_DRVP

DM_DRVN
DM

PS/2 Data

Pull-up Enable

VDD

DP_DRVP

DP_DRVN
DP

PS/2 CLK

Pull-up Enable

NOTE: It explain the PS/2 block.
The pull-up resistor value will be 4.3 kΩ ± 20 % (Vport = 0 V)
This block can be controlled with pull-up resistor
and it was designed with totally different from usb.

4.3 KΩ 4.3 KΩ

Figure 11-5. Block Diagram of PS/2 Signal Transmitter

S3C9654/C9658/P9658 UNIVERSAL SERIAL BUS

11-7

USB FUNCTION ADDRESS REGISTER (FADDR)

This register holds the USB address assigned by the host computer. USBADDR is located at address F0H and is
read/write addressable.

Bit7 Not used

Bit6–0 FADDR: MCU updates this register once it decodes a SET_ADDRESS command. MCU must write this
register before it clears OUT_PKT_RDY (bit0) and sets DATA_END (bit3) in the EP0STU register. The
function controller use this register's value to decode USB Token packet address. At reset, if the device
is not yet configured the value is reset to 0.

.7 .6 .5 .4 .3 .2 .1 .0 LSBMSB

USB Function Address Register (FADDR)
F0H, R/W

7-bit programming device address. This register
maintains the USB address assigned by the host.
The function controller uses this register's value to
decode USB token packet address. At reset when
the device is not yet configured the value is reset
to 0.

Not used

Figure 11-6. USB Function Address Register (FADDR)

UNIVERSAL SERIAL BUS S3C9654/C9658/P9658

11-8

CONTROL ENDPOINT STATUS REGISTER (EP0CSR)

EP0CSR register controls Endpoint 0 (Control Endpoint), and also holds status bits for Endpoint 0. EP0CSR is
located at F1H and is read/write addressable.

Bit7 CLEAR_SETUP_END: MCU writes “1” to this bit to clear SETUP_END bit (bit4). This bit is
automatically cleared after writing "1" by USB block.

Bit6 CLEAR_OUT_PKT_RDY: MCU writes “1” to this bit to clear OUT_PKT_RDY bit (bit0). This bit is
automatically cleared after writing "1" by USB block.

Bit5 SEND_STALL: MCU writes “1” to this bit to send STALL signal to the Host, at the same time it clears
OUT_PKT_RDY (bit0), if it decodes an invalid token. USB issues a STALL Handshake to the current
control transfer. This bit gets cleared once a STALL Handshake is issued to the current control transfer.

Bit4 SETUP_END: USB sets this bit, when a control transfer ends before DATA_END bit (bit3) is set. MCU
clears this bit, by writing a “1” to SERVICED_SETUP_END bit (bit7). When USB sets this bit, an interrupt
is generated to MCU. When such condition occurs, USB flushes the FIFO, and invalidates MCU’s access
to FIFO.

Bit3 DATA_END: MCU sets this bit:

— After loading the last packet of data into the FIFO, and at the same time IN_PKT_RDY bit is set.
— While it clears OUT_PKT_RDY bit after unloading the last packet of data.
— For a zero length data phase, when it clears OUT_PKT_RDY bit, and sets IN_PKT_RDY bit.

Bit2 SENT_STALL: USB sets this bit, if a control transaction has ended due to a protocol violation. An
interrupt is generated when this bit gets set. MCU clears this bit to end the STALL condition.

Bit1 IN_PKT_RDY: MCU sets this bit, after writing a packet of data into Endpoint 0 FIFO. USB clears this bit,
once the packet has been successfully sent to the host. An interrupt is generated when USB clears this
bit so that MCU can load the next packet. For a zero length data phase, MCU sets IN_PKT_RDY bit and
DATA_END bit at the same time.

Bit0 OUT_PKT_RDY: USB sets this bit, once a valid token is written to FIFO. An interrupt is generated,
when USB sets this bit. MCU clears this bit by writing "1” to SERVICED_OUT_PKT_RDY bit.

NOTES:
1. In control transfer case, where there is no data phase, MCU after unloading the setup token, sets IN_PKT_RDY, and

DATA_END at the same time it clears OUT_PKT_RDY for the setup token.
2. When SETUP_END bit is set, OUT_PKT_RDY bit may also be set. This happens when the current transfer has ended,

and a new control transfer is received before MCU can service the interrupt. In such case, MCU should first clear
SETUP_END bit, and then start servicing the new control transfer.

S3C9654/C9658/P9658 UNIVERSAL SERIAL BUS

11-9

.7 .6 .5 .4 .3 .2 .1 .0 LSBMSB

Control Endpoint Status Register (EP0CSR)
F1H, R/W

CLEAR_
SETUP_END

CLEAR_
OUT_PKT_RDY

SEND_STALL

SETUP_END

DATA_END

SENT_STALL

IN_PKT_RDY

OUT_PKT_RDY

Figure 11-7. Control Endpoint Status Register (EP0CSR)

UNIVERSAL SERIAL BUS S3C9654/C9658/P9658

11-10

INTERRUPT ENDPOINT STATUS REGISTER (EP1CSR)

EP1CSR is the control register for Endpoint 1, Interrupt Endpoint. This register is located at address F2H and is
read/write addressable.

Bit7 CLR_DATA_TOGGLE: MCU writes “1” to this bit to clear the data toggle sequence bit. When the MCU
writes a 1 to this register, the data toggle bit is initialized to DATA0.

Bit6–3 MAXP: These bits indicate the maximum packet size for IN endpoint, and needs to be updated by MCU
before it sets IN_PKT_RDY. Once set, the contents are valid till MCU re-writes them.

Bit2 FLUSH_FIFO: When MCU writes “1” to this register, the FIFO is flushed, and IN_PKT_RDY cleared.
The MCU should wait for IN_PKT_RDY to be cleared for the flush to take place.

Bit1 FORCE_STALL: MCU writes “1” to this register to issue a STALL Handshake to USB. MCU clears this
bit, to end the STALL condition.

Bit0 IN_PKT_RDY: MCU sets this bit, after writing a packet of data into Endpoint 1 FIFO. USB clears this bit,
once the packet has been successfully sent to the Host. An interrupt is generated when USB clears this
bit, so MCU can load the next packet.

.7 .6 .5 .4 .3 .2 .1 .0 LSBMSB

Control Endpoint Status Register (EP1CSR)
F2H, R/W

CLEAR_DATA_TOGGLE

FLUSH_FIFO

FORCE_STALL

IN_PKT_RDY

MAXP

Figure 11-8. Interrupt Endpoint Status Register (EP1CSR)

CONTROL ENDPOINT BYTE COUNT REGISTER (EP0BCNT)

EP0BCNT register has the number of valid bytes in Endpoint 0 FIFO. It is located at address F3H read only
addressable. Once the MCU receives a OUT_PKT_RDY (Bit0 of EP0CSR) for Endpoint 0, then it can read this
register to find out the number of bytes to be read from Endpoint 0 FIFO.

S3C9654/C9658/P9658 UNIVERSAL SERIAL BUS

11-11

CONTROL ENDPOINT FIFO REGISTER (EP0FIFO)

This register is bi-directional, 8 byte depth FIFO used to transfer Control Endpoint data. EP0FIFO is located at
address F4H and is read/write addressable.

Initially, the direction of the FIFO, is from the Host to the MCU. After a setup token is received for a control
transfer, that is, after MCU unload the setup token bytes, and clears OUT_PKT_RDY, the direction of FIFO is
changed automatically from MCU to the Host.

INTERRUPT ENDPOINT FIFO REGISTER (EP1FIFO)

EP1FIFO is an uni-direction 8-byte depth FIFO used to transfer data from the MCU to the Host. MCU writes data
to this register, and when finished set IN_PKT_RDY. This register is located at address F5H.

USB INTERRUPT PENDING REGISTER (USBPND)

USBPND register has the interrupt bits for endpoints and power management. This register is cleared once read
by MCU. While any one of the bits is set, an interrupt is generated. USBPND is located at address F6H.

Bit7–4 Not used

Bit3 RESUME_PND: While in suspend mode, if resume signaling is received this bit gets set.

Bit2 SUSPEND_PND: This bit is set, when suspend signaling is received.

Bit1 ENDPT1_PND: This bit is set, when Endpoint 1 needs to be serviced.

Bit0 ENDPT0_PND: This bit is set, when Endpoint 0 needs to be serviced. It is set under any one of the
following conditions:

— OUT_PKT_RDY is set.

— IN_PKT_RDY gets cleared.

— SENT_STALL gets set.

— DATA_END gets cleared.

— SETUP_END gets set.

.7 .6 .5 .4 .3 .2 .1 .0 LSBMSB

USB Interrupt Pending Register (USBPND)
F6H, R/W

SUSPEND_PND

ENDPT1_PND

ENDPT0_PNDNot used

RESUME_PND

Figure 11-9. USB Interrupt Pending Register (USBPND)

UNIVERSAL SERIAL BUS S3C9654/C9658/P9658

11-12

USB INTERRUPT ENABLE REGISTER (USBINT)

USBINT is located at address F7H and is read/write addressable. This register serves as an interrupt mask
register. If the corresponding bit = 1 then the respective interrupt is enabled.

By default, all interrupts except suspend interrupt is enabled. Interrupt enables bits for suspend and resume is
combined into a single bit (bit 2).

