STGIPS30C60 # SLLIMM™ small low-loss intelligent molded module IPM, 3-phase inverter - 30 A, 600 V short-circuit rugged IGBT Datasheet - production data #### **Features** - IPM 30 A, 600 V 3-phase IGBT inverter bridge including control ICs for gate driving and freewheeling diodes - Short-circuit rugged IGBTs - 3.3 V, 5 V, 15 V CMOS/TTL inputs comparators with hysteresis and pull down / pull up resistors - Undervoltage lockout - Internal bootstrap diode - · Interlocking function - · Smart shutdown function - Comparator for fault protection against over temperature and overcurrent - DBC leading to low thermal resistance - Isolation rating of 2500 V_{rms}/min - UL recognized: UL1557 file E81734 ### **Applications** - · 3-phase inverters for motor drives - Air conditioners ## **Description** This intelligent power module provides a compact, high performance AC motor drive in a simple, rugged design. Combining ST proprietary control ICs with the most advanced short-circuitrugged IGBT system technology, this device is ideal for 3-phase inverters in applications such as motor drives and air conditioners. SLLIMM™ is a trademark of STMicroelectronics. **Table 1. Device summary** | Order code | Marking | Package | Packaging | |-------------|-----------|----------|-----------| | STGIPS30C60 | GIPS30C60 | SDIP-25L | Tube | Contents STGIPS30C60 ## **Contents** | 1 | Interr | nal block diagram and pin configuration | 3 | |---|--------|---|----| | 2 | Elect | rical ratings | 5 | | | 2.1 | Absolute maximum ratings | 5 | | | 2.2 | Thermal data | 6 | | 3 | Elect | rical characteristics | 7 | | | 3.1 | Control part | 9 | | | 3.2 | Waveforms definitions | 11 | | 4 | Smar | t shutdown function | 12 | | 5 | Appli | ications information | 14 | | | 5.1 | Recommendations | 15 | | 6 | Packa | age mechanical data | 16 | | 7 | Revis | sion history | 20 | ## 1 Internal block diagram and pin configuration Figure 1. Internal block diagram Table 2. Pin description | Pin n° | Symbol | Description | |--------|---------------------|--| | 1 | OUT _U | High-side reference output for U phase | | 2 | V _{bootU} | Bootstrap voltage for U phase | | 3 | LIN _U | Low-side logic input for U phase | | 4 | HIN _U | High-side logic input for U phase | | 5 | V _{CC} | Low voltage power supply | | 6 | OUT _V | High-side reference output for V phase | | 7 | V _{boot V} | Bootstrap voltage for V phase | | 8 | GND | Ground | | 9 | LIN _V | Low-side logic input for V phase | | 10 | HIN _V | High-side logic input for V phase | | 11 | OUT _W | High-side reference output for W phase | | 12 | V _{boot W} | Bootstrap voltage for W phase | | 13 | LIN _W | Low-side logic input for W phase | | 14 | HIN _W | High-side logic input for W phase | | 15 | SD / OD | Shutdown logic input (active low) / open-drain (comparator output) | | 16 | CIN | Comparator input | | 17 | N _W | Negative DC input for W phase | | 18 | W | W phase output | | 19 | Р | Positive DC input | | 20 | N _V | Negative DC input for V phase | | 21 | V | V phase output | | 22 | Р | Positive DC input | | 23 | N _U | Negative DC input for U phase | | 24 | U | U phase output | | 25 | Р | Positive DC input | Figure 2. Pin layout (bottom view) STGIPS30C60 Electrical ratings # 2 Electrical ratings ## 2.1 Absolute maximum ratings Table 3. Inverter part | Symbol | Parameter | Value | Unit | |----------------------------------|--|-------|------| | V_{PN} | Supply voltage applied between P - N_U , N_V , N_W | 450 | V | | V _{PN(surge)} | Supply voltage (surge) applied between P - N_U , N_V , N_W | 500 | ٧ | | V _{CES} | Each IGBT collector emitter voltage (V _{IN} ⁽¹⁾ = 0) | 600 | ٧ | | ± I _C | Each IGBT continuous collector current at T _C = 25°C | 30 | Α | | ± I _{CP} ⁽²⁾ | Each IGBT pulsed collector current | 60 | Α | | P _{TOT} | Each IGBT total dissipation at T _C = 25°C | 52 | W | | t _{scw} | Short circuit withstand time, $V_{CE} = 0.5 V_{(BR)CES}$
