LIN Transceiver

Datasheet

Features

- Compliant with LIN Specifications 1.3 and 2.0
- Sleep mode and wake-up-function to reduce power consumption
- Wake-up via WAKE-pin, EN-pin, or bus wakeup-message
- Battery related output to control an external voltage regulator
- Interfaces MCU with 3.3V or 5V
- LIN bus speed up to 20kBaud
- Supply voltage 6.5V to 18V
- Operating temperature –40 to +125°C
- 8kV ESD protection for pins LIN, INH, WAKE, VSUP
- Thermal overload protection
- SOP8 package

Benefits

- Very low standby current in sleep mode (typical 14µA)
- Excellent electromagnetic compatibility
- Bus I/O slew rate control ensures low RFemission

Description

ZMD30011 is a CMOS integrated circuit for application in a Local Interconnect Network (LIN).

The device is used as a part of a master or slave node and works as an interface between the physical bus and the protocol controller. It realizes data switching (between bus and TXD/RXD) and level shifting (between battery voltage and controller voltage).

ZMD30011 is equipped with sleep mode and wakeup-function to reduce power consumption. It has a battery related output to control an external voltage regulator which supplies other devices.

The IC is optimised for automotive environments by it's very low standby current, excellent electromagnetic compatibility, ESD protection and thermal overload protection.

Fig.1: Application Circuit Example

Copyright © 2005, ZMD AG, Rev. 0.2, 2005-07-13

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.

Application Circuit (Example)

PRELIMINARY

Datasheet

PRELIMINARY

2/18

Content

1.	BLOCK SCHEMATIC	3
2.	PIN DESCRIPTION	4
2.1	PIN CONFIGURATION	4
2.2	RXD-Pin	4
2.3	EN-PIN	4
2.4	WAKE-PIN	4
2.5	TXD-PIN	5
2.6	GND-Pin	5
2.7	LIN-Bus-Pin	5
2.8	VSUP-PIN	5
2.9	INH-Pin	6
3.	FUNCTIONAL DESCRIPTION	7
3.1	SEQUENCE CONTROL	7
3.2	Wake-UP-Events	
3.3	INTERNAL REGULATOR	8
3.4	BATTERY VOLTAGE CONTROL	8
3.5	3.3V AND 5V LOGIC CAPABILITY	8
4.	ELECTROMAGNETIC COMPATIBILITY AND SHORT-CIRCUIT IMMUNITY	
5.	FAIL-SAFE-FEATURES	
6.	ELECTRICAL PARAMETERS	11
6.1	Maximum Ratings	
6.2	ELECTRICAL CHARACTERISTICS	
7.	TIMING CHARACTERISTICS	15
8.	PACKAGE	17
9.	RELATED DOCUMENTS	
10.	ORDERING INFORMATION	

PRELIMINARY

ZMD30011 LIN Transceiver

Datasheet

1. Block Schematic

Fig.2: Block Schematic

LIN Transceiver

Datasheet

2. Pin Description

2.1 Pin Configuration

PIN	Symbol	Description
1	RXD	receive data output
2	EN	sleep control input normal mode=high sleep mode=low
3	WAKE	local wake-up input
4	TXD	transmit data input
5	GND	ground
6	LIN	single wire bus input/output
7	VSUP	battery supply input
8	INH	battery related inhibit output to control an external voltage regulator

Fig. 3: Pin Configuration

2.2 RXD-Pin

This pin reports the state of the LIN bus voltage to the protocol controller. A LIN-low-level (dominant state) is transmitted as a CMOS-low-level. A recessive LIN-state (LIN-high-level) is transmitted as a CMOS-high-level. The RXD output structure is an open-drain output stage. This allows the ZMD30011 to be used with 3.3 V or 5 V I/O protocol controllers. If the controller's RXD pin does not have an integrated pull-up, an external pull-up resistor to the microcontroller I/O supply voltage is required. The driver is tristated in the <u>sleep-mode</u>.

