SSM6J08FU

 $\frac{2.1 \pm 0.1}{1.25 \pm 0.1}$

0~0.1

: GATE

: SOURCE

0.65

<u>د</u> آي

1, 2, 5, 6 : DRAIN

.0 + 6

3

4

2.0±0.2 1.3±0.1

Power Management Switch DC-DC Converter

• Small Package

TY Semicondutor[®]

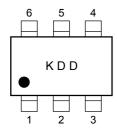
• Low on Resistance $: R_{on} = 0.18 \ \Omega \ (max) \ (@V_{GS} = -4 \ V)$

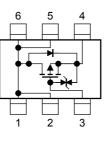
: Ron = 0.26 Ω (max) (@VGS = -2.5 V)

• Low Gate Threshold Voltage

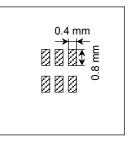
Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-Source voltage		V _{DS}	-20	V	
Gate-Source voltage		V _{GSS}	±12	V	
Drain current	DC	I _D	-1.3	А	
	Pulse	I _{DP} (Note 2)	-2.6	~	
Drain power dissipation		P _D (Note 1)	300	mW	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	


Note1: Mounted on FR4 board (25.4 mm \times 25.4 mm \times 1.6 t, Cu Pad: 0.32 mm 2 \times 6) Fig: 1.


Note2: The pulse width limited by max channel temperature.

Weight: 6.8 mg (typ.)


Marking

Equivalent Circuit

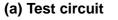
Fig 1: 25.4 mm \times 25.4 mm \times 1.6 t, Cu Pad: 0.32 mm² \times 6

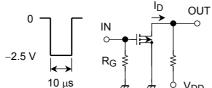
Handling Precaution

When handling individual devices (which are not yet mounted on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.

Unit: mm

0.15±0.05

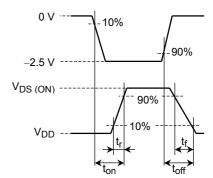

Electrical Characteristics (Ta = 25°C)


TY Semicondutor[®]

Chara	acteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS} = \pm 12 \text{ V}, \text{ V}_{DS} = 0$	_	_	±1	μA
Drain-Source breakdown voltage	V (BR) DSS	$I_D = -1 \text{ mA}, V_{GS} = 0$	-20	_		v	
	V (BR) DSX	$I_D = -1$ mA, $V_{GS} = 12$ V	-8	_			
Drain Cut-off curre	ent	I _{DSS}	$V_{DS} = -20 V, V_{GS} = 0$	_	_	-1	μA
Gate threshold vo	ltage	V _{th}	$V_{DS} = -3 V$, $I_D = -0.1 mA$	-0.5	_	-1.1	V
Forward transfer a	admittance	Y _{fs}	$V_{DS} = -3 V$, $I_D = -0.65 A$ (Note 3)	1.3	2.7		S
Drain-Source ON resistance		R _{DS (ON)}	$I_D = -0.65 \text{ A}, V_{GS} = -4 \text{ V}$ (Note 3)	_	140	180	mΩ
			$I_D = -0.65 \text{ A}, V_{GS} = -2.5 \text{ V}$ (Note 3)	_	200	260	
			$I_D = -0.65 \text{ A}, V_{GS} = -2.0 \text{ V}$ (Note 3)	_	260	460	
Input capacitance		C _{iss}	$V_{DS} = -10 \text{ V}, \text{ V}_{GS} = 0, \text{ f} = 1 \text{ MHz}$		370		pF
Reverse transfer capacitance		C _{rss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$	_	73		pF
Output capacitance		C _{oss}	$V_{DS} = -10 \text{ V}, \text{ V}_{GS} = 0, \text{ f} = 1 \text{ MHz}$		116		pF
Switching time	Turn-on time	t _{on}	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -0.65 \text{ A},$	_	33		ns
	Turn-off time	t _{off}	$V_{GS} = 0$ ~-2.5 V, $R_G = 4.7 \Omega$		47		ns

Note 3: Pulse test

Switching Time Test Circuit



$$\begin{split} V_{DD} &= -10 \ V \\ R_G &= 4.7 \ \Omega \\ D.U. &\leq 1\% \\ V_{IN} : t_r, t_f < 5 \ ns \\ COMMON \ SOURCE \\ Ta &= 25^\circ C \end{split}$$

(b) V_{IN}

(c) Vout

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is I_D = $-100~\mu A$ for this product. For normal switching operation, V_{GS} (on) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} .

(relationship can be established as follows: V_{GS} (off) < V_{th} < V_{GS} (on))

Please take this into consideration for using the device.

 V_{GS} recommended voltage of -2.5~V or higher to turn on this product.