Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

101.P

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Rene
Custo
April

Renesas Technology Corp. Customer Support Dept. April 1, 2003

Cautions

Keep safety first in your circuit designs!

(iii) prevention against any malfunction or mishap.

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

Rev. 6.0 Sept. 1998

Description

The HD404318 Series is 4-bit HMCS400-series microcomputer with large-capacity memory designed to increase program productivity. Each microcomputer has an A/D converter and input capture timer built in. They also come with high-voltage I/O pins that can directly drive a fluorescent display.

The HD404318 Series includes four chips: the HD404318 with 8-kword ROM; the HD404316 with 6-kword ROM; the HD404314 with 4-kword ROM; the HD4074318 with 8-kword PROM.

The HD4074318 is a PROM version ZTAT[™] microcomputer. Programs can be written to the PROM by a PROM writer, which can dramatically shorten system development periods and smooth the process from debugging to mass production. (The PROM program specifications are the same as for the 27256.)

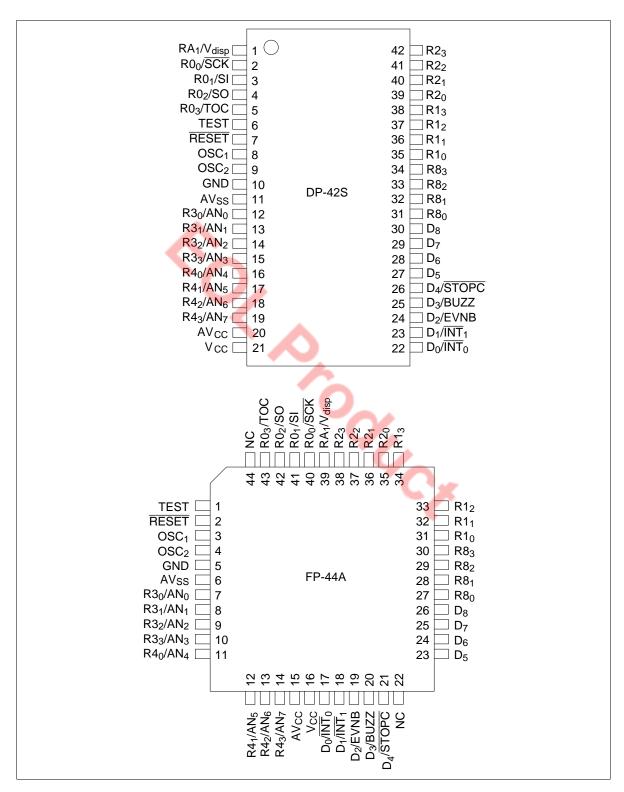
ZTAT™: Zero Turn Around Time ZTAT is a trademark of Hitachi Ltd.

Features

- 34 I/O pins
 - One input-only pin
 - 33 input/output pins: 21 pins are high-voltage pins (40 V, max.)
- On-chip A/D converter (8-bit × 8-channel)
- Three timers
 - One event counter input
 - One timer output
 - One input capture timer
- 8-bit clock-synchronous serial interface (1 channel)
- Alarm output
- Built-in oscillators
 - Ceramic or crystal oscillator
 - External clock drive is also possible

- Seven interrupt sources
 - Two by external sources
 - Three by timers
 - One each by the A/D converter and serial interface
- Two low-power dissipation modes
 - Standby mode
 - Stop mode
- Instruction cycle time 1 μ s ($f_{osc} = 4 \text{ MHz}$)

Ordering Information


Туре	Model Name	ROM (words)	RAM (digit)	Package
Mask ROM	HD404314S	4,096	384	DP-42S
	HD404314H			FP-44A
	HD404316S	6,144		DP-42S
	HD404316H			FP-44A
	HD404318S	8,192		DP-42S
	HD404318H			FP-44A
ZTAT™	HD4074318S	8,192		DP-42S
	HD4074318H			FP-44A

Recommended PROM Programmers and Socket Adapters

PROM Programmer	Socket Adapter

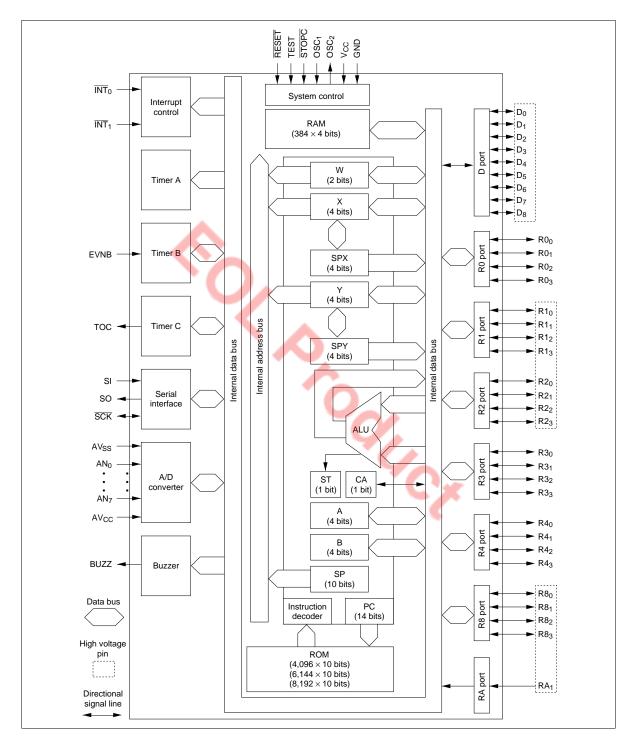
Manufacture	Model Name	Package	Manufacturer	Model Name	
DATA I/O Corp.	121B	DP-42S	Hitachi	HS4318ESS01H	
		FP-44A		HS4318ESH01H	
AVAL Corp.	PKW-1000	DP-42S	Hitachi	HS4318ESS01H	
		FP-44A		HS4318ESH01H	

Pin Arrangement

PinDescription

		Pin Nun	nber		
Item	Symbol	DP-42S	FP-44A	1/0	Function
Power supply	V _{cc}	21	16		Applies power voltage
	GND	10	5		Connected to ground
	V _{disp} (shared with RA ₁)	1	39		Used as a high-voltage output power supply pin when selected by the mask option
Test	TEST	6	1	I	Cannot be used in user applications. Connect this pin to GND.
Reset	RESET	7	2	I	Resets the MCU
Oscillator	OSC ₁	8	3	I	Input/output pin for the internal oscillator. Connect these pins to the ceramic or crystal oscillator, or OSC ₁ to an external oscillator circuit.
	OSC ₂	9	4	0	
Port	D ₀ -D ₈	22–30	17–21, 23–26	I/O	Input/output pins addressed individually by bits; D_0-D_8 are all high-voltage I/O pins. Each pin can be individually configured as selected by the mask option.
	RA ₁	1	39	T	One-bit high-voltage input port pin
	R0 ₀ -R0 ₃ ,	2–5,	40–43,	I/O	Four-bit input/output pins consisting of standard voltage
	R3 ₀ -R4 ₃	12–19	7–14	•	pins
	R1 ₀ -R2 ₃ ,	31–42	27–38	I/O	Four-bit input/output pins consisting of high voltage pins
	R8 ₀ -R8 ₃				0
Interrupt	\overline{INT}_0 , \overline{INT}_1	22, 23	17, 18	I	Input pins for external interrupts
Stop clear	STOPC	26	21	I	Input pin for transition from stop mode to active mode
Serial interface	SCK	2	40	I/O	Serial interface clock input/output pin
interiace	SI	3	41	ı	Serial interface receive data input pin
	SO	4	42	0	Serial interface transmit data output pin
Timer	TOC	5	43	0	Timer output pin
Tillio	EVNB	24	19	ı	Event count input pin
Alarm	BUZZ	25	20	0	Square waveform output pin
				0	
A/D converter	AV _{cc}	20	15		Power supply for the A/D converter. Connect this pin as close as possible to the $V_{\rm cc}$ pin and at the same voltage as $V_{\rm cc}.$ If the power supply voltage to be used for the A/D converter is not equal to $V_{\rm cc},$ connect a 0.1- μF bypass capacitor between the AV $_{\rm cc}$ and AV $_{\rm ss}$ pins. (However, this is not necessary when the AV $_{\rm cc}$ pin is directly connected to the $V_{\rm cc}$ pin.)
	AV _{SS}	11	6		Ground for the A/D converter. Connect this pin as close as possible to GND at the same voltage as GND.
	AN_0 - AN_7	12–19	7–14	1	Analog input pins for the A/D converter

Pin Description in PROM Mode


The HD4074318 is a PROM version of a ZTAT™ microcomputer. In PROM mode, the MCU stops operating, thus allowing the user to program the on-chip PROM.

Pin Number		MCU Mode		PROM Mod	е
DP-42S	FP-44A	Pin	I/O	Pin	I/O
1	39	RA_1/V_{disp}	I		
2	40	R0₀/ SCK	I/O	V _{cc}	
3	41	R0₁/SI	I/O	V _{cc}	
4	42	R0 ₂ /SO	I/O		
5	43	R0₃/TOC	I/O		
6	1	TEST	I	V _{PP}	
7	2	RESET	1	RESET	I
8	3	OSC ₁	I	V _{cc}	
9	4	OSC ₂	0		
10	5	GND		GND	
11	6	AV _{ss}		GND	
12	7	R3 ₀ /AN ₀	1/0	O ₀	I/O
13	8	R3 ₁ /AN ₁	I/O	O ₁	I/O
14	9	R3 ₂ /AN ₂	I/O	O ₂	I/O
15	10	R3 ₃ /AN ₃	I/O	O ₃	I/O
16	11	R4 ₀ /AN ₄	I/O	O ₄	I/O
17	12	R4 ₁ /AN ₅	I/O	O ₅	I/O
18	13	R4 ₂ /AN ₆	I/O	O_6	I/O
19	14	R4 ₃ /AN ₇	I/O	O ₇	I/O
20	15	AV _{cc}		V _{cc}	
21	16	V _{cc}		V _{cc}	
22	17	D₀/ĪNT₀	I/O	M _o	I
23	18	D ₁ /INT ₁	I/O	M ₁	I
24	19	D ₂ /EVNB	I/O	A ₁	I
25	20	D₃/BUZZ	I/O	A_2	I
26	21	D₄/STOPC	I/O		
27	23	$D_{\scriptscriptstyle{5}}$	I/O	A ₃	I
28	24	D ₆	I/O	A_4	I
29	25	D ₇	I/O	A ₉	I
30	26	D ₈	I/O	V_{cc}	

Pin Number		MCU Mod	e	PROM Mo	de
DP-42S	FP-44A	Pin	I/O	Pin	I/O
31	27	R8 ₀	I/O	CE	I
32	28	R8 ₁	I/O	ŌĒ	I
33	29	R8 ₂	I/O	A ₁₃	I
34	30	R8 ₃	I/O	A ₁₄	I
35	31	R1 ₀	I/O	A ₅	I
36	32	R1₁	I/O	A ₆	I
37	33	R1 ₂	I/O	A ₇	I
38	34	R1 ₃	I/O	A ₈	I
39	35	R2 ₀	I/O	A _o	I
40	36	R2 ₁	I/O	A ₁₀	I
41	37	R2 ₂	I/O	A ₁₁	I
42	38	R2 ₃	I/O	A ₁₂	I

I/O: Input/output pin; I: Input pin; O: Output pin

Block Diagram

Memory Map

ROM Memory Map

Vector Address Area (\$0000–\$000F): Reserved for JMPL instructions that branch to the start addresses of the reset and interrupt routines.

Zero-Page Subroutine Area (\$0000–\$003F): Reserved for subroutines. The program branches to a subroutine in this area in response to the CAL instruction.