2.3 EN-Pin

This input determines the operation mode of the device. EN=high sets the device to the <u>normal-mode</u>, EN=low sets the device to the <u>sleep-mode</u> significantly reducing the current consumption.

If the signal is floating then the EN-pin is held on low by an internal pull-down-resistor. The pull-down-current is restricted to 25 μ A typically.

2.4 WAKE-Pin

The wake-pin is a high-voltage-input. A low-signal from the system (trigger) wakes up the transceiver from the <u>sleep-mode</u> (local wake-up). An input filter prevents unintended wake-up in the case of transients. An internal pull-up-resistor prevents floating of the pin in the unconnected state.

If the application does not require a local wake-up than the wake-pin has to be connected with VSUP.

Copyright © 2005, ZMD AG, Rev. 0.2, 2005-07-13

Datasheet

PRELIMINARY

2.5 TXD-Pin

This CMOS-input connects the external protocol controller to the transceiver. A TXD-low-level is transmitted as a LIN-low-level too. The LIN-driver is tristated if TXD is high, hence the bus is set to recessive state using the pull-up-resistor. The TXD-input has an internal pull-up-resistor which is switched off in the <u>sleep-mode</u>.

Error Protection: If the protocol unit does not transmit a defined level then the internal pull-up-resistor sets TXD=high. As a result the transmitter is tristated.

2.6 GND-Pin

The GND-pin represents the ground level. Level suspensions $\leq 2 \text{ V}$ do not influence the data transfer. A ground loss in the recessive state does not lead to a significant current at the LIN-pin.

2.7 LIN-Bus-Pin

The circuit blocks receiver and transmitter realize the bi-directional LIN-bus-connection.

Receiver:

The input voltage of the receiver depends on the supply voltage ratiometricly. The threshold amounts to 0.4 respective 0.6 VSUP with a typical hysteresis of 10 % VSUP. The receiver is active in the sleep mode too. The filter in the input signal path suppresses spikes with a duration of < 4 μ s.

Transmitter:

The transmitter consists of a low-side-driver supplying 20 mA at a typical output-voltage of 1 V. It transmits a low level if there is a low level on the TXD-pin. An internal pull-up resistor of 30 k Ω pushes the bus node to the high level in the locked transmitter state.

A diode is located in series to the resistor and prevents a reflow current from the bus into the battery supply line in the case of a local supply loss or a ground level shift.

The transmitter is only active in the <u>normal-mode</u>. In the <u>sleep-mode</u> and in the <u>wait-mode</u> the transmitter is tristated. A slope-control adjusts both edges (falling edge from the recessive to the dominant driver state and rising edge from the dominant to the recessive driver state) to 2V/µs typically. As a result the electromagnetic emission is minimal.

The capacitive LIN-bus-load has to be restricted to a total of <=10 nF at a total resistance 0.5 k Ω in order to ensure the symmetry of both edges.

In the case of short circuits to battery supply the drivers current limitation begins to work at 180 mA typical. The driver is also protected against thermal overloads.

In the range from -18 V to 30 V the current VSUP-LIN is determined only by the pull-up-resistor. A VSUP loss in the recessive driver state does not lead to a significant current at the LIN-pin.

2.8 VSUP-Pin

The VSUP-pin has to be protected by an external diode against reverse polarity of the battery supply. The protection against galvanic and capacitive coupled transients is realized by a special internal circuitry. The operational supply voltage reaches from 6.5 to 18 V DC. A voltage control prevents an incorrect bus transfer below the operating voltage range.

The quiescent current in the <u>sleep-mode</u> amounts to typical 14μ A. In the <u>normal-mode</u> the quiescent current amounts to max. 2 mA in the state of dominant LIN-bus.