Bit7–3 Not used

Bit2 ENABLE_SUSPEND_RESUME_INT:
1 Enable SUSPEND and RESUME INTERRUPT
0 Disable SUSPEND and RESUME INTERRUPT (default)

Bit1 ENABLE_ENDPT1_INT:
1 Enable ENDPOINT 1 INTERRUPT (default)
0 Disable ENDPOINT 1 INTERRUPT

Bit0 ENABLE_ENDPT0_INT:
1 Enable ENDPOINT 0 INTERRUPT (default)
0 Disable ENDPOINT 0 INTERRUPT

.7 .6 .5 .4 .3 .2 .1 .0 LSBMSB

USB Interrupt Enable Register (USBINT)
F7H, R/W

ENABLE_ENDPT0_INTNot used

ENABLE_ENDPT1_INT

ENABLE_SUSPEND_RESUME_INT

Figure 11-10. USB Interrupt Enable Register (USBINT)

S3C9654/C9658/P9658 UNIVERSAL SERIAL BUS

11-13

USB POWER MANAGEMENT REGISTER (PWRMGR)

PWRMGR register interacts with the Host’s power management system to execute system power events such as
SUSPEND or RESUME. This register is located at address F8H and is read/write addressable.

Bit7–2 RESERVED: The value read from this bit is zero.

Bit1 SEND_RESUME: While in SUSPEND state, if the MCU wants to initiate RESUME, it writes “1” to this
register for 10ms (maximum of 15ms), and clears this register. In SUSPEND mode if this bit reads “1”,
USB generates RESUME signaling.

Bit0 SUSPEND_STATE: Suspend state is set when the MCU sets suspend interrupt. This bit is cleared
automatically when:

— MCU writes “0” to SEND_RESUME bit to end the RESUME signaling (after SEND_RESUME is set
for 10ms).

— MCU receives RESUMES signaling from the Host while in SUSPEND mode.

.7 .6 .5 .4 .3 .2 .1 .0 LSBMSB

USB Power Mangement Register (PWRMGR)
F8H, R/W

SUSPEND_STATEThe value read form
this bits is zero

SEND_RESUME

Figure 11-11. USB Power Management Register (PWRMGR)

UNIVERSAL SERIAL BUS S3C9654/C9658/P9658

11-14

USB RESETRESET REGISTER (USBRST)

USBRST register receives a reset signal from the Host. This register is located at address FFH and is read/write
addressable.

Bit7–1 Not used

Bit0 USBRST: This bit is set when the Host issues an USB reset signal.

.7 .6 .5 .4 .3 .2 .1 .0 LSBMSB

USB RESET Register (USBRST)
FFH, R/W

Not used USBRST

Figure 11-12. USB RESETRESET Register (USBRST)

S3C9654/C9658/P9658 COMPARATOR

12-1

12 COMPARATOR

OVERVIEW

P1.0–P1.5 can be used as a analog input port for a comparator. The reference voltage for the 6-channel
comparator can be supplied either internally or externally at P1.5. When an internal reference voltage is used,
six channels (P1.0–P1.5) are used for analog inputs and the internal reference voltage is varied in 32 levels. If an
external reference voltage is input at P1.5, the other three pins (P1.0–P1.4) in port x are used analog input.
Unused port x pins should be connected to VDD or VSS for current saving.

When a conversion is completed, the result is saved in the comparison result register CDATA. The initial values
of the CDATA are undefined and the comparator operation is disabled by a RESET.

— Analog comparator

— Internal reference voltage generator (5-bit resolution)

— External reference voltage source at P1.5

— Comparator mode register (CCON)

— Four multiplexed analog data input pins (CIN0–CIN5)

— 6–channel conversion data result register (CDATA)

— 6–bit digital input port (alternatively, I/O port)

— Internal reference voltage is varied in 32 levels with hysteresis.

FUNCTION DESCRIPTION

The comparator compares analog voltage input at CIN0–CIN5 with an external or internal reference voltage
(VREF) that is selected by CCON register. The result is written to the comparison result register CDATA at

address E5H. The comparison result is calculated as follows.

If “1” Analog input voltage ≥ VREF + 100 mV

If “0” Analog input voltage ≤ VREF – 100 mV

To obtain a comparison result, the data must be read out from the CDATA register after VREF is updated by

changing the CCON value after a conversion time has elapsed.

COMPARATOR S3C9654/C9658/P9658

12-2

COMPARATOR CONTROL REGISTER (CCON)

The comparator control register CCON is an 8–bit register that is used to set the operation mode of the
comparator. To initiate a comparison procedure, you write the reference voltage selection data in the comparator
control register CCON and set the comparison start of enable bit, CCON.7.

.7 .6 .5 .4 .3 .2 .1 .0 LSBMSB

6-Bit Comparator Control Register (CCON)

Reference voltage (VREF) selection bits:
VDD x (n + 0.5)/24, n = 0 to 7
VDD x (0.3125 + (n-7)/48), n = 8 to 23
VDD x (0.6458 + (n-23)/24), n = 24 to 31
Example: n = 0 VREF = 0.104 V
(VDD = 5 V) n = 2 VREF = 0.313 V

 n = 7 VREF = 1.563 V
 n = 8 VREF = 1.667 V

.

.

.

Reference selection bits:
1 = CIN5: External reference, CIN0-4: Analog input
0 = Inrternal reference, CIN0-5: Analog input

Comparison time selection bit:
1 = Comparison time (6 x 12/fCPU)
0 = Comparison time (6 x 192/fCPU)

Comparison start control bit:
1 = Start of enable the operation
0 = Disable the operation

Figure 12-1. Comparison Control Register (CCON)

S3C9654/C9658/P9658 COMPARATOR

12-3

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00
0 2 4 6 8 10 12 14 16 18 20 24 26 28 30

STEP

R
ef

 V
ol

at
ag

e

Internal Reference Voltage

VDD = 5 V

22

Figure 12-2. Internal Reference Voltage (Hysteresis)

COMPARATOR S3C9654/C9658/P9658

12-4

BLOCK DIAGRAM

PDCON.[2:0]

M
U
X

P0.0/CIN0

P0.1/CIN1

P0.2/CIN2

P0.3/CIN3

P0.4/CIN4

P0.5/CIN5

+

−

Scan
Signal

Comparison
Result

Register
(CMPREG)

M
U
X

External Vreference

Interval Vreference

6

6

5-19 kΩ

M
U
X

3

Analog Input Mode

P1CONH

P1CONL

2

4

VDD

5

32 STEP

I
N
T
E
R
N
A
L

B
U
S

6

4

4

8

8

CCON.[4:0]

CCON.5

CCON.6

CCON.7

PDCON.3
× 6

Figure 12-3. Comparator Functional Block Diagram

S3C9654/C9658/P9658 SUB RC OSCILLATOR

13-1

13 SUB RC OSCILLATOR

OVERVIEW

The S3C9654/C9658/P9658 have a programmable SUB RC OSCILLATOR. During IDLE or STOP,
programmable SUB RC OSCILLATOR generated interrupt using SUB RC OSCILLATOR control register
(SUBCON).

SUB RC OSCILLATOR CONTROL REGISTER (SUBCON)

.7 .6 .5 .4 .3 .2 .1 .0 LSBMSB

SUB RC OSCILLATOR Control Register

Interrupt pending bit:
1 = No pending
0 = Pending

Sub RC oscillator counter
input clock selection bits:

0 0 0
0 0 1
0 1 0
 0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

fOSC/2048
fOSC/3072
fOSC/4096
fOSC/6144
fOSC/8192
fOSC/12288
fOSC/16384
fOSC/24576

Sub RC oscillator enable bit:
1 = Sub oscillator enable; interrupt enable
0 = Sub oscillator disable; interrupt disable

Not used

NOTE: fOSC = 130 KHz typ. when VDD = 5.0 V, TA = 25 °C

Figure 13-1. SUB RC OSCILLATOR Control Register

SUB RC OSCILLATOR S3C9654/C9658/P9658

13-2

NOTES

S3C9654/C9658/P9658 LVR (LOW VOLTAGE RESET RESET)

14-1

14 LVR (LOW VOLTAGE RESETRESET)

OVERVIEW

The S3C9654/C9658/P9658 have a LVR (Low Voltage Reset) for power on reset and voltage reset.

Comparator Glitch Filter RESET

Reference
Voltage

Generator

Voltage
Divider

Start Up

Figure 14-1. LVR Architecture

— Low Voltage Reset generated RESET signal.

— Start Up Circuit: Start up reference voltage generator circuit when device powered.

— Reference Voltage Generator: Supply Voltage indeoendent reference voltage generator.

— Voltage Divider: Divide supply voltage by “N”

— Comparator: Compare reference voltage and divided voltage.

— Glitch Filter: Remove glitch and noise signal.