Pattern Area (\$0000-\$0FFF): Contains ROM data that can be referenced with the P instruction.

Program Area (\$0000-\$0FFF (HD404314), \$0000-\$17FF (HD404316), \$0000-\$1FFF (HD404318, HD4074318)): The entire ROM area can be used for program coding.

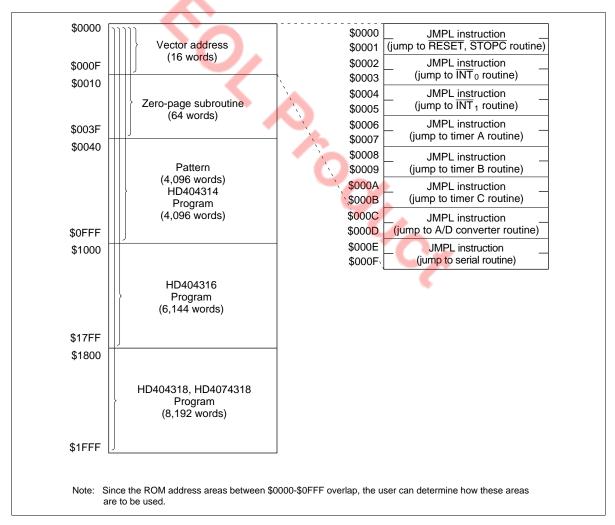


Figure 1 ROM Memory Map

RAM MemoryMap

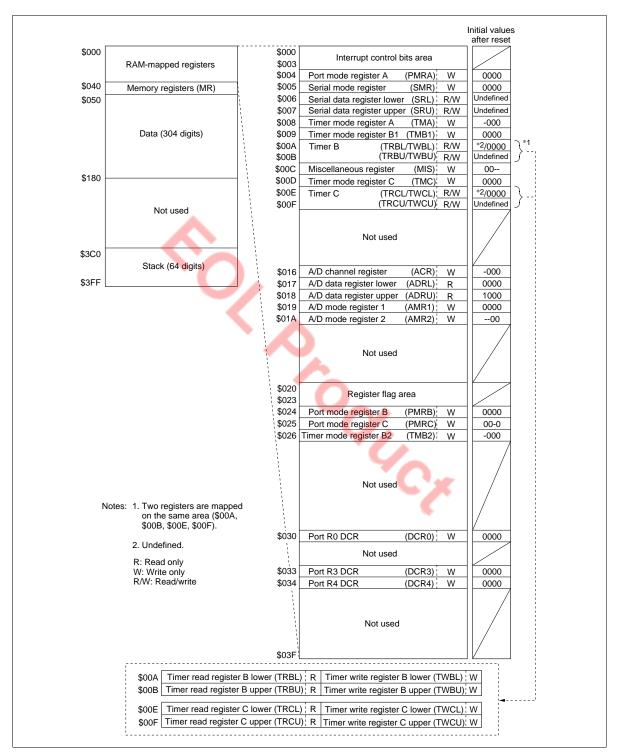


Figure 2 RAM Memory Map and Initial Values

Table 1 Initial Values of Flags after MCU Reset

Item		Initial Value
Interrupt flags/mask	Interrupt enable flag (IE)	0
	Interrupt request flag (IF)	0
	Interrupt mask (IM)	1
Bit registers	Watchdog timer on flag (WDON)	0
	A/D start flag (ADSF)	0
	Input capture status flag (ICSF)	0
	Input capture error flag (ICEF)	0
	I _{AD} off flag (IAOF)	0
	RAM enable flag (RAME)	0

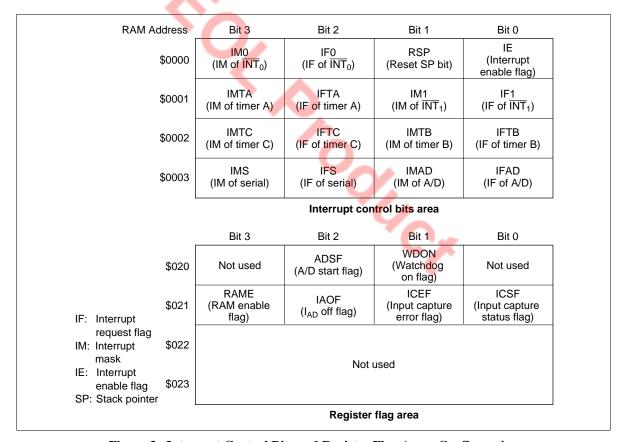


Figure 3 Interrupt Control Bits and Register Flag Areas Configuration

	SEM/SEMD	REM/REMD	TM/TMD	
IE				
IM	Allowed	Allowed	Allowed	
IAOF				
IF				
ICSF	Not executed	Allowed	Allowed	
ICEF	Not executed	Allowed	Allowed	
RAME				
RSP	Not executed	Allowed	Inhibited	
WDON	Allowed	Not executed	Inhibited	
ADSF	Allowed	Inhibited	Allowed	
Not used	Not executed	Not executed	Inhibited	

Note:

WDON is reset by MCU reset or by STOPC enable for stop mode cancellation. The REM or REMD instruction must not be executed for ADSF during A/D conversion. If the TM or TMD instruction is executed for the inhibited bits or non-existing bits, the value in ST becomes invalid.

Figure 4 Usage Limitations of RAM Bit Manipulation Instructions

Mer	nory registers		Stack area						
\$040	MR(0)	\$3C0	Level 16						
\$041	MR(1)		Level 15						
\$042	MR(2)		Level 14						
\$043	MR(3)		Level 13						
\$044	MR(4)		Level 12	1		•			
\$045	MR(5)		Level 11		~/				
\$046	MR(6)		Level 10	_	- 5	D:: 0	D:: 0	D': 4	D:: 0
\$047	MR(7)		Level 9	_	4	Bit 3	Bit 2	Bit 1	Bit 0
\$048	MR(8)		Level 8		\$3FC	ST	PC ₁₃	PC ₁₂	PC ₁₁
\$049	MR(9)		Level 7	_	/		. 013	. 012	. 011
\$04A	MR(10)		Level 6		\$3FD	PC ₁₀	\overline{PC}_{q}	\overline{PC}_8	PC ₇
\$04B	MR(11)		Level 5	/	Ψ0. 2	. • 10	. •9	. 9	. • /
\$04C	MR(12)		Level 4		\$3FE	CA	\overline{PC}_6	\overline{PC}_5	\overline{PC}_4
\$04D	MR(13)		Level 3		4 0	• • • • • • • • • • • • • • • • • • • •	. 56	. 5	- 4
\$04E	MR(14)	A	Level 2	/	\$3FF	\overline{PC}_3	\overline{PC}_2	\overline{PC}_{1}	PC ₀
\$04F	MR(15)	\$3FF	Level 1		Ψ0	3	2	. • 1	. •0
ST:	₃ –PC ₀ : Progra Status flag Carry flag	am counter							

Figure 5 Configuration of Memory Registers and Stack Area, and Stack Position

Registers and Flags

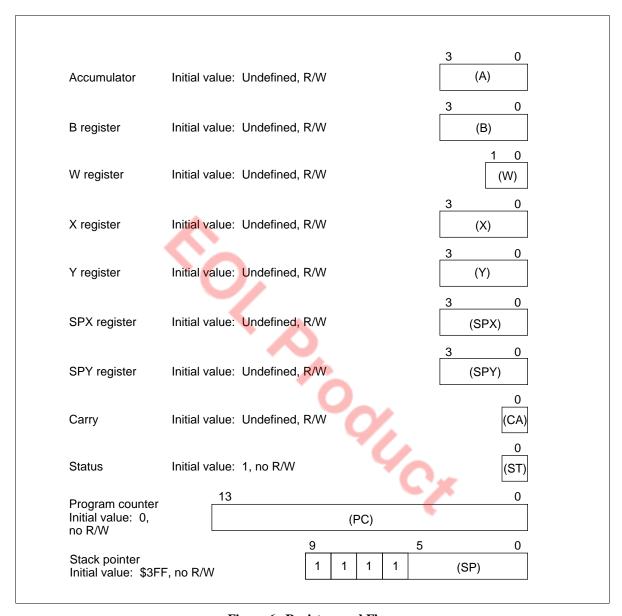


Figure 6 Registers and Flags

Addressing Modes

RAM Addressing Modes

Register Indirect Addressing Mode: The contents of the W, X, and Y registers (10 bits total) are used as a RAM address.

Direct Addressing Mode: A direct addressing instruction consists of two words. The first word contains the opcode, and the contents of the second word (10 bits) are used as a RAM address.

Memory Register Addressing Mode (LAMR, XMRA): The memory registers (MR), which are located in 16 addresses from \$040 to \$04F, are accessed with the LAMR and XMRA instructions.

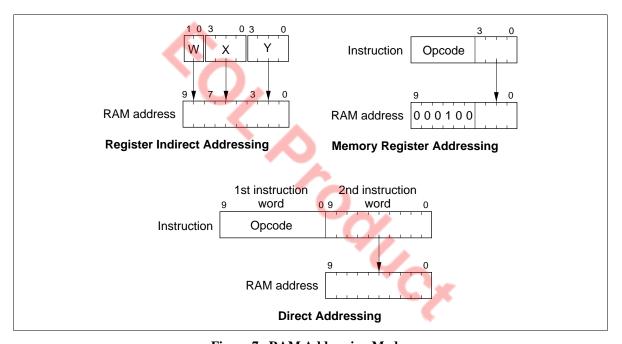


Figure 7 RAM Addressing Modes

ROM Addressing Modes

Direct Addressing Mode: A program can branch to any address in ROM memory space by executing the JMPL, BRL, or CALL instruction.

Current Page Addressing Mode: A program can branch to any address in the current page (256 words per page) by executing the BR instruction.

Zero-Page Addressing Mode: A program can branch to any subroutine located in the zero-page subroutine area (\$0000–\$003F) by executing the CAL instruction.

Table Data Addressing Mode: A program can branch to an address determined by the contents of 4-bit immediate data, the accumulator, and the B register by executing the TBR instruction.

