

R01AN1504EJ0100 Rev. 1.00 Feb. 14, 2014

Using the DTC to Perform Continuous Clock Synchronous Serial Communication

Abstract

This document describes how to perform continuous clock synchronous serial communication using the serial array unit (3-wire serial I/O) and DTC in the RL78/G14.

Products

RL78/G14

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Contents

1.	Spe	ecific	ations	3
2.	Ope	erati	on Confirmation Conditions	4
3.	Har	dwa	re	5
3	3.1	Har	dware Configuration	5
3	3.2	Pin	s Used	5
4.	Sof	itwar	e	6
2	4.1		eration Overview	
2	4.2	•	tion Composition	
	4.3		ion Byte Settings	
4	4.4	•	istant	
4	4.5		iables	
2	4.6	Fur	ctions	11
2	4.7	Fur	ction Specifications	11
2	4.8	Flo	wcharts	15
	4.8	3.1	Overall Flow	15
	4.8	3.2	Initialization	15
	4.8	3.3	Peripheral Function Initialization	16
	4.8	3.4	CPU Clock Initialization	16
	4.8	3.5	SAU0 Initialization	17
	4.8	8.6	CSI00 Initialization	19
	4.8	3.7	CSI00 Operation Start	28
	4.8	8.8	CSI00 Transmission/Reception Start	31
	4.8	3.9	CSI00 Transfer End Interrupt	33
	4.8	8.10	CSI00 Receive End Callback Function	35
	4.8	3.11	CSI00 Error Callback Function	35
	4.8	8.12	DTC Initialization	36
	4.8	8.13	DTCD0 Operation Start	43
	4.8	8.14	DTCD0 Operation Stop	44
	4.8	3.15	Main Processing	
	4.8	3.16	Main Initialization	
	4.8	3.17	Transmit Data Setting	46
5.	Sar	nple	Code	47
6.	Ref	erer	ice Documents	47

1. Specifications

In this application note, the serial array unit (SAU) and DTC are used to successively transmit and receive 8-bit data. The SAU is used as a 3-wire serial I/O interface to output a transfer clock from the SCK00 pin, output transmit data from the SO00 pin, and input receive data to the SI00 pin.

The DTC transfers transmit data and receive data from the transmission source address to the destination address. The DTC is activated by the 3-wire serial I/O interface transfer end.

Table 1.1 lists the peripherals functions and their applications. Figure 1.1 shows the timing and communication format.

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function	Application	
SAU (unit 0, channel 0)	Performs clock synchronous serial communication	
DTC	Transfers transmit data and receive data	

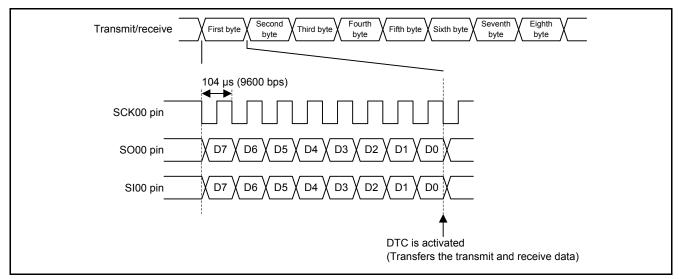


Figure 1.1 Timing and Communication Format

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1	Operation	Confirmation	Conditions
-----------	-----------	--------------	------------

ltem	Contents	
MCU used	RL78/G14 (R5F104PJA)	
Operating frequencies	• High-speed on-chip oscillator clock (fHOCO): 32 MHz (typical)	
	 CPU/peripheral hardware clock (fcLκ): 32 MHz 	
Operating voltage	5.0 V (operation enabled from 2.9 to 5.5 V)	
	LVD operation (VLVI): 2.81 V at the rising edge or 2.75 V at the falling edge	
	in reset mode	
Integrated development	Renesas Electronics Corporation	
environment	CubeSuite+ V1.03.00	
C compiler	Renesas Electronics Corporation	
	CA78K0R V1.60	
RL78/G14 code library	Renesas Electronics Corporation	
	CodeGenerator for RL78/G14 V1.01.03.06	

3. Hardware

3.1 Hardware Configuration

Figure 3.1 shows a connection example.

