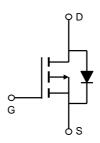
## **General Description**

The AO4485 uses advanced trench technology to provide excellent  $R_{DS(ON)}$  with low gate charge. This device is suitable for use as a DC-DC converter application.

### **Features**

$$V_{DS}(V) = -40V$$

 $I_D = -10A$   $(V_{GS} = -10V)$ 


 $R_{DS(ON)} < 15m\Omega$  (V<sub>GS</sub> = -10V)

 $R_{DS(ON)} < 20 \text{m}\Omega$  (V<sub>GS</sub> = -4.5V)



#### SOIC-8





| Absolute Maximum Ratings T <sub>J</sub> =25℃ unless otherwise noted |                     |                   |            |              |       |  |  |
|---------------------------------------------------------------------|---------------------|-------------------|------------|--------------|-------|--|--|
| Parameter                                                           |                     | Symbol            | 10 Sec     | Steady State | Units |  |  |
| Drain-Source Voltage                                                |                     | $V_{DS}$          | -40        |              | V     |  |  |
| Gate-Source Voltage                                                 |                     | $V_{GS}$          | ±20        |              | V     |  |  |
| Continuous Drain                                                    | T <sub>A</sub> =25℃ |                   | -12        | -10          |       |  |  |
| Current <sup>A</sup>                                                | T <sub>A</sub> =70℃ | I <sub>D</sub>    | -9         | -8           | ۸     |  |  |
| Pulsed Drain Current <sup>B</sup>                                   |                     | I <sub>DM</sub>   | -120       |              | A     |  |  |
| Avalanche Current <sup>G</sup>                                      |                     | $I_{AR}$          | -28        |              |       |  |  |
| Repetitive avalanche energy L=0.3mH <sup>G</sup>                    |                     | E <sub>AR</sub>   | 118        |              | mJ    |  |  |
| Power Dissipation <sup>A</sup>                                      | T <sub>A</sub> =25℃ | —P <sub>D</sub>   | 3.1        | 1.7          | W     |  |  |
|                                                                     | T <sub>A</sub> =70℃ | ' D               | 2.0        | 1.1          | V V   |  |  |
| Junction and Storage Temperature Range                              |                     | $T_J$ , $T_{STG}$ | -55 to 150 |              | C     |  |  |

| Thermal Characteristics               |              |                 |     |       |     |  |  |
|---------------------------------------|--------------|-----------------|-----|-------|-----|--|--|
| Parameter                             | Symbol       | Тур             | Max | Units |     |  |  |
| Maximum Junction-to-Ambient A         | t ≤ 10s      |                 | 31  | 40    | ℃/W |  |  |
| Maximum Junction-to-Ambient A         | Steady State | $R_{\theta JA}$ | 59  | 75    | C/W |  |  |
| Maximum Junction-to-Lead <sup>C</sup> | Steady State | $R_{	hetaJL}$   | 16  | 24    | C\M |  |  |