Copyright © 2005, ZMD AG, Rev. 0.2, 2005-07-13

LIN Transceiver

Datasheet

PRELIMINARY

6/18

2.9 **INH-Pin**

The INH-pin ("inhibit-pin") is a high-voltage-output controlled by the EN-input. In the normal-mode and in the waitmode the inhibit high-side-driver sets INH=VSUP (EN=high).

The INH-pin may be used to switch on an external regulator or to set external switches active for an interrupt request. The inhibit-driver is capable to source 40mA typically.

If EN is set to low then the transceiver switches to the sleep-mode and separates external modules from VSUP by tristating the INH-pin. Hence, a voltage regulator with its inhibit pin connected to INH will be disabled. If the master node pull-up resistor is connected to INH then it will be disabled from the LIN bus.

A WAKE-UP-event or EN=high sets INH=high.

LIN Transceiver

Datasheet

PRELIMINARY

3. Functional Description

3.1 Sequence Control

The internal sequence control manages the operation modi and their transient states (see figure 2).

normal-mode:INH=high, EN=high, bus transfer permittedsleep-mode:INH tristated, EN=low, only bus reception possibleThe receiver stands in the active state and the driver is tristated. Setting EN to high brings
the transceiver into the normal-mode. Applying Wake=high at the WAKE pin or a LIN bus
wake-up message bring the device into the wait-mode.wait-mode:INH=high, EN=low, bus transfer impossible,
Switching EN to high switches the transceiver into the normal-mode from another mode.

The transceiver switches to the power-down state from any operation mode if VsuP falls below 6.5 V. As soon as V_{SUP} rises over 6.5V again the transceiver changes from power-down into the <u>wait-mode</u>. The transceiver changes into the <u>wait-mode</u> too from another mode if the junction temperature rises over 150°C. The change from wait-mode into the normal mode is caused by setting EN to high.

3.2 Wake-Up-Events

There are three methods how to wake up the transceiver from sleep-mode:

(1) Wake-up by WAKE-pin active

An internal timer supervises the level at the WAKE-pin. If the WAKE-level falls from WAKE-high to WAKE-low and stays there for minimal 40µs than the timer activates the INH-output. The transceiver switches into the <u>wait-mode</u> within maximal 150 µs after the falling edge of the WAKE pin. By doing so spike pulses are filtered out effectively. When the external regulator has reached its output level and the system is ready than the protocol-controller switches EN=high. The transceiver changes into to the <u>normal-mode</u> and gets ready for bus transfers.

(2) Wake-up by bus-message:

The reception of a LIN-low-level (dominant state for 250µs to 5ms) in the <u>sleep-mode</u> triggers the following wakeup-sequence:

At the latest 150µs after the falling edge of the LIN signal the transceiver activates the system's voltage regulator by setting INH=high and goes to the <u>wait-mode</u>. After a system reaction time (until regulator and application active) the protocol-controller sets EN=high. The device switches to the <u>normal-mode</u> and gets ready for bus transfers. An anti-bounce filter suppresses spike pulses from the LIN bus.

(3) Wake-up by EN-pin active:

There are systems with an external power supply which are also active in the LIN-transceiver's <u>sleep-mode</u>. If the application of such a system gets active then the protocol controller sets EN=high. The transceiver switches to <u>normal-mode</u> at once and is ready for the transfer of a wake-up-frame from the protocol controller to the LIN-bus. In such applications the INH-pin can be used for other purposes, e.g. for an interrupt request.

Datasheet

PRELIMINARY

8/18

3.3 Internal Voltage Regulator

The transceiver has an internal voltage regulator generating a voltage VDD=5V from the battery supply VSUP. This works in all operation modes. In the <u>sleep-mode</u> this voltage regulator changes into a low-power-mode. This mode guaranties the supply of the receiver and the sequence control.

3.4 Battery Voltage Control

The battery voltage control is realized indirectly by a power-on-clear-circuit supervising the internal supply VDD. This circuit gives a signal to the sequence control if the external supply voltage V_{SUP} falls below 6.5V. In this case a contingent bus transfer can be prevented and the transceiver changes into the <u>wait-mode</u>.

