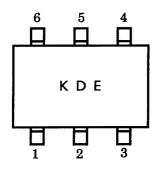

SSM6K07FU

DC-DC Converters High Speed Switching Applications

- Small package
- Low on resistance : R_{on} = 130 m Ω max (@V_{GS} = 10 V)
 - $R_{on} = 220 \text{ m}\Omega \text{ max} (@V_{GS} = 4 \text{ V})$
- Low input capacitance : $C_{iss} = 102 \text{ pF typ.}$: $C_{rss} = 22 \text{ pF typ.}$

Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-source voltage		V _{DS}	30	V	
Gate-source voltage		V _{GSS}	±20	V	
Drain current	DC	۱ _D	1.5	А	
	Pulse	I _{DP}	3.0	~	
Drain power dissipation		P _D (Note 1)	300	mW	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	



Note 1: Mounted on FR4 board.

(25.4 mm \times 25.4 mm \times 1.6 t, Cu pad: 0.32 mm² \times 6)

Weight: 6.8 mg (typ.)

Marking

Equivalent Circuit (top view)

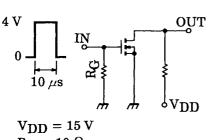
Handling Precaution

When handling individual devices (which are not yet mounting on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.

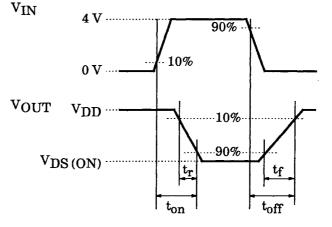
5

TY Semicondutor[®]

Unit: mm


SSM6K07FU

Electrical Characteristics (Ta = 25°C)


Chara	cteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage curr	rent	I _{GSS}	$V_{GS}=\pm 16~V,~V_{DS}=0$	_		±1	μA
Drain-source brea	kdown voltage	V (BR) DSS	$I_D = 1 \text{ mA}, V_{GS} = 0$	30			V
Drain cut-off curre	ent	I _{DSS}	$V_{DS} = 30 V, V_{GS} = 0$	_	_	1	μA
Gate threshold vo	Itage	V _{th}	$V_{DS} = 5 V, I_D = 0.1 mA$	1.1	_	1.8	V
Forward transfer a	admittance	Y _{fs}	$V_{DS} = 5 V, I_D = 0.75 A$ (Note 2)	1.0	_	_	S
Drain-source ON resistance		R _{DS (ON)}	$I_D = 0.75 \text{ A}, V_{GS} = 10 \text{ V}$ (Note 2)	_	105	130	mΩ
		R _{DS (ON)}	$I_D = 0.75 \text{ A}, V_{GS} = 4 \text{ V}$ (Note 2)	_	170	220	
		R _{DS (ON)}	$I_D = 0.75 \text{ A}, V_{GS} = 3.3 \text{ V}$ (Note 2)	_	230	500	
Input capacitance		C _{iss}	$V_{DS}=15~V,~V_{GS}=0,~f$ = 1 MHz	_	102		pF
Reverse transfer of	transfer capacitance C_{rss} $V_{DS} = 15 V$, $V_{GS} = 0$, f = 1 MHz		_	22		pF	
Output capacitance		C _{oss}	$V_{DS} = 15 V, V_{GS} = 0, f = 1 MHz$	_	57		pF
Switching time	Turn-on time	t _{on}	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 0.75 \text{ A}, \text{ V}_{GS} = 0 \sim 4 \text{ V},$	—	46		ns
	Turn-off time	t _{off}	$R_{G} = 10 \Omega$	_	65		

Note 2: Pulse test

Switching Time Test Circuit

 $\begin{array}{l} R_G = 10 \; \Omega \\ D.U. \leq 1\% \\ V_{IN}: \; t_r, \; t_f < 5 \; ns \\ COMMON \; SOURCE \\ Ta = 25^\circ C \end{array}$

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is I_D = 100 μA for this product. For normal switching operation, V_{GS} (on) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} .

(Relationship can be established as follows: V_{GS} (off) < V_{th} < V_{GS} (on))

Please take this into consideration for using the device.

 $V_{\rm GS}$ recommended voltage of 4~V or higher to turn on this product.