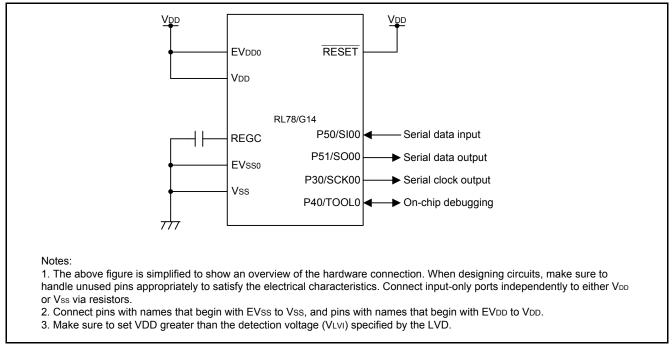


Figure 3.1 Connection Example

3.2 Pins Used

Table 3.1 lists the pins used and their functions.

Table 3.1 F	Pins Used and	Their Functions
-------------	---------------	-----------------

Pin Name	I/O	Function
P50/SI00	Input	Serial data input
P51/SO00	Output	Serial data output
P30/SCK	Output	Serial clock output

4. Software

As the sample code is created by editing the functions generated by the RL78/G14 code library, the code generator property has been modified. Figure 4.1 shows the code generator property setting.

🕼 rl78_g14_r01an1504 - CubeSuite+	- [Property]				
<u>File Edit View Project Build De</u>	bug <u>I</u> ool <u>W</u> indow <u>H</u> elp				
🚳 Start 🔒 🖶 🗿 🐰 🐚	副のの職業人	- 100% - 🗑 🖓 🔨	לי אין (ב) בא ולא (⊘ (א (ב) בא וא		
Project Tree 4 X	Property				
2 ② 2 3 1 2 . 7 r178 g14 r01an1504 (Proje 1.	Open Code Genera	ator (Design Tool).			
R5F104PJ (Microcontroll		,		V1.01.03.06	
🖓 🖥 Code Generator (Design Tool)	Release date			9/10/2012	
	Output control of API function			Output all API functions according to the setting	10
📦 Port	Generate file			Do nothing if file exists	
	Output forder			C:\Users toolo \Documents VI 78_g 14_	ru lan 1904 V
🗊 Serial	Report type		/	HTMLfile	
A/D Converter	Register files		/	Output files to project	
D/A Converter	Pin Configurator Reflect Mode Mode			Not reflected	
- 🔍 Timer	mode			Not reflected	
- 🤗 Watchdog Timer			O O L + + #D + + +	in a life fille and a factor in	
- 💭 Real-time Clock			2. Select "Do noth	ing if flie exists	
Interval Timer				-	
Comparator			from the drop-dow	n menu.	
Clock Output/Buzzer Outp			•		
Data Transfer Controller					
Event Link Controller					
Voltage Detector					

Figure 4.1 Code Generator Property Setting

4.1 Operation Overview

RL78/G14 transfers the receive data using the DTC control data 0 (DTCD0), and transfers the transmit data using the DTC control data 1 (DTCD1), and thus successively transmits and receives 8-byte data. Note that the program transfers the first byte of transmit data and the eighth byte of receive data.

Settings for the peripheral functions are listed below.

<u>SAU</u>

- Use single transfer mode
- Set the data length to 8 bits
- Set the data transfer sequence to MSB first
- Set the data transmit/receive timing to type 1
- Set the baud rate to 9600 bps
- Set the interrupt priority to low

DTCD0

- Set the activation source to CSI00 transfer end
- Enable the chain transfer
- Set the transfer mode to normal mode
- Set the data length to 8 bits
- Set the transfer source to FFF10H (SIO00 register address), fixed
- Set the transfer destination to FE900H, incremented
- Set the number of transfers to seven
- Set the transfer block size to 1 byte

DTCD1

- Set the activation source to DTC0 transfer end
- Disable the chain transfer
- Set the transfer mode to normal mode
- Set the data length to 8 bits
- Set the transfer source to FE911H, incremented
- Set the transfer destination to FFF10H (SIO00 register address), fixed
- Set the transfer block size to 1 byte

Figure 4.2 shows transmit and receive timing, and DTC activation. Figure 4.3 shows the operation of DTCD0. Figure 4.4 shows the operation of DTCD1.