3.5 3.3V and 5V Logic Capability

The ZMD30011 can be used for 3.3V and 5V micro controllers. EN, RXD and TXD are capable to operate with both voltage levels. Therefore an external pull-up resistor is required at the RXD pin.

PRELIMINARY

ZMD30011 LIN Transceiver

Datasheet

POWER DOWN $V_{SUP} > 6.5V$ WAIT MODE INH = On Transmitter = Off EN = 1 WAKE-UP from WAKE or LIN NORMAL MODE INH = On Transmitter = On EN = 0 EN = 1 $V_{SUP} < 6.5V$ > 150°C **SLEEP MODE** INH = Off Transmitter = Off

Fig. 4: State Diagram

Wake Up Events:

- 1) Internal Node Activity
- 2) Wake Switch
- 3) LIN-Bus Wake Up

TSC...three state current

Datasheet

PRELIMINARY

10/18

4. Electromagnetic Compatibility and Short-circuit Immunity

Electromagnetic Emission:

The built-in slope-control adjusts the slew rates to 2 V/ μ s for the rising and the falling edges. As a result the electromagnetic emission is at a minimum.

Electromagnetic Sensitivity:

The pins LIN, WAKE, VSUP and INH are equipped with protective circuits resistant to electromagnetic imission. The ESD-protection at these pins is guaranteed for \pm 8 kV (Human Body Model). The protection against transients (test impulses 1...3 according to ISO 7637/1) is improved by the external slave- or master-capacitors between VSUP and GND and between LIN and GND.

Short Circuit Immunity:

The LIN-interface is short-circuit-proof against VSUP and ground.

5. Fail-Safe-Features

Short-circuit at LIN

The current of the transmitter output stage is limited to I_{LIM} in order to protect the transmitter against short-circuit to V_{BAT} or GND. In case of such a short-circuit the temperature exceeds the shutdown temperature T_{SHUT} due to the power dissipation – the ZMD30011 goes into the wait-mode and the transmitter switches off.

The ZMD30011 has a special circuitry implemented that protects the battery from running out of charge in the case of a short circuit between LIN and GND. In this failure case a normal master termination (1k resistor and diode in series between LIN and VSUP) would cause a constant drawn current (even in sleep mode). The ZMD30011's special circuitry avoids this drawn current.

This feature is only applicable, if the master termination is connected with the INH pin, instead of VSUP.

Loss of Ground or V_{SUP}

A loss of power (pins GND or VSUP) has no impact to the bus line and the protocol handler. Since there are no reverse currents from the bus the LIN transceiver can be disconnected from the power supply without influencing the LIN bus. Pin RXD is set floating if VSUP is disconnected.

Thermal Overload

The output driver at pin LIN is protected against thermal overload conditions. If the junction temperature exceeds the shutdown temperature T_{SHUT} , the thermal protection circuit disables the output driver. The driver is enabled again if the junction temperature has been decreased about T_{HYST} .

TXD Disconnection

Pin TXD provides a pull-up resistor to force the transceiver into recessive mode if TXD is disconnected.

EN Disconnection

Pin EN provides an internal pull-down resistor in order to force the transceiver into sleep mode in case the pin EN is unsupplied.

