MS6265

8K x 8 SLOW SPEED CMOS STATIC RAM ULTRA LOW DATA RETENTION CURRENT

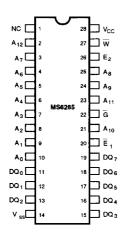
Features

- Available in 100 ns (Max.)
- Automatic power-down when chip disabled
- Lower power consumption: MS6265
 - 220mW (Max.) Operating
 - 5.5μW (Max.) Power Down 16.6μW (Max.) Industrial Temp
 - 0.6μA (Max.) I_{CCDB}
- TTL compatible interface levels
- Single 5V power supply
- Fully static operation
- Three state outputs
- Two chip enable (E

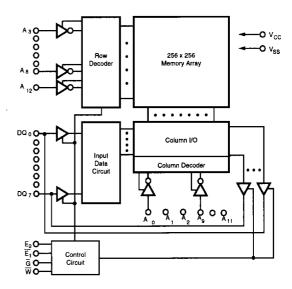
 1 and E

 2) for simple memory expansion
- 64K bit EPROM pin compatible
- Wide temperature range: -40 to + 85°C

Description


The MS6265 is a slow speed, very low data retention current, 64K bit static RAM, organized as 8192 x 8. The MS6265LL is designed to operate over industrial temperature range of -40°C to +85°C.

This SRAM is fully static in operation. Either of the chip enable controls ($\overline{E}1$ or E2) can be used to take the device to its low low data retention mode (I_{CCDR}).


Write cycle occurs when chip enable $\overline{E}1$ is low, E2 is high, and write enable, \overline{W} , is low. Output enable control \overline{G} has no control function in the write cycle.

Read Cycle occurs when chip enable $\overline{E}1$, is low, E2 is high, write enable \overline{W} is high and output enable \overline{G} is low.

Pin Configurations

Functional Block Diagram

MOSEL VITELIC MS6265

Pin Descriptions

A₀ - A₁, Address Inputs

These 13 address inputs select one of the 8192 X 8-bit words in the RAM.

E₁ Chip Enable 1 Input

E, Chip Enable 2 Input

 ${
m E}_{_1}$ is active LOW and ${
m E}_{_2}$ is active HIGH. Both chip enables must be active to read from or write to the device. If either chip enable is not active, the device is deselected (in a standby power mode). The DQ pins are in the high-impedance state when the device is deselected.

G Output Enable Input

The output enable input is active LOW. With the output enable active and the chip selected and write enable inactive, read data will be present on the DQ pins. The DQ pins will be in the high impedance (three state) output mode when \overline{G} is inactive.

W Write Enable Input

The write enable input is active LOW and controls read and write operations. With the chip selected, \overline{W} is HIGH and \overline{G} LOW, output data will be present at the DQ pins; when \overline{W} is LOW, the data present on the DQ pins will be written into the selected memory location.

DQ - DQ, Data Input/Output Ports

These 8 bidirectional ports are used to read data from or write data into the RAM.

V_{cc} Power Supply

Vss Ground

TruthTable

MODE	W	Ē,	E ₂	Ğ	I/O OPERATION	V _{CC} CURRENT
Not Selected	Х	Н	Х	X	High Z	I _{CCSB} , I _{CCSB1}
(Power Down)	Х	х	L	Х	High Z	I _{CCSB} , I _{CCSB1}
Output Disabled	н	L	Н	Н	High Z	امدا
Read	Н	L	н	L	D _{OUT}	l _∞
Write	L	L	Н	Х	D _{IN}	l _α

Absolute Maximum Ratings (1)

Synbol	Parameter		Rating	Units
V _∞	Supply Voltage	е	-0.3 to 7	
V _N	Input Voltage		-0.3 to Vcc + 0.3	٧
V™	Input/Output Voltage Applied		-0.3 to 6	
T _{BIAS}	Temperature Plastic Under Bias		-10 to +125	ç
T _{STG}	Storage Plastic Temperature		-55 to +150	Ω.
PD	Power Dissipation		1.0	W
lout	DC Output Cu	rrent	±40 ⁽²⁾	mA

- Stresses greater than those listed under ABSOLUTE
 MAXIMUM RATINGS may cause permanent damage to the
 device. This is a stress rating only and functional operation of
 the device at these or any other conditions above those
 indicated in the operational sections of this specification is not
 implied. Exposure to absolute maximum rating conditions for
 extended periods may affect reliability and degrade performance characteristics.
- 2. Output should not be shorted for more than 30 seconds.

