

Description

The AMS LM358 consists two independent high gain operational amplifiers with internal compensated. The two op-amps operate over a wide voltage range from a single power supply. Also use a split power supply. The device has low power supply voltage. The low power drain also makes the AMS LM358 a good choice for battery operation.

When your project calls for a traditional op-amp function, now you can streamline your design with a simple any digital system or personal computer application, without requiring an extra 15V power supply just to have the interface electronics you need.

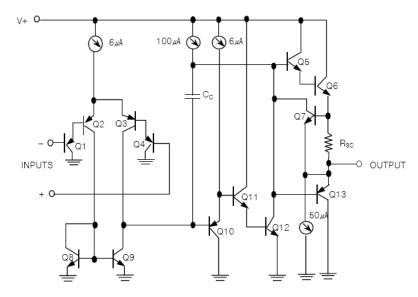
The AMS LM358 is a versatile, rugged workhorse with a thousand-and-one use, from amplifying signals from a variety of transducers to drain blocks, or any op-amp function. The attached pages offer some recipes that will have your project cooking in no time.

Internal Diagram Logic Diagram

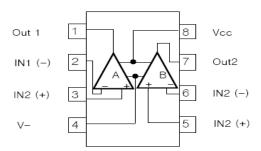
Features

- Internally frequency compensated for unity gain
- Input common-mode voltage range includes ground
- Large output voltage swing:0V DC to Vcc-1.5V DC
- Power drain suitable for battery operation
- Differential inpit voltage and offset current
- ♦ Wide gain bandwidth product: 5 MHz Slew rate: 2V/µs
- ♦ Package outline: DIP8, SOIC8

Applications


- ♦ Cordless Telephone
- ♦ Switching Power Supply
- ♦ Battery Chargers

IN1(-)
$$\frac{2}{3}$$
 1 Out 1


IN2(-) $\frac{6}{5}$ 7 Out 2

Equivalent Circuit

Pin Description

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
Vcc	Power supply Voltage	30 or±15	V
V_{IDR}	Input Differential Voltage Range(a)	±30	V
V_{ICR}	Input Common Mode Voltage Range	-0.3 to 30	V
T _{OPR}	Operating Temperature Range	-40 to 80	$^{\circ}$
Tstg	storage Temperature (TA=+25°C)	-55 to +125	$^{\circ}$ C
T _L	Lead Temperatur,1mm from Case for 10 Seconds	280	$^{\circ}\!\mathbb{C}$

Maximum Ratings are those Values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions. Notes:

a. Split Power Supplies.

Electrical Characteristics (At specified free-air temperature, Vcc= 5V [unless otherwise noted])

Symbol	Parameter	Test conditions*		Min.	Тур.	Max.	Unit
V ₁₀	Input Offset voltage	Vcc=5V to MAX, Vic=V _{ICR Min} , Vo=1.4V	25℃		3	7	mV
			Full range			9	m.,
αV ₁₀	Average temperature coefficient of input offset voltage		Full range		10		PA/℃
${ m I}_{1B}$	Input bias Current	Vo=1.4V	25℃ Full range		-20	-250 -500	nA
V_{ICR}	Common-mode input	Vcc=5V to MAX	25℃	0 to Vcc-1.5			v
	vortage range		Full range	0 to Vcc-2			
		RL≥2KΩ	25℃	Vcc-1.5			
V_{OH}	High-level output	Vcc=15V, R_L =2K Ω	Full range	12		7 v	V
voltag	voltage	Vcc=15V, R_L =10K Ω	Full range	12. 5	13. 5] '	
Vol	Low-level output voltage	Vcc=5V, R _L =10KΩ	Full range		5	20	mV
	Large-signal	Vcc=15V,	25℃	25	100		V/mV
A _{VD}	differential voltage amplification	Vo=1V to 11V, R _L ≥2KΩ	Full range	15			
CMRR	Common-mode rejection ratio	Vcc=15V, V _{CM} =0V to (V _{CC} -1.5V)	25℃	65	85		dB
K _{svr}	Supply voltage rejection ratio (△Vcc/△V₁₀)	Vcc=15v, R _L ≥2KΩ, V ₀ =1V to 11V	25℃	85	100		dB
Vo1/Vo2	Crosstalk attenuation	f=1 kHz to 20 kHz	25°C			120	dB
	Output current	$V_{IN+}=1V$,	25°C	-20	-30		- mA
10		V _{IN} =0V, Vcc=15V, Vo=2V	Full range	-10			
		V _{IN+} =0V,	25℃	5	8		
		V _{IN} =1V, Vcc=15V, Vo=2V	Full range	3			
los	Short-circuit output current	Vcc at 5V GND at -5V, Vo=0	25℃		+40	+60	mA
lcc	supply current(two amplifiers)	Vo=-2.5V, No load	Full range		0. 7	1. 2	mA
		Vcc=MAX, Vo= 0.5Vcc, No load	Full range		1	2	

