

DMP3160L

P-CHANNEL ENHANCEMENT MODE MOSFET

Product Summary

V _{(BR)DSS}	R _{DS(on)}	I _D T _A = +25°C			
-30V	122mΩ @ V _{GS} = -10V	-2.7A			
	190m Ω @ V _{GS} = -4.5V	-2.0A			

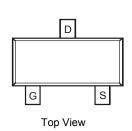
Description

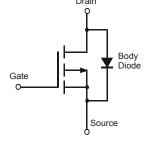
This new generation MOSFET has been designed to minimize the onstate resistance ($R_{DS(ON)}$) and yet maintain superior switching performance, making it ideal for high efficiency power management applications.

Applications

- DC-DC Converters
- Power Management Functions

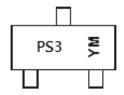
Features


- Low On-Resistance
- Low Gate Threshold Voltage
- Low Input Capacitance
- · Fast Switching Speed
- Low Input/Output Leakage
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability


Mechanical Data

- Case: SOT23
- Case Material: Molded Plastic, "Green" Molding Compound.
 UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin annealed over Copper leadframe.
 Solderable per MIL-STD-202, Method 208 ³
- Terminal Connections: See Diagram
- Weight: 0.008 grams (approximate)

Equivalent Circuit


Ordering Information (Note 4 & 5)

Part Number	Compliance	Case	Packaging
DMP3160L-7	Standard	SOT23	3000/Tape & Reel
DMP3160LQ-7	Automotive	SOT23	3000/Tape & Reel

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Marking Information

PS3 = Product Type Marking Code YM = Date Code Marking Y = Year (ex: U = 2007) M = Month (ex: 9 = September)

Date Code Kev

2010 0000 110												
Year	2007	20	08	2009	2010	20	11	2012	2013	20	14	2015
Code	U	\	/	W	Х	,	Y	Z	Α	l l	3	С
•										_		
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

DMP3160L

Character		Symbol	Value	Units	
Drain-Source Voltage			V_{DSS}	-30	V
Gate-Source Voltage		V _{GSS}	±20	V	
Drain Current (Note 6) $V_{GS} = -10V$ Steady $T_A = +25^{\circ}C$ State $T_A = +70^{\circ}C$		I _D	-2.7 -2	Α	
Pulsed Drain Current (Note 7)			I _{DM}	-8	А

Thermal Characteristics

Characteristic	Symbol	Value	Units	
Total Power Dissipation (Note 6)	P_{D}	1.08	W	
Thermal Resistance, Junction to Ambient @T _A = +25°C (Note 6)	$R_{ heta JA}$	115	°C/W	
Operating and Storage Temperature Range	$T_{J_i}T_{STG}$	-55 to +150	°C	

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 8)							
Drain-Source Breakdown Voltage	BV _{DSS}	-30	_	_	V	$V_{GS} = 0V, I_D = -250\mu A$	
Zero Gate Voltage Drain Current	I _{DSS}	_	_	-800	nA	$V_{DS} = -30V, V_{GS} = 0V$	
Gate-Source Leakage	I _{GSS}	_	_	±80 ±800	nA	$V_{GS} = \pm 12V, V_{DS} = 0V$ $V_{GS} = \pm 15V, V_{DS} = 0V$	
ON CHARACTERISTICS (Note 8)							
Gate Threshold Voltage	V _{GS(th)}	-1.3	-1.8	-2.1	V	$V_{DS} = V_{GS}, I_D = -250 \mu A$	
Static Drain-Source On-Resistance	D		97	122	mΩ	V _{GS} = -10V, I _D = -2.7A	
Static Drain-Source Off-Nesistance	R _{DS(ON)}		165	190	11122	$V_{GS} = -4.5V$, $I_D = -2.0A$	
Forward Transfer Admittance	Y _{fs}	_	5.9	_	S	$V_{DS} = -5V, I_{D} = -2.7A$	
Diode Forward Voltage (Note 8)	V_{SD}	_	_	-1.26	V	$V_{GS} = 0V$, $I_{S} = -2.7A$	
DYNAMIC CHARACTERISTICS(Note 9)							
Input Capacitance	C _{iss}		384.4		pF		
Output Capacitance	Coss	_	59.4	_	pF	$V_{DS} = -10V, V_{GS} = 0V$ f = 1.0MHz	
Reverse Transfer Capacitance	C _{rss}		52.8	_	pF	1 – 1.0WI IZ	
Gate Resistance	R _G	_	17.1	_	Ω	$V_{GS} = 0V, V_{DS} = 0V,$ f = 1.0MHz	
Total Gate Charge(V _{GS} = -4.5V)	Qg	_	4.0	_	nC		
Total Gate Charge(V _{GS} = -10V)	Qg	_	8.2	_	nC	$V_{GS} = -10V/-4.5V$,	
Gate-Source Charge	Q _{gs}	_	0.9	_	nC	$V_{DS} = -15V, I_{D} = -3A$	
Gate-Drain Charge	Q_{gd}	_	1.2	_	nC		
Turn-On Delay Time	t _{D(on)}	_	4.8	_	ns		
Turn-On Rise Time	t _r	_	7.3	_	ns	V _{DS} = -15V, V _{GS} = -10V,	
Turn-Off Delay Time	t _{D(off)}	_	22.5	_	ns	$R_G = 6\Omega$, $I_D = -1A$	
Turn-Off Fall Time	t _f		13.4		ns		

Notes:

- 3. Device mounted on FR-4 PCB. $t \le 10$ sec.
- 4. Pulse width $\leq\!10\mu S,$ Duty Cycle $\leq\!1\%.$
- 5. Short duration pulse test used to minimize self-heating effect.6. Guaranteed by design. Not subject to product testing.