LVR (LOW VOLTAGE RESETRESET) S3C9654/C9658/P9658

14-2

Vc (Compare Voltage)

Reference Voltage

Divide Voltage

VDD (Supply Voltage)

Normal Operation
Reset Operation

by LVR

NOTES:
1. LVR Operation Voltage Range: 2.3 V-6.0 V
2. LVR Detection Voltage Range: 3.4 V ±0.4 V
3. LVR Current Consumption:
 Less then 10 uA (normally 5 uA)
4. LVR Powered Reset Release Time:
 more then 500 usec (LVR only, typical)
5. LVR Simulation Conditions (Hspice Simulation)
 Temp: 0 °C - 80 °C
 Process Veriation: Worst to best conditions
 Test Voltage: 0.0 V - 7.0 V
 Powered Slew Rate: 5 V/1 usec- 5 V/100 msec

Figure 14-2. LVR Characteristics

S3C9654/C9658/P9658 LVR (LOW VOLTAGE RESET RESET)

14-3

LVR AND POWER ON RESETRESET OPERATIONS

Normal Operating mode

tWAIT = (4096x16)/fOSC

Basic timer increment and
CPU operations are IDLE mode

10000B

00000B

NOTES:
1. T1 = 500 usc (at normal)
2. T2 = T1 + (4096 x 16)/fOSC

VDD

LVD
RESET

Release

Internal
RESET

 Release

Oscillator
(XOUT)

BTCNT
clock

BTCNT
value

Oscillator Stabilization Time

T3

Oscillation Stabilization Time

T2

T1

LVD RESET Release Time

Figure 14-3. LVR and Power On RESETRESET Operation

LVR (LOW VOLTAGE RESETRESET) S3C9654/C9658/P9658

14-4

NOTES

S3C9654/C9658/P9658 ELECTRICAL DATA

15-1

15 ELECTRICAL DATA

OVERVIEW

In this section, the following S3C9654/C9658/P9658 electrical characteristics are presented in tables and graphs:

— Absolute maximum ratings

— D.C. electrical characteristics

— I/O capacitance

— A.C. electrical characteristics

— Oscillator characteristics

— Operating voltage range

— Oscillation stabilization time

— Clock timing measurement points at XIN

— Data retention supply voltage in Stop mode

— Stop mode release timing when initiated by a RESET
— Stop mode release timing when initiated by an external interrupt

— Characteristic curves

— Comparator Electrical Characteristics

ELECTRICAL DATA S3C9654/C9658/P9658

15-2

Table 15-1. Absolute Maximum Ratings

(TA = 25°C)

Parameter Symbol Conditions Rating Unit

Supply voltage VDD – – 0.3 to + 6.5 V

Input voltage VI All ports – 0.3 to VDD + 0.3 V

Output voltage VO All output ports – 0.3 to VDD + 0.3 V

Output current high IOH One I/O pin active – 18 mA

All I/O pins active – 60

Output current low IOL One I/O pin active (except P0.0) + 30 mA

Total pin current for ports 0, 1, 2
(except P0.0)

+ 100

P0.0 + 50

Operating
temperature

TA – 0 to + 85 °C

Storage
temperature

TSTG – – 60 to + 150

S3C9654/C9658/P9658 ELECTRICAL DATA

15-3

Table 15-2. D.C. Electrical Characteristics

(TA = 0°C to + 85°C, VDD = 4.0 V to 5.25 V)

Parameter Symbol Conditions Min Typ Max Unit

Input high voltage VIH1 All input pins except VIH2, D+, D– 0.8 VDD – VDD V

VIH2 XIN VDD – 0.5 VDD

Input low voltage VIL1 All input pins except VIL2, D+, D– – – 0.2 VDD

VIL2 XIN – – 0.4

Output high voltage VOH VDD = 4.0 V–5.25 V
IOH = – 200 µA
All output ports except D+, D–

VDD – 1.0 – –

Output low voltage VOL VDD = 4.0 V–5.25 V
IOL = 2 mA
All output ports except D+, D–, P0.0

– – 0.4

Output low Current IOL VOL = 0.4 V 50(4) mA

Input high leakage
current

ILIH1 VIN = VDD
All inputs except ILIH2

except D+, D–, XOUT

– – 3 µA

ILIH2 VIN = VDD, XIN – – 20

Input low leakage
current

ILIL1 VIN = 0 V
All inputs except ILIL2

except D+, D–, XOUT

– – – 3

ILIL2 VIN = 0 V, XIN – – – 20

Output high leakage
current

ILOH VOUT = VDD

All output pins except D+, D–
– – 3

Output low leakage
current

ILOL VOUT = 0 V
All output pins except D+, D–
XOUT, P0.0

– – – 3

Pull-up resistors RL1 VIN = 0 V, VDD = 5.0 V,
Port 0, Port 1

25 50 100 KΩ

RL2 VIN = 0 V, VDD = 5.0 V,
Port 2

– 4.3 –

Supply current IDD1 Normal operation mode,
VDD = 4.0 V – 5.25 V
6 MHz, CPU clock

– 6.5 15 mA

IDD2 IDLE mode
VDD = 4.0 V – 5.25 V
6 MHz, CPU clock

– 2 4

IDD3 Stop mode, oscillator stop
VDD = 5 V ± 10%

– 20 50 µA

NOTES:
1. Supply current does not include current drawn through internal pull-up resistors or external output current load.
2. This parameter is guaranteed, but not tested (include D+, D–).
3. Only in 4.0 V to 5.25 V, D+ and D– satisfy the USB spec 1.0.
4. P0.0 designed for direct LED current sink, see the SNKCON resistor and Figure 1-9 (Page 1-9).

ELECTRICAL DATA S3C9654/C9658/P9658

15-4

Table 15-3. Input/Output Capacitance

(TA = 0°C to + 85°C, VDD = 0 V)

Parameter Symbol Conditions Min Typ Max Unit

Input
capacitance

CIN f = 1 MHz; unmeasured pins
are connected to VSS

– – 10 pF

Output
capacitance

COUT Except XIN, XOUT

I/O capacitance CIO

XI/XO capacitance CXI, CXO XIN, XOUT – 33 –

Table 15-4. A.C. Electrical Characteristics

(TA = 0°C to + 85°C, VDD = 4.0 V to 5.25 V)

Parameter Symbol Conditions Min Typ Max Unit

Noise filter tNF1H, tNF1L P1 (RC delay) 100 – 200 ns

 0.8 VDD

0.2 VDD

tNF1L tNF1H

 0.5 VDD

tNF2

Figure 15-1. Nose Filter Timing Measurement Points

S3C9654/C9658/P9658 ELECTRICAL DATA

15-5

Table 15-5. Oscillator Characteristics

 (TA = 0°C + 85°C)

Oscillator Clock Circuit Test Condition Min Typ Max Unit

Main crystal Main
ceramic
(fOSC)

XIN

XOUT

Oscillation frequency
VDD = 4.0 V–5.25 V

– 6.0 – MHz

External clock
XIN

XOUT

Oscillation frequency
VDD = 4.0 V–5.25 V

– 6.0 – MHz

RC oscillator
XIN

XOUT

R

Oscillation frequency
VDD = 5.0 V
R = 22.6 K
R = 8.8 K
R = 3.2 K

–
–
–

1.0
2.0
4.0

–
–
–

MHz

Table 15-6. Oscillation Stabilization Time

(TA = 0°C + 85°C, VDD = 4.0 V to 5.25 V)

Oscillator Test Condition Min Typ Max Unit

Main crystal VDD = 4.0 V to 5.25 V, fOSC > 6.0 MHz – – 10 ms

Main ceramic (Oscillation stabilization occurs when VDD is
equal to the minimum oscillator voltage range.)

Oscillator tWAIT stop mode release time by a reset – 216/fOSC –

stabilization wait
time

tWAIT stop mode release time by an interrupt – – –

NOTE: The oscillator stabilization wait time, tWAIT, when it is released by an interrupt, is determined by the setting in the
basic timer control register, BTCON.

ELECTRICAL DATA S3C9654/C9658/P9658

15-6

 0.4 V

tXL tXH

XIN

1/fOSC

 VDD - 0.5 V

Figure 15-2. Clock Timing Measurement Points at XIN

Table 15-7. Data Retention Supply Voltage in Stop Mode

(TA = 0°C to + 70°C)

Parameter Symbol Conditions Min Typ Max Unit

Data retention
supply voltage

VDDDR Stop mode 2.0 – 6 V

Data retention
supply current

IDDDR Stop mode; VDDDR = 2.0 V – – 5 µA

S3C9654/C9658/P9658 ELECTRICAL DATA

15-7

Data Retention Mode~
~ ~

VDDDR
Execution Of

 Stop Instrction

VDD

Normal
Operating
Mode

IDLE Mode
(Basic Timer Active)

~

Stop Mode

tWAIT

0.8 VDD

0.2 VDD

External
Interrupt

Figure 15-3. Stop Mode Release Timing When Initiated by an External Interrupt

Table 15-8. Comparator Electrical Characteristics

(TA = 0°C to + 85°C, VDD = 4.0 V to 5.25 V)

Parameter Symbol Conditions Min Typ Max Unit

Conversion time (1) tCON – – 6 × 12
or

6 × 192

– fCPU

Comparator input
voltage

VICN – VSS – VDD V

Comparator input
impedance

RCN – 2 1000 – MΩ

Comparator
reference voltage

VREF – 1.8 – VDD V

Comparator input
current

ICIN VDD = 5 V – 3 – 3 µA

Reference input
current

IREF VDD = 5 V – 3 – 3 µA

Comparator block ICOM VDD = 5.5 V – 1 2 mA

current (2) VDD = 4.5 V 0.5 1 mA

VDD = 5 V
(when power down mode)

100 500 nA

NOTES:
1. Conversion time is the time required from the moment a conversion operation starts until it ends.
2. ICOM is an operating current during conversion.

ELECTRICAL DATA S3C9654/C9658/P9658

15-8

Table 15-9. Low Speed Source Electrical Characteristics (USB)

(TA = 0°C to + 85°C, Internal Voltage Regulator Output V33OUT = 2.8 V to 3.6 V, typ 3.3 V)

Parameter Symbol Conditions Min Max Unit

Transition Time:

Rise Time Tr CL = 200 pF 75 – ns

CL = 650 pF – 300

Fall Time Tf CL = 200 pF 75 –

CL = 650 pF – 300

Rise/Fall Time Matching Trfm (Tr/Tf) CL = 50 pF 80 125 %

Output Signal Crossover Voltage Vcrs CL = 50 pF 1.3 2.0 V

Internal Voltage Regulator Output
Voltage

V33OUT VDD = 4.0 – 5.25 V 2.8 3.6 V

R1 = 15 KΩ
R2 = 1.5 KΩ
CL = 200 pF - 650 pF

DM: S/W ON
DP: S/W OFF

D. U. T

Test
Point

S/W

V33OUT

R2

R1 C2

90 %
Measurement

Points
10 %

90 %

10 %

Tr Tf

D-/D+

Figure 15-4. USB Data Signal Rise and Fall Time

DM

DP

VCRS

MAX: 2.0 V

MIN: 1.3 V

 3.3 V

0 V

Figure 15-5. USB Output Signal Crossover Point Voltage

S3C9654/C9658/P9658 MECHANICAL DATA

16-1

16 MECHANICAL DATA

OVERVIEW

This section contains the following information about the device package:

— Package dimensions in millimeters

— Pad diagram

NOTE: Dimensions are in millimeters.