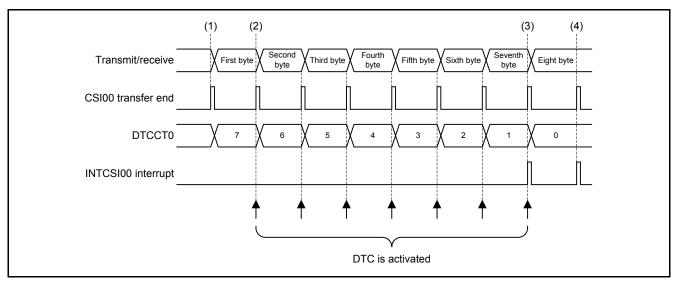


Figure 4.2 Timing of Transmission/Reception and DTC Activation

(1) Transmission/reception start

RL78/G14 starts transmission and reception after the DTC is configured.

Transmission is performed by the program writing the first byte of transmit data to the SIO00 register.

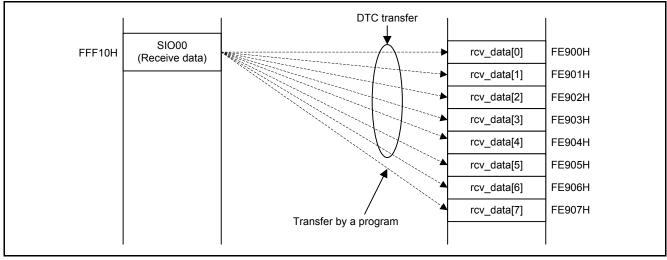
(2) DTC activation

After the first byte of data has been transmitted and received, DTC0 is activated. The first byte of receive data is transferred from the SIO00 register to the transfer destination address.

When transfer of the receive data is completed, DTC1 is activated. The second byte of transmit data from the transmit source address is transferred to the SIO00 register.

When the transmit data is written to the SIO00 register, the next transmission and reception start. The DTC is activated every time when the transmission and reception are completed and the same procedure is repeated until the transmission and reception of the eighth byte data is started. The DTCCT0 register value decrements each time the DTC transfer is activated.

(3) INTCSI00 interrupt generated by the DTC transfer end


When the DTCCT0 register becomes 0, the INTCSI00 interrupt occurs.

Preparations to complete transmission and reception are performed in the program.

(4) INTCSI00 interrupt generated by transmission/reception end When the transmission and reception of the eighth byte of data is completed, the INTCSI00 interrupt occurs. The

When the transmission and reception of the eighth byte of data is completed, the INTCS100 interrupt occurs. The program reads and copies the eighth byte of receive data.

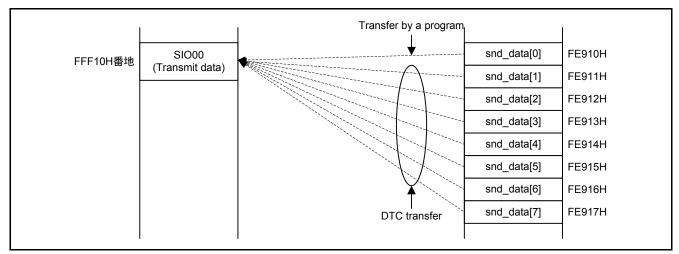


Figure 4.4 DTCD1 Operation

4.2 Section Composition

Table 4.1 lists the sections used in the sample code.

Section Name	Address	Reference Variable	Description
DTC0DST	0FE900H	rcv_data[]	DTCD0 transfer destination address
DTC1SRC	0FE910H	snd_data[]	DTCD1 transfer source address

4.3 Option Byte Settings

Table 4.2 lists the option byte settings.