Typical Performance Characteristics

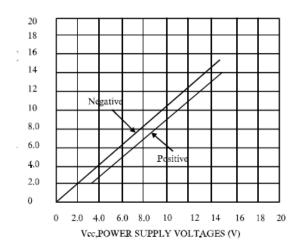


Figure 1.Input Voltage Range

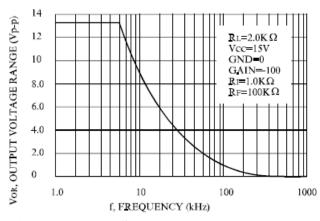


Figure 3. Large-Signal Frequency Response

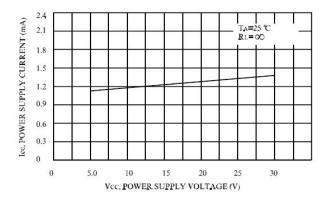


Figure 5. Power Supply Current versus Power

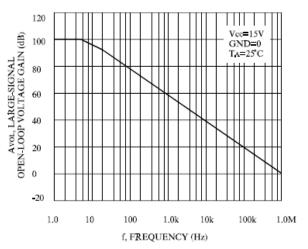


Figure 2. Open-Loop Frequency

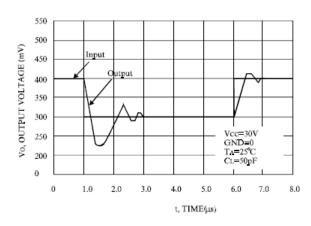


Figure 4. Small-Signal Voltage Follower Pulse Response(Noninverting)

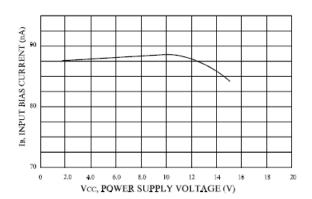
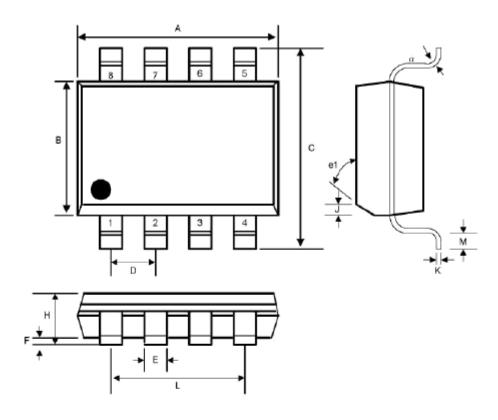
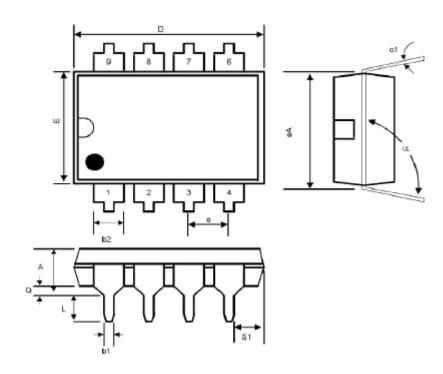



Figure 6. Input Bias Current versus Power Supply Voltage

PACKAGE DESCRIPTION


SOP8 PACKAGE OUTLINE DIMENSIONS

SYMBOL	INC	HES	MILLIN	ETERS	NOTES
	MIN	MAX	MIN	MAX	NOTES
A	0.188	0.197	4.80	5.00	
В	0.149	0.158	3.80	4.00	-
C	0.228	0.244	5.80	6.20	-
D	0.050	BSC	1.27	BSC	-
E	0.013	0.020	0.33	0.51	-
F	0.004	0.010	0.10	0.25	-
H	0.053	0.069	1.35	1.75	-
J	0.011	0.019	0.28	0.48	
K	0.007	0.010	0.19	0.25	-
M	0.016	0.050	0.40	1.27	
L	0.150 REF		3.81 REF		-
e1	45°		45°		-
а	\mathbf{o}_0	80	00	80	-

DIP8 PACKAGE OUTLINE DIMENSIONS

SYMBOL	INCHES		MILLIMETERS		NOTES	
	MIN	MAX	MIN	MAX	NOTES	
A	-	0.200	-	5.08	- 1	
b1	0.014	0.023	0.36	0.58	-	
b2	0.045	0.065	1.14	1.65	-	
c1	0.008	0.015	0.20	0.38	-	
D	0.355	0.400	9.02	10.16	÷	
E	0.220	0.310	5.59	7.87	+	
e	0.100 BSC		2.54 BSC		-	
eA	0.300 BSC		7.62 BSC			
$\mathbf{L}_{:}$	0.125	0.200	3.18	5.08	-	
Q	0.015	0.060	0.38	1.52	+	
s1	0.005	-	0.13	-	-	
α	90 ⁰	1050	90 ⁰	1050	-	

Disclaimer:

- AMS reserves the right to make changes to the information herein for the improvement of the design and performance
 without further notice! Customers should obtain the latest relevant information before placing orders and should verify
 that such information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using AMS products
 in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety
 standards strictly and take essential measures to avoid situations in which a malfunction or failure of such AMS products
 could cause loss of body injury or damage to property.
- AMS will supply the best possible product for customers!