

Power MOSFET

-20 V, -3.16 A, Single P-Channel TSOP-6

Features

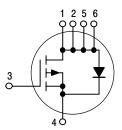
- Ultra Low R_{DS(on)} to Improve Conduction Loss
- Low Gate Charge to Improve Switching Losses
- TSOP-6 Surface Mount Package
- This is a Pb-Free Device

Applications

- High Side Switch in DC-DC Converters
- Battery Management

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	-20	V
Gate-to-Source Voltage	Э		V_{GS}	±12	V
Continuous Drain	Steady	T _A = 25°C	I _D	-2.5	Α
Current (Note 1)	State	T _A = 85°C		-1.8	
	t = 10 s	T _A = 25°C		-3.16	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	0.98	W
	t = 10 s			1.60	
Continuous Drain	Steady	T _A = 25°C	I _D	-1.8	Α
Current (Note 2)	State	T _A = 85°C		-1.3	
Power Dissipation (Note 2)		T _A = 25°C	P _D	0.51	W
Pulsed Drain Current	t _p = 10 μs		I _{DM}	-13	Α
Operating Junction and Storage Temperature		T _J , T _{STG}	–55 to 150	°C	
Source Current (Body Diode)			I _S	-1.5	Α
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C


Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
- Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.0751 in sq)

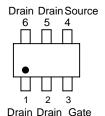
NTGS3441P

V _{(BR)DSS}	R _{DS(ON)} TYP	I _D MAX		
	91 mΩ @ 4.5 V			
–20 V	144 mΩ @ 2.7 V	–3.16 A		
	188 mΩ @ 2.5 V			

P-Channel

MARKING DIAGRAM

TSOP-6 CASE 318G STYLE 1



PT = Device Code M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping [†]			
NTGS3441PT1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel			

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

NTGS3441P

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ heta JA}$	128	°C/W
Junction-to-Ambient - t = 10 s (Note 3)	$R_{ heta JA}$	78	
Junction-to-Ambient - Steady State (Note 4)	$R_{ hetaJA}$	244	

- 3. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
 4. Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = TBD in sq)

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•			-	•	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				16		mV/ °C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V},$ $V_{DS} = -20 \text{ V}$	T _J = 25°C			-1	μΑ
			T _J = 125°C			-10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	= ±12 V			±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	-250 μA	0.6		1.6	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				3.2		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = -3.0 \text{ A}$			91	110	mΩ
		$V_{GS} = 2.7 \text{ V, } I_D = -1.5 \text{ A}$			144	165	
		$V_{GS} = 2.5 \text{ V}, I_D = -1.5 \text{ A}$			188		1
Forward Transconductance	9FS	$V_{DS} = -15 \text{ V}, I_D = -1.5 \text{ A}$			4.0		S
CHARGES, CAPACITANCES AND GATE RES	SISTANCE	•		•			
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = -15 V			345		pF
Output Capacitance	C _{OSS}				150		
Reverse Transfer Capacitance	C _{RSS}				40		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = -10 \text{ V}; I_D = -3.0 \text{ A}$			3.25	6.0	nC
Threshold Gate Charge	Q _{G(TH)}				0.3		
Gate-to-Source Charge	Q_{GS}				0.6		
Gate-to-Drain Charge	Q_{GD}				1.4		1
SWITCHING CHARACTERISTICS (Note 6)							
Turn-On Delay Time	t _{d(ON)}				7.0	12	ns
Rise Time	T _r	$V_{GS} = 4.5 \text{ V}, V_{DI}$	_D = -10 V,		14	25	1
Turn-Off Delay Time	t _{d(OFF)}	$I_D = -1.5 \text{ A}, R_G = 4.7 \Omega$			13	25	1
Fall Time	T _f				4.0	8.0	
DRAIN-SOURCE DIODE CHARACTERISTICS	3						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V},$ $I_{S} = -3.0 \text{ A}$	T _J = 25°C		0.8	1.2	V
			T _J = 125°C		0.7		1
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V}, d_{IS}/d_t = 100 \text{ A/}\mu\text{s},$ $I_S = -3.0 \text{ A}$			25		ns
Charge Time	Ta				10		1
Discharge Time	T _b				15		1
Reverse Recovery Charge	Q _{RR}				15		nC

- 5. Switching characteristics are independent of operating junction temperatures
- 6. Pulse Test: pulse width = 300 μ s, duty cycle = 2%