
General Description

The AO4484 uses advanced trench technology to provide excellent $R_{DS(ON)}$ with low gate charge. This is an all purpose device that is suitable for use in a wide range of power conversion applications.

Features

$(V_{GS} = 10V)$
$(V_{GS} = 10V)$
$(V_{GS} = 4.5V)$

Parameter		Symbol	10 Sec	Steady State	Units	
Drain-Source Voltage		V _{DS}	40		V	
Gate-Source Voltage		V _{GS}	±20		V	
Continuous Drain	T _A =25℃		13.5	10		
Current ^A	T _A =70℃	I _D	10.8	8	۸	
Pulsed Drain Current ^B		I _{DM}	120		A	
Avalanche Current G		I _{AR}	23			
Repetitive avalanche energy L=0.3mH G		E _{AR}	79		mJ	
Power Dissipation ^A	T _A =25℃	-P _D	3.1	1.7	W	
	T _A =70℃	r D	2.0	1.1	VV	
Junction and Storage Temperature Range		T _J , T _{STG}	-55	to 150	C	

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient ^A	t ≤ 10s	Р	31	40	C/W	
Maximum Junction-to-Ambient A	Steady State	$R_{ extsf{ heta}JA}$	59	75	°C/W	
Maximum Junction-to-Lead ^C	Steady State	$R_{ ext{ hetaJL}}$	16	24	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC P	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_{D} = 250 \mu A, V_{GS} = 0 V$		40			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 40V, V_{GS} = 0V$				1	
			T _J = 55℃			5	μA
I _{GSS}	Gate-Body leakage current	$V_{DS} = 0V, V_{GS} = \pm 20V$				±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS} I_D = 250 \mu A$		1.7	2.2	3	V
I _{D(ON)}	On state drain current	$V_{GS} = 10V, V_{DS} = 5V$		120			А
		$V_{GS} = 10V, I_{D} = 10A$			8.2	10	
R _{DS(ON)}	Static Drain-Source On-Resistance		T_=125℃		12.5	16	mΩ
		$V_{GS} = 4.5V, I_{D} = 8A$			10	12.5	
g fs	Forward Transconductance	$V_{DS} = 5V, I_{D} = 10A$			75		S
V _{SD}	Diode Forward Voltage	$I_{\rm S} = 1$ A, $V_{\rm GS} = 0$ V			0.72	1	V
I _S	Maximum Body-Diode Continuous Curr	rent				2.5	А
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =20V, f=1MHz			1500	1950	pF
C _{oss}	Output Capacitance				215		pF
C _{rss}	Reverse Transfer Capacitance				135		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		2	3.5	5	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge	– V _{GS} =10V, V _{DS} =20V, I _D =10A			27.2	37	nC
Q _g (4.5V)	Total Gate Charge				13.6	18	nC
Q _{gs}	Gate Source Charge				4.5		nC
Q _{gd}	Gate Drain Charge				6.4		nC
t _{D(on)}	Turn-On DelayTime				6.4		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =20V, R_{L} = 2 Ω , R_{GEN} =3 Ω			17.2		ns
t _{D(off)}	Turn-Off DelayTime				29.6		ns
t _f	Turn-Off Fall Time				16.8		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =10A, dl/dt=100A/µ	S		30	40	ns
Q _{rr}	Body Diode Reverse Recovery Charge	, I _F =10A, dI/dt=100A/μs			19		nC

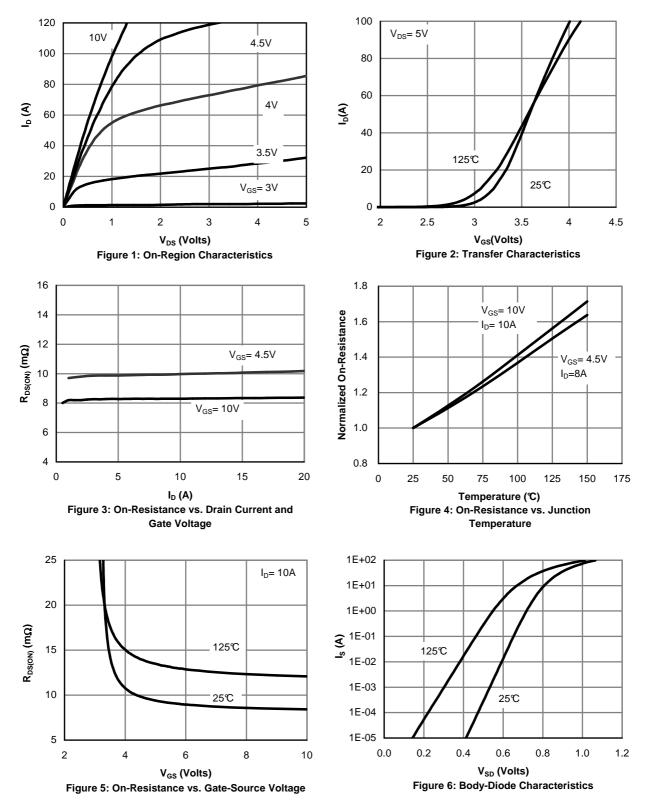
A: The value of R_{0JA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A = 25°C. The value in any given application depends on the user's specific board design.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\rm 6JA}$ is the sum of the thermal impedence from junction to lead R $_{\rm 6JL}$ and lead to ambient.

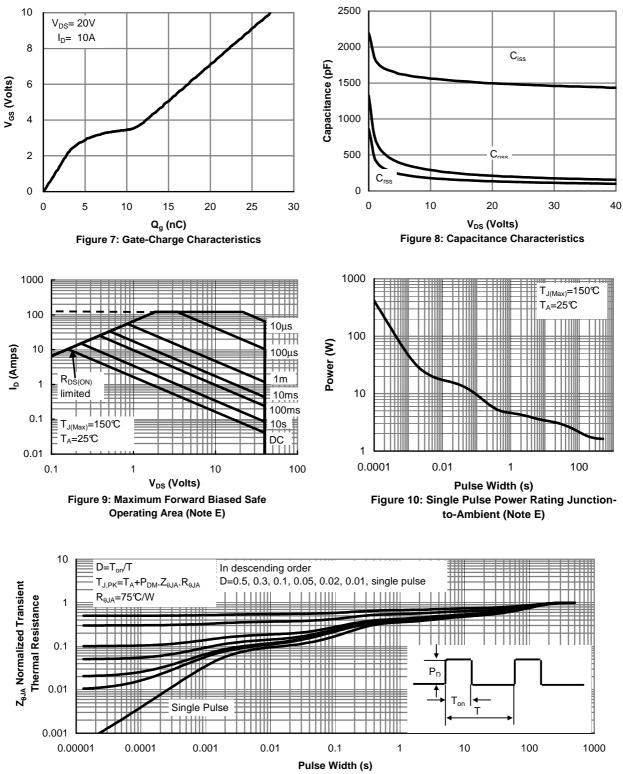
D. The static characteristics in Figures 1 to 6 are obtained using t \leqslant 300 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C. The SOA curve provides a single pulse rating.


F. The current rating is based on the t \leq 10s thermal resistance rating.

G. E_{AR} and I_{AR} ratings are based on low frequency and duty cycles to keep T_j =25C.

Rev1: Nov. 2010



TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

(