Copyright © 2005, ZMD AG, Rev. 0.2, 2005-07-13

LIN Transceiver

Datasheet

6. Electrical Parameters

6.1 Maximum Ratings

In accordance with the Absolute Maximum Rating System (IEC 60134)

Electrical Ratings

Parameter	Symbol	Min	Max	Units	Remarks
continuous voltage at VSUP transients	V _{SUP} V _{SUP}	-0.3	30 40	V V	pulse 13 ISO 7637/1 (test circuit figure 8)
input voltage at LIN DC transients	V _{LIN} V _{LIN}	-18 -150	30 +100	V V	pulse 13 ISO 7637/1 (test circuit figure 8)
input voltages at TxD, RXD, EN	V _{IN}	-0.3	6.5	V	
input voltages at WAKE DC transients	V _{INWAKE} V _{INWAKE}	-18	30 40	V V	pulse 13 ISO 7637/1 (test circuit figure 8)
ESD at TXD, RXD, EN	V _{ESD}	-4	+4	KV	Human Body Model MIL-STD 883 (100pF via 1.5kΩ)
ESD at LIN, VSUP, INH, WAKE	V _{HBM}	-8	8	κv	Human Body Model MIL-STD 883 1.5KOhm, 100pF
ESD at all pins	V _{MM}	-200	200	V	Machine Model 220pF

Thermal Ratings

Parameter	Symbol	Min	Max	Units	Remarks
junction temperature	TJ	-40	150	°C	
storage temperature	T _{STG}	-55	150	°C	
ambient operation temperature	T _A	-40	125	°C	
thermal resistance junction to ambient	R _{THA}		150	°C/W	SOP8 (150) in free air
thermal shutdown ¹⁾	T _{SHUT}	150	195	°C	
thermal shutdown ¹⁾ hysteresis	T _{HYST}	10	30	°C	

¹⁾ not tested, guaranteed by design

Copyright © 2005, ZMD AG, Rev. 0.2, 2005-07-13

LIN Transceiver

Datasheet

PRELIMINARY

6.2 Electrical Characteristics

 V_{SUP} = 6.5...18 V, T_J = -40 ...+150 °C, typical values specified for V_{SUP} = 12 V, $R_{VSUP-LIN}$ = 500 Ω (if not otherwise defined)

Battery Supply VSUP

Parameter	Symbol	Min	typ.	Max	Units	Conditions
DC voltage	V _{SUP}	6.5	12	18	V	
supply current in the normal mode, dominant state	I _{SDOM}	0.7	1.3	2.0	mA	EN = 5V TXD = 0V R _{RXD} = ∞
supply current in the normal mode, recessive state	I _{SREC}	0.4	1.0	1.4	mA	EN = 5 V TXD = 5 V R _{RXD} = ∞
supply current in the sleep mode	I _{SLEEP}	8	14	20	μA	EN = 0V TXD = 5V V _{LIN} > V _{SUP} - 0.5V

Receive Data Output RXD

Parameter	Symbol	Min	typ.	Max	Units	Conditions
Low Level Output Current	I _{RXL}	2			mA	EN = 5V TXD = 0V V _{RXD} = 0.9V
High Level Leakage Current	I _{RXH}	-5		5	μA	EN = 5V TXD = 5V V _{RXD} = 5V

Transmit Data Input TXD

Parameter	Symbol	Min	typ.	Max	Units	Conditions
Low Level Voltage Input	V _{TXDINL}	-0.3		0.8	V	
High Level Voltage Input	V _{TXDINH}	2.0		7	V	
Pull-Down Current Source TXD	I _{TXDPU}	-20	-10	-20	μA	EN = 5V TXD = 5V

Copyright © 2005, ZMD AG, Rev. 0.2, 2005-07-13

PRELIMINARY

ZMD30011

LIN Transceiver

Datasheet

Mode Control Input Enable EN

Parameter	Symbol	Min	typ.	Мах	Units	Conditions
Low Level Voltage Input	V _{ENINL}	-0.3		1.4	V	external VDD=5V, TXD=5V
High Level Voltage Input	V _{ENINH}	2.5		7	V	external VDD=5V, TXD=5V
Pull Down current ENABLE	I _{PDEN}	10	20	35	μA	EN = 4V