$T_J = 125 ^{\circ}\text{C}, V_{CC} = V_{boot} = 15 ^{\circ}\text{V}, V_{IN (1)} = 0 - 5 ^{\circ}\text{V}$ | 5 | μs | ^{1.} Applied between HIN_i, $\overline{\text{LIN}}_{i \text{ and }} G_{ND}$ for i = U, V, W Table 4. Control part | Symbol | Parameter | Value | Unit | |-----------------------|---|---|----------| | V _{OUT} | Output voltage applied between OUT _{U,} OUT _{V,} OUT _W - GND | V _{boot} - 21 to V _{boot} + 0.3 | V | | V _{CC} | Low voltage power supply | -0.3 to +21 | V | | V _{CIN} | Comparator input voltage | -0.3 to V _{CC} +0.3 | V | | V _{boot} | Bootstrap voltage applied between V _{boot i} - OUT _i for i = U, V, W | -0.3 to 620 | V | | V _{IN} | Logic input voltage applied between HIN, LIN and GND | -0.3 to 15 | V | | V _{SD/OD} | Open drain voltage | -0.3 to 15 | V | | dV _{OUT} /dt | Allowed output slew rate | 50 | V/ns | Table 5. Total system | Symbol | Parameter | Value | Unit | |------------------|---|------------|------| | V _{ISO} | Isolation withstand voltage applied between each pin and heatsink plate (AC voltage, t = 60 sec.) | 2500 | V | | T _j | Power chips operating junction temperature | -40 to 150 | Ô | | T _C | Module case operation temperature | -40 to 125 | °C | ^{2.} Pulse width limited by max junction temperature Electrical ratings STGIPS30C60 #### 2.2 Thermal data Table 6. Thermal data | Symbol | Parameter | Value | Unit | |-------------------|---|-------|------| | В | Thermal resistance junction-case single IGBT | 2.4 | °C/W | | R _{thJC} | Thermal resistance junction-case single diode | 5 | °C/W | Figure 3. Maximum $I_{C(RMS)}$ current vs. switching frequency $f_{c(RMS)}$ ^{1.} Simulated curves refer to typical IGBT parameters and maximum $R_{\mbox{\scriptsize thi-c.}}$ ## 3 Electrical characteristics $T_J = 25$ °C unless otherwise specified. Table 7. Inverter part | Cumbal | Parameter | Test conditions | | Unit | | | |---------------------|--|--|------|------|------|-----------------| | Symbol | i diametei | rest conditions | Min. | Тур. | Max. | Unit | | V | V _{CE(sat)} Collector-emitter saturation voltage | $V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 \div 5 \text{ V},$
$I_{C} = 30 \text{ A}$ | - | 1.9 | | V | | VCE(sat) sat | | $V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 \div 5 \text{ V},$
$I_{C} = 30 \text{ A}, T_{J} = 125 ^{\circ}\text{C}$ | - | 2.2 | | V | | I _{CES} | Collector-cut off current (V _{IN} ⁽¹⁾ = 0 "logic state") | V _{CE} = 550 V, V _{CC} = V _{Boot} = 15 V | - | | 100 | μΑ | | V _F | Diode forward voltage | $V_{IN}^{(1)} = 0$ "logic state", $I_C = 30 \text{ A}$ | - | 2.0 | 2.3 | V | | Inductive | load switching time and | energy | | | | | | t _{on} | Turn-on time | | - | 440 | - | | | t _{c(on)} | Crossover time (on) | V _{PN} = 300 V, | - | 190 | - | | | t _{off} | Turn-off time | $V_{CC} = V_{boot} = 15 \text{ V},$ | - | 780 | - | ns | | t _{c(off)} | Crossover time (off) | $V_{IN}^{(1)} = 0 \div 5 \text{ V},$ $I_C = 30 \text{ A}$ | - | 135 | - | | | t _{rr} | Reverse recovery time | | - | 100 | - | | | E _{on} | Turn-on switching losses | (see Figure 5) | - | 870 | - | " | | E _{off} | Turn-off switching losses | | - | 740 | - | - μJ | ^{1.