26.80 MAX

26.40 ± 0.20

(1.77)

20-DIP-300A

6.
40

 ±
 0

.2
0

#20

#1

0.46 ± 0.10

1.52 ± 0.10

#11

#10

0-15

0.
25

+
0.

10
- 0

.0
57.

62

2.54

0.
51

 M
IN

3.
30

 ±
 0

.3
0

3.
25

 ±
 0

.2
0

5.
08

 M
A

X

Figure 16-1. 20-DIP 300A Package Dimensions

MECHANICAL DATA S3C9654/C9658/P9658

16-2

28.85

(2.92)

6.
48

#20

#1

1.63

#11

#10

0.
38

7.
62

2.54 0.
89

3.
43

0.56

3.
51

4.
06

9.
2520-DIP-300A-SG

Figure 16-2. 20-DIP-300A-SG Package Dimensions

S3C9654/C9658/P9658 MECHANICAL DATA

16-3

NOTE: Dimensions are in millimeters.

20-SOP-300

7.
80

 ±

0.

30
#11#20

#1 #10

14.10 MAX

13.70 ± 0.20

(1.14)

0-8

0.20
+ 0.10
- 0.05

7.
62

5.
40

 ±
 0

.2
0

0.
60

 ±
 0

.2
0

0.
05

 M
IN

1.
70

 ±
 0

.1
0

2.
00

 M
A

X

0.40

0.10 MAX

+ 0.10
- 0.05

1.27

Figure 16-3. 20-SOP-300 Package Dimensions

MECHANICAL DATA S3C9654/C9658/P9658

16-4

23.50

(1.53)

6.
48

#18

#1

#10

#9

0.
38

7.
62

10
.0

3
1.63

0.56

2.54 0.
89

3.
18

3.
51

4.
06

18-DIP-300A-SG

Figure 16-4. 18-DIP-300A-SG Package Dimensions

S3C9654/C9658/P9658 MECHANICAL DATA

16-5

#1 #9

#10#18

10
.4

1

18.06

0.48

2.
64

1.27BSC

18-SOP-BD300-AN

0-8

0.32

7.
59

1.
02

0.29

Figure 16-5. 18-SOP-BD300-AN Package Dimensions

MECHANICAL DATA S3C9654/C9658/P9658

16-6

19.23

(0.53)

6.
48

#16

#1

#9

#8

0.
38

7.
62

10
.0

3

2.541.63

0.56

0.
89

3.
43

3.
51

4.
06

16-DIP-300A-SG

Figure 16-6. 16-DIP-300A-SG Package Dimensions

S3C9654/C9658/P9658 MECHANICAL DATA

16-7

#1 #8

#9#16

10
.5

0

10.56 2.
65

1.27BSC0.48

16-SOP-BD300-SG

0-8

0.32

7.
60

1.
27

0.30

Figure 16-7. 16-SOP-BD300-SG Package Dimensions

MECHANICAL DATA S3C9654/C9658/P9658

16-8

NOTES

S3C9654/C9658/P9658 S3P9658 OTP

 17-1

17 S3P9658 OTP

OVERVIEW

The S3P9658 single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the S3P9658
microcontroller. It has an on-chip OTP ROM instead of masked ROM. The EPROM is accessed by serial data
format.

The S3P9658 is fully compatible with the S3P9658, both in function and in pin configuration. Because of its
simple programming requirements, the S3P9658 is ideal for use as an evaluation chip for the S3P9658.

S3P9658

P0.3/INT0

VDD

P2.0/D-/INT2

P2.1/D+/INT2

RESET/RESETRESET

XIN

XOUT

TEST/TEST

P0.1/INT0

P0.5/INT0

20

19

18

17

16

15

14

13

12

11

1

2

3

4

5

6

7

8

9

10

 P0.2/INT0

VSS/VSS

P0.0/INT0

SCLK/P1.0/COM0/INT1

SDAT/P1.1/COM1/INT1

P1.2/COM2/INT1

P1.3/COM3/INT1

P1.4/COM4/INT1

P1.5/COM5/INT1

P0.4/INT0

NOTE: The bold is indicate an OTP pin name.

Figure 17-1. S3P9658 Pin Assignments (20 Pin)

KS86P6504/P6508 OTP S3C9654/C9658/P9658

17-2

S3P9658

P0.3/INT0

VDD/VDD

P2.0/D-/INT2

P2.1/D+/INT2

RESET/RESETRESET

XIN

XOUT

TEST/TEST

P0.1/INT0

18

17

16

15

14

13

12

11

10

P0.2/INT0

VSS/VSS

P0.0/INT0

SCLK/P1.0/COM0/INT1

SDAT/P1.1/COM1/INT1

P1.2/COM2/INT1

P1.3/COM3/INT1

P1.4/COM4/INT1

P1.5/COM5/INT1

1

2

3

4

5

6

7

8

9

NOTE: The bold is indicate an OTP pin name.

Figure 17-2. S3P9658 Pin Assignments (18 Pin)

S3P9658

VDD/VDD

P2.0/D-/INT2

P2.1/D+/INT2

RESET/RESETRESET

XIN

XOUT

TEST/TEST

P0.1/INT0

16

15

14

13

12

11

10

9

VSS/VSS

P0.0/INT0

SCLK/P1.0/COM0/INT1

SDAT/P1.1/COM1/INT1

P1.2/COM2/INT1

P1.3/COM3/INT1

P1.4/COM4/INT1

P1.5/COM5/INT1

1

2

3

4

5

6

7

8

NOTE: The bold is indicate an OTP pin name.

Figure 17-3. S3P9658 Pin Assignments (16 Pin)

S3C9654/C9658/P9658 S3P9658 OTP

 17-3

Table 17-1. Descriptions of Pins Used to Read/Write the EPROM

Main Chip During Programming

Pin Name Pin Name Pin Number (20 DIP) I/O Function
P1.0 SDAT 5 I/O Serial Data Pin (Output when reading, Input when

writing) Input and Push-pull Output Port can be
assigned

P1.1 SCLK 4 I/O Serial Clock Pin (Input Only Pin)

RESET RESET 16 I 0 V : OTP write and test mode
5 V : Operating mode

TEST VPP

(TEST)
13 I Chip Initialization and EPROM Cell Writing Power

Supply Pin (Indicates OTP Mode Entering) When
writing 12.5 V is applied and when reading.

VDD/VSS VDD/VSS 19/2 I Logic Power Supply Pin.

Table 17-2. Comparison of S3P9658 and S3C9654/C9658 Features

Characteristic S3P9658 S3C9654/C9658

Program Memory 8 K-byte EPROM 4/8 K-byte mask ROM

Operating Voltage (VDD) 4.0 V to 5.25 V 4.0 V to 5.25 V

OTP Programming Mode VDD = 5 V, VPP (TEST) = 12.5 V

Pin Configuration 20/18/16 DIP, 20/18/16 SOP 20/18/16 DIP, 20/18/16 SOP, 16SSOP

EPROM Programmability User Program 1 time Programmed at the factory

OPERATING MODE CHARACTERISTICS

When 12.5 V is supplied to the VPP (RESET) pin of the S3P9658, the EPROM programming mode is entered.
The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in
Table 14-3 below.

Table 17-3. Operating Mode Selection Criteria

VDD VPP (RESETRESET) REG/MEMMEM Address (A15-A0) R/W Mode

5 V 5 V 0 0000H 1 EPROM read

12.5 V 0 0000H 0 EPROM program

12.5 V 0 0000H 1 EPROM verify

12.5 V 1 0E3FH 0 EPROM read protection

NOTE: "0" means Low level; "1" means High level.

KS86P6504/P6508 OTP S3C9654/C9658/P9658

17-4

NOTES

S3C9654/C9658/P9658 DEVELOPMENT TOOLS

18-1

18 DEVELOPMENT TOOLS

OVERVIEW

Samsung provides a powerful and easy-to-use development support system in turnkey form. The development
support system is configured with a host system, debugging tools, and support software. For the host system, any
standard computer that operates with MS-DOS as its operating system can be used. One type of debugging tool
including hardware and software is provided: the sophisticated and powerful in-circuit emulator, SMDS2+, for
S3C7, S3C9, S3C8 families of microcontrollers. The SMDS2+ is a new and improved version of SMDS2.
Samsung also offers support software that includes debugger, assembler, and a program for setting options.

SHINE

Samsung Host Interface for in-circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE
provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked
help. It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be
sized, moved, scrolled, highlighted, added, or removed completely.

SAMA ASSEMBLER

The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates
object code in standard hexadecimal format. Assembled program code includes the object code that is used for
ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and
an auxiliary definition (DEF) file with device specific information.

SASM86

The SASM86 is an relocatable assembler for Samsung's S3C9-series microcontrollers. The SASM86 takes a
source file containing assembly language statements and translates into a corresponding source code, object
code and comments. The SASM86 supports macros and conditional assembly. It runs on the MS-DOS operating
system. It produces the relocatable object code only, so the user should link object file. Object files can be linked
with other object files and loaded into memory.

HEX2ROM

HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be
needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code(.OBJ file) by
HEX2ROM, the value 'FF' is filled into the unused ROM area upto the maximum ROM size of the target device
automatically.

