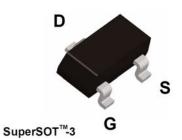


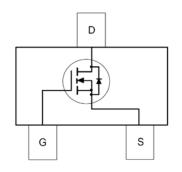
FDN86246

150 V, 1.6 A, 261 m Ω

Features

- Max $r_{DS(on)}$ = 261 m Ω at V_{GS} = 10 V, I_D = 1.6 A
- Max $r_{DS(on)}$ = 359 m Ω at V_{GS} = 6 V, I_D = 1.4 A
- High performance trench technology for extremely low r_{DS(on)}
- High power and current handling capability in a widely used surface mount package
- Fast switching speed
- 100% UIL tested
- RoHS Compliant




General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench® process that has been optimized for $r_{DS(on)}$, switching performance and ruggedness.

Application

■ PD Switch

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V_{DS}	Drain to Source Voltage		150	V	
V_{GS}	Gate to Source Voltage		±20	V	
1	-Continuous	(Note 1a)	1.6	^	
ID	-Pulsed		6	A	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	13	mJ	
D	Power Dissipation	(Note 1a)	1.5	W	
P_{D}	Power Dissipation	(Note 1b)	0.6	VV	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Note 1)	75	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	80	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
246	FDN86246	SSOT-3	7 "	8 mm	3000 units

FDN86246

Electrical Characteristics T_J = 25 °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	150			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		106		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 120 V, V _{GS} = 0 V			1	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V			±100	nA

On Characteristics (Note 2)

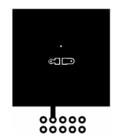
$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2	3.4	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250 μA, referenced to 25 °C		-9		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 1.6 A		195	261	
		$V_{GS} = 6 \text{ V}, I_D = 1.4 \text{ A}$		242	359	mΩ
		$V_{GS} = 10 \text{ V}, I_D = 1.6 \text{ A}, T_J = 125 ^{\circ}\text{C}$		359	481	
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 1.6 A		4		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V - 75 V V - 0 V	168	225	pF
C _{oss}	Output Capacitance	V _{DS} = 75 V, V _{GS} = 0 V, f = 1 MHz	21	30	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 WH12	1.6	5	pF
R_q	Gate Resistance		0.9		Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		4.5	10	ns
t _r	Rise Time	V _{DD} = 75 V, I _D = 1.6 A,	1.1	10	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω	8	16	ns
t _f	Fall Time		2.9	10	ns
Q_q	Total Gate Charge	V _{GS} = 0 V to 10 V	2.9	5	nC
Q_q	Total Gate Charge	$V_{GS} = 0 \text{ V to 5 V} V_{DD} = 75 \text{ V},$	1.6	3	nC
Q_{gs}	Gate to Source Gate Charge	I _D = 1.6 A	0.9		nC
Q_{gd}	Gate to Drain "Miller" Charge		0.8		nC


Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.6 A (Note 2)		0.83	1.3	V
t _{rr}	Reverse Recovery Time	L = 1.6 A di/dt = 100 A/vo		44	70	ns
Q _{rr}	Reverse Recovery Charge	I _F = 1.6 A, di/dt = 100 A/μs		29	47	nC

Notes:

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.

R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a) 80 °C/W when mounted on a 1 in² pad of 2 oz copper

b) 180 °C/W when mounted on a minimum pad.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. Starting T $_{J}$ = 25 °C; N-ch: L = 3 mH, I $_{AS}$ = 3 A, V $_{DD}$ = 150 V, V $_{GS}$ = 10 V.