NTS2101P

Power MOSFET

-8.0 V, -1.4 A, Single P-Channel, SC-70

Features

- Leading Trench Technology for Low R_{DS(on)} Extending Battery Life
- -1.8 V Rated for Low Voltage Gate Drive
- SC-70 Surface Mount for Small Footprint (2 x 2 mm)
- Pb–Free Package is Available

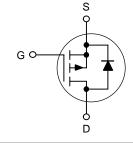
Applications

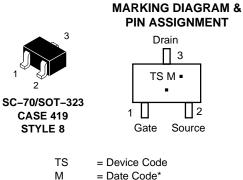
- High Side Load Switch
- Charging Circuit
- Single Cell Battery Applications such as Cell Phones, Digital Cameras, PDAs, etc.

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Parame	Parameter						
Drain-to-Source Voltage	V _{DSS}	-8.0	V				
Gate-to-Source Voltage	V _{GS}	±8.0	V				
Continuous Drain	Steady $T_A = 25^{\circ}C$		۱ _D	-1.4	А		
Current (Note 1)	State	$T_A = 70^{\circ}C$		-1.1			
	t ≤ 5 s	$T_A = 25^{\circ}C$		-1.5	А		
Power Dissipation (Note 1)	$\begin{array}{c} \text{Steady} \\ \text{State} \end{array} T_{\text{A}} = 25^{\circ}\text{C}$		P _D	0.29	W		
	t ≤ 5 s			0.33	W		
Pulsed Drain Current	tp =	= 10 μs	I _{DM}	-3.0	А		
Operating Junction and S	T _J , T _{STG}	–55 to 150	°C				
Source Current (Body Dio	۱ _S	-0.46	А				
Lead Temperature for Sol (1/8" from case for 10		rposes	ΤL	260	°C		

THERMAL RESISTANCE RATINGS


Parameter	Symbol	Мах	Units
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	430	°C/W
Junction–to–Ambient – t \leq 5 s (Note 1)	$R_{\theta JA}$	375	


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

V _{(BR)DSS}	R _{DS(on)} Тур	I _D Max
	65 mΩ @ -4.5 V	
-8.0 V	78 mΩ @ –2.5 V	–1.4 A
	117 mΩ @ –1.8 V	

= Pb-Free Package

 (Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTS2101PT1	SOT-323	3000/Tape & Reel
NTS2101PT1G	SOT-323 (Pb-Free)	3000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NTS2101P

2500 - 11-

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D =$	= –250 μA	-8.0	-20		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				-10		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$			-1.0	μΑ
	$V_{\rm DS} = -6.4 \rm V$	$T_J = 70^{\circ}C$			-5.0		
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 8.0 V$				±100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -250 \ \mu A$		-0.45	-0.7		V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				2.6		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -1.0 \text{ A}$			65	100	mΩ
		$V_{GS} = -2.5 V,$	I _D = -0.5 A		78	140	1
		V _{GS} = -1.8 V,	I _D = -0.3 A		117	210	1

CHARGES AND CAPACITANCES

Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = -8.0 V	640	pF
Output Capacitance	C _{OSS}	V _{DS} = -8.0 V	120	
Reverse Transfer Capacitance	C _{RSS}		82	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -5.0 \text{ V}, V_{DD} = -5.0 \text{ V},$ $I_{D} = -1.0 \text{ A}$	6.4	nC
Threshold Gate Charge	Q _{G(TH)}	$I_{\rm D} = -1.0 \rm A$	0.7	
Gate-to-Source Charge	Q _{GS}		1.0	
Gate-to-Drain Charge	Q _{GD}		1.5	

SWITCHING CHARACTERISTICS (Note 3)

Turn–On Delay Time	t _{d(ON)}	$V_{GS} = -4.5 \text{ V}, V_{DD} = -4.0 \text{ V},$	6.2	ns
Rise Time	t _r	$I_{\rm D} = -1.0$ A, $R_{\rm G} = 6.2 \ \Omega$	15	
Turn-Off Delay Time	t _{d(OFF)}		26	
Fall Time	t _f		18	

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$ $I_{S} = -0.3 A$	$T_J = 25^{\circ}C$	-0.62	-1.2	V
		$I_{\rm S} = -0.3$ A	T _J = 125°C	-0.51		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_{SD}/dt = 100 \text{ A/}\mu\text{s},$ $I_{S} = -1.0 \text{ A}$		23.4		ns
Charge Time	Ta			7.7		
Discharge Time	Т _b			15.7		
Reverse Recovery Charge	Q _{RR}	1		9.5		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.