DEVELOPMENT TOOLS S3C9654/C9658/P9658

18-2

TARGET BOARDS

Target boards are available for all S3C9-series microcontrollers. All required target system cables and adapters
are included with the device-specific target board.

OTPs

One times programmable microcontrollers (OTPs) are under development for S3C9654/C9658/P9658
microcontroller.

B
us

SMDS2+RS-232C

POD

Probe
Adapter

PROM/OTP Writer Unit

RAM Break/Display Unit

Trace/Timer Unit

SAM8 Base Unit

Power Supply Unit

IBM-PC AT or Compatible

TB9654/8A
Target
Board

EVA
Chip

Target
Application

System

Figure 18-1. SMDS Product Configuration (SMDS2+)

S3C9654/C9658/P9658 DEVELOPMENT TOOLS

18-3

TB9654/8A TARGET BOARD

The TB9654/8A target board is used for the S3C9654/C9658/P9658 microcontrollers. It is supported by the
SMDS2+ development system.

TB9654/8A

SM1330A

G
N

D
V

C
C

+

Idle

+

Stop

J101

20
-P

in
 S

oc
ke

t
201

10 11

10
0-

P
in

 C
on

ne
ct

or

25

1

RESET

To User_VCC

Off On

U
2

External
Triggers

CH1

CH2 SW1

SMDS2 SMDS2+

144 QFP
S3E9600X
EVA Chip

1

36

Figure 18-2. TB9654/8A Target Board Configuration

DEVELOPMENT TOOLS S3C9654/C9658/P9658

18-4

Table 18-1. Power Selection Settings for TB9654/8A

'To User_Vcc' Settings Operating Mode Comments

To User_VCC

Off On
Target
System

SMDS2/SMDS2+

TB9654/8A VCC

VSS

VCC

SMDS2/SMDS2+ supplies
VCC to the target board

(evaluation chip) and the
target system.

To User_VCC

Off On
Target
System

SMDS2+

TB9654/8A
External

VCC

VSS

VCC

SMDS2/SMDS2+ supplies
VCC only to the target board

(evaluation chip). The target
system must have a power
supply of its own.

SMDS2+ Selection (SAM8)

In order to write data into program memory available in SMDS2+, the target board should be selected for
SMDS2+ through a switch as follows. Otherwise, the program memory writing function is not available.

Table 18-2. The SMDS2+ Tool Selection Setting

'SW1' Setting Operating Mode

SMDS2 SMDS2+
Target
BoardSMDS2+

R/W* R/W*

S3C9654/C9658/P9658 DEVELOPMENT TOOLS

18-5

Table 18-3. Using Single Header Pins as the Input Path for External Trigger Sources

Target Board Part Comments

External
Triggers

CH1

CH2

Connector from
External Trigger
Sources of the
Application System

You can connect an external trigger source to one of the two external
trigger channels (CH1 or CH2) for the SMDS2+ breakpoint and trace
functions.

20-P
in

 S
O

P
/D

IP
 S

o
cket

J101

P0.3/INT0 (note)

VDD

P2.0/D-/INT2
P2.1/D+/INT2
RESET
XIN

XOUT

TEST
P0.1/INT0
P0.5/INT0 (note)

20
19
18
17
16
15
14
13
12
11

(note) P0.2/INT0
VSS

P0.0/INT0
P1.0/COM0/INT1
P1.1/COM1/INT1
P1.2/COM2/INT1
P1.3/COM3/INT1
P1.4/COM4/INT1
P1.5/COM5/INT1

(note) P0.4/INT0

1
2
3
4
5
6
7
8
9
10

NOTE: 16, 18, and 20 SOP/DIP.

Figure 18-3. 20-Pin Socket for TB9654/8A

DEVELOPMENT TOOLS S3C9654/C9658/P9658

18-6

Target Board Target System

Part Name: AS20D
Order Code: SM6304

20-P
in S

O
P

/D
IP

 S
ocket

J101

1

10

20

11

1 20

10 11

Figure 18-4. TB9654/8A Adapter Cable for 20-SOP/DIP Package

S3C9654/C9658/P9658 APPENDIX

19-1

19 APPENDIX

SAMSUNG USB CONTROLLER TECHNICAL NOTE

USB RESET SIGNAL

Application: KS86P/C6104, KS86P/C6504, KS86P/C6408.

Direction: From outside (From host or HUB) to USB controller.

Effect: Reset USB part.
USB reset signal affect to only USB related registers.
USB related registers are changed to reset value as below:
USB function address register → 00h
EP0 CSR register → 00h
EP0 byte count register → 00h
EP1 CSR register → 00h
USB interrupt enable register → 03h
USB interrupt pending register → 00h
USB power management register → 00h

Notice to MCU: When USB module receive USB reset signal from outside then set USBRST register.
USBRST register → 01h
(This means USB controller have received USB reset signal)
USB reset flag of USBRST register is sticky so during the reset signal this flag can not be
cleared by MCU. After finishing the reset register this flag can be cleared by MCU.

NOTES:
1. USB reset signal does not effect the MCU's register or state it only affect to USB part (USB module).
2. The effect of USB reset signal and hardware reset is same except for USBRST register.
3. If you power on the USB controller the USB reset flag is set so you should clear this flag in your initial routine.

APPENDIX S3C9654/C9658/P9658

19-2

STALL CONDITION

Application: KS86P/C610x4, KS86P/C6504, KS86P/C6408.

Condition:

1. In during the a Data stage a command pipe sent more data or is requested to return more data than was
indicated in the Setup stage, it should return STALL.(8.5.2.1)

2. In BULK transfer if the endpoint was halted, STALL is returned to indicate that the host should not retry the
transmission because there is an error on the function.(8.5.1)

3. When a request is received by a device that is not defined for the device, is inappropriate for the current
setting of the device, or has values that are note compatible with the request, then a Request Error exists.
The device deals with the Request Error by returning a STALL PID in response to the next Data stage
transaction or in the Status stage of the message.(9.2.7)

4. If an unsupported or invalid request is made to a USB device, the device responds by returning STALL in the
Data or Status stage of the request. If the device detects the error in the Setup stage, it is preferred that the
device returns STALL at the earlier of the Data of Status stage.(9.4)

5. Control pipes have the unique ability to return a STALL handshake due to function problems in control
transfer.

Related flag:

1. EP0CSR.2 (Sent Stall)
This flag set by hardware when the USB module send stall packet to host.

2. EP0CSR.5 (Send Stall)
This flag set by MCU if the user want to send stall packet to host. This flag automatically cleared by hardware
when send one stall packet to host.

3. EP1CSR.1 (Force Stall)
This flag set by MCU if the user want to send stall packet to host. If this flag is set by user then USB module
continuously send stall packet to host until cleared by MCU.

By setting the flag:

1. Endpoint 0 (Control endpoint)
If there is problem and MCU want to send stall during control transfer then MCU should set send stall flag for
one time send stall packet. You must notice after send one stall packet this flag cleared by hardware. (See
example below)

2. Endpoint 1 (interrupt endpoint)
If MCU want to send stall packet during interrupt transfer then MCU should set this flag. If this flag is set the
USB controller send stall packet continuously. If MCU clear this flag then USB controller stop send stall
packet. The hardware does not clear this flag automatically so MCU should clear this flag after solve
the stall condition.

S3C9654/C9658/P9658 APPENDIX

19-3

By hardware: In control transfer, if there is protocol violation then the hardware send stall packet to host
automatically and set sent stall flag for noticing MCU. Basically the blow case,
the USB controller send stall packet by hardware.

CASE 1: Host send IN packet without Setup stage.
CASE 2: Host send OUT packet without Setup stage.

% If the USB controller send stall packet to host then the control transfer is finished. If
host send in packet then the hardware treat this is protocol violation. (see example)

Example: Control transfer: The host send IN or OUT packet to function after receiving stall packet.

Setup Stage IN Transaction IN Transaction A B D E

In A point MCU set send stall flag then the B part is as below;

IN Packet STALL Packet C

Host → Function Function → Host

B Part

In C point the hardware clear send stall flag and set sent flag. If the function send stall packet to host then the
control transfer in finished without status stage so the function expect to receive setup stage.

% Sent flag does not affect to any state of USB controller. The role of this flag is just notice to MCU. Clear this
flag or not has no meaning to USB controller.

IN STALL IN STALL •• •• •• IN STALL

D Part

In D part the USB controller send stall packet because the control transfer is finished so sending IN packet
without setup stage is protocol violation. The hardware send stall packet and set sent stall flag continuously until
receiving setup packet.

Setup Packet Data 0 Packet ACK Packet

 Host → Function Host → Function Function → Host

E Part

After E part the stall condition is solved.

% If you want to set send stall flag then you should set this flag before clearing OUT_PKT_RDY flag.

APPENDIX S3C9654/C9658/P9658

19-4

EP1CSR USAGE AND IMPLEMENTATION.

Application: KS86P/C6104, KS86P/C6504, KS86P/C6408.

Direction: Endpoint 1 only support IN (Function → Host) interrupt transfer.

Contents: Bit 7 Clear Data Toggle.
Bit 6 - Bit 3 MAX Packet
Bit 2 Flush FIFO
Bit 1 Force Stall
Bit 0 In_Pkt_Rdy

Usage:

(1) Clear Data Toggle.
Write "1" to this flag : Initialize data toggle sequence. Hardware clear this flag after initializing the toggle
sequence.

NOTE: This flag was prepared for accident. Usually not use. Until now I use this flag only for test.
The data toggle start data0 after reset.

