

μ PA1901

DESCRIPTION

The μ PA1901 is a switching device, which can be driven directly by a 2.5 V power source.

This device features a low on-state resistance and excellent switching characteristics, and is suitable for applications such as power switch of portable machine and so on.

FEATURES

- 2.5 V drive available
- Low on-state resistance

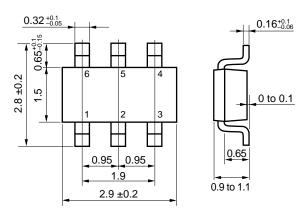
 $R_{DS(on)1} = 39 \text{ m}\Omega \text{ MAX.} \text{ (Vgs} = 4.5 \text{ V, ID} = 3.5 \text{ A)}$

 $R_{DS(on)2} = 40 \text{ m}\Omega \text{ MAX.} \text{ (Vgs} = 4.0 \text{ V, ID} = 3.5 \text{ A)}$

 $R_{DS(on)3} = 54 \text{ m}\Omega \text{ MAX.} \text{ (Vgs} = 2.5 \text{ V, ID} = 3.5 \text{ A)}$

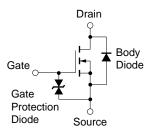
ORDERING INFORMATION

PART NUMBER	PACKAGE
μPA1901TE	SC-95 (Mini Mold Thin Type)


Marking: TQ

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Drain to Source Voltage (Vss = 0 V)	VDSS	30	V
Gate to Source Voltage (Vbs = 0 V)	Vgss	±12	V
Drain Current (DC) (T _A = 25°C)	ID(DC)	±6.5	Α
Drain Current (pulse) Note1	ID(pulse)	±26	Α
Total Power Dissipation	P _{T1}	0.2	W
Total Power Dissipation Note2	P _{T2}	2.0	W
Channel Temperature	Tch	150	°C
Storage Temperature	T_{stg}	-55 to +150	°C

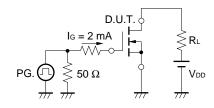

Notes 1. PW \leq 10 μ s, Duty Cycle \leq 1% **2.** Mounted on FR-4 board, t \leq 5 sec.

PACKAGE DRAWING (Unit : mm)

1, 2, 5, 6 : Drain 3 : Gate 4 : Source

EQUIVALENT CIRCUIT

μ PA1901


ELECTRICAL CHARACTERISTICS (TA = 25°C)

CHARACTERISTICS	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Zero Gate Voltage Drain Current	IDSS	Vps = 30 V, Vgs = 0 V			10	μΑ
Gate Leakage Current	Igss	Vgs = ±12 V, Vps = 0 V			±10	μΑ
Gate to Source Cut-off Voltage	V _{GS(off)}	V _{DS} = 10 V, I _D = 1.0 mA	0.5	1.0	1.5	V
Forward Transfer Admittance	yfs	V _{DS} = 10 V, I _D = 3.5 A	3.0	7.9		S
Drain to Source On-state Resistance	RDS(on)1	Vgs = 4.5 V, ID = 3.5 A		31	39	mΩ
	RDS(on)2	Vgs = 4.0 V, ID = 3.5 A		32	40	mΩ
	RDS(on)3	Vgs = 2.5 V, ID = 3.5 A		40	54	mΩ
Input Capacitance	Ciss	V _{DS} = 10 V		470		pF
Output Capacitance	Coss	V _G s = 0 V		100		pF
Reverse Transfer Capacitance	Crss	f = 1.0 MHz		60		pF
Turn-on Delay Time	td(on)	VDD = 10 V, ID = 3.5 A		35		ns
Rise Time	tr	Vgs = 4.0 V		110		ns
Turn-off Delay Time	td(off)	$R_G = 10 \Omega$		170		ns
Fall Time	t _f			130		ns
Total Gate Charge	QG	V _{DD} = 24 V		5.4		nC
Gate to Source Charge	Qgs	V _G S = 4.0 V		1.1		nC
Gate to Drain Charge	Q _{GD}	I _D = 6.5 A		2.4		nC
Diode Forward Voltage	V _F (S-D)	IF = 6.5 A, VGS = 0 V		0.9		V

TEST CIRCUIT 1 SWITCHING TIME

TEST CIRCUIT 2 GATE CHARGE

