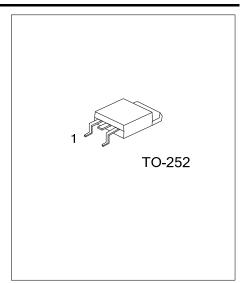


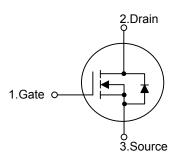
UNISONIC TECHNOLOGIES CO., LTD


12N30 **Preliminary Power MOSFET**

12A, 300V N-CHANNEL **POWER MOSFET**

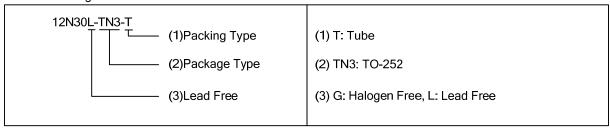
DESCRIPTION

The UTC 12N30 is an N-channel mode power MOSFET using UTC's advanced technology to provide customers with planar stripe and DMOS technology. This technology specializes in allowing a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.


The UTC 12N30 is universally applied in electronic lamp ballast based on half bridge topology and high efficient switched mode power supply.

FEATURES

- * $R_{DS(ON)}$ =0.34 Ω @ V_{GS} =10V
- * High switching speed


SYMBOL

ORDERING INFORMATION

Ordering	Daalaasa	Pin	Daaldaa				
Lead Free	Halogen Free	Package	1	2	3	Packing	
12N30L-TN3-R	12N30G-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

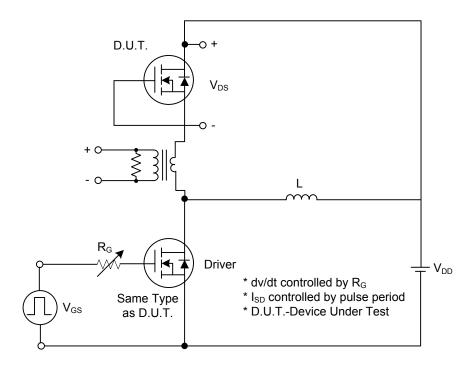
■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	300	V
Gate-Source Voltage		V_{GSS}	±20	V
Desire Occurrent	Continuous (T _C =25°C)	I_{D}	12	Α
Drain Current	Pulsed (Note 2)	I _{DM}	48	Α
Single Pulsed Avalanche Energy		E _{AS}	474	mJ
Power Dissipation		P _D	83	W
Junction Temperature	Э	T_J	+150	°C
Storage Temperature	}	T _{STG}	-55~+150	°C

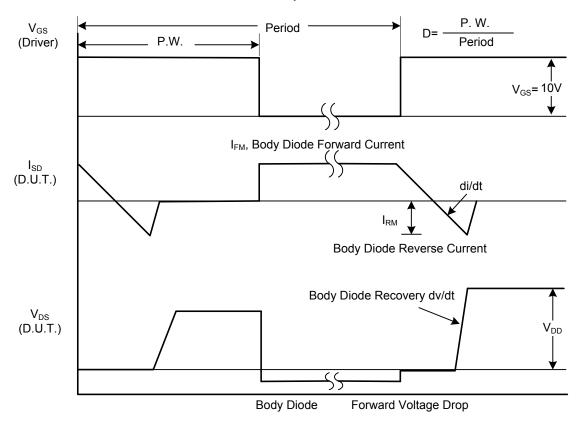
- Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Repetitive Rating: Pulse width limited by maximum junction temperature
 - 3. Starting T_J =25°C, I_{AS} =12A, V_{DD} =50V, L=6.58mH.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ_{JC}	1.5	°C/W	

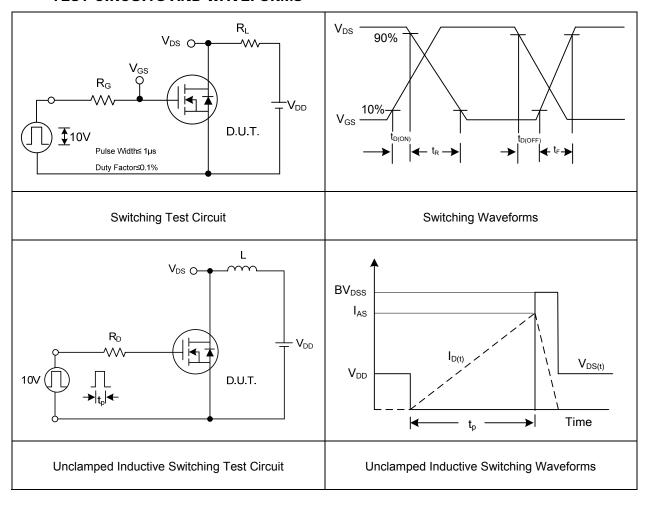

■ **ELECTRICAL CHARACTERISTICS** (T_C=25°C, unless otherwise noted)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS		_			ā.	a	
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V 30				V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =300V, V _{GS} =0V			1	μΑ
Cata Carraga Laghaga Crimant	Forward	I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA
Gate- Source Leakage Current	Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS				.a.			
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	2.0		4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =12A		0.34	0.47	Ω
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}				3000	pF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz			900	pF
Reverse Transfer Capacitance		C _{RSS}				400	pF
SWITCHING PARAMETERS							
Total Gate Charge		Q_{G}	-\/ -150\/ \/ -10\/ -124		24		nC
Gate-Source Charge		Q_{GS}	V _{DD} =150V, V _{GS} =10V, I _D =12A (Note 1, 2)		5		nC
Gate-Drain Charge		Q_{GD}	(Note 1, 2)		5.6		nC
Turn-ON Delay Time		t _{D(ON)}			30	50	ns
Rise Time		t _R	V _{DD} =30V, I _D =12A, R _G =25Ω (Note 1, 2)		105	150	ns
Turn-OFF Delay Time		t _{D(OFF)}			480	750	ns
Fall-Time		t _F			140	200	ns
SOURCE- DRAIN DIODE RATI	NGS AND	CHARACTER	ISTICS				
Drain-Source Diode Forward Voltage		V _{SD}	I _S =12A, V _{GS} =0V			1.4	V
Maximum Body-Diode Continuo	us Current	Is				12	Α
Maximum Body-Diode Pulsed C	urrent	I _{SM}				48	Α
N (Б					


Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

2. Essentially independent of operating temperature

■ TEST CIRCUITS AND WAVEFORMS



Peak Diode Recovery dv/dt Test Circuit

Peak Diode Recovery dv/dt Waveforms

■ TEST CIRCUITS AND WAVEFORMS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