(2) Max Packet.
This field use when the user want to limit the max packet. The reset value "1000" so the maximum packet
size is 8 bytes. The MCU can not write more data then this value. This value does not define the sending
data size, it only define the maximum size. If the MCU write only 3 bytes then the function send only three
bytes. USB module have counter which count the number of written data to FIFO.

example 1) NOP; Assume internal counter is "0".
 ; And MAXP field is "1000".
ld FIFO, data; internal counter become "1".
ld FIFO, data ; internal counter become "2".
ld FIFO, data ; internal counter become "3".
Set in_pkt_rdy ;
; After set in_pkt_rdy the MCU should not
; write data until it is cleared. This scheme can
; Solve the dual access problem.
; Internal counter is 3 so the function send 3 bytes
; to host when the function received IN packet.

example 2) NOP; Assume internal counter is "0".
 ; And MAXP field is "0100".
ld FIFO, data; internal counter become "1".
ld FIFO, data; internal counter become "2".
ld FIFO, data; internal counter become "3".
ld FIFO, data; internal counter become "4".
ld FIFO, data; internal counter stay "4".
; This instruction does not work because the MAXP
; field is 4.
Set in_pkt_rdy;
; Internal counter is 4 so the function send 4 bytes
; to host when the function received IN packet.

S3C9654/C9658/P9658 APPENDIX

19-5

(3) Flush FIFO.
This field use when the user want to clear the contents of FIFO. If the user write "1" to this flag than clear the
whole and initialize the internal counter and generate interrupt signal to MCU. See the example.

example) NOP; Assume internal counter is "0".
ld FIFO, data ; internal counter become "1".
ld FIFO, data ; internal counter become "2".
ld FIFO, data ; internal counter become "3".
ld FIFO, data ; internal counter become "4".
Set FLUSH_FIFO ; internal counter become "0".
; Clear in_pkt_rdy if this bit was set.
; Generate interrupt signal to MCU.
; And cleared by hardware.

(4) Force Stall.
If this flag is set than the function send STALL packet when receive IN packet. This flag should be clear by
MCU. This is not cleared by hardware. See Technical note 1.2.

(5) In_Pkt_Rdy.
After loading data to FIFO than this flag should be set. See below examples.

 example) ld FIFO, data; Assume in_pkt_rdy is "0".
• • •
ld FIFO, data; Finish the loading.
; If the function receive IN packet then send NAK
because the value of in_pkt_rdy is "0".
Set in_pkt_rdy;
; If the function receive IN packet then send data
; because the value in_pkt_rdy.
; The value of in_pkt_rdy stay "1".
Receive the ACK from host;
; The value of in_pkt_rdy become to "0". This is
; done by hardware.
; And generate interrupt signal t MCU.

APPENDIX S3C9654/C9658/P9658

19-6

BOUNDARY CONDITION PROBLEM.

Application: KS86P/C6104, KS86P/C6504, KS86P/C6408.

Direction: Boundary condition arise from IN (DEV → HOST) direction.

Condition : 1) Happen in Control transfer.
2) Host want the data exactly the multiple of MAX Packet number.

 ex) Assume the max packet number is 8 and host want 2 bytes.

Problem: SPEC does not define Exact protocol in this case.
case 1, 1) Host send setup transaction.

2) Host send IN packet and Device reply 8 bytes.
3) Host send IN packet and Device reply 8 bytes (16 bytes).
4) Host send IN packet and Device reply 8 bytes (24 bytes).
5) Host send OUT packet for status stage.

case 2, 1) Host send setup transaction.
2) Host send IN packet and Device reply 8 bytes.
3) Host send IN packet and Device reply 8 bytes (16 bytes).
4) Host send IN packet and Device reply 8 bytes (24 bytes).
5) Host send IN packet and Device reply zero-length packet.
6) Host send OUT packet for status stage.

Solution: Samsung USB controller should reply both cases in one firmware.
Samsung USB controller can work with two cases like below.

 (1) Usage : in_pkt_rdy, data_end flag.
(2) MCU should set these two flag between 4) and 5) in above cases.

 example) 1. Setup transaction. Load data to FIFO and set in_pkt_rdy..
 2. IN-Data1-ACK, Generate interrupt. Load second data to FIFO.
 And set in_pkt_rdy. (Send 8 bytes, load 8 bytes).
 3. IN-Data0-ACK, Generate interrupt. Load third data to FIFO.
 And set in_pkt_rdy. (Send 16 bytes, load 8 bytes).
 4. IN-Data1-ACK, Generate interrupt. (Send 24 bytes).
 MCU should set in_pkt_rdy and data_end flag at the same time.
 5. If host send IN packet then device send zero-length packet.
 And do the status stage.
 If host send OUT packet then device send ACK.

 NOTE: If MCU does set in_pkt_rdy in 4 of example then device send STALL when received
 another IN Packet.

S3C9654/C9658/P9658 APPENDIX

19-7

USB RST FLAG USAGE.

Application: KS86P/C6104, KS86P/C6504, KS86P/C6408.

Purpose: This flag made for just monitoring.

Issue: This flag use USB_RSTN signal (This signal come from internal USB module.) as a synchronous
set signal. When power on the internal state going to known value. Since this transient value this
flag set at starting. So MCU should clear this flag before starting the program.

NOTE: This flag is use just for monitor. Basically the Controller itself does not affect from USB reset
signal. But some condition this might be needed for some reason.

Usage:

USB Reset

A B C

1) usbrst flag set from the point 2.5us from A point.
2) This flag cannot clear by MCU between A point and C point.

 NOTE: ld R0, usbrst ; If R0 is 01h then USB module receive reset
; signal now or before. Means present state is
; in after A point.

ld usbrst, #00h;
ld R0, usbrst ; If R0 is 01h then present state is in B region.

; If R0 is 00h then present state is after C point.

 3) This flag can be cleared by MCU after C point.
4) This flag can be writable before A and after C point.

NOTE: Can write "1" or "0" if present state is not reset region.

APPENDIX S3C9654/C9658/P9658

19-8

SUSPEND / RESUME SUPPORTING.

Application: KS86P/C6104, KS86P/C6504, KS86P/C6408.

Purpose: Supporting USB suspend SPEC.

Implementation: USB module have a 3 ms counter for this purpose. This counter cleared when USB traffic
 happen (Including Keep Alive signal) . So this is a idle counter. If there is no USB traffic
 during 3 ms then generate a suspend interrupt. If MCU receive this interrupt then do a
 suspend sequence.
 Samsung USB controller have three mode, these are normal, idle, stop. In suspend mode
 Samsung MCU usually using stop mode, In stop mode the oscillator is down, so there is no
 clock. Samsung MCU use D+, D- signal as a clock source when suspend mode. So Samsung
 can detect resume signal without clock and generate a resume interrupt. When MCU receive
 interrupt signal in stop mode, then the oscillator wake up and go interrupt service routine.

Usage1: When receive resume signal from upstream port.
initialization routine;

 ld usbint, #0ffh; Enable interrupt.
 • • •
 int nop; Here is interrupt service routine label.

check interrupt vector; Assume this interrupt is suspend.
jp suspend;

 suspend nop;
do suspend routine;
stop; This means stop oscillator for saving power
 ; The whole chip action stop.

This stop can be recovered from external interrupt (external resume, keystroke, mouse moving, etc.) source.
That means if MCU receive interrupt then the oscillator automatically activating and jump to interrupt service
routine. In resume case, D- line connected to the clock port of resume detect F/F, so any change from idle mode
(idle to reset, idle to K-state) can be detected by this circuit. If this F/F detected action then generate a interrupt
to MCU part and going to interrupt routine.

int nop; If the MCU receive resume or external interrupt then the PC
 ; get this address.
check interrupt vector; Assume this interrupt is resume.
jp resume ; Jump to resume interrupt service routine.

resume nop;
do wakeup process;
jp main; Jump to main loop;

S3C9654/C9658/P9658 APPENDIX

19-9

Usage2: When USB controller drive resume signal to upstream port.
Assume suspend mode;
Receive mouse moving or keystroke;

int nop; interrupt service routine.
check interrupt source; Assume the interrupt source is mouse

 ; moving or keystroke
jp send_resume; Jump to resume service routine.

send_resume nop;
ld PWRMGR, #02h ; Start to send resume.
ld R1, #some_value; Spec says the length of resume signal should

 ; between 1 ms to 15 ms, so the programmer
 ; should select adequate value.

loop3 nop;
dec R1;
cp R1, #00h;
jp nz, loop3;
ld PWRMGR, #00h; End of resume.
jp main;

APPENDIX S3C9654/C9658/P9658

19-10

RESPONDING BEFORE RESET SIGNAL.

Application: KS86P/C6504, KS86P/C6408, KS86P/C6308

Problem: Samsung USB controller respond to host before reset signal.

Solution: Basically Samsung USB controller respond to host before reset signal. This violation can be
solved by heuristic method which considering transceiver characteristic. Above Samsung USB
controller can support PS2/USB application. Samsung USB controller share D+/PS_CLK,
D-/PS_DATA pins and can change the port mode. So, before USB reset signal we can use these
pins as PS2 input (with pullup in D- pin) mode. And after receive the USB reset signal MCU can
change these pins mode to normal USB D+, D-.
MCU can read these pins using PS2 input mode. And USB reset signal length is at least 10 ms.
MCU can figure it out whether reset or not.

Usage: initialization code;
ld usbsel, #00h; Set port mode as a PS2 mode.
ld P2CONINT, #10h; <= KS86P/C6504 case

 ; Set D+ as schmitt trigger input.
 ; Set D- as schmitt trigger input with pull-up.
 ; This means USB connection established.

loop1 ld R0, P2; Read port data.
cp R0, #00h; Check port data.
jp nz, loop1 ; If the port data is not zero then go to loop1.