### Electrical Characteristics (T<sub>J</sub>=25℃ unless otherwise noted)

| Symbol                | Parameter                             | Conditions                                                         |      | Тур  | Max  | Units     |  |  |  |
|-----------------------|---------------------------------------|--------------------------------------------------------------------|------|------|------|-----------|--|--|--|
| STATIC PARAMETERS     |                                       |                                                                    |      |      |      |           |  |  |  |
| BV <sub>DSS</sub>     | Drain-Source Breakdown Voltage        | $I_D = -250 \mu A, V_{GS} = 0 V$                                   | -40  |      |      | V         |  |  |  |
| I <sub>DSS</sub>      | Zero Gate Voltage Drain Current       | $V_{DS} = -40V, V_{GS} = 0V$                                       |      |      | -1   |           |  |  |  |
|                       |                                       | T <sub>J</sub> = 55℃                                               |      |      | -5   | μΑ        |  |  |  |
| $I_{GSS}$             | Gate-Body leakage current             | $V_{DS} = 0V, V_{GS} = \pm 20V$                                    |      |      | ±100 | nA        |  |  |  |
| $V_{GS(th)}$          | Gate Threshold Voltage                | $V_{DS} = V_{GS} I_D = -250\mu A$                                  | -1.7 | -1.9 | -2.5 | V         |  |  |  |
| $I_{D(ON)}$           | On state drain current                | $V_{GS} = -10V, V_{DS} = -5V$                                      | -120 |      |      | Α         |  |  |  |
| R <sub>DS(ON)</sub>   | Static Drain-Source On-Resistance     | $V_{GS} = -10V, I_D = -10A$                                        |      | 12.5 | 15   |           |  |  |  |
|                       |                                       | T <sub>J</sub> =125℃                                               |      | 19   | 23   | $m\Omega$ |  |  |  |
|                       |                                       | $V_{GS} = -4.5V, I_D = -8A$                                        |      | 16   | 20   |           |  |  |  |
| g <sub>FS</sub>       | Forward Transconductance              | $V_{DS} = -5V, I_{D} = -10A$                                       |      | 25   |      | S         |  |  |  |
| $V_{SD}$              | Diode Forward Voltage                 | $I_S = -1A, V_{GS} = 0V$                                           |      | -0.7 | -1   | V         |  |  |  |
| Is                    | Maximum Body-Diode Continuous Current |                                                                    |      |      | -3   | Α         |  |  |  |
| DYNAMIC               | PARAMETERS                            |                                                                    |      |      |      |           |  |  |  |
| C <sub>iss</sub>      | Input Capacitance                     |                                                                    |      | 2500 | 3000 | pF        |  |  |  |
| C <sub>oss</sub>      | Output Capacitance                    | $V_{GS}$ =0V, $V_{DS}$ =-20V, f=1MHz                               |      | 260  |      | pF        |  |  |  |
| $C_{rss}$             | Reverse Transfer Capacitance          |                                                                    |      | 180  |      | pF        |  |  |  |
| $R_g$                 | Gate resistance                       | $V_{GS}$ =0V, $V_{DS}$ =0V, f=1MHz                                 | 2.5  | 4    | 6    | Ω         |  |  |  |
| SWITCHI               | NG PARAMETERS                         |                                                                    |      |      |      |           |  |  |  |
| Q <sub>g</sub> (10V)  | Total Gate Charge                     |                                                                    |      | 42   | 55   | nC        |  |  |  |
| Q <sub>g</sub> (4.5V) | Total Gate Charge                     | V <sub>GS</sub> =-10V, V <sub>DS</sub> =-20V, I <sub>D</sub> =-10A |      | 18.6 |      | nC        |  |  |  |
| $Q_{gs}$              | Gate Source Charge                    | Vgg= 10 V, Vbg= 20 V, 1b= 10 / V                                   |      | 7    |      | nC        |  |  |  |
| $Q_{gd}$              | Gate Drain Charge                     |                                                                    |      | 8.6  |      | nC        |  |  |  |
| t <sub>D(on)</sub>    | Turn-On DelayTime                     |                                                                    |      | 9.4  |      | ns        |  |  |  |
| t <sub>r</sub>        | Turn-On Rise Time                     | V <sub>GS</sub> =-10V, V <sub>DS</sub> =-20V,                      |      | 20   |      | ns        |  |  |  |
| $t_{D(off)}$          | Turn-Off DelayTime                    | $R_L=2\Omega$ , $R_{GEN}=3\Omega$                                  |      | 55   |      | ns        |  |  |  |
| t <sub>f</sub>        | Turn-Off Fall Time                    |                                                                    |      | 30   |      | ns        |  |  |  |
| t <sub>rr</sub>       | Body Diode Reverse Recovery Time      | I <sub>F</sub> =-10A, dI/dt=100A/μs                                |      | 38   | 49   | ns        |  |  |  |
| $Q_{rr}$              | Body Diode Reverse Recovery Charge    | I <sub>F</sub> =-10A, dI/dt=100A/μs                                |      | 47   |      | nC        |  |  |  |

A: The value of R  $_{\theta JA}$  is measured with the device mounted on  $1 \text{in}^2$  FR-4 board with 2oz. Copper, in a still air environment with  $T_A$  = 25°C. The value in any given application depends on the user's specific board design.