Table 4.2 Option Byte Settings

Address	Setting Value	Contents
000C0H/010C0H	11101111B	Stops the watchdog timer (counting is stopped when a reset is canceled)
000C1H/010C1H	01111111B	Sets the LVD in reset mode Detection voltage: 2.81 V at the rising edge, 2.75 V at the falling edge
000C2H/010C2H	11101000B	Sets the HOCO clock as 32 MHz in high-speed main (HS) mode
000C3H/010C3H	10000100B	Enables on-chip debugging

4.4 Constant

Table 4.3 lists the constant used in the sample code.

Table 4.3 Constant Used in the Sample Code

Constant Name	Setting Value	Contents	
TX_RX_DATA_SIZE	8 bytes	Transmit/receive data size	

4.5 Variables

Table 4.4 lists the global variables, and Table 4.5 lists the static variable.

Table 4.4 Global Variables

Туре	Variable Name	Contents	Function Used
uint8_t	rcv_data[]	Receive data	R_MAIN_UserInit
			r_csi00_interrupt
			r_csi00_callback_receiveend
uint8_t	snd_data[]	Transmit data	R_CSI00_Send_Receive
			transmit_data_set
uint8_t	set_rcv_data[]	Store the receive data	r_csi00_callback_receiveend
uint8_t	csi_status	Transmission/reception end	main
		status	R_MAIN_UserInit
			r_csi00_callback_receiveend

Table 4.5 static Variable

Туре	Variable Name	Contents	Function Used
MD_STATUS	md_status	Status flag	main

4.6 Functions

Table 4.6 lists the functions.

Table 4.6 Functions

Function Name	Outline
hdwinit	Initialization
R_Systeminit	Peripheral function initialization
R_CGC_Create	CPU clock initialization
R_SAU0_Create	SAU0 initialization
R_CSI00_Create	CSI00 initialization
R_CSI00_Start	CSI00 operation start
R_CSI00_Send_Receive	CSI00 transmission/reception start
r_csi00_interrupt	CSI00 transfer end interrupt
r_csi00_callback_receiveend	CSI00 receive end callback function
r_csi00_callback_error	CSI00 error callback function
R_DTC_Create	DTC initialization
R_DTCD0_Start	DTCD0 operation start
R_DTCD0_Stop	DTCD0 operation stop
main	Main processing
R_MAIN_UserInit	Main initialization
transmit_data_set	Transmit data setting

4.7 Function Specifications

The following tables list the sample code function specifications.

hdwinit

Outline	Initialization
Header	None
Declaration	void hdwinit(void)
Description	Initializes the peripheral functions.
Arguments	None
Return Value	None

R_Systeminit	
Outline	Peripheral function initialization
Header	None
Declaration	void R_Systeminit(void)
Description	Initializes the peripheral functions used in this application note.
Arguments	None
Return Value	None

R_CGC_Create

Outline	CPU clock initialization
Header	r_cg_cgc.h
Declaration	<pre>void R_CGC_Create(void)</pre>
Description	Initializes the CPU clock.
Arguments	None
Return Value	None

R_SAU0_Create

Outline	SAU0 initialization
Header	r_cg_serial.h
Declaration	<pre>void R_SAU0_Create(void)</pre>
Description	Initializes SAU0.
Arguments	None
Return Value	None

R_CSI00_Create

CSI00 initialization
r_cg_serial.h
void R_CSI00_Create(void)
Initializes CSI00.
None
None

R_CSI00_Start

Outline	CSI00 operation start
Header	r_cg_serial.h
Declaration	void R_CSI00_Start(void)
Description	Starts CSI00 operation.
Arguments	None
Return Value	None