Operating Range

Range	Ambient Temperature	ν _œ
Commercial	0°C to +70°C	5V ± 10%
Special Commercial	-10°C to +70°C	5V ± 10%
Industrial	-40°C to +85°C	5V ± 10%

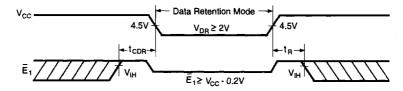
Capacitance⁽¹⁾ T_A = 25°C, f = 1.0MHz

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	V _N = 0V	6	pF
C∞	Input/Output Capacitance	V _{VO} = 0V	8	pF

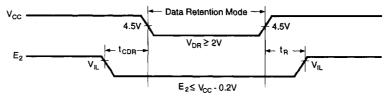
This parameter is guaranteed and not tested.

DC Electrical Characteristics (over the operating range)

Parameter				MS6265		
Name	Parameter	Test Conditions	Min.	Typ. (1)	Max	Units
V _{IL}	Guaranteed Input Low Voltage ⁽²⁾		-0.3	-	0.8	٧
VH	Guaranteed Input High Voltage ⁽²⁾		22	•	Vcc + 0.3	٧
l _L	Input Leakage Current	$V_{IN} = 0V \text{ to } V_{CC}, E_2 \ge Vcc - 0.2V, \overline{E}_1 \le 0.2V$		-	1	μΑ
loL	Output Leakage Current	$V_{CC} = Max$, $\overline{E}_1 = V_H$, or $\overline{E}_2 = V_{IL}$, or $\overline{G} = V_H$, $V_N = 0V \text{ to } V_{CC}$	-	-	1	μА
V _{OL}	Output Low Voltage	V _{CC} = Min, I _{OL} = 8mA	-	-	0.4	٧
VaH	Output High Voltage	V _{CC} = Min, I _{OH} = -4mA	2.4		-	٧
Ιœ	Operating Power Supply Current	$V_{CC} = Max$, $\overline{E}_1 = V_{IL}$, $E_2 = V_{IH}$, $I_{CQ} = 0mA$, $F = F_{max}^{(3)}$	-	-	40	mA
CCSB	Standby Power Supply Current	$V_{\infty} = Max, \overline{E}_1 = V_{H}, \text{ or } E_2 = V_{IL}, I_{DQ} = OmA$	-	-	10	μA
I _{CCSB1}	Power Down Power Supply	$V_{\infty} = \text{Max}, \ \overline{E}_1 \ge V_{\infty} - 0.2V, \ E_2 \le 0.2 T_A \le 70^{\circ}\text{C}$		-	1	μА
	Current	V _N ≥ VCC -0.2V OR V _N ≤ 0.2V T _A ≤ 85°C	-	-	3	μА


- 1. Typical characteristics are at $V_{CC} = 5V$, $T_A = 25$ °C.
- These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
- 3. $F_{MAX} = 1/t_{RC}$

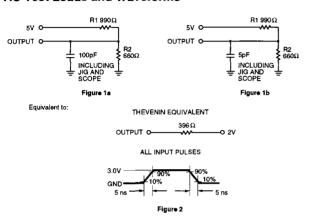
Data Retention Characteristics (over the specified operating range)


Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
V _{DR}	V _∞ for Data Retention	$\vec{E}_1 \ge V_{CC} - 0.2V, E_2 \le 0.2V,$ $V_N \ge V_{CC} - 0.2V \text{ or } V_N \le 0.2V$		2.0	•	-	V
ICCDR	Data Retention Current	$E_1 \ge V_{DR} - 0.2V, E_2 \le 0.2V,$	T _A ≤70°C	- "	-	0.6	μΑ(1)
CCDR	Data Fictional Current	$V_N \ge V_{QR} - 0.2V \text{ or } V_N \le 0.2V$	T _A ≤ 85°C			2.0	μΑ(1)
I _{IL}	Input Leakage Current		. "	-	-	2	μΑ
toor	Chip Deselect to Data			0	-	-	ns
	Retention Time	See Retention Waveform					
t _A	Operation Recovery Time			t _{RC} (2)	•	-	ns

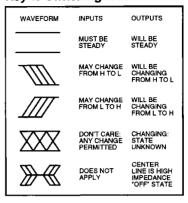
- V_{DR} = 3V, T_A = Specified
 t_{RC} = Read Cycle Time

Low V_{CC} Data Retention Waveform (1) (E₁ Controlled)

Low V_{CC} Data Retention Waveform (2) (E₂ Controlled)



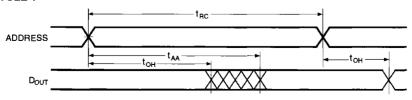
MS6265 Rev. 1.0 January 1995


AC Test Conditions

Input Pulse Levels	0V to 3.0V
Input Rise and Fall Times	10ns
Timing Reference Level	1.5V

AC Test Loads and Waveforms

Key to Switching Waveforms

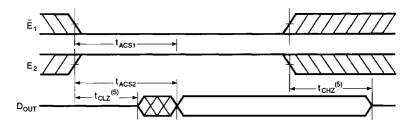

AC Electrical Characteristics (over the operating range)

Read Cycle

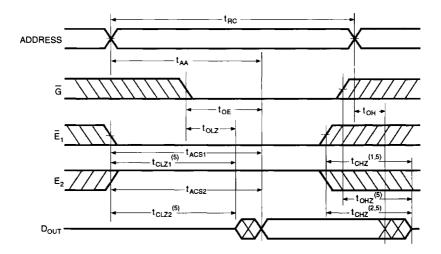
JEDEC	D		MS62	265-10	
Parameter Name	Parameter Name	Parameter	Min.	Max.	Unit
t _{AVAX}	t _{RC}	Read Cycle Time	100	-	ns
t _{AVQV}	t _{AA}	Address Access Time	· ·	100	ns
t _{ELQV}	t _{ACS1}	Chip Enable Access Time	-	100	ns
t _{ELQV}	t _{ACS2}	Chip Enable Access Time	-	100	ns
t _{GLQX}	to∈	Output Enable to Output Valid	•	40	ns
t _{EHQZ}	t _{CLZ}	Chip Enable to Output Low Z	10	-	ns
t _{GLQX}	to.z	Output Enable to Output in Low Z	5	•	ns
t _{EHQZ}	t _{oHZ}	Chip Disable to Output in High Z		30	ns
t _{GHQZ}	t _{onz}	Output Disable to Output in High Z	-	20	ns
t _{AXQX}	t _{art}	Output Hold from Address Change	10	-	ns

Switching Waveforms (Read Cycle)

READ CYCLE 1(1,2,4)



MS6265 Rev. 1.0 January 1995


6

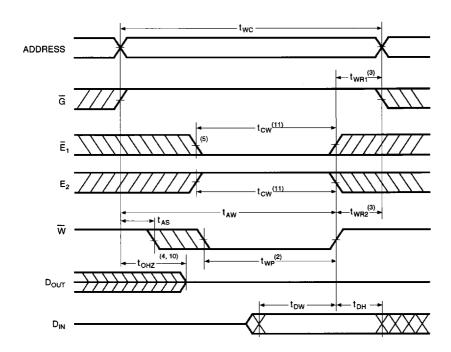
MS6265

READ CYCLE 2(1,3,4)