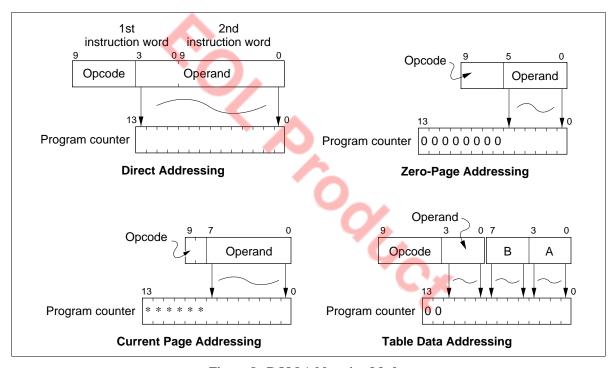


Figure 8 ROM Addressing Modes

Table 2 Instruction Set Classification

Instruction Type	Function	Number of Instructions
Immediate	Transferring constants to the accumulator, B register, and RAM.	4
Register-to-register	Transferring contents of the B, Y, SPX, SPY, or memory registers to the accumulator	8
RAM addressing	Available when accessing RAM in register indirect addressing mode	13
RAM register	Transferring data between the accumulator and memory.	10
Arithmetic	Performing arithmetic operations with the contents of the accumulator, B register, or memory.	25
Compare	Comparing contents of the accumulator or memory with a constant	12
RAM bit manipulation	Bit set, bit reset, and bit test.	6
ROM addressing	Branching and jump instructions based on the status condition.	8
Input/output	Controlling the input/output of the R and D ports; ROM data reference with the P instruction	11
Control	Controlling the serial communication interface and low-power dissipation modes.	4

NO OLICA

Total: 101 instructions

Interrupts

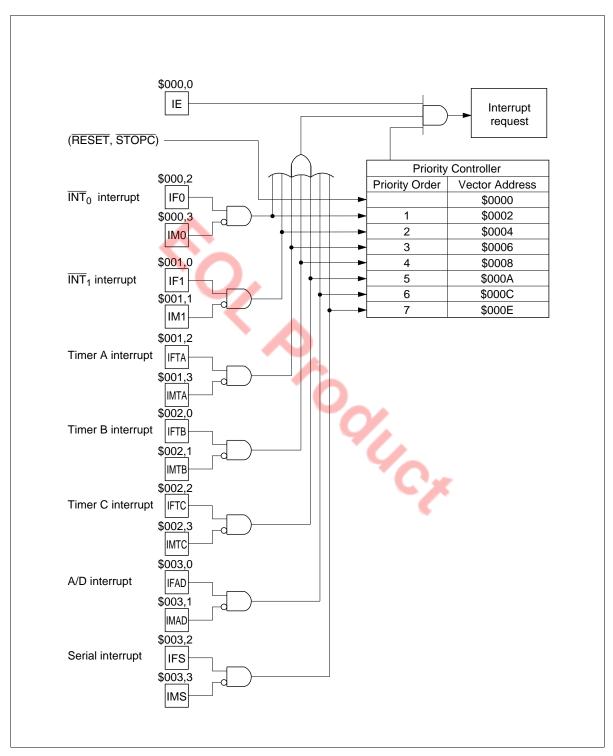


Figure 9 Interrupt Control Circuit

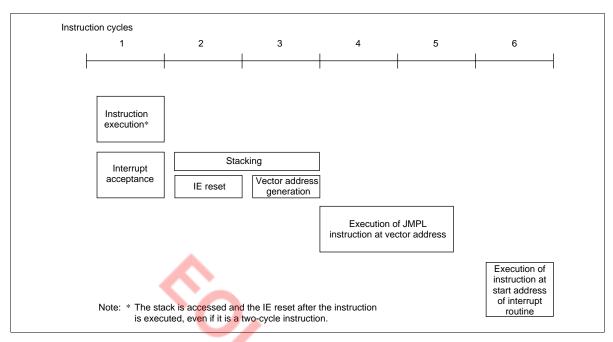


Figure 10 Interrupt Processing Sequence

Operating Modes

The MCU has three operating modes as shown in table 3. Transitions between operating modes are shown in figure 11.

Operations in Each Operating Mode Table 3

Function	nction Active Mode Standby Mode		Stop Mode			
System oscillator	OP	OP	Stopped			
CPU	OP	Retained	Reset			
RAM	OP	Retained	Retained			
Timer A	OP	ОР	Reset			
Timers B, C	OP	OP	Reset			
Serial interface	OP	OP	Reset			
A/D	OP	OP	Reset			
I/O	OP	Retained	Reset			

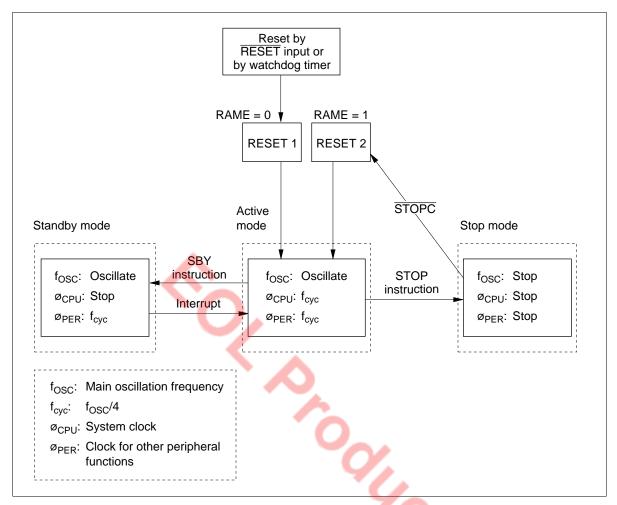


Figure 11 MCU Status Transitions

In stop mode, the system oscillator is stopped. To ensure a proper oscillation stabilization period of at least t_{RC} when clearing stop mode, execute the cancellation according to the timing chart in figure 12.

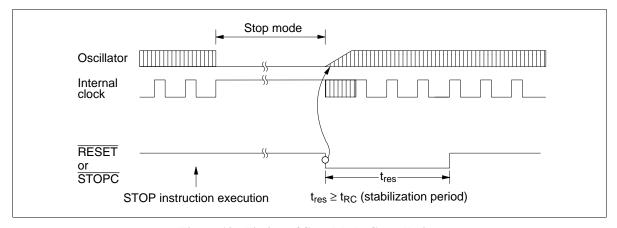


Figure 12 Timing of Stop Mode Cancellation

MCU Operation Sequence: The MCU operates in the sequence shown in figure 13 and figure 14. The low-power mode operation sequence is shown in figure 14. With the IE flag cleared and an interrupt flag set together with its interrupt mask cleared, if a STOP/SBY instruction is executed, the instruction is cancelled (regarded as an NOP) and the following instruction is executed. Before executing a STOP/SBY instruction, make sure all interrupt flags are cleared or all interrupts are masked.

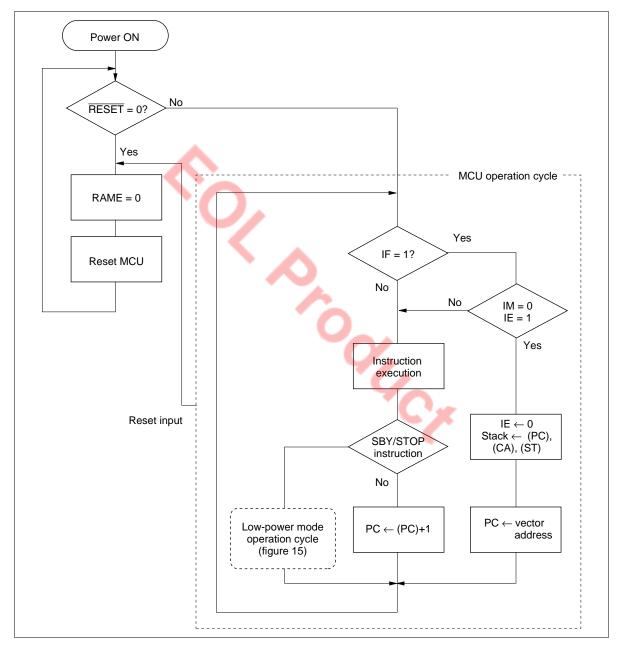


Figure 13 MCU Operating Sequence (Power ON)

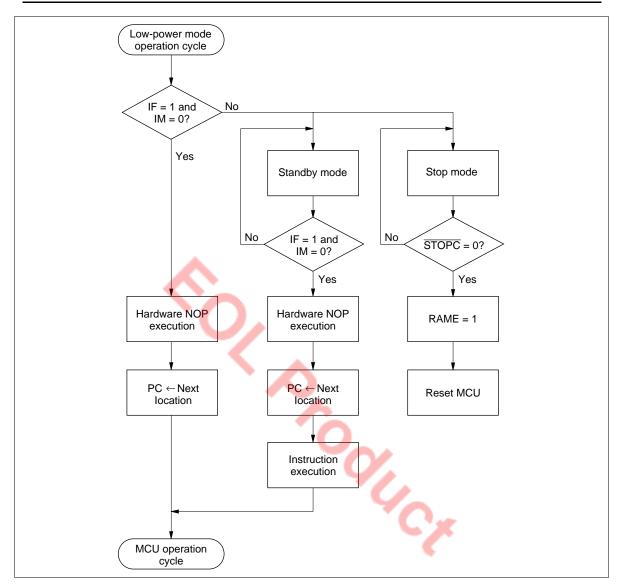


Figure 14 MCU Operating Sequence (Low-Power Mode Operation)

Oscillator Circuit

Figure 15 shows a block diagram of the clock generation circuit.

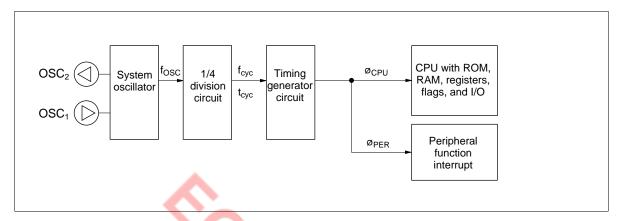


Figure 15 Clock Generation Circuit

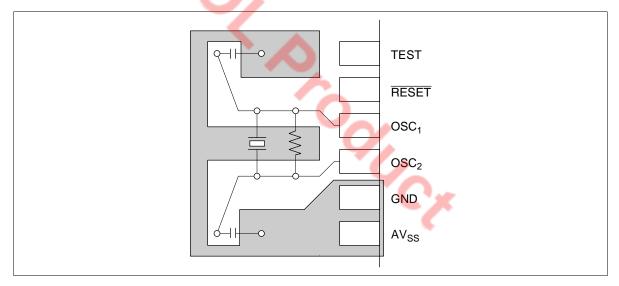


Figure 16 Typical Layout of Crystal and Ceramic Oscillator

Table 4 Oscillator Circuit Examples

Circuit Configuration Circuit Constants External clock operation External OSC₁ oscillator OSC₂ Open Ceramic oscillator Ceramic oscillator: CSA4.00MG (Murata) C_1 (OSC₁, OSC₂) $R_f = 1 M\Omega \pm 20\%$ OSC₁ $C_1 = C_2 = 30 \text{ pF } \pm 20\%$ Ceramic = R_f≸ OSC₂ C_2 **GND** Crystal oscillator $R_f = 1 M\Omega \pm 20\%$ C₁ (OSC₁, OSC₂) $C_1 = C_2 = 10 \text{ to } 22 \text{ pF } \pm 20\%$ OSC₁ Crystal: Equivalent to circuit shown below Crystal 🖶 $C_0 = 7 \text{ pF max.}$ OSC₂ $R_s = 100 \Omega \text{ max}.$ C_2 **GND** C_S R_S OSC₁ OSC₂ C_{O}

- Notes: 1. Since the circuit constants change depending on the crystal or ceramic oscillator and stray capacitance of the board, the user should consult with the crystal or ceramic oscillator manufacturer to determine the circuit parameters.
 - 2. Wiring among OSC₁, OSC₂, and elements should be as short as possible, and must not cross other wiring (see figure 16).

I/O Ports

The MCU has 33 input/output pins (D_0 – D_8 , R0–R4, R8) and one input-only pin (RA₁). The following describes the features of the I/O ports.

- The 21 pins consisting of D₀–D₈, R1, R2, and R8 are all high-voltage I/O pins. RA₁ is a high-voltage input-only pin. These high-voltage pins can be equipped with or without pull-down resistance, as selected by the mask option.
- All standard output pins are CMOS output pins. However, the R0₂/SO pin can be programmed for NMOS open-drain output.
- In stop mode, input/output pins go to the high-impedance state
- All standard input/output pins have pull-up MOS built in, which can be individually turned on or off by software

Table 5 Control of Standard I/O Pins by Program

MIS3 (bit 3 of N	MIS)	0			1			
DCR		0	1		0		1	
PDR		0	1 0	1	0	1	0	1
CMOS buffer	PMOS	_		On	_	_		On
	NMOS	_	— Or	n —	_	_	On	_
Pull-up MOS		_	- /	_	_	On	_	On

Note: — indicates off.