R_CSI00_Send_Receive		
Outline	CSI00 transmit/receive start	
Header	r_cg_serial.h	
Declaration	MD_STATUS R_CSI00_Se uint8_t * const rx_buf)	end_Receive(uint8_t * const tx_buf, uint16_t tx_num,
Description	Prepares the data buffer for CSI00 communication (transmission/reception) and sets the first byte of the transmit data.	
Arguments	uint8_t * const tx_buf uint16_t tx_num uint8_t * const rx_buf	: Transmit data buffer pointer : Transmit data size : Receive data buffer pointer
Return Value	MD_OK MD_ARGERROR	: Setting is completed, operation started : Argument is incorrect

r_csi00_interrupt	
Outline	CSI00 transfer end interrupt
Header	None
Declaration	<pre>interrupt static void r_csi00_interrupt(void)</pre>
Description	Performs CSI00 transfer end interrupt handling.
Arguments	None
Return Value	None

r_csi00_callback_receiveend		
Outline	CSI00 receive end callback function	
Header	r_cg_serial.h	
Declaration	static void r_csi00_callback_receiveend(void)	
Description	This function is called when receiving the specified number of bytes of data is completed. 8 bytes of receive data are copied to set_rcv_data[TX_RX_DATA_SIZE].	
Arguments	None	
Return Value	None	

r_csi00_callback_er	ror	
Outline	CSI00 error callback function	
Header	r_cg_serial.h	
Declaration	static void r_csi00_callback_error(uint8_t err_type)	
Description	This function is called when the CSI00 error occurs.	
Arguments	uint8_t err_type : Error type	
Return Value	None	
Remarks	The sample code does not include the error processing. Add processing to the user program as needed.	

R_DTC_Create

Outline a	DTC initialization
Outline	DTC initialization
Header	r_cg_dtc.h
Declaration	<pre>void R_DTC_Create(void)</pre>
Description	Initializes the DTC.
Arguments	None
Return Value	None

DTCD0_Start

Outline	DTCD0 operation start
Header	r_cg_dtc.h
Declaration	void R_DTCD0_Start(void)
Description	Starts the DTCD0 operation.
Arguments	None
Return Value	None

R_DTCD0_Stop

Outline	DTCD0 operation stop
Header	r_cg_dtc.h
Declaration	<pre>void R_DTCD0_Stop(void)</pre>
Description	Stops the DTCD0 operation.
Arguments	None
Return Value	None

main

Outline	Main processing
Header	None
Declaration	void main(void)
Description	Performs the main processing.
Arguments	None
Return Value	None

R_MAIN_UserInit Outline Main initialization Header None Declaration void R_MAIN_UserInit(void) Description Performs processing required to initialize the main processing. Arguments None Return Value None

transmit_data_set

Outline	Transmit data setting
Header	None
Declaration	<pre>static void transmit_data_set(void)</pre>
Description	Sets the transmit data.
Arguments	None
Return Value	None

4.8 Flowcharts

4.8.1 Overall Flow

Figure 4.5 shows the overall flow.

Figure 4.5 Overall Flow

4.8.2 Initialization

Figure 4.6 shows the initialization.

Figure 4.6 Initialization

4.8.3 Peripheral Function Initialization

Figure 4.7 shows the peripheral function initialization.

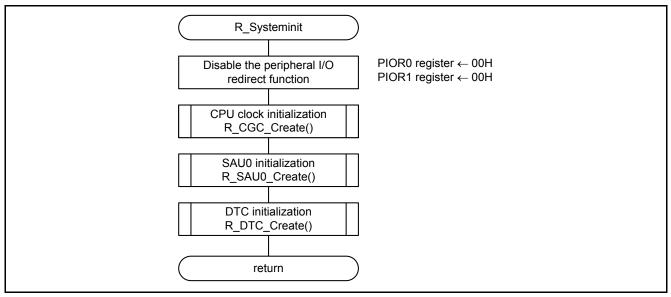


Figure 4.7 Peripheral Function Initialization

4.8.4 CPU Clock Initialization

Figure 4.8 shows the CPU clock initialization

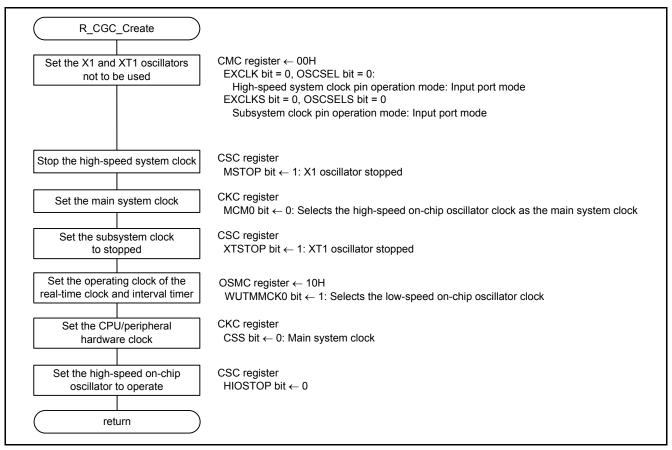


Figure 4.8 CPU Clock Initialization

4.8.5 SAU0 Initialization

Figure 4.9 shows the SAU0 initialization.