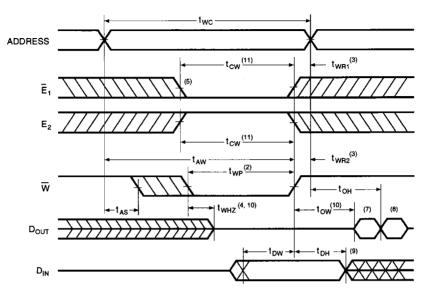
READ CYCLE 3(1,4)

NOTES:

- 1. $\overline{\mathbf{W}}$ is high for READ Cycle.
- Device is continuously selected \(\overline{E}_1 = V_{ii} \) and \(\overline{E}_2 = V_{iii} \).
 Address valid prior to or coincident with \(\overline{E}_1 \) transition low and/or \(\overline{E}_2 \) transition high.
- 4. $\overline{G} = V_L$. 5. Transition is measured \pm 500mV from steady state with $C_L = 5pF$ as shown in Figure 1b. This parameter is guaranteed but not 100% tested.


AC Electrical Characteristics (over the operating range)

Write Cycle


JEDEC			MS62	265-10	
Parameter Name	Parameter Name	Parameter	Min.	Max.	Unit
tavax	twc	Write Cycle Time	100		ns
t _{ELWH}	tow	Chip Enable to End of Write	90	•	ns
t _{AVWL}	t _{AS}	Address Set up Time	20	•	ns
tavwn	t _{AW}	Address Valid to End of Write	90	-	ns
tww	t _{WP}	Write Pulse Width	60	•	ns
twhax	twe	Write Recovery Time	10	•	ns
twLaz	t _{WHZ}	Write to Output in High Z	0	20	ns
t _{DVWH}	1 _{DW}	Data to Write Time Overlap	50		ns
t _{WHDX}	t _{DH}	Data Hold from Write Time	0	•	ns
t _{GHQZ}	t _{oHZ}	Output Disable to Output in High Z	0	20	ns
t _{WHQX}	tow	Output Active from End of Write	10	-	ns

Switching Waveforms (Write Cycle)

WRITE CYCLE 1(1)

WRITE CYCLE 2(1,6)

NOTES:

- W must be high during address transitions.
- The internal write time of the memory is defined by the overlap of E₁ and E₂ active and W low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
- 3. T_{WR} is measured from the earlier of \overline{E}_1 or \overline{W} going high or E_2 going low at the end of write cycle.
- 4. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
- 5. If the \overline{E}_1 low transition or the \overline{E}_2 high transition occurs simultaneously with the \overline{W} low transitions or after the \overline{W} transition, outputs remain in a high impedance state.
- 6. \overline{G} is continuously low $(\overline{G} = V_{IL})$.
- 7. D_{OUT} is the same phase of write data of this write cycle.
- 8. D_{OUT} is the read data of next address.
- If E

 1 is low and E

 2 is high during this period, DQ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
- Transition is measured ±500mV from steady state with C_L = 5pF as shown in Figure 1b. This parameter is guaranteed but not 100% tested.
- 11 t_{CW} is measured from the later of E₁ going low or E₂ going high to the end of write.

Ordering Information

Speed (ns)	Ordering Part Number Package		Temperature Range	
100	MS6265-10NC	28 Pin 300 mil Plastic DIP	0°C to +70°C	
100	MS6265-10FC	28 Pin 330 mil Small Outline	0°C to +70°C	
100	MS6265-10PC	28 Pin 600 mil Plastic DIP	0°C to +70°C	
100	MS6265-10PI	28 Pin 600 mil Plastic DIP	-40°C to + 85°C	
100	MS6265-10FI	20 Pin 330 mil Small Outline	-40°C to + 85°C	
100	MS6265-10NI	28 Pin 300 mil Plastic DIP	-40°C to + 85°C	