 ; This loop wait until receive the reset signal.

ld R1, #03h ; Check three iteration for robustness.
 ; The length of USB signal is from 2.5 us to 10 ms,

 ; so 2,3,4 or 5 times checking is enough.

loop2 ld R0, P2;
cp R0, #00h;
jp nz, loop1; If the SE0 is too short then this signal is not USB reset
signal, so return to loop1.
dec R1;
cp R1, #00h;
jp nz, loop2;

ld usbsel, #01h; Change from PS2 mode to USB mode.
do normal operation ;

NOTE: If MCU set transceiver as PS2 mode then the input signal does not go through to USB module,
so USB module does not respond to host.

S3C9654/C9658/P9658 APPENDIX

19-11

INTERNAL HARDWARE STRUCTURE OF SAMSUNG USB CONTROLLER.

Application: KS86P/C6504, KS86P/C6408. KS86P/C6104

1. When the device receive setup transaction with DATA1 packet.
Answer) When the device receive setup transaction with data1 packet then the device send ACK packet

and does not generate interrupt signal. That means the device ignore this transaction since the
data pid is not proper.

2. When the device receive setup transaction with data0 packet which have non-8 byte data length.
Answer) The device respond with ACK and generate interrupt to MCU. If the device read EP0CNT

register then the device can get the data number of this packet.

3. When the device receive setup transaction which have more then 8 bytes data packet.
Answer) The device keep first 8bytes data and response with ACK packet. And the EP0CNT have the

value 8. That means if the device receive more than 8 bytes then there is no way to distinguish
this one from 8 bytes setup transaction. I upload this issue to USB-IF web board and I received
positive message.

4. Device Address scheme.
Answer) Device address is generated by selecting two source. The below is the fragmentation of verilog

file. Verilog is a hardware description language so the hardware function is same with this
statement. I synthesized the hardware using this program.
When I designed this one I only think about first set address command but now we must consider
the second set address command. Fortunately we can solve this issue using firmware.
Anyway you can figure it out what's going on internal hardware.

 assign fun_addr = (device_configured) ? uc_fun_addr_reg: 7'h00;
/* This means if the device_configured is 1 then the value of fun_addr is same to
uc_fun_addr_reg. And if the device_configured is 0 then the value of fun_addr is zero. */

/* Device_configured signal used for detecting the status stage of set address command.
Before status stage this value is 0 and after status stage this value going to 1. */

APPENDIX S3C9654/C9658/P9658

19-12

always @(posedge clk or negedge reset) begin
if (reset) begin
 device_configured <= 1'b0;
end
else begin
 /* The below is the setting condition of the device_configured signal. After setting this
 value this signal remain 1 until receive reset signal. */
 device_configured <= (| (uc_fun_addr_reg) & endpt0_data_end

& endpt0_clr_data_end & ~endpt0_setup_end
& ~endpt0_set_setup_end) | device_configured;

 /* Set condition of this signal.
 1. uc_fun_addr_reg have non-zero value.
 2. endpt0_data_end should be 1. (this flag is CSR0[3]).
 3. endpt0_clr_data_end should be 1. (This means end of status stage.)
 4. endpt0_setup_end should be 0. (This means not terminated by another setup
 transaction.)
 5. endpt0_set_setup_end should be 1. (This signal is a setting signal of
 endpt0_setup_end.)
 */
end

end

always @ (posedge clk or negedge reset) begin
if (~reset) begin
 uc_fun_addr_reg <= 7'b00;

end
else begin
 /* The below statement means the firmware can change the

 uc_fun_addr_reg anytime. */
 if (uc_wrt & uc_dec_fun_addr)
 uc_fun_addr_reg <= uc_data[6:0] ;
 end

end

S3C9654/C9658/P9658 APPENDIX

19-13

SET ADDRESS COMMAND SUPPORTING

Application: KS86P/C6104, KS86P/C6504, KS86P/C6408.

Purpose: Supporting multiple set address command and robustness.

Implementation: Basically above USB controller does not support multiple set address command. But above
 USB controller can support multiple set address and robustness(missing status stage) using
 some heuristic method. The sequence of firmware is as below and the flowchart of this scheme
 is in next page. The below scheme perfectly supports missing status stage situation and
 multiple set address command using one method.

Scheme.

1. Prepare variable PrevAddr(8 bits), DevAddr(8 bits) and initialize as below.
PrevAddr = 8'hFF; DevAddr = 8'h00; go to 2;

2. Wait until receive interrupt.
if (received interrupt == Endpoint 0 interrupt) then go to 3
else go to 2.

3. If (received command == set address) then go to 4
else execute this command and go to 2.

4. Write PrevAddr to device address register;
Write 8'h48 to CSR0;
DevAddr = received address; go to 5;

5. Wait until interrupt.
if (received interrupt == status stage) then

Write DevAddr to device address register;
PrevAddr = DevAddr; go to 2;

else go to 6 ;

6. This state exists for missing status stage situation.
if (PrevAddr == 8'hFF) then

Write 8'h00 to device address register.
revAddr = 8'h00;
go to 2.

else go to 2.

APPENDIX S3C9654/C9658/P9658

19-14

START

Initialize
PrevAddr = 8'hFF;
DevAddr = 8'h00;

IDLE

Set Address
Command?

Execute Command

Faddr = PrevAddr;
DevAddr = in address;
CSR0 = 8'h48

Status atage?
if (PrevAddr == 8'hff)
{Faddr = 9'h00;
PrevAddr = 8'h00;}

Faddr = DevAddr;
PrevAddr = DevAddr;

No

No

Yes

Yes

Figure 19-1. Set Address Command Supporting

S3C9654/C9658/P9658 APPENDIX

19-15

DECODING TIP OF EP0 CONTROL REGISTER VALUE

Application: KS86P/C6104, KS86P/C6504, KS86P/C6408.

Purpose: Robust decoding scheme of endpoint control status register value.

Implementation: This part will cover robust way of implementing endpoint 0 CSR value. The first one is a
 description which describe the flow of the implementation. The next one is a flowchart of
 description.
 The below description will help you to implement authentic method of endpoint 0 CSR as a
 interrupt service routine. The below scheme assume you use event-driven scheme not polling
 scheme. If you use polling scheme then you may get another value of ep0csr. I will explain
 these issues briefly in last part.

Scheme example

1. IDLE state (Busy waiting & if interrupt occurred then go to step 2).

2. Read usbpnd register for checking interrupt source.
If the interrupt source is not endpoint 0 then

execute appropriate action and go to step 1.
else go to 3.

3. Check state variable which initialized to IDLE.
If state is set_addr then begin

if (CSR0 == 00h) then begin
LD Faddr, DevAddr.
LD PrevAddr, DevAddr.
go to step 1.

end
else begin

if (PrevAddr == FFh) then begin
LD Faddr, 00h.
LD PrevAddr, 00h.
go to step 4.

end
else go to step 4.

end
end /* This is for supporting multiple set address command. */ See Ref, 1.9
else go to 4.

4. Read ep0csr and store to CSR0 variable.
if CSR0[4](Setup_End flag) is set then

assign state = IDLE.
initialize some variable for preparing next control transfer.
assign CSR0[4] = 0.
go to step 5.

else go to step 5.

APPENDIX S3C9654/C9658/P9658

19-16

5. if CSR0[2](Sent_Stall) is set then
execute appropriate action.
assign CSR0[2] = 0.
go to step 6.

else go to step 6

6. If (CSR0 == 8'h01h) then begin
/*This means this interrupt is come from Setup transaction or Out transaction.*/
If (state == IDLE) then begin

Unload EP0FIFO value and decode this command.
go to step 7.

end
else begin

If (state == OUT) then begin
unload EP0FIFO data and check the number of data byte.
if the number of data byte is MAX_VALUE then assign ep0csr = 8'h40.
else ep0csr = 8'h48.
go to step 1.

else ERROR!!!
end

end
else go to 11.

7. If this is NO DATA STAGE command then go to step 8.
else go to step 9.

8. If this is set address command then begin
LD Faddr, PrevAddr.
LD DevAddr, in_address.
LD ep0csr, 48h.
LD state, set_addr.
go to step 1.

end
else begin

Execute this command.
go to step 1.

end

9. If this command is IN Control transfer then begin
LD ep0csr, 40h.
LD state, IN.
prepare variable for this transfer.
go to 13(EP0FIFO loading part).

end
else go to step 10.

S3C9654/C9658/P9658 APPENDIX

19-17

10. If this command is OUT control transfer then begin
if (Transfer is finished) LD ep0csr, 48h.
else LD ep0csr, 40h.
go to step 1.

end
else begin

If this command is not supported by MCU then
LD ep0csr, 60h,
go to step 1.

end

11. If (CSR0 == 8'h08) then
Do nothing and go to step 1.
/*You can get this value after set 0Ah to ep0csr and receive last in packet
from host then the MCU send zero-length data packet and generate interrupt.*/

else go to step 12.

12. If (CSR0 == 8'h00) then
/*This means the interrupt occurred from status transaction.*/
if (state == IN) then

go to 13(EP0FIFO loading part).
else if (state == IDLE) then

go to step 1.
else ERROR.

else ERROR. (other value is impossible)

13. /* Variable Definition. */
/* TotDB : Actual length of data. */
/* ReqDB : Requested data length. */
/* PreDB : Present data count. */
/* NowCnt : Present load count.*/
LD NowCnt, #00h.
go to 14.

14. If ((PreDB == ReqDB) || (PreDB == TotDB)) then begin
LD state, IDLE.
LD ep0csr, 0Ah.
go to step 1.

end
else go to 15.

15. LD EP0FIFO, data.
INC NowCnt.
INC PreDB.
If (NowCnt == MAX_Packet) then

LD ep0csr, #02h.
go to step1.

else go to step 14.