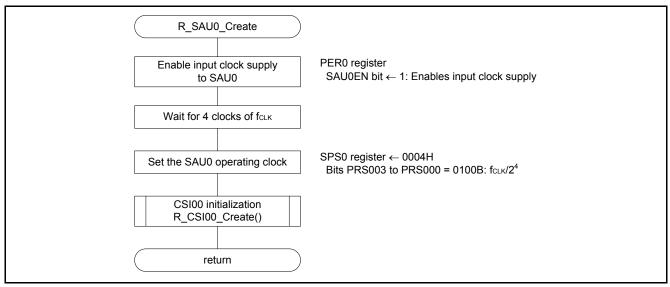


Figure 4.9 SAU0 Initialization

Enabling input clock supply to SAU0

• Peripheral enable register 0 (PER0)

Symbol	7	6	5	4	3	2	1	0
PER0	RTCEN	IICA1EN	ADCEN	IICA0EN	SAU1EN	SAU0EN	TAU1EN	TAU0EN
Value	×	×	×	×	×	1	×	×

• Bit 2

SAU0EN bit	Control of serial array unit 0 input clock supply										
0	Stops supply of input clockSFR used by serial array unit 0 cannot be written.Serial array unit 0 is in the reset status.										
1	Enables input clock supplySFR used by serial array unit 0 can be read/written.										

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

Setting the SAU0 operating clock

• Serial clock select register 0 (SPS0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPS0	0	0	0	0	0	0	0	0	PRS							
									013	012	011	010	003	002	001	000
Value	-	_	_	_	-	-	-	-	×	×	×	×	0	1	0	0

• Bits 3 to 0

PRS	PRS	PRS	PRS			Select the o	perating clock (Cl	<00)	
003	002	001	000		fclк = 2 MHz	fc∟к = 5 MHz	f _{ськ} = 10 MHz	f _{ськ} = 20 MHz	f _{с∟к} = 32 MHz
0	0	0	0	fclk	2 MHz	5 MHz	10 MHz	20 MHz	32 MHz
0	0	0	1	fci k/2	1 MHz	2.5 MHz	5 MHz	10 MHz	16 MHz
0	0	1	0	fclk/2 ²	500 kHz	1.25 MHz	2.5 MHz	5 MHz	8 MHz
0	0	1	1	fclk/2 ³	250 kHz	625 kHz	1.25 MHz	2.5 MHz	4 MHz
0	1	0	0	f ськ/ 2 ⁴	125 kHz	313 kHz	625 kHz	1.25 MHz	2 MHz
0	1	0	1	fclk/2 ⁵	62.5 kHz	156 kHz	313 kHz	625 kHz	1 MHz
0	1	1	0	fclk/2 ⁶	31.3 kHz	78.1 kHz	156 kHz	313 kHz	500 kHz
0	1	1	1	fclk/2 ⁷	15.6 kHz	39.1 kHz	78.1 kHz	156 kHz	250 kHz
1	0	0	0	fclk/2 ⁸	7.81 kHz	19.5 kHz	39.1 kHz	78.1 kHz	125 kHz
1	0	0	1	fclk/2 ⁹	3.91 kHz	9.77 kHz	19.5 kHz	39.1 kHz	62.5 kHz
1	0	1	0	fclк/2 ¹⁰	1.95 kHz	4.88 kHz	9.77 kHz	19.5 kHz	31.3 kHz
1	0	1	1	fclк/2 ¹¹	977 Hz	2.44 kHz	4.88 kHz	9.77 kHz	15.6 kHz
1	1	0	0	fclк/2 ¹²	488 Hz	1.22 kHz	2.44 kHz	4.88 kHz	7.8 kHz
1	1	0	1	fclк/2 ¹³	244 Hz	610 Hz	1.22 kHz	2.44 kHz	3.9 kHz
1	1	1	0	fclк/2 ¹⁴	122 Hz	305 Hz	610 Hz	1.22 kHz	1.95 kHz
1	1	1	1	fclк/2 ¹⁵	61 Hz	153 Hz	305 Hz	610 Hz	977 Hz

