

Integrated circuit of temperature sensor

Microcircuit KK135Z is precision temperature sensor with calibration capacity. Microcircuit operates as Zener diode with brake down voltage being in direct proportion to to absolute temperature (10 mV/^oK). Full dynamic resistance of the circuit is less than 1 Ohm at operation current 450 μ A...5 mA. The sensor calibrated at the temperature 25^oC,has typical error less than 1^oC in the temperature range above 100^oC. The peculiarity of the circuit KK135Z is the linear dependence of output voltage versus temperature.

IC features calibration in ^oK initial measurement accuracy 1^oK range of operating supply current from 450 µA to 5 mA Full dynamic resistance less than 1 Ohm

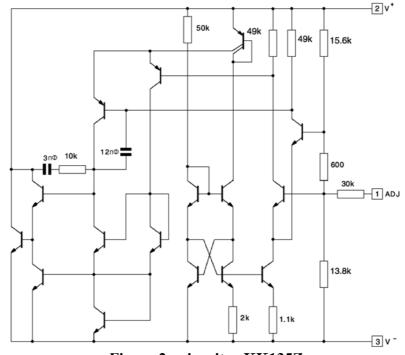


Figure 2 - circuitry KK135Z.

Table 1 - Maximum ratings

Name of parameter	Symbol	Standard		Unit of
		min	max	measurement
IC current			15	mA
reverse	I _R	-	10	
direct	$\mathbf{I_F}$			
Air operation temperature: *	T _{OPER}			°C
- constant mode		- 55	150	
- short-time		150	200	
Storage temperature	T _{stg}	-65	150	°C

Note - $*T_J \le 150^{\circ}C$

Table 2 – Temperature parameters.

Name of parameter	Symbol		Standar	d	Test	Temperature	Unit
			Туре	max	conditions	°C	
		min					
output voltage, V	U _{OUT}	2,95	2,98	3,01	$I_R = 1 \text{ mA}$	25	V
Non-calibrated temperature	ΔT_1	-	1	3	$I_R = 1 \text{ mA}$	25	°C
error			2	5		-55 ÷ 150	
temperature error at calibration 25° C	ΔT_2	-	0,5	1,5	$I_R = 1 \text{ mA}$	-55 ÷ 150	°C
Calibrated error in extended temperature range	ΔT_3	-	2	-	T _{case} =T _{max} periodical	-55 ÷ 150	°C
Non-linearity of temperature characteristic	ΔT_4	-	0,3	1	$I_R = 1 \text{ mA}$	-55 ÷ 150	°C

Table 3 – Electrical parameters.

Name of parameter	Symbol		Standard		Test	Temperatu	
		min	type.	max	conditions	re	
						°C	
Measurement of output voltage in	ΔU_{OUT}	-	2,5	10	$0,45 \text{ mA} \le I_R$	-55 ÷ 150	mV
supply currents range					$\leq 5 \text{ mA}$		
Dynamic impedance	ΔR_1	-	0,5	-	$I_R = 1 \text{ mA}$	25	Ohm
Temperature coefficient of output	ТКН	-	+10	-	-	25	mV/°C
voltage							
Time constant:	τ_{T}				-	-55 ÷ 150	С
-still air		_	80	-			
-speed of air is 0,5 m/c		_	10	-			
- agitated oil		-	1	-			
		-					
Time stability	Т _{СТАБ}	-	0,2	-	-	125	°C/
							1000ч

Note - Precise measurements done in agitated oil bath. For other conditions there should be taking into consideration self-heating .

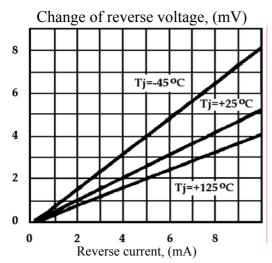
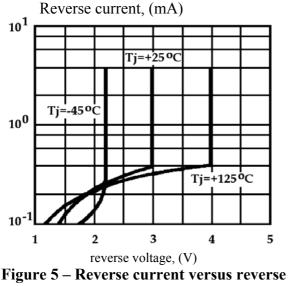
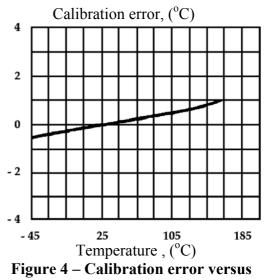