Bus Input/Output LIN

Parameter	Symbol	Min	typ.	Max	Units	Remarks
Input Low Level Voltage Receiver	V _{RECL}	0		0.4 V _{SUP}	V	EN = 5V TXD = 5V
Input High Level Voltage Receiver	V _{RECH}	0.6 V _{SUP}		V _{SUP}	V	EN = 5V TXD = 5V
Input Hysteresis Receiver	V _{RECHYS}	0.08 V _{SUP}		0.12 V _{SUP}	V	EN = 5V TXD = 5V
Input Centerpoint Receiver	V _{BUS_CNT}	0.475 V _{SUP}	$0.5 V_{SUP}$	0.525 V _{SUP}	V	$V_{BUS_CNT} = (V_{th_dom} + V_{th_rec})/2^{*)}$
Output Low Level Voltage Transmitter	V _{LINL}	0.6	1.1	1.8	V	EN = 5V, TXD = 0V R _{BUS} = 500Ω
Output High Level Transmitter	V _{LINH}	0.8V _{SUP}		V _{SUP}	V	TXD = 5V I _{LIN} =0mA
Pull Up Current VSUP to LIN	I _{LINPU}	-550	-450	-300	μA	V _{SUP} =12V V _{LIN} = 0V, TXD=5V
Output Current Limitation LIN	I _{LIM}	120	180	200	mA	EN=5V TXD =0V V _{SUP} =V _{LIN} =12V
Input Current LIN Recessive	I _{LINLEAK1}	4	10	18	μA	V _{SUP} =V _{LIN} TXD=5V
Input Current LIN Recessive, Bus no GND		-1.0		1.0	mA	V _{LIN} = -12V TXD = 5V

*) V_{th_dom} receiver threshold of the recessive to dominant LIN bus edge V_{th_rec} receiver threshold of the dominant to recessive LIN bus edge

Copyright © 2005, ZMD AG, Rev. 0.2, 2005-07-13

LIN Transceiver

Datasheet

Local Wake-up-input WAKE

Parameter	Symbol	Min	typ.	Мах	Units	Remarks
Wake Up Threshold High to Low Transition	V _{WUTHL}			0.6 V _{SUP}	V	EN=0V

Inhibit Output INH

Parameter	Symbol	Min	typ.	Мах	Units	Remarks
INHIBIT Output Current High Level	I _{INHH}	40		40	mA	V _{INH} = 0V
INHIBIT Output Resistance High Level	R _{INHH}		30		Ohm	I _{INHH} =15mA
INHIBIT Leakage Current	I _{INHLEAK}	-5			μA	EN=0V, TXD=5V WAKE=0V VSUP=18V V _{INH} =0V

PRELIMINARY

LIN Transceiver

Datasheet

PRELIMINARY

15/18

7. Timing Characteristics

VSUP = 6.5...18V, T_J=-40...150°C, typical values are specified for V_{SUP} =12V, unless otherwise defined.

Internal Timers

Parameter	Symbol	Min.	typ.	Max.	Units	Remarks
LIN Falling Edge Slew Rate	t _{FALL}		2		V/µs	C_{BUS} =10nF R _{BUS} =500 Ω
LIN Rising Edge Slew Rate	t _{RISE}		2		V/µs	C _{BUS} =10nF R _{BUS} =500Ω
Propagation delay receiver	t _{rx_pd} *			6	μs	C _{RxD} =20pF
Symmetry of receiver propagation delay rising edge w.r.t. falling edge	t _{rx_sym}	-2		2	μs	C _{RxD} =20pF
Bus Wake Up to INH=High Propagation Delay	t _{linwake}		80	150	μs	EN=0V
WAKE Propagation Delay WAKE to INH=High	t _{WAKE}		80	150	μs	EN=0V

* $t_{rx_pd} = max(t_{rx_pdf}; t_{rx_pd})$

LIN Bus Drivers (see Fig. 5)

Load Conditions at LIN: (R_{BUS}=1kΩ C_{BUS}=1nF C_{RXD}=20pF) or (R_{BUS}=500Ω C_{BUS}=10nF C_{RXD}=20pF)