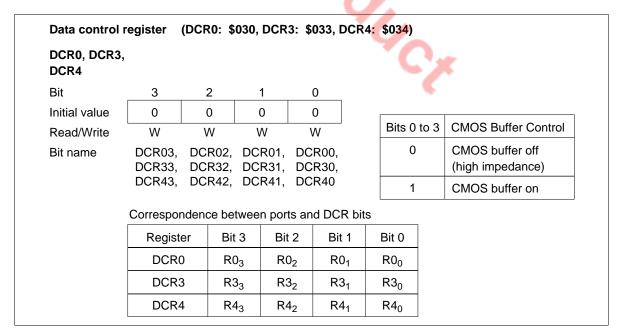
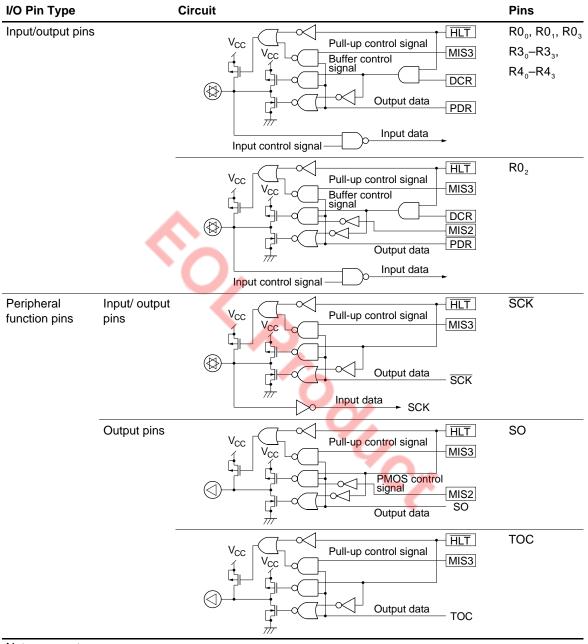
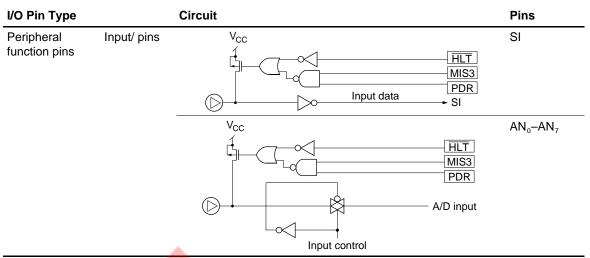
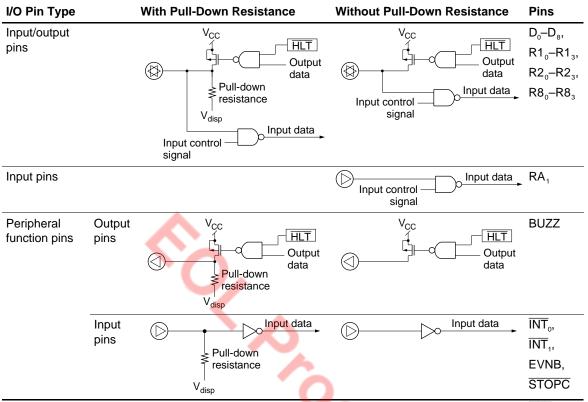




Figure 17 Data Control Register (DCR)

Table 6 Circuit Configurations of Standard I/O Pins


Notes on next page.

Notes: 1. In stop mode, the MCU is reset and the peripheral function selection is cancelled. The HLT signal goes low, and input/output pins the enter high-impedance state.

2. The HLT signal is 1 in active and standby modes.

Table 7 Circuit Configurations for High-Voltage Input/Output Pins

- Notes: 1. In stop mode, the MCU is reset and the peripheral function selection is cancelled. The HLT signal goes low, and input/output pins the enter high-impedance state.
 - 2. The HLT signal is 1 in active and standby modes.
 - 3. The circuits of HD4074318 are without pull-down resistance.

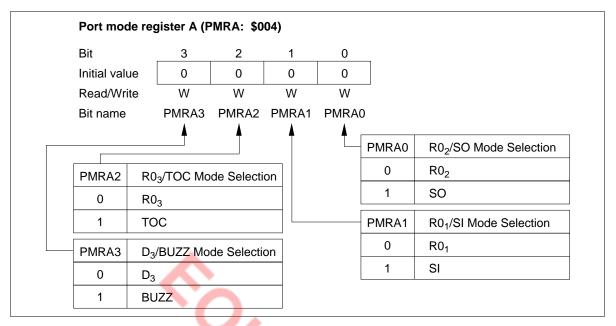


Figure 18 Port Mode Register A (PMRA)

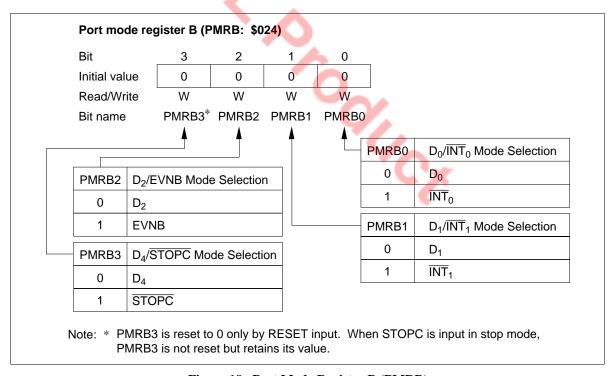


Figure 19 Port Mode Register B (PMRB)

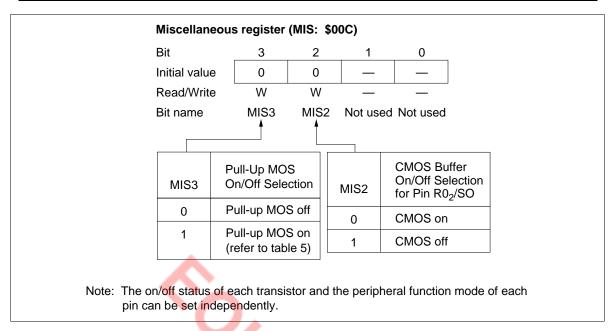


Figure 20 Miscellaneous Register (MIS)

Prescaler

The MCU has a built-in prescaler labeled as prescaler S (PSS), which divides the system clock and then outputs divided clock signals to the peripheral function modules, as shown in figure 21.

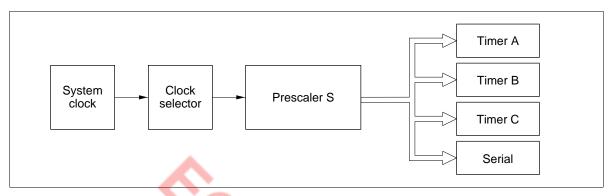


Figure 21 Prescaler Output Supply

Timers

The MCU has three built-in timers: A, B, and C. The functions of each timer are listed in table 7.

Timer A

Timer A is an 8-bit free-running timer that has the following features:

- One of eight internal clocks can be selected from prescaler S according to the setting of timer mode register A (TMA: \$008)
- An interrupt request can be generated when timer counter A (TCA) overflows
- Input clock frequency must not be modified during timer A operation

Table 7 Timer Functions

Functions		Timer A	Timer B	Timer C
Clock source	Prescaler S	Available	Available	Available
	External event	<u></u>	Available	_
Timer functions	Free-running	Available	Available	Available
	Event counter	-	Available	_
	Reload		Available	Available
	Watchdog	-	_	Available
	Input capture	- 0	Available	_
Timer output	PWM	_	Y	Available

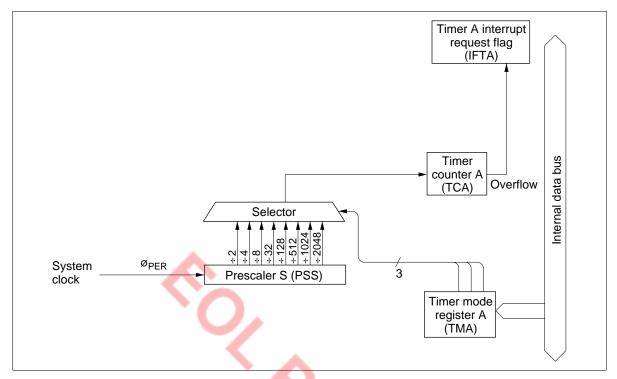


Figure 22 Timer A Block Diagram

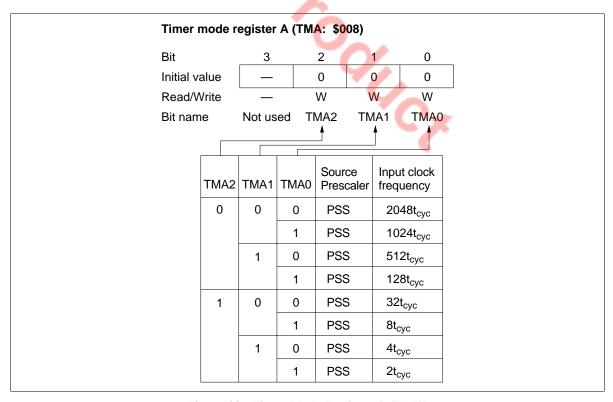


Figure 23 Timer Mode Register A (TMA)

Timer B

Timer B is an 8-bit multifunction timer that includes free-running, reload, and input capture timer features. These are described as follows.

- By setting timer mode register B1 (TMB1: \$009), one of seven internal clocks supplied from prescaler S can be selected, or timer B can be used as an external event counter
- By setting timer mode register B2 (TMB2: \$026), detection edge type of EVNB can be selected
- By setting timer write register BL, BU (TWBL, BU: \$00A, \$00B), timer counter B (TCB) can be written to during reload timer operation
- By setting timer read register BL, BU (TRBL, BU: \$00A, \$00B), the contents of timer counter B can be read out
- Timer B can be used as an input capture timer to count the clock cycles between trigger edges input as an external event
- An interrupt can be requested when timer counter B overflows or when a trigger input edge is received during input capture operation

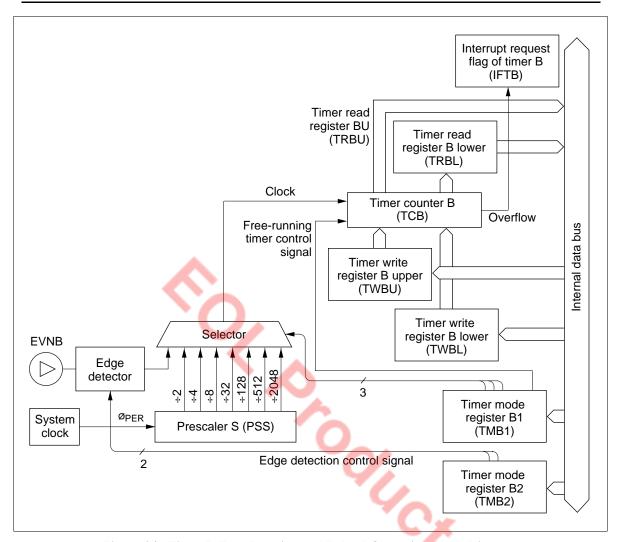


Figure 24 Timer B Free-Running and Reload Operation Block Diagram

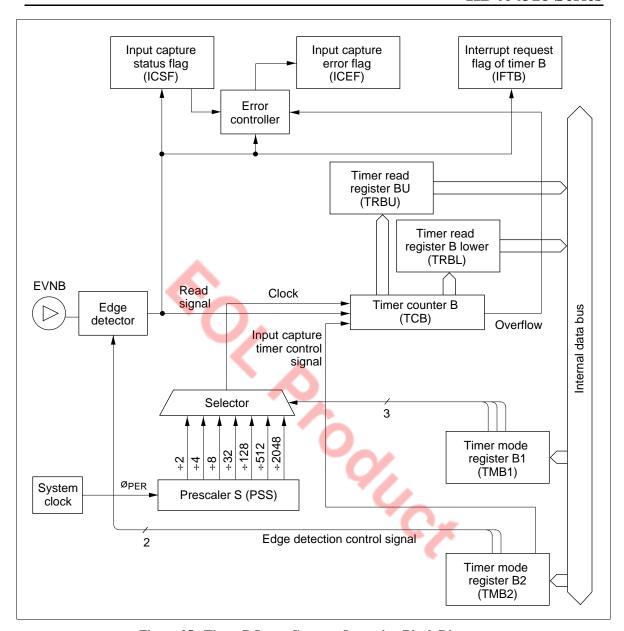


Figure 25 Timer B Input Capture Operation Block Diagram

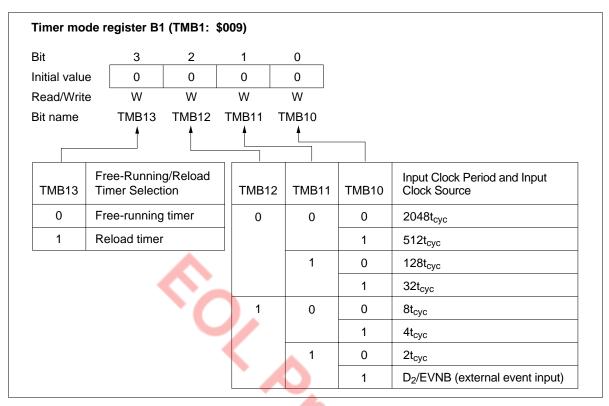


Figure 26 Timer Mode Register B1 (TMB1)