Figure 3 – Reverse voltage versus reverse current

voltage

temperature

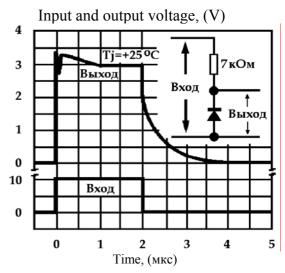


Figure 6 – Output signal response time

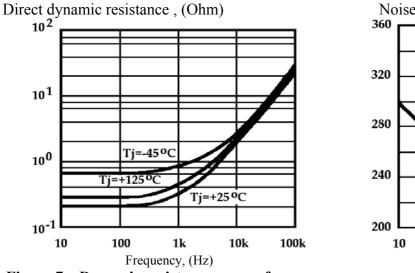


Figure 7 – Dynamic resistance versus frequency Зависимость динамического сопротивления от частоты

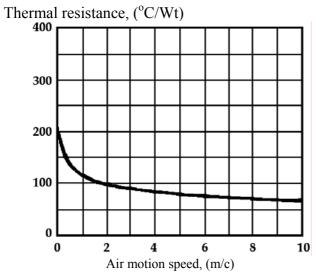
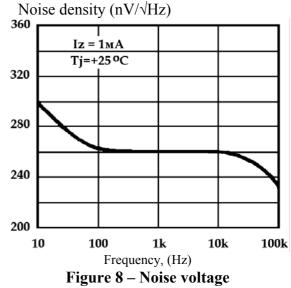



Figure 9 – Thermal resistance versus air motion speed

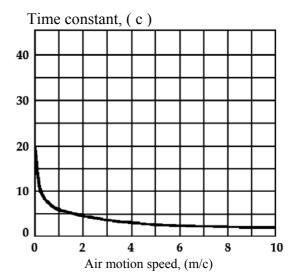
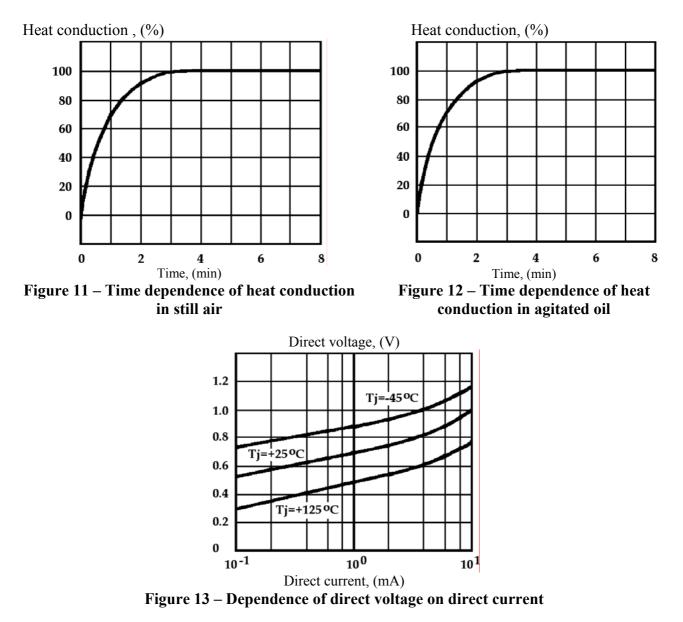



Figure 10 – Time constant versus air motion speed

Information for application.

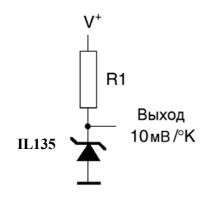
There is a simple technique of the device calibration for improving precision of temperature measurement (see typical application circuits).

Calibration of the device occurs in one spot as the IC output voltage is proportional to absolute temperature with sensor voltage extrapolation to 0 V at 0°K (-273,15°C). The errors in dependence of output voltage on temperature are determined only by characteristic incline. Therefore bias calibration at one temperature corrects errors in the whole temperature range. Output voltage of calibrated or non calibrated circuit may be derived from the following equation:

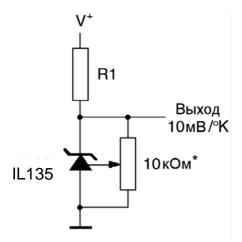
$$V_{OT} = VO_{TO} \frac{T}{To};$$

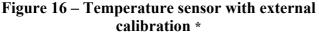
where T – unknown temperature;

 T_O – reference temperature (in ^oK).



Nominally IC output calibrated to the value 10 mV/ °K.