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

4.8.6 CSI00 Initialization

Figure 4.10 shows the CSI00 initialization.

R_CSI00_Create	
Stop CSI00 communication operation	ST0 register ST00 bit ← 1
Disable the CSI00 interrupt	MK0H register CSIMK00 bit ← 1: Interrupt servicing disabled IF0H register CSIIF00 bit ← 0: No interrupt request signal is generated
Set the CSI00 interrupt priority level	PR10H register CSIPR100 bit ← 1 PR00H register CSIPR000 bit ← 1: Interrupt priority level 3 (low priority)
Clear the CSI00 error flag	SIR00 register ← 0007H FECT00 bit = 1: Framing error flag clear PECT00 bit = 1: Parity error flag clear OVCT00 bit = 1: Overrun error flag clear
Set the CSI00 operating mode	SMR00 register ← 0020H CKS00 bit = 0: Operation clock: CK00 (2 MHz = 32 MHz/2 ⁴) CCS00 bit = 0: Operation clock: Divided clock frequency of the operating clock Bits MD002 and MD001 = 00B: CSI mode MD000 bit = 0: Interrupt source: transfer end interrupt
Set the CSI00 communication format	SCR00 register ← C007H Bits TXE00 and RXE00 = 11B: Transmission/reception Bits DAP00 and CKP00 = 00B: Data and clock phase: Type 1 DIR00 bit = 0: MSB first Bits DLS001 and DLS000 = 11B: 8-bit data length
Set the baud rate	SDR00 register \leftarrow CE00H: Transfer clock set by dividing the operating clock: f{mck}/208 9615bps = 2 MHz \div 208
Set the output values of pins SCK00 and SO00	SO0 register CKO00 ← 1: Serial clock output value: 1 SO00 bit ← 0: Serial data output value: 0
Enable the CSI00 output	SOE0 register SOE00 bit ← 1
Set the pin used by CSI00	PM5 register PM50 bit \leftarrow 1: SI00 pin: Input mode P5 register P51 \leftarrow 1: SO00 pin: Output 1 PM5 register PM51 bit \leftarrow 0: SO00 pin: Output mode P3 register P30 \leftarrow 1: SCK00 pin: Output 1 PM3 register PM30 bit \leftarrow 0: SCK00 pin: Output mode
return	

Figure 4.10 CSI00 Initialization

Stopping the CSI00 communication operation

• Serial channel stop register 0 (ST0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ST0	0	0	0	0	0	0	0	0	0	0	0	0	ST03	ST02	ST01	ST00
Value	-	-	-	-			I	Ι		_	I	I	×	×	×	1

• Bit 0

ST00 bit	Operation stop trigger of channel 0
0	No trigger operation
1	Clears the SE00 bit to 0 and stops the communication operation

Disabling the CSI00 interrupt

• Interrupt mask flag register (MK0H)

Symbol	Symbol 7 6		5	4	3	2	1	0
MK0H	IKOH SREMKO SRMKO		STMK0	1	1	SREMK2	SRMK2	STMK2
	TMMK01H	CSIMK01	CSIMK00			TMMK11H	CSIMK21	CSIMK20
		IICMK01	IICMK00				IICMK21	IICMK20
Value	×	×	1	-	-	×	×	×

• Bit 5

CSIMK00 bit	Interrupt servicing control
0	Interrupt servicing enabled
1	Interrupt servicing disabled

• Interrupt request flag register (IF0H)