LIN Bus Speed	Parameter	Symbol	Min.	typ.	Max.	Units	Remarks
20kBaud	Duty Cycle 1	D1	0.396				$\begin{array}{l} TH_{Rec(max)} = 0.744^* \ V_{SUP} \\ TH_{Dom(max)} = 0.581^* \ V_{SUP} \\ V_{SUP} = 7.0 \dots 18V; \ t_{Bit} = 50 \mu s; \\ D1 = \ t_{BUS_rec(min)} = /(2^* \ t_{Bit}) \end{array}$
	Duty Cycle 2	D2			0.581		$\begin{array}{l} TH_{Rec(min)}{=}0.422^{*} \ V_{SUP} \\ TH_{Dom(min)}{=} \ 0.284^{*} \ V_{SUP} \\ V_{SUP}{=}7.618V; \ t_{Bit}{=}50\mu s; \\ D1{=} \ t_{BUS_rec(max)}{=}/(2^{*} \ t_{Bit}) \end{array}$

Fig. 5: LIN Bus Driver Timing Characteristics

LIN Transceiver

Datasheet

PRELIMINARY

8. Package

Dimensions in millimetres

Based on IEC 191-2Q: Type 076E35 B

1 Dimensions

Dimensions of Sub-Group B1			
A _{max}	1,95		
b _{Pmin}	0,35		
b _{Pmax}	0,49		
e _{nom}	1,27		
H _{Emin}	5,80		
H _{Emax}	6,30		
LPmin	0,40		
Z _{max}	0,635		

2	Weight	≤ 0,3 g
3	Package Body Material	Low Stress Epoxy

4 Lead Material FeNi-Alloy or Cu-Alloy 5 Lead Finish solder plating

Z-bends

6 Lead Form

Cmax D_{min}* D_{max}* E_{min}* E_{max}* κ_{min} θ_{min}

Dimensions of Sub-Group C1			
A _{min}	1,55		
A _{1min}	0,10		
A _{1max}	0,30		
A _{2min}	1,40		
A _{2max}	1,80		
Cmin	0,15		
Gmax	0,25		
D _{min} *	4,80		
D _{max} *	5,00		
E _{min} *	3,80		
E _{max} *	4,00		
k _{min}	0,25		
θ _{min}	0°		
θ _{max}	8°		

* without mold-flash

17/18

Copyright © 2005, ZMD AG, Rev. 0.2, 2005-07-13

PRELIMINARY

ZMD30011

LIN Transceiver

Datasheet

9. Related Documents

• ZMD30011 Feature Sheet

Note: For the current revision of this document and for additional information please go to www.zmd.biz.

10. Ordering Information

Ordering Code	Description	Operation Temperature	Package Type	Device Marking	Shipping Form*
ZMD30011AAG1-T	"green" finished parts in tube	-40°C to +125°C	SOP8	ZMD 30011AAG1 YYWW	tube (97 parts/tube)
ZMD30011AAG1-R	"green" finished parts in tape on reel	-40°C to +125°C	SOP8	ZMD 30011AAG1 YYWW	tape on reel (2500 parts/reel)

* The quantity ordered should be a multiple of the quantity / packing unit as specified

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. ZMD assumes no obligation regarding future manufacture unless otherwise agreed in writing. The information furnished hereby is believed to be correct and accurate. However, ZMD shall not be liable to any customer, licensee or any other third party for any damages in connection with or arising out of the furnishing, performance or use of this technical data. No obligation or liability to any customer, licensee or any other third party shall result from ZMD's rendering of technical or other services.

For further	
information	1:

ZMD AG Grenzstrasse 28 01109 Dresden, Germany Phone +49 (0)351-8822-366 Fax +49 (0)351-8822-337 sales@zmd.de www.zmd.biz

Copyright © 2005, ZMD AG, Rev. 0.2, 2005-07-13