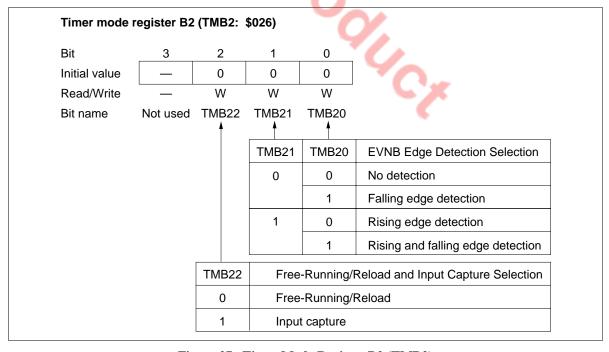


Figure 27 Timer Mode Register B2 (TMB2)

Timer C

Timer C is an 8-bit multifunction timer that includes free-running, reload, and watchdog timer features, which are described as follows.

- By setting timer mode register C (TMC: \$00D), one of eight internal clocks supplied from prescaler S can be selected
- By selecting pin TOC with bit 2 (PMRA2) of port mode register A (PMRA: \$004), timer C output (PWM output) is enabled
- By setting timer write register CL, CU (TWCL, CU: \$00E, \$00F), timer counter C (TCC) can be written to
- By setting timer read register CL, CU (TRCL, CU: \$00E, \$00F), the contents of timer counter C can be read out
- An interrupt can be requested when timer counter C overflows
- Timer counter C can be used as a watchdog timer for detecting runaway program

Figure 28 Timer C Block Diagram

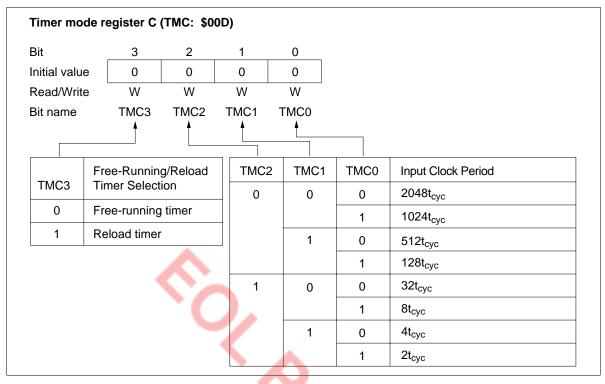


Figure 29 Timer Mode Register C (TMC)

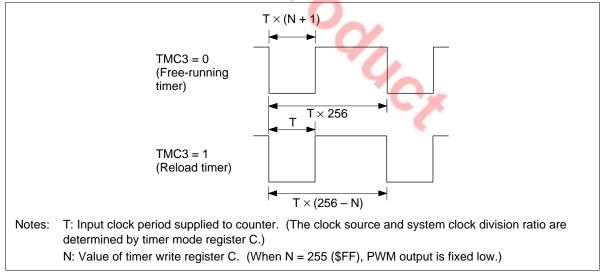


Figure 30 PWM Output Waveform

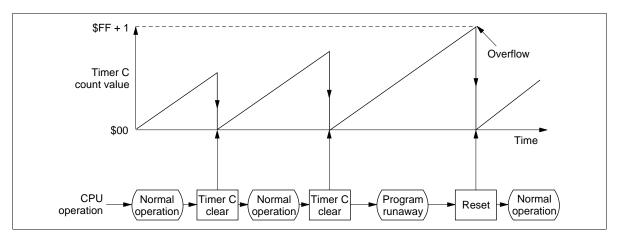
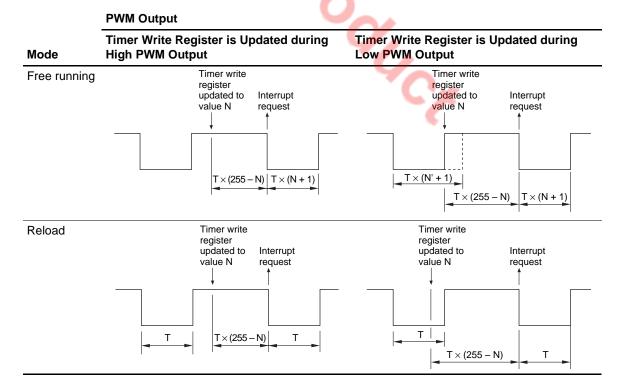



Figure 31 Watchdog Timer Operation Flowchart

Notes on Use

When using the timer output as PWM output, note the following point. From the update of the timer write register until the occurrence of the overflow interrupt, the PWM output differs from the period and duty settings, as shown in table 8. The PWM output should therefore not be used until after the overflow interrupt following the update of the timer write register. After the overflow, the PWM output will have the set period and duty cycle.

Table 8 PWM Output Following Update of Timer Write Register

Alarm Output Function

The MCU has an alarm output function built in. By setting port mode register C (PMRC: \$025), one of four alarm frequencies supplied from the PSS can be selected.

Table 9 Port Mode Register C

PMRC

Bit 3	Bit 2	System Clock Divisor
0	0	÷ 2048
	1	÷ 1024
1	0	÷ 512
	1	÷ 256

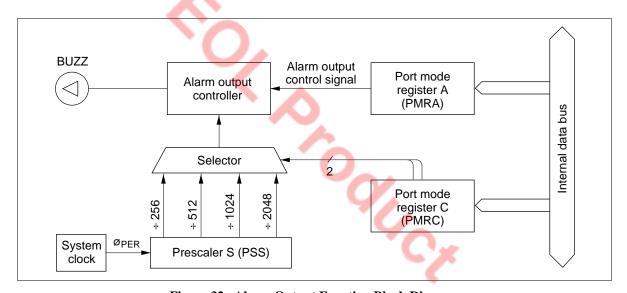


Figure 32 Alarm Output Function Block Diagram

Serial Interface

The MCU has a one-channel serial interface built in with the following features.

- One of 13 different internal clocks or an external clock can be selected as the transmit clock. The internal clocks include the six prescaler outputs divided by two and by four, and the system clock.
- During idle states, the serial output pin can be controlled to be high or low output
- Transmit clock errors can be detected
- An interrupt request can be generated after transfer has completed when an error occurs

Table 10 Serial Interface Operating Modes

SMR	PMRA		
Bit 3	Bit 1	Bit 0	Operating Mode
1	0	0	Continuous clock output mode
		1	Transmit mode
	1	0	Receive mode
		1	Transmit/receive mode

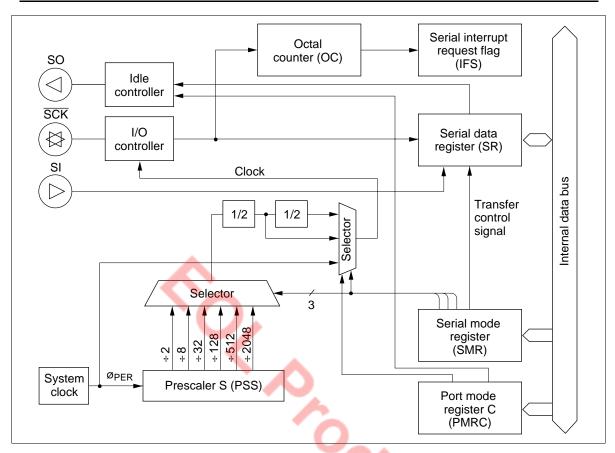


Figure 33 Serial Interface Block Diagram

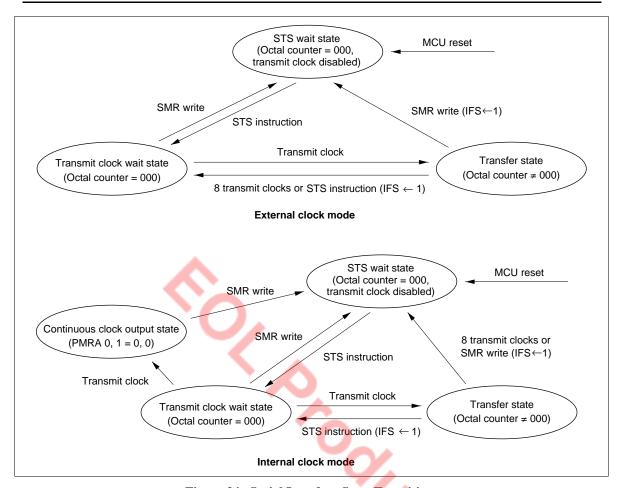


Figure 34 Serial Interface State Transitions

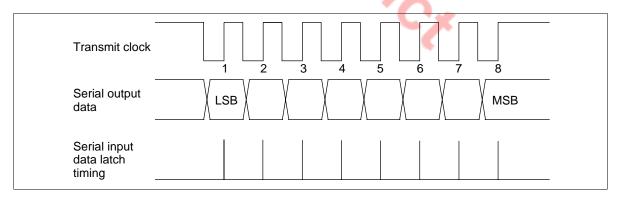


Figure 35 Serial Interface Timing

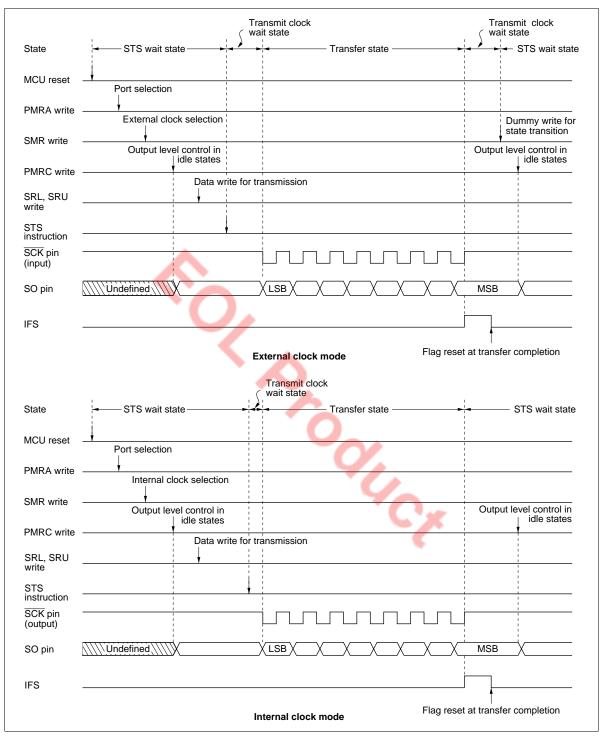


Figure 36 Example of Serial Interface Operation Sequence

Transmit clock erors are detected as illustrated in figure 37.