To ensure measurement precision they apply some rules. Degradation of the precision when selfheating is proper to any devices of temperature sensors. The circuit should operate at low operating current but sufficient for controlling the sensor and its calibration circuit at maximum operating temperature.


When using the sensor in the field with constant thermal resistance, error when self-heating may be reduced by external calibration. It can be done at the circuit bias when applying temperaturestabilized current. Thus heating will be proportional to Zener diode voltage. In this case error when self-heating is proportional to absolute temperature as the error of scaling coefficient.

Typical application circuits.

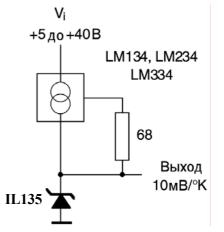


Рисунок 15 – Схема применения с широким диапазоном напряжения питания

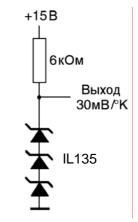
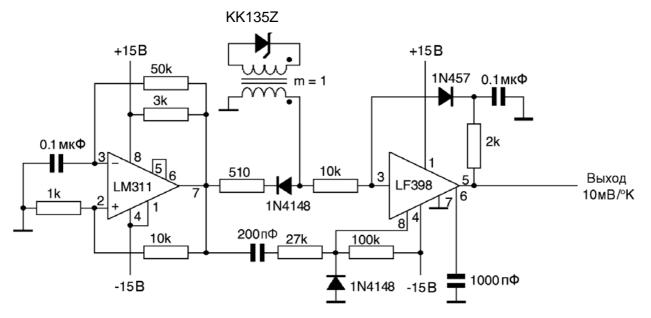
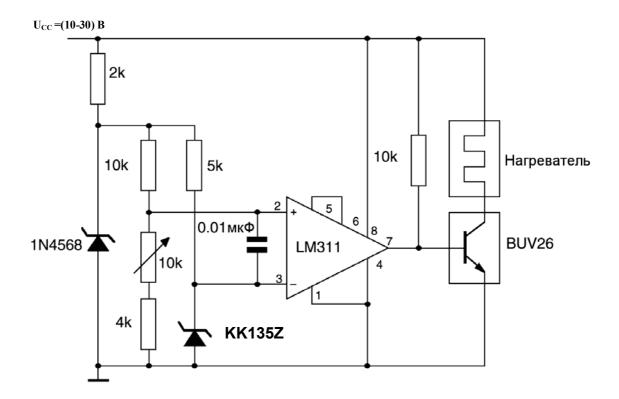
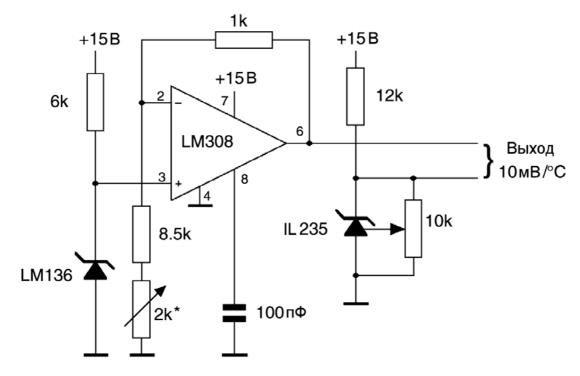


Figure 17 – Sequential sensor connection for increase of temperature bias voltage–

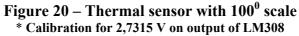

Figure 18 – Circuit of isolated temperature sensor

Figure 19 – Temperature regulator

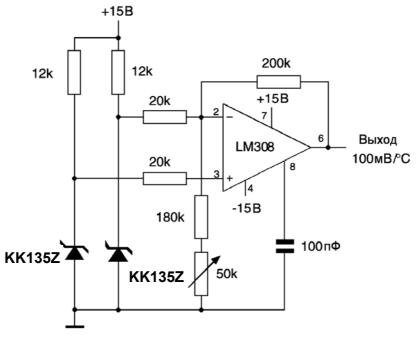
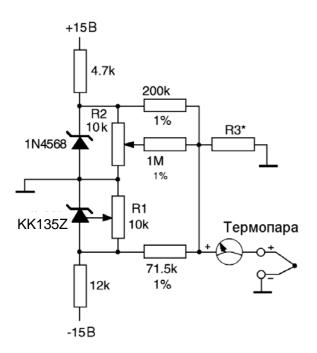