Rev1: Nov. 2010

B: Repetitive rating, pulse width limited by junction temperature.

C. The R  $_{\theta JA}$  is the sum of the thermal impedence from junction to lead R  $_{\theta JL}$  and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using t  $\le$  300 $\mu$ s pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T<sub>A</sub>=25℃. The SOA curve provides a single pulse rating.

F. The current rating is based on the  $t \leqslant 10 s$  thermal resistance rating.

G. E<sub>AR</sub> and I<sub>AR</sub> ratings are based on low frequency and duty cycles to keep T<sub>j</sub>=25C.

### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

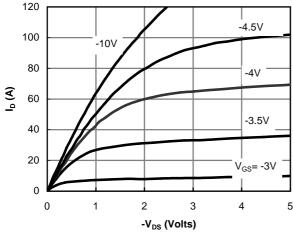



Figure 1: On-Region Characteristics

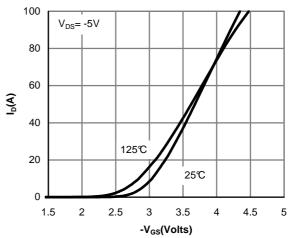



Figure 2: Transfer Characteristics

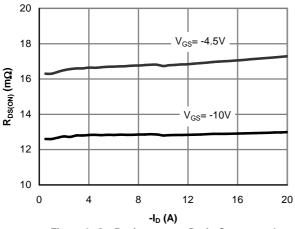



Figure 3: On-Resistance vs. Drain Current and Gate Voltage

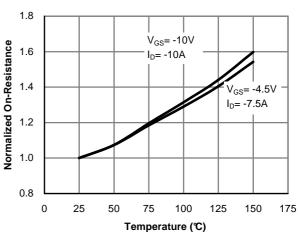



Figure 4: On-Resistance vs. Junction Temperature

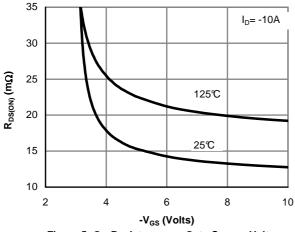



Figure 5: On-Resistance vs. Gate-Source Voltage




Figure 6: Body-Diode Characteristics



#### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

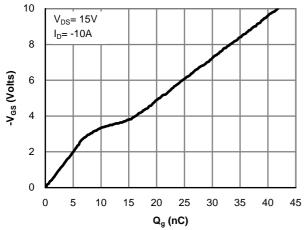



Figure 7: Gate-Charge Characteristics

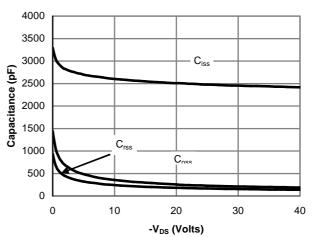



Figure 8: Capacitance Characteristics

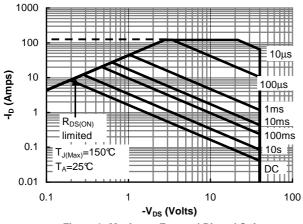



Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

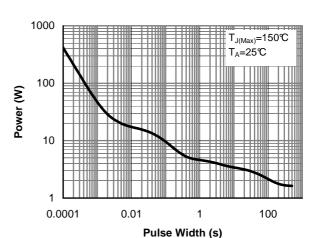



Figure 10: Single Pulse Power Rating Junctionto-Ambient (Note E)

Į(

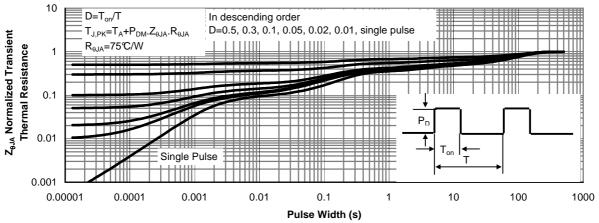



Figure 11: Normalized Maximum Transient Thermal Impedance(Note E)