Product specification

150 V, 1.6 A, 261 mΩ

TY Semicondutor[®]

Features

- Max r_{DS(on)} = 261 mΩ at V_{GS} = 10 V, I_D = 1.6 A
- Max $r_{DS(on)}$ = 359 m Ω at V_{GS} = 6 V, I_D = 1.4 A
- High performance trench technology for extremely low r_{DS(on)}
- High power and current handling capability in a widely used surface mount package
- Fast switching speed
- 100% UIL tested
- RoHS Compliant

Application

PD Switch

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage		150	V	
V _{GS}	Gate to Source Voltage		±20	V	
1	-Continuous	(Note 1a)	1.6	•	
D	-Pulsed		6	A	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	13	mJ	
Р	Power Dissipation	(Note 1a)	1.5	۱۸/	
L D	Power Dissipation	(Note 1b)	0.6	~ ~ ~	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

R _{0JC}	Thermal Resistance, Junction to Case	(Note 1)	75	°C // //
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	80	C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
246	FDN86246	SSOT-3	7 "	8 mm	3000 units

TY Semicondutor[®]

Product specification

FDN86246

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	150			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		106		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 120 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±20 V, V_{DS} = 0 V			±100	nA
On Chara	cteristics (Note 2)					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	2	3.4	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		-9		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 1.6 A		195	261	
		V _{GS} = 6 V, I _D = 1.4 A		242 359		mΩ
		V_{GS} = 10 V, I _D = 1.6 A, T _J = 125 °C		359	481	1
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 1.6 A		4		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			168	225	pF
C _{oss}	Output Capacitance	$-V_{DS} = 75 V, V_{GS} = 0 V,$		21	30	pF
C _{rss}	Reverse Transfer Capacitance			1.6	5	pF
R _g	Gate Resistance			0.9		Ω
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time			4.5	10	ns
t _r	Rise Time	V _{DD} = 75 V, I _D = 1.6 A,		1.1	10	ns
d(off)	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		8	16	ns
t _f	Fall Time			2.9	10	ns
Q _g	Total Gate Charge	V_{GS} = 0 V to 10 V		2.9	5	nC
Qg	Total Gate Charge	$V_{GS} = 0 V \text{ to } 5 V V_{DD} = 75 V,$		1.6	3	nC
Q _{gs}	Gate to Source Gate Charge	I _D = 1.6 A		0.9		nC
Q _{gd}	Gate to Drain "Miller" Charge			0.8		nC
ວrain-Soເ	Irce Diode Characteristics					
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.6 A (Note 2)		0.83	1.3	V
t	Reverse Recovery Time			11	70	ne

Reverse Recovery Time ۲rr I_F = 1.6 A, di/dt = 100 A/μs Reverse Recovery Charge

 Q_{rr} Notes:

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a) 80 °C/W when mounted on a 1 in² pad of 2 oz copper

b) 180 °C/W when mounted on a minimum pad.

29

47

nC

2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

3. Starting T_J = 25 °C; N-ch: L = 3 mH, I_{AS} = 3 A, V_DD = 150 V, V_GS = 10 V.