APPENDIX S3C9654/C9658/P9658

19-18

Flowchart Diagram

START

Ep0 Int?
No

Yes

IDLE

state==Set_Addr?

LD CSR0, ep0csr

Execute other routine

LD Faddr, DevAddr
LD PrevAddr, DevAddr

CSR0==00h? PrevAddr==ffh?
No

A

LD Faddr, #00h
LD PrevAddr, #00h

No

YesNo

Yes
CSR0[4]==1?

No

LD state, IDLE
CSR0[4] = 0

CSR0[2]==1?

No

CSR[2] = 0

CSR0==01h?

Yes

Yes Go to Out_Pkt_Rdy
Implement part

ACSR0==08h?
Yes

CSR0==00h?

state==IN?
Yes Go to EP0FIFO

Loading part

Astate==IDLE?
Yes

This state is impossible
ERROR!

No

No

Yes

No

No

No

Figure 19-2. Overall Part

S3C9654/C9658/P9658 APPENDIX

19-19

state==IDLE?

Yes
No data stage?

LD ep0csr, 48h

Set address?
No

A

LD Faddr, PrevAddr.
LD DevAddr, PrevAddr
LD ep0csr, 48h
LD state, Set_Addr

No

Yes
In control trans?

No

Out control trans?
Yes

A

Unload EP0FIFO

Decode data

state==OUT?
No

Finish?

Initialize
PrevAddr = 8'hFF
DevAddr = 8'h00

Execute command
LD ep0csr, 48h

No Undefined state
ERROR!

LD ep0csr, 40h
No

LD ep0csr, 40h
LD state, IN
LD NowCnt, 00h
Prepare varaible

Go to EP0FIFO
Loading part

A

Finish?

LD ep0csr, 48hUnsupported command
LD ep0csr, 60h

LD ep0csr, 40h
LD state, OUT

Yes

Yes

No

Yes

Yes

Figure 19-3. Out_Pkt_Rdy Implement Part

APPENDIX S3C9654/C9658/P9658

19-20

PreDB==ReqDB?

Yes

NowCNT==MAX??

A

LD state, IDLE
LD ep0csr, 0Ah

No

PreDB==TotDB?

No

LD EP0FIFO, Data
INC NowCNT
INC PreDB

No

Yes

Yes
LD ep0csr, 02h

NOTE: TotDB: Actual length of data
ReqDB: Requested length of data
PreDB: Present value of data count
NowCNT: Present FIFO load data count

Figure 19-4. EP0FIFO Loading Part

S3C9654/C9658/P9658 APPENDIX

19-21

EP0CSR Flag Definition

1. Clr_Setup_End.
1.1. Write only flag. If you read this value then you will get always "0".
1.2. The MCU use this flag for clearing Setup_End flag. The hardware will automatically clear this flag
 after clear Setup_End flag.
1.3. This flag can not be a interrupt source.

2. Clr_Out_Pkt_Rdy.
2.1. Write only flag. If you read this value then you will get always "0".
2.2. The MCU use this flag for clearing Out_Pkt_Rdy flag. The hardware will automatically clear this flag
 after clearing Out_Pkt_Rdy.
2.3. This flag can not be a interrupt source.

3. Send_Stall.
3.1. Write only flag. The hardware will automatically clear after setting up send stall condition.
3.2. If you want to send stall to upstream then you should set this flag. After setting the FSM
 (For send stall in next transaction) this flag cleared by hardware.
3.3. Actually this flag can not be a direct source of interrupt but can be a second source of interrupt.
 After sent stall packet the SIE will set Sent_Stall flag and generate interrupt to MCU.

4. Setup_End.
4.1. Read only flag. This flag indicate the termination of control transfer. If the MCU set Data_End flag
 and do a successful status stage then the control transfer is terminated by normally. In this case this
 flag will not be set. That means this flag will be set when the control transfer is terminated without
 Data_End setting or terminated by new setup transaction or protocol violation(In this case, the SIE
 will send stall and set Sent_Stall flag). You will get "1" value in above situation when interrupt
 occurred.
4.2. If you get "1" value when you get interrupt then you should clear this flag using Clr_Setup_End flag
 and should initialize state variable for next new control transfer. According to protocol, the next
 transaction should be a setup transaction.
4.3. This flag is source of interrupt. When this flag do a transaction from "0" to "1", the SIE will generate
 a interrupt to MCU.

5. Data_End.
5.1. Read/Write flag. But automatically cleared by hardware after sending status packet in status stage.
5.2. Setting this flag means that MCU will only accepts status stage. So if the controller receive another
 transaction then the MCU will send stall packet (except for setup transaction). If the MCU receive
 new setup transaction then the hardware will clear this flag and set Setup_End flag.
5.3. This can be a source of interrupt. When this flag do a transition from "1" to "0", the SIE will generate
 a interrupt to MCU.

APPENDIX S3C9654/C9658/P9658

19-22

6. Sent_Stall.
6.1. Read/Clear flag. If MCU receive interrupt and get this value set then MCU should clear this flag
 through writing "0" to this flag.
6.2. If the SIE sent stall to upstream then this flag will be set. There are two source which send stall to
 upstream, The one is set Send_Stall flag by MCU and the other case is by SIE automatically when
 the host do a protocol violation. The below is the example of protocol violation which the SIE send
 stall automatically.

example)
A. If the host send IN or OUT token without SETUP transaction.
B. If the host send IN status transaction on IN control transfer.
C. If the host send OUT status transaction on OUT control transfer.
D. If the host send OUT status transaction on non-data transfer.

6.3. This can be a source of interrupt. When this flag do a transition from "0" to "1", the SIE will generate
 a interrupt to MCU.

7. In_Pkt_Rdy.
7.1. Read/Write flag. This value can be set by MCU but cleared by hardware after successful IN
 transaction.
7.2. After loading the data to endpoint 0 FIFO the MCU should set this flag. The MCU can not write data
 to endpoint 0 FIFO during this flag is set. Since set this flag means that data loading is finished.
 And if the controller receive IN token then send these data to upstream. And if this value is "0" when
 received IN token then the SIE will send NAK packet to upstream. If MCU set this flag without data
 loading then the SIE will send zero-length data packet to upstream. If the MCU did not receive ACK
 packet after sending loaded data then this value stay "1" and will retry in next IN transaction.
7.3. This can be a source of interrupt. When this flag do a transition from "1" to "0", the SIE will generate
 a interrupt to MCU.

8. Out_Pkt_Rdy.
8.1. Read only flag. This value can be set by SIE but cleared by MCU through setting Clr_Out_Pkt_Rdy
 flag.
8.2. If the controller receive SETUP transaction in idle state and receive OUT transaction during data
 stage of OUT control transfer then the SIE set this flag and generate interrupt to MCU. If the MCU
 get this value set then should download the data to local buffer. The MCU can not write data to
 endpoint 0 FIFO if this value is set. So if MCU want to write data to endpoint 0 FIFO then should
 clear this flag before loading. If the controller receive IN or OUT transaction during this value set
 then the SIE send NAK to upstream. But if the MCU receive SETUP transaction then the SIE set
 Setup_End flag and set this flag and generate interrupt again.
8.3. This can be a source of interrupt. When this value do a transition from "0" to "1" the SIE generate
 a interrupt to MCU.

S3C9654/C9658/P9658 APPENDIX

19-23

9. Interrupt source.
9.1. Data_End flag : "1" → "0".
9.2. Sent_Stall : "0" → "1".
9.3. In_Pkt_Rdy : "1" → "0".
9.4 Out_PKt_Rdy : "0" → "1".

10. Possible value of ep0csr when you get interrupt and appropriate action.
¡Ø The first two flag (Clr_Setup_End, Clr_Out_Pkt_Rdy) are always "0" value when you read so I will
 explain just low 6 bits.
¡Ø If the MCU did not clear Sent_Stall flag then this value remain "1" until cleared. So Sent_Stall can be
 set to any combination with below.
10.1. "000001" : Set Out_Pkt_Rdy.
 If you get this value then you should check your state variable. If the state is in OUT control
 transfer then this interrupt notice the receiving of OUT data transfer. So you should download the
 FIFO data and clear this flag and do a appropriate action. If the state is in IDLE then this interrupt
 means that the controller receive new setup transaction so download the FIFO data and should
 decode and do a appropriate action.
10.2. "000100" : Set Sent_Stall.

 If the controller sent stall to upstream then this value be set by SIE. This flag is for just monitoring.
 So just clearing this flag is enough action.

10.3. "001000" : Set Data_End flag.
 Actually this flag does not a generate interrupt condition. When you set In_Pkt_Rdy and Data_End

 flag at the same time and the controller receive IN transaction and send data and receive ACK
 packet then only In_Pkt_Rdy flag is cleared and generate interrupt. In this case you can get this
 value set but there is no meaning so just leave these alone is enough action.

10.4. "010000" : Set Setup_End.
 If the former control transfer is terminated by abnormally then this flag is set by hardware.
 So if MCU got this value then should clear this flag and initialize some variable and should prepare
 future control transfer.

10.5. "010001" : Set Setup_End and Out_Pkt_Rdy.
 If the former transfer is terminated by new SETUP transaction then MCU can get this value.
 If the MCU get this value then should initialize variable and reset the status variable according to
 new command.

10.6. "000000" : Nothing is set.
 This value can get in two case. If the former control transfer is terminated with Data_End setting.
 The other case is happen in data stage of IN control transfer. In IN control transfer if you load data
 to endpoint 0 FIFO and set In_Pkt_Rdy and the controller receive IN token and send data and
 receive ACK packet then the SIE clear In_Pkt_Rdy and generate interrupt.

APPENDIX S3C9654/C9658/P9658

19-24

NOTES