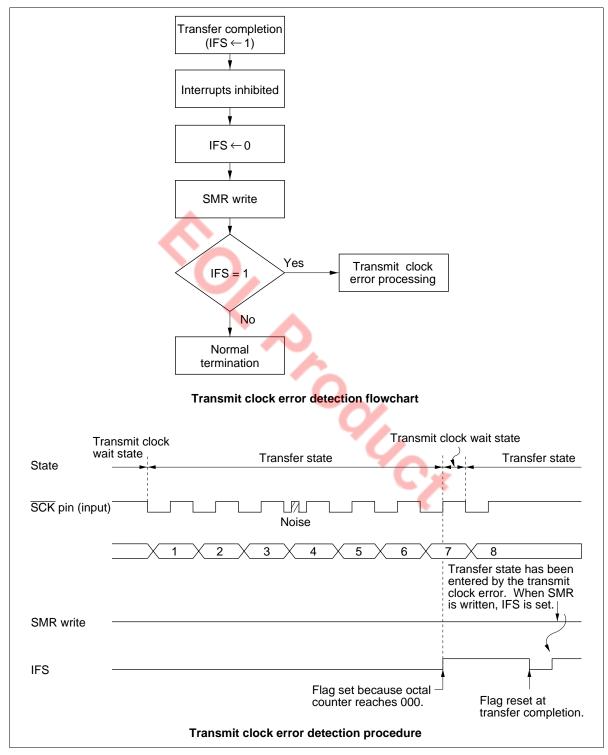


Figure 37 Transmit Clock Error Detection

Table 11 Transmit Clock Selection

PMRC	SMR				
Bit 0	Bit 2	Bit 1	Bit 0	System Clock Divisor	Transmit Clock Frequency
0	0	0	0	÷ 2048	4096t _{cyc}
			1	÷ 512	1024t _{cyc}
		1	0	÷ 128	256t _{cyc}
			1	÷ 32	64t _{cyc}
	1	0	0	÷ 8	16t _{cyc}
			1	÷ 2	4t _{cyc}
1	0	0	0	÷ 4096	8192t _{cyc}
			1	÷ 1024	2048t _{cyc}
		1	0	÷ 256	512t _{cyc}
		•	1	÷ 64	128t _{cyc}
	1	0	0	÷ 16	32t _{cyc}
			1	÷ 4	8t _{cyc}

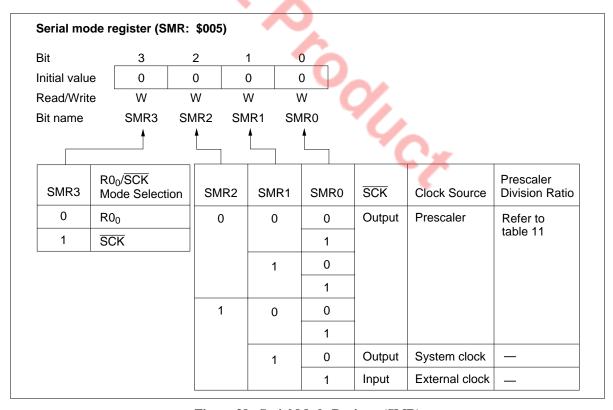


Figure 38 Serial Mode Register (SMR)

Figure 39 Port Mode Register C (PMRC)

A/D Converter

The MCU also contains a built-in A/D converter that uses a sequential comparison method with a resistance ladder. It can perform digital conversion of eight analog inputs with 8-bit resolution. The following describes the A/D converter.

- A/D mode register 1 (AMR1: \$019) is used to select digital or analog ports
- A/D mode register 2 (AMR2: \$01A) is used to set the A/D conversion speed and to select digital or analog ports
- The A/D channel register (ACR: \$016) is used to select an analog input channel
- A/D conversion is started by setting the A/D start flag (ADSF: \$020, 2) to 1. After the conversion is completed, converted data is stored in the A/D data register, and at the same time, the A/D start flag is cleared to 0
- By setting the I_{AD} off flag (IAOF: \$021, 2) to 1, the current flowing through the resistance ladder can be cut off even while operating in standby or active mode

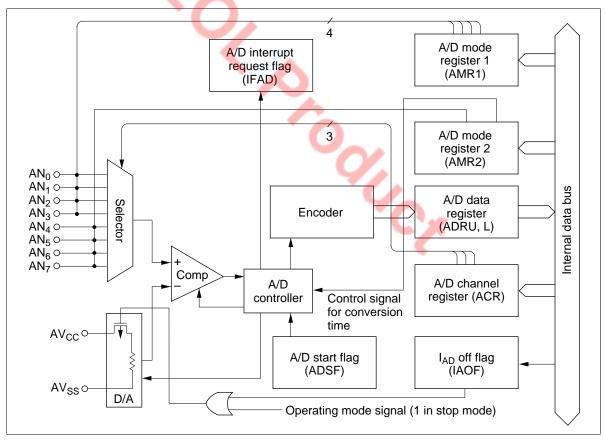


Figure 40 A/D Converter Block Diagram

Notes on Usage

- Use the SEM or SEMD instruction for writing to the A/D start flag (ADSF)
- Do not write to the A/D start flag during A/D conversion
- Data in the A/D data register during A/D conversion is undefined
- Since the operation of the A/D converter is based on the clock from the system oscillator, the A/D converter does not operate in stop mode. In addition, to save power while in stop mode, all current flowing through the converter's resistance ladder is cut off.
- If the power supply for the A/D converter is to be different from V_{CC}, connect a 0.1-μF bypass capacitor between the AV_{CC} and AV_{SS} pins. (However, this is not necessary when the AV_{CC} pin is directly connected to the V_{CC} pin.)
- The port data register (PDR) is initialized to 1 by an MCU reset. At this time, if pull-up MOS is selected as active by bit 3 of the miscellaneous register (MIS3), the port will be pulled up to V_{CC}. When using a shared R port/analog input pin as an input pin, clear PDR to 0. Otherwise, if pull-up MOS is selected by MIS3 and PDR is set to 1, a pin selected by bit 1 of the A/D mode register as an analog pin will remain pulled up.

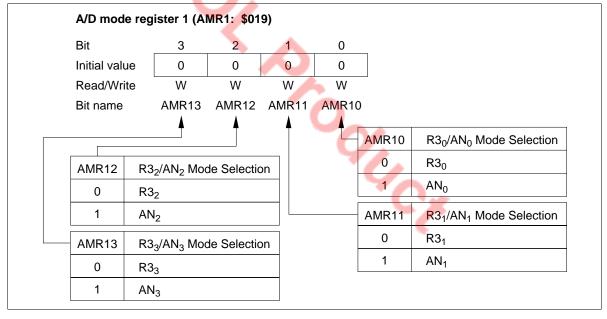


Figure 41 A/D Mode Register 1 (AMR1)

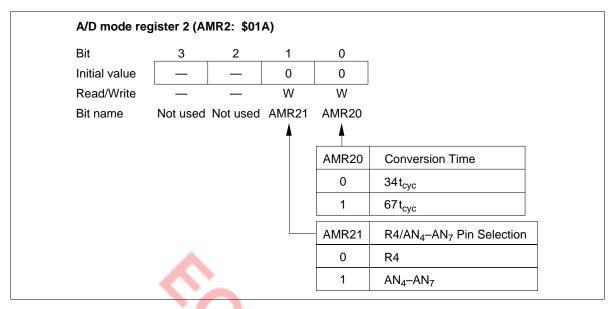


Figure 42 A/D Mode Register (AMR2)

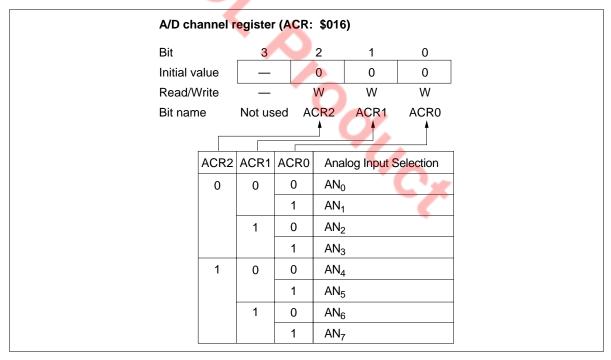


Figure 43 A/D Channel Register (ACR)

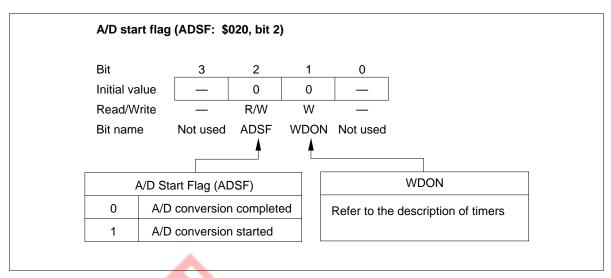
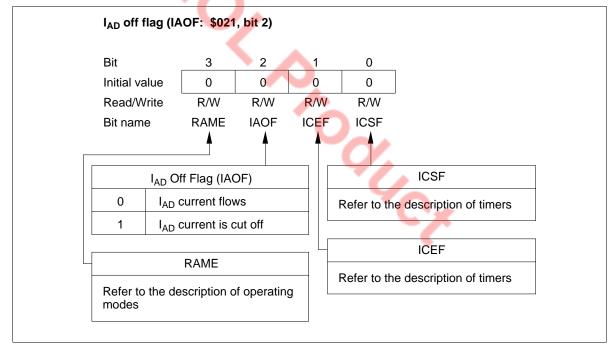



Figure 44 A/D Start Flag (ADSF)

 $Figure~45~~I_{AD}~Off~Flag~(IAOF)\\$

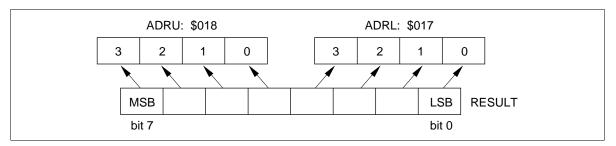


Figure 46 A/D Data Registers

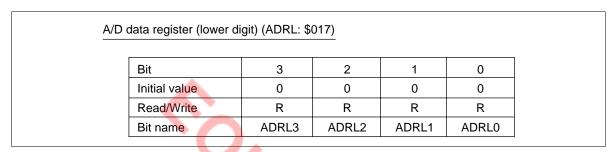


Figure 47 A/D Data Register Lower Digit (ADRL)



Figure 48 A/D Data Register Upper Digit (ADRU)

Notes on Mounting

Assemble all parts including the HD404318 Series on a board, noting the points described below.

- 1. Connect layered ceramic type capacitors (about 0.1 μ F) between AV_{CC} and AV_{SS}, between V_{CC} and GND, and between used analog pins and AV_{SS}.
- 2. Connect unused analog pins to AV_{SS}.