Figure 21 – Differential temperature sensor

J377 Ohm52,3 μV/°CT308 Ohm42,8 μV/°CK293 Ohm40,8 μV/°CS45,8 Ohm6,4 μV/°CAdjustment: compensation of sensor and resistor tolerances1 Selection of 1N45682 Adjustment of voltage drop on element R3 by the resistor R1 to obtain the value of thermoelectrical coefficient, multiplied by the ambient temperature (in K degrees).
K293 Ohm40,8 μV/°CS45,8 Ohm6,4 μV/°CAdjustment: compensation of sensor and resistor tolerances1 Selection of 1N45682 Adjustment of voltage drop on element R3 by the resistor R1 to obtain the value of thermoelectrical coefficient, multiplied by the ambient temperature
S45,8 Ohm6,4 μV/°CAdjustment: compensation of sensor and resistor tolerances1 Selection of 1N45682 Adjustment of voltage drop on element R3 by the resistor R1 to obtain the value of thermoelectrical coefficient, multiplied by the ambient temperature
Adjustment: compensation of sensor and resistor tolerances 1 Selection of 1N4568 2 Adjustment of voltage drop on element R3 by the resistor R1 to obtain the value of thermoelectrical coefficient, multiplied by the ambient temperature
tolerances 1 Selection of 1N4568 2 Adjustment of voltage drop on element R3 by the resistor R1 to obtain the value of thermoelectrical coefficient, multiplied by the ambient temperature
3 Selection of 135Z and adjustment of R2 for setting voltage drop on the element R3 according to thermocouple type J - 14,32 mV $K - 11,17 mVT - 11,79 mV$ $S - 1,768 mV$

Figure 22 – Circuit of cold junction compensation (compensation for ground thermocouple) *Value of R3 nominal for this thermocouple type

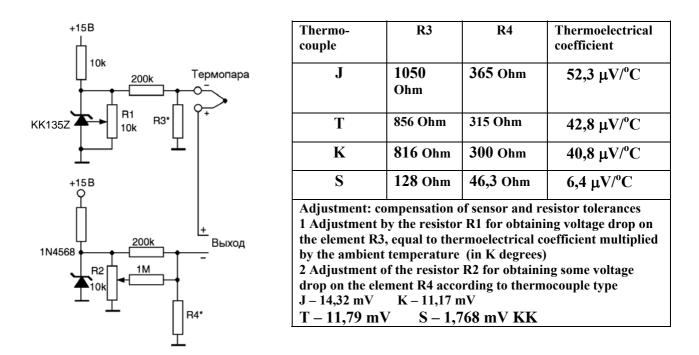
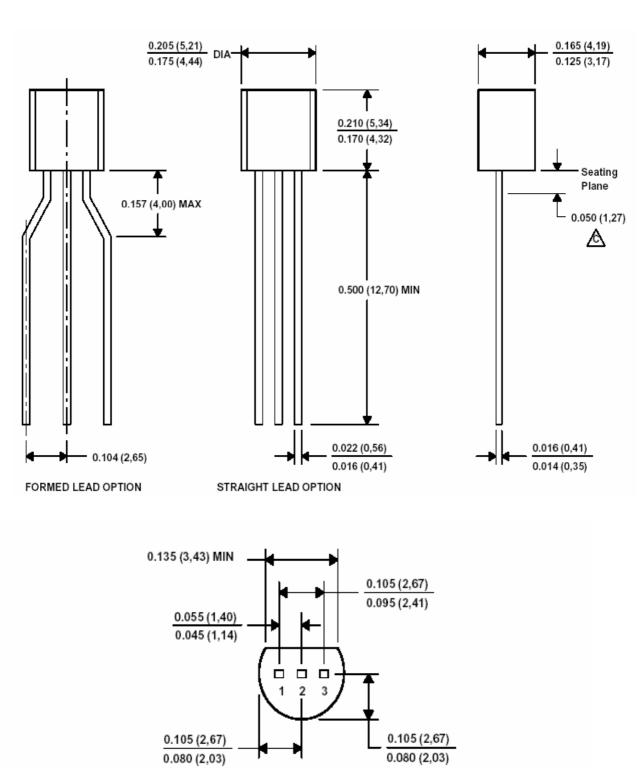



Figure 23 – Circuit of cold junction compensation with unipolar supply *Value of R3 and R4 nominals for this thermocouple type

Package Dimensions

TO-92