} Applied between HIN_i, $\overline{\text{LIN}}_{i \text{ and }}$ G_{ND} for i = U, V, W. ($\overline{\text{LIN}}$ inputs are active-low). Note: $t_{\rm ON}$ and $t_{\rm OFF}$ include the propagation delay time of the internal drive. $t_{\rm C(ON)}$ and $t_{\rm C(OFF)}$ are the switching time of IGBT itself under the internally given gate driving condition. Electrical characteristics STGIPS30C60 Input Ιc +Vcc LIN Vboot <u>SD</u>/□D H∨G Rsd HIN □UT VCC Vdd DT CP+ GND AM06019v2 Figure 5. Switching time test circuit Figure 4 "Switching time definition" refers to HIN inputs (active high). For $\overline{\text{LIN}}$ inputs (active low), V_{IN} polarity must be inverted for turn-on and turn-off. ## 3.1 Control part Table 8. Low voltage power supply ($V_{CC} = 15 \text{ V}$ unless otherwise specified) | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |-----------------------|---|--|------|------|------|------| | V _{CC_hys} | V _{cc} UV hysteresis | | 1.2 | 1.5 | 1.8 | V | | V _{CC_thON} | V _{cc} UV turn ON threshold | | 11.5 | 12 | 12.5 | V | | V _{CC_thOFF} | V _{cc} UV turn OFF threshold | | 10 | 10.5 | 11 | V | | I _{qccu} | Undervoltage quiescent supply current | $\begin{aligned} & \frac{V_{CC} = 10 \text{ V}}{\text{SD/OD} = 5 \text{ V}; \overline{\text{LIN}} = 5 \text{ V};} \\ & H_{IN} = 0, C_{IN} = 0 \end{aligned}$ | | | 450 | μΑ | | I _{qcc} | Quiescent current | $\begin{aligned} & V_{CC} = 15 \text{ V} \\ & \overline{\text{SD}}/\text{OD} = 5 \text{ V}; \overline{\text{LIN}} = 5 \text{ V} \\ & H_{\text{IN}} = 0, C_{\text{IN}} = 0 \end{aligned}$ | | | 3.5 | mA | | V _{ref} | Internal comparator (CIN) reference voltage | | 0.5 | 0.54 | 0.58 | V | Table 9. Bootstrapped voltage ($V_{CC} = 15 \text{ V}$ unless otherwise specified) | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |-----------------------|--|--|------|------|------|------| | $V_{\rm BS_hys}$ | V _{BS} UV hysteresis | | 1.2 | 1.5 | 1.8 | ٧ | | V _{BS_thON} | V _{BS} UV turn ON threshold | | 11.1 | 11.5 | 12.1 | V | | V _{BS_thOFF} | V _{BS} UV turn OFF threshold | | 9.8 | 10 | 10.6 | V | | I _{QBSU} | Undervoltage V _{BS} quiescent current | V_{BS} < 9 V
\overline{SD} /OD = 5 V; \overline{LIN} and
HIN = 5 V; C_{IN} = 0 | | 70 | 110 | μΑ | | I _{QBS} | V _{BS} quiescent current | $V_{BS} = 15 \text{ V}$
$\overline{SD}/OD = 5 \text{ V}; \overline{LIN} \text{ and}$
$HIN = 5 \text{ V}; C_{IN} = 0$ | | 200 | 300 | μΑ | | R _{DS(on)} | Bootstrap driver on resistance | LVG ON | | 120 | | W | Table 10. Logic inputs (V_{CC} = 15 V unless otherwise specified) | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |-------------------|----------------------------------|----------------------|------|------|------|------| | V_{il} | Low logic level voltage | | 0.8 | | 1.1 | V | | V _{ih} | High logic level voltage | | 1.9 | | 2.25 | V | | I _{HINh} | HIN logic "1" input bias current | HIN = 15 V | 110 | 175 | 260 | μΑ | | I _{HINI} | HIN logic "0" input bias current | HIN = 0 V | | | 1 | μΑ | | I _{LINI} | LIN logic "1" input bias current | LIN = 0 V | 3 | 6 | 20 | μΑ | | I _{LINh} | LIN logic "0" input bias current | <u>LIN</u> = 15 V | | | 1 | μΑ | | I _{SDh} | SD logic "0" input bias current | SD = 15 V | 30 | 120 | 300 | μΑ | | I _{SDI} | SD logic "1" input bias current | SD = 0 V | | | 3 | μΑ | | Dt | Dead time | see Figure 7 | | 1.2 | | μs | Electrical characteristics STGIPS30C60 Table 11. Sense comparator characteristics ($V_{CC} = 