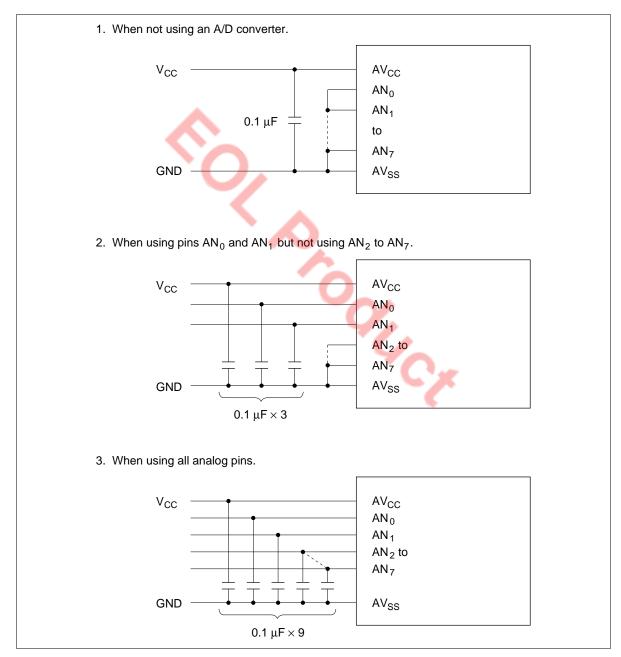


Figure 49 Example of Connections (1)

Between the V_{CC} and GND lines, connect capacitors designed for use in ordinary power supply circuits. An example connection is described in figure 50.

No resistors can be inserted in series in the power supply circuit, so the capacitors should be connected in parallel. The capacitors are a large capacitance C_1 and a small capacitance C_2 .

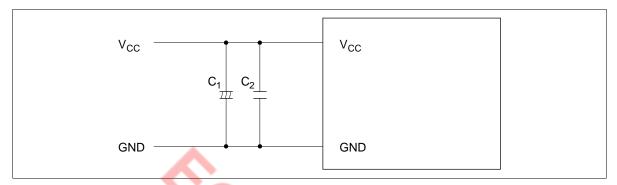


Figure 50 Example of Connections (2)

Absolute Maximum Ratings

Item	Symbol	Value	Unit	Notes
Supply voltage	V _{cc}	-0.3 to +7.0	V	
Programming voltage	V _{PP}	-0.3 to +14.0	V	1
Pin voltage	V _T	-0.3 to $V_{cc} + 0.3$	V	2
		V_{cc} – 45 to V_{cc} + 0.3	V	3
Total permissible input current	Σ I _o	70	mA	4
Total permissible output current	–ΣI _o	150	mA	5
Maximum input current	Io	4	mA	6, 7
		20	mA	6, 8
Maximum output current	-I _o	4	mA	9, 10
		30	mA	10, 11
Operating temperature	T _{opr}	-20 to +75	°C	
Storage temperature	T _{stg}	-55 to +125	°C	

Notes: Permanent damage may occur if these absolute maximum ratings are exceeded. Normal operation must be under the conditions stated in the electrical characteristics tables. If these conditions are exceeded, the LSI may malfunction or its reliability may be affected.

- 1. Applies to pin TEST (V_{PP}) of HD4074318.
- 2. Applies to all standard voltage pins.
- 3. Applies to high-voltage pins.
- 4. The total permissible input current is the total of input currents simultaneously flowing in from all the I/O pins to GND.
- 5. The total permissible output current is the total of output currents simultaneously flowing out from V_{cc} to all I/O pins.
- 6. The maximum input current is the maximum current flowing from each I/O pin to GND.
- 7. Applies to ports R3 and R4.
- 8. Applies to port R0.
- 9. Applies to ports R0, R3, and R4.
- 10. The maximum output current is the maximum current flowing from V_{cc} to each I/O pin.
- 11. Applies to ports D_0 – D_8 , R1, R2, and R8.

Electrical Characteristics

DC Characteristics (V_{CC} = 4.0 to 5.5 V, GND = 0 V, V_{disp} = V_{CC} – 40 V to V_{CC} , T_a = –20 to +75°C, unless otherwise specified)

Item	Symbol	Pins	Min	Тур	Max	Unit	Test Condition	Notes
Input high	V _{IH}	RESET, SCK,	0.8V _{cc}	_	V _{cc} + 0.3	V		
voltage		SI, \overline{INT}_0 , \overline{INT}_1 ,						
		$\overline{\text{STOPC}}$, EVNB						
		OSC ₁	V _{CC} - 0.5	_	V _{CC} + 0.3	V		
Input low voltage	V_{IL}	RESET, SCK,	-0.3	_	$0.2V_{\rm cc}$	V		
		SI						
		ĪNT₀, ĪNT₁,	$V_{\rm CC}-40$	_	$0.2V_{\rm cc}$	V		
		STOPC, EVNB						
	4	OSC ₁	-0.3	_	0.5	V		
Output high voltage	V _{OH}	SCK, SO, TOC	V _{cc} – 0.5	_	_	V	$-I_{OH} = 0.5 \text{ mA}$	
Output low voltage	V _{OL}	SCK, SO, TOC	-	_	0.4	V	I _{OL} = 0.4 mA	
I/O leakage	$ I_{IL} $	RESET, SCK,	→)_	1	μΑ	$V_{in} = 0 \text{ V to } V_{CC}$	1
current		SI, SO, TOC,		4				
		OSC ₁	•					
		$\overline{INT}_{0}, \overline{INT}_{1},$	_	-	20	μΑ	$V_{in} = V_{CC} - 40 \text{ to } V_{CC}$	1
		$\overline{\text{STOPC}}$, EVNB						
Current	I _{cc}	V _{cc}	_	_	5.0	mA	$V_{CC} = 5 V$,	2, 5
dissipation in active mode						7 .	f _{osc} = 4 MHz	
			_	_	8.0	mA		2, 6
Current	I _{SBY}	V _{cc}	_	_	2.0	mA	$V_{CC} = 5 \text{ V},$	3
dissipation in standby mode							$f_{OSC} = 4 \text{ MHz}$	
Current dissipation in stop mode	I _{STOP}	V _{cc}	_	_	10	μΑ	V _{cc} = 5 V	4, 5
			_	_	20	μΑ	=	4, 6
Stop mode retaining voltage	V_{STOP}	V _{cc}	2	_		V		

Notes: 1. Excludes current flowing through pull-up MOS and output buffers.

2. $I_{\rm cc}$ is the source current when no I/O current is flowing while the MCU is in reset state.

Test conditions: MCU: Reset

Pins: $\overline{\text{RESET}}$, TEST at GND

R0, R3, R4 at V_{cc}

 D_0 – D_8 , R1, R2, R8, RA₁ at V_{disp}

3. I_{SBY} is the source current when no I/O current is flowing while the MCU timer is operating.

Test conditions: MCU: I/O reset

Standby mode

Pins: \overline{RESET} at V_{cc}

TEST at GND R0, R3, R4 at V_{cc}

 D_0 – D_8 , R1, R2, R8, RA₁ at V_{disp}

4. This is the source current when no I/O current is flowing.

Test conditions: Pins: R0, R3, R4 at V_{cc}

D₀-D₈, R1, R2, R8, RA₁ at GND

- 5. Applies to the HD404314, HD404316 and HD404318.
- 6. Applies to the HD4074318.

I/O Characteristics for Standard Pins (V_{CC} = 4.0 to 5.5 V, GND = 0 V, V_{disp} = V_{CC} – 40 V to V_{CC} , T_a = -20 to +75°C, unless otherwise specified)

Item	Symbol	Pins	Min	Тур	Max	Unit	Test Condition	Note
Input high voltage	V_{IH}	R0, R3, R4	0.7V _{cc}	_	V _{cc} + 0.3	V		
Input low voltage	V _{IL}	R0, R3, R4	-0.3	_	0.3V _{cc}	V		
Output high voltage	V _{OH}	R0, R3, R4	$V_{CC} - 0.5$	7	_	V	$-I_{OH} = 0.5 \text{ mA}$	
Output low voltage	V _{OL}	R3, R4	_	70	0.4	V	I _{OL} = 1.6 mA	
		R0	_		2.0	V	I _{OL} = 10 mA	
Input leakage current	I _{IL}	R0, R3, R4	_	_	1	μΑ	$V_{in} = 0 \text{ V to } V_{CC}$	1
Pull-up MOS	-I _{PU}	R0, R3, R4	30	150	300	μΑ	$V_{CC} = 5 \text{ V}, V_{in} = 0 \text{ V}$	2
			30	80	180	μΑ		3

Notes: 1. Output buffer current is excluded.

- 2. Applies to the HD404314, HD404316, and HD404318.
- 3. Applies to the HD4074318.

I/O Characteristics for High-Voltage Pins (V_{CC} = 4.0 to 5.5 V, GND = 0 V, V_{disp} = V_{CC} – 40 V to V_{CC} , T_a = –20 to +75°C, unless otherwise specified)

Item	Symbol	Pins	Min	Тур	Max	Unit	Test Condition	Note
Input high	V _{IH}	D ₀ –D ₈ , R1,	0.7V _{cc}	_	V _{CC} + 0.3	V		
voltage		R2, R8, RA ₁						
Input low	V_{IL}	D ₀ –D ₈ , R1,	$V_{\rm CC}-40$	_	$0.3V_{\rm cc}$	V		
voltage		R2, R8, RA ₁						
Output high	V_{OH}	D ₀ –D ₈ , R1,	$V_{\rm CC} - 3.0$	_	_	V	$-I_{OH} = 15 \text{ mA}$	
voltage		R2, R8, BUZZ						
			$V_{\text{CC}} - 2.0$	_	_	V	$-I_{OH} = 10 \text{ mA}$	
			V _{CC} - 1.0	_	_	V	$-I_{OH} = 4 \text{ mA}$	
Output low	V_{OL}	D ₀ –D ₈ , R1,	_	_	$V_{\rm CC} - 37$	V	$V_{disp} = V_{CC} - 40 \text{ V}$	1
voltage		R2, R8, BUZZ						
			_	_	V _{cc} – 37	V	150 kΩ at V_{cc} – 40 V	2
I/O leakage	I _{IL}	D ₀ –D ₈ , R1, R2,	<u></u>	_	20	μΑ	$V_{in} = V_{CC} - 40 \text{ V to } V_{CC}$	3
current		R8, RA ₁ , BUZZ						
Pull-down	I _{PD}	D ₀ –D ₈ , R1,	200	600	1000	μΑ	$V_{disp} = V_{CC} - 35 \text{ V},$	1
MOS current		R2, R8, BUZZ					$V_{in} = V_{CC}$	

Notes: 1. Applies to pins with pull-down MOS as selected by the mask option .

- 2. Applies to pins without pull-down MOS as selected by the mask option.
- 3. Excludes output buffer current.

A/D Converter Characteristics (V_{CC} = 4.0 to 5.5 V, GND = 0 V, V_{disp} = V_{CC} – 40 V to V_{CC} , T_a = –20 to +75°C, unless otherwise specified)

Item	Symbol	Pins	Min	Тур	Max	Unit	Test Condition	Note
Analog supply voltage	AV_{CC}	AV_{cc}	$V_{\rm CC} - 0.3$	V_{cc}	V _{cc} + 0.3	٧		1
Analog input voltage	AV_{in}	AN ₀ -AN ₇	AV_{SS}	_	AV_CC	V		
Current flowing between AV _{cc} and AV _{ss}	I _{AD}		_	_	200	μΑ	$V_{cc} = AV_{cc} = 5.0 \text{ V}$	
Analog input capacitance	CA_in	AN ₀ –AN ₇	_	_	30	pF		
Resolution	_		8	8	8	Bit	-	
Number of input channels	_		0	_	8	Chan nel	-	
Absolute accuracy	_		_	_	±2.0	LSB	-	
Conversion time	_		34	_	67	t _{cyc}	-	
Input impedance	-	AN ₀ -AN ₇	1	_	_	МΩ	-	

Note: 1. Connect this to V_{cc} if the A/D converter is not used.