Symbol	7	6	5	4	3	2	1	0	
IF0H	OH SREIFO SF		STIF0	0	0	SREIF2	SRIF2	STIF2	
	TMIF01H	CSIIF01	CSIIF00			TMIF11H	CSIIF21	CSIIF20	
	IIC		IICIF00				IICIF21	IICIF20	
Value	×	×	0	-	-	×	×	×	

• Bit 5

CSIIF00 bit	Interrupt request flag									
0	No interrupt request signal is generated									
1	nterrupt request signal is generated, interrupt request status									

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

Setting the CSI00 interrupt priority level

• Priority specification flag registers (PR10H, PR00H)

Symbol	7	6	5	4	3	2	1	0
PR00H	SREPR00	REPR00 SRPR00		1	1	SREPR02	SRPR02	STPR02
	TMPR001H	CSIPR001	CSIPR000			TMPR011H	CSIPR021	CSIPR020
		IICPR001	IICPR000				IICPR021	IICPR020
Value	×	×	1	-	-	×	×	×
Symbol	7	6	5	4	3	2	1	0
Symbol PR10H	7 SREPR10	6 SRPR10	5 STPR10	4 1	3 1	2 SREPR12	1 SRPR12	0 STPR12
2	7 SREPR10 TMPR101H	-	÷	4 1	3 1	_	1 SRPR12 CSIPR121	-
2		SRPR10	STPR10	4 1	3 1	SREPR12		STPR12

• Bit 5

CSIPR100 bit	CSIPR000 bit	Priority level selection
0	0	Specify level 0 (high priority)
0	1	Specify level 1
1	0	Specify level 2
1	1	Specify level 3 (low priority)

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

Clearing the CSI00 error flag

• Serial flag clear trigger register (SIR00)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SIR00	0	0	0	0	0	0	0	0	0	0	0	0	0	FECT00	PECT00	OVCT00
Value	I	I	I	I	I	I	-	I	I		-	-	_	1	1	1

• Bit 2

FECT00 bit	Clear trigger of framing error of channel 0
0	Not cleared
1	Clears the FEF00 bit of the SSR00 register to 0

• Bit 1

PECT00 bit	Clear trigger of parity error of channel 0
0	Not cleared
1	Clears the PEF00 bit of the SSR00 register to 0

• Bit 0

OVCT00 bit	Clear trigger of overrun error of channel 0
0	Not cleared
1	Clears the OVF00 bit of the SSR00 register to 0

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

Setting the CSI00 operating mode

• Serial mode register 00 (SMR00) Operating clock (fMCK): CK00 Transfer clock (fTCLK): Divided fMCK Operating mode: CSI mode

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMR00	CKS	CCS	0	0	0	0	0	STS	0	SIS	1	0	0	MD	MD	MD
	00	00						00		000				002	001	000
Value	0	0	I	1	Ι	1	Ι	0	1	0	1	1	1	0	0	0

• Bit 15

CKS00 bit	Selection of operating clock (fмск) of channel 0										
0	Operating clock CK00 set by the SPS0 register										
1	Operating clock CK01 set by the SPS0 register										
	Operating clock (f_{MCK}) is used by the edge detector. In addition, depending on the setting of the CCS00 bit and the higher 7 bits of the SDR00 register, a transfer clock (f_{TCLK}) is generated.										

• Bit 14

CCS00 bit	Selection of transfer clock (ftclk) of channel 0
0	Divided operating clock f _{MCK} specified by the CKS00 bit
1	Clock input fsck from the SCK00 pin (slave transfer in CSI mode)
interrupt co	ock frclk is used for the shift register, communication controller, output controller, ntroller, and error controller. When CCS00 = 0, the division ratio of operating clock t by the higher 7 bits of the SDR00 register.

• Bits 2 and 1

MD002 bit	MD001 bit	Setting of operating mode of channel 0
0	0	CSI mode
0	1	UART mode
1	0	Simplified I ² C mode
1	1	Setting prohibited

• Bit 0

MD000 bit	Selection of interrupt source of channel 0
0	Transfer end interrupt
1	Buffer empty interrupt (Occurs when data is transferred from the SDR00 register to the shift register)

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

Setting the CSI00 communication format

 Serial communication operation setting register 00 (SCR00