15 \text{ V}$ unless otherwise specified) | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |---------------------|--|--|------|------|------|--------| | I _{ib(i)} | Input bias current | $V_{CIN(i)} = 1 \text{ V, } i = U, \text{ V o W}$ | | | 3 | μΑ | | V _{ol} | Open-drain low-level output voltage | I _{od} = 3 mA | | | 0.5 | ٧ | | t _{d_comp} | Comparator delay | SD/OD pulled to 5 V through 100 kΩ resistor | | 90 | 130 | ns | | SR | Slew rate | $C_L = 180 \text{ pF}; R_{pu} = 5 \text{ k}\Omega$ | | 60 | | V/μsec | | t _{sd} | Shut down to high / low side driver propagation delay | $V_{OUT} = 0, V_{boot} = V_{CC}, V_{IN} = 0 \text{ to } 3.3 \text{ V}$ | 50 | 125 | 200 | | | t _{isd} | Comparator triggering to high / low side driver turn-off propagation delay | Measured applying a voltage step from 0 V to 3.3 V to pin CIN _i | 50 | 200 | 250 | ns | Table 12. Truth table | Condition | Logic input (V _I) | | | Output | | | |---|-------------------------------|-----|-----|--------|-----|--| | | SD/OD | LIN | HIN | LVG | HVG | | | Shutdown enable half-bridge tri-state | L | х | х | L | L | | | Interlocking half-bridge tri-state | Н | L | Н | L | L | | | 0 ''logic state"
half-bridge tri-state | Н | Н | L | L | L | | | 1 "logic state" low side direct driving | Н | L | L | Н | L | | | 1 "logic state"
high side direct driving | Н | Н | Н | L | Н | | Note: X: don't care #### 3.2 Waveforms definitions Figure 7. Dead time and interlocking waveforms definitions #### 4 Smart shutdown function The STGIPS30C60 integrates a comparator for fault sensing purposes. The comparator has an internal voltage reference V_{ref} connected to the inverting input, while the non-inverting input, available on pin (C_{IN}), can be connected to an external shunt resistor in order to implement a simple over-current protection function. When the comparator triggers, the device is set in shutdown state and both its outputs are set to low-level leading the halfbridge in tri-state. In the common overcurrent protection architectures the comparator output is usually connected to the shutdown input through a RC network, in order to provide a mono-stable circuit, which implements a protection time that follows the fault condition. Our smart shutdown architecture allows to immediately turn-off the output gate driver in case of overcurrent, the fault signal has a preferential path which directly switches off the outputs. The time delay between the fault and the outputs turn-off is no more dependent on the RC values of the external network connected to the shutdown pin. At the same time the DMOS connected to the open-drain output (pin SD/OD) is turned on by the internal logic which holds it on until the shutdown voltage is lower than the logic input lower threshold (V_{ii}). Finally the smart shutdown function provides the possibility to increase the real disable time without increasing the constant time of the external RC network. Figure 8. Smart shutdown timing waveforms Pls refer to *Table 11* for internal propagation delay time details. # **5** Applications information #### 5.1 Recommendations - Input signal HIN is active high logic. A 85 k Ω (typ.) pull down resistor is built-in for each high side input. If an external RC filter is used, for noise immunity, pay attention to the variation of the input signal level. - Input signal $\overline{\text{LIN}}$ is active low logic. A 720 k Ω (typ.) pull-up resistor, connected to an internal 5 V regulator through a diode, is built-in for each low side input. - To prevent the input signals oscillation, the wiring of each input should be as short as possible. - By integrating an application specific type HVIC inside the module, direct coupling to MCU terminals without any opto-coupler is possible. - Each capacitor should be located as nearby the pins of IPM as possible. - Low inductance shunt resistors should be used for phase leg current sensing. - Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance. - The SD/OD signal should be pulled up to 5 V / 3.3 V with an external resistor (see Section 4: Smart shutdown function for detailed info). Table 13. Recommended operating conditions | Symbol | Parameter | Conditions | Value | | | Unit | |-------------------|---------------------------------------|--|-------|------|------|------| | | Farameter | Conditions | Min. | Тур. | Max. | Onit | | V _{PN} | Supply Voltage | Applied between P-Nu,Nv,Nw | | 300 | 400 | V | | V _{CC} | Control supply voltage | Applied between V _{CC} -GND | 13.5 | 15 | 18 | ٧ | | V _{BS} | High side bias voltage | Applied between V _{BOOTI} -OUT _i for i=U,V,W | 13 | | 18 | V | | t _{dead} | Blanking time to
prevent Arm-short | For each input signal | 1.5 | | | μs | | f _{PWM} | PWM input signal | -40°C < T _c < 100°C
-40°C < T _j < 125°C | | | 20 | kHz | | T _C | Case operation temperature | | | | 100 | °C | Note: For further details refer to AN3338. ## 6 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark. Please refer to dedicated technical note TN0107 for mounting instructions. Table 14. SDIP-25L package mechanical data | Di | (mm.) | | | | | |------|-------|-------|-------|--|--| | Dim. | Min. | Тур. | Max. | | | | А | 43.90 | 44.40 | 44.90 | | | | A1 | 1.15 | 1.35 | 1.55 | | | | A2 | 1.40 | 1.60 | 1.80 | | | | A3 | 38.90 | 39.40 | 39.90 | | | | В | 21.50 | 22.00 | 22.50 | | | | B1 | 11.25 | 11.85 | 12.45 | | | | B2 | 24.83 | 25.23 | 25.63 | | | | С | 5.00 | 5.40 | 6.00 | | | | C1 | 6.50 | 7.00 | 7.50 | | | | C2 | 11.20 | 11.70 | 12.20 | | | | е | 2.15 | 2.35 | 2.55 | | | | e1 | 3.40 | 3.60 | 3.80 | | | | e2 | 4.50 | 4.70 | 4.90 | | | | e3 | 6.30 | 6.50 | 6.70 | | | | D | | 33.30 | | | | | D1 | | 5.55 | | | | | Е | | 11.20 | | | | | E1 | | 1.40 | | | | | F | 0.85 | 1.00 | 1.15 | | | | F1 | 0.35 | 0.50 | 0.65 | | | | R | 1.55 | 1.75 | 1.95 | | | | Т | 0.45 | 0.55 | 0.65 | | | | V | 0° | | 6° | | | Figure 10. SDIP-25L package dimensions Figure 11. Packaging specifications of SDIP-25L package Figure 12. SDIP-25L shipping tube type B (dimensions are in mm.) Revision history STGIPS30C60 # 7 Revision history **Table 15. Document revision history** | Date | Revision | Changes | |-------------|----------|--| | 07-Dec-2011 | 1 | Initial release | | 04-Dec-2012 | 2 | Added: P _{TOT} value <i>Table 3 on page 5</i> , R _{thJC} values <i>Table 6 on page 6</i> , typical values <i>Table 7 on page 7</i> and <i>Figure 12 on page 19</i> . Removed: note 2 <i>Table 3 on page 5</i> . | | 02-Apr-2013 | 3 | Added Figure 3 and Figure 4 on page 6. Updated: Figure 8 on page 13. | | 17-Jun-2013 | 4 | Updated Dt value in Table 10: Logic inputs (VCC = 15 V unless otherwise specified), Figure 7: Dead time and interlocking waveforms definitions and t _{dead} in Table 13: Recommended operating conditions. | | 09-Jul-2013 | 5 | Updated Dt value in <i>Table 10: Logic inputs (VCC = 15 V unless otherwise specified)</i> | | 12-Jul-2013 | 6 | Document status promoted from preliminary to production data. | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com