AC Characteristics (V_{CC} = 4.0 to 5.5 V, GND = 0 V, V_{disp} = V_{CC} – 40 V to V_{CC} , T_a = –20 to +75°C)

Item	Symbol	Pins	Min	Тур	Max	Unit	Test Condition	Note
Clock oscillation frequency	f _{osc}	OSC ₁ , OSC ₂	0.4	4	4.5	MHz	System clock divided by 4	
Instruction cycle time	t _{cyc}		0.89	1	10	μs		
Oscillation stabilization time (ceramic oscillator)	t _{RC}	OSC ₁ , OSC ₂	_	_	7.5	ms		1
Oscillation stabilization time (crystal oscillator)	t _{RC}	OSC ₁ , OSC ₂	_	_	40	ms		1
External clock high width	t _{CPH}	OSC ₁	92	_	_	ns		2
External clock low width	t _{CPL}	OSC ₁	92	_	_	ns		2
External clock rise time	t _{CPr}	OSC ₁	_	_	20	ns		2
External clock fall time	t _{CPf}	OSC ₁	_	_	20	ns		2
INT ₀ , INT ₁ , EVNB high	t _{IH}	INT₀, INT₁,	2	_	_	t _{cyc}		3
widths	7	EVNB						
\overline{INT}_{0} , \overline{INT}_{1} , EVNB low	t _{IL}	$\overline{\text{INT}}_0$, $\overline{\text{INT}}_1$,	2	_	_	\mathbf{t}_{cyc}		3
widths		EVNB						
RESET low width	$t_{\scriptscriptstyle RSTL}$	RESET	2	_	_	$t_{\rm cyc}$		4
STOPC low width	$t_{\mathtt{STPL}}$	STOPC	1	_	_	\mathbf{t}_{RC}		5
RESET rise time	t _{RSTr}	RESET		_	20	ms		4
STOPC rise time	t_{STPr}	STOPC	<u>-(</u>		20	ms		5
Input capacitance	C_{in}	All input pins except TEST	_	4	30	pF	$f = 1 \text{ MHz}, V_{in} = 0 \text{ V}$	
		TEST			30	pF	_	6
			_	_	180	pF	-	7

Notes: 1. The oscillation stabilization time is the period required for the oscillator to stabilize in the following situations:

- a. After V_{cc} reaches 4.0 V at power-on.
- b. After RESET input goes low when stop mode is cancelled.
- c. After STOPC input goes low when stop mode is cancelled.

To ensure the oscillation stabilization time at power-on or when stop mode is cancelled, $\overline{\text{RESET}}$ or $\overline{\text{STOPC}}$ must be input for at least a duration of t_{RC} .

When using a crystal or ceramic oscillator, consult with the manufacturer to determine what stabilization time is required, since it will depend on the circuit constants and stray capacitance.

- 2. Refer to figure 51.
- 3. Refer to figure 52.
- 4. Refer to figure 53.
- 5. Refer to figure 54.
- 6. Applies to the HD404314, HD404316, and HD404318.
- 7. Applies to the HD4074318.

Serial Interface Timing Characteristics (V_{CC} = 4.0 to 5.5 V, GND = 0 V, V_{disp} = V_{CC} – 40 V to V_{CC} , T_a = -20 to +75°C, unless otherwise specified)

During Transmit Clock Output

Item	Symbol	Pins	Min	Тур	Max	Unit	Test Condition	Note
Transmit clock cycle time	t _{Scyc}	SCK	1	_	_	t _{cyc}	Load shown in figure 56	1
Transmit clock high width	t_{SCKH}	SCK	0.4	_	_	$t_{\scriptscriptstyleScyc}$	Load shown in figure 56	1
Transmit clock low width	t _{SCKL}	SCK	0.4	_	_	t _{Scyc}	Load shown in figure 56	1
Transmit clock rise time	t _{SCKr}	SCK	_	_	80	ns	Load shown in figure 56	1
Transmit clock fall time	t _{SCKf}	SCK	_	_	80	ns	Load shown in figure 56	1
Serial output data delay time	t _{DSO}	SO	_	_	300	ns	Load shown in figure 56	1
Serial input data setup time	t _{ssi}	SI	100	_	_	ns	_	1
Serial input data hold time	t _{HSI}	SI	200	_	_	ns	_	1

During Transmit Clock Input

Item	Symbol	Pins	Min	Тур	Max	Unit	Test Condition	Note
Transmit clock cycle time	t _{Scyc}	SCK	1	$\overline{\wedge}$	_	t _{cyc}		1
Transmit clock high width	t _{SCKH}	SCK	0.4	-	—	t _{Scyc}		1
Transmit clock low width	t _{SCKL}	SCK	0.4		5	t _{Scyc}		1
Transmit clock rise time	t _{SCKr}	SCK	_	_	80	ns		1
Transmit clock fall time	t _{SCKf}	SCK	_	_	80	ns		1
Serial output data delay time	t _{DSO}	SO	_	_	300	ns	Load shown in figure 56	1
Serial input data setup time	t _{ssi}	SI	100	_	_	ns		1
Serial input data hold time	t _{HSI}	SI	200	_	_	ns	_	1

Note: 1. Refer to figure 55.

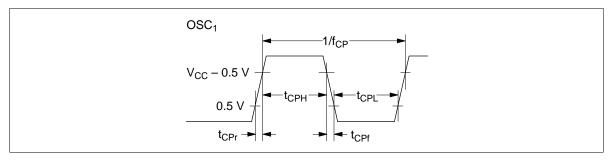


Figure 51 External Clock Timing

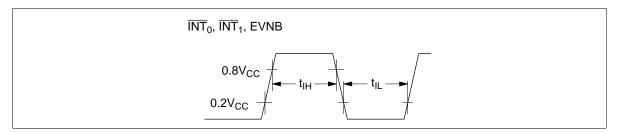


Figure 52 Interrupt Timing

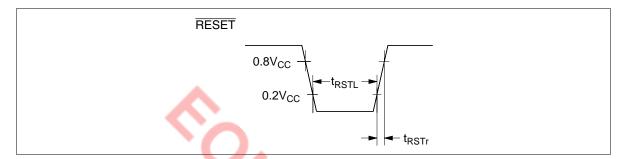


Figure 53 RESET Timing

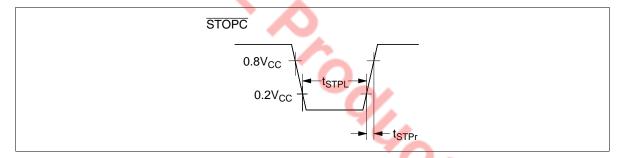


Figure 54 STOPC Timing

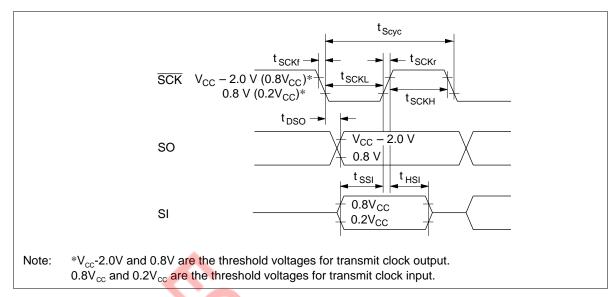


Figure 55 Serial Interface Timing

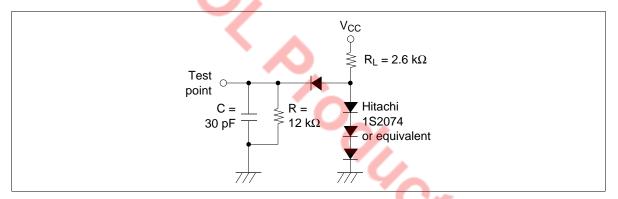
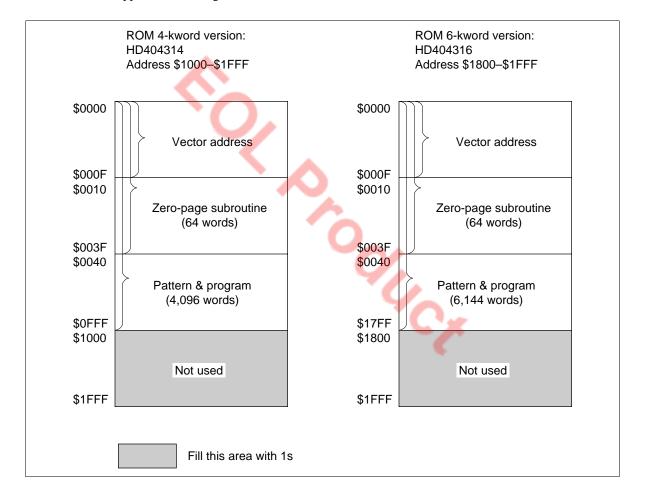


Figure 56 Timing Load Circuit


Notes on ROM Out

Please pay attention to the following items regarding ROM out.

On ROM out, fill the ROM area indicated below with 1s to create the same data size for the HD404314 and HD404316 as an 8-kword version

(HD404318). An 8-kword data size is required to change ROM data to mask manufacturing data since the program used is for an 8-kword version.

This limitation applies when using an EPROM or a data base.

$HD404314/HD404316/HD404318\ Option\ List$

Please check off the appropriate applications and enter the necessary information.

					Custor	ner				
1. ROM Size					Depart	ment				
☐ HD404314	4-	kword			Name					
☐ HD404316	6-	kword			ROM code name					
☐ HD404318	8-	kword			LSI nu	mber				
2. I/O Options										
D: Without pu	ll-down	resistance			E: With	pull-dow	n resista	ince		
		I/C	option	1				I/O	option	
Pin name	I/O	D	E		Pin	name	I/O	D	E	
D0/INT0	I/O				R1	R10	I/O			
D1/INT1	I/O	7		1		R11	I/O			
D2/EVNB	I/O					R12	I/O			
D3/BUZZ	I/O					R13	I/O			
D4/STOPC	I/O				R2	R20	I/O			
D5	I/O					R21	I/O			
D6	I/O)	R22	I/O			
D7	I/O				1	R23	I/O			
D8	I/O			P	R8	R80	I/O			
		1				R81	I/O			
						R82	I/O			
						R83	1/0		+	
3. RA1/Vdisp					RA	RA1	I	Selected	in option (3)	
·				7				1 00.0000	срс (с)	
RA1 without	pull-do	wn resistand	ce	4			O			
☐ Vdisp							G,			
Note: If even only	y one pi	n is selected	d with I/O option	n						
	/Vdisp r	nust be sele	cted to function	n						
as Vdisp.										
4. ROM Code Me	edia									
Please specify	the firs	st type below	/ (the upper bi	ts a	nd lower	bits are i	mixed to	gether), wher	n usina	
the EPROM o								<i>,</i> ,	J	
☐ FPROM: Th	e upper	hits and lov	ver bits are mi	xec	l together	The up	ner five h	nits and lower	r five hits	
			e same EPRO		_					
☐ EPROM: Th	e unner	hits and lov	ver bits are se	nar	ated The	unner fi	ve hits a	nd lower five	hits are	
l —			nt EPROMS.	pai	atcu. The	иррсі іі	ve bits a	na lower live	bits are	
5. System Oscilla	tor for C	09C1 and 0	SC2		6. Stop m	node		7. Package	<u> </u>	
		1		, 1 [
Ceramic osc		f =	MHz		Use	-		☐ DP-42		
Crystal oscil		f =	MHz			used		☐ FP-44	A	
External cloc	ck	f =	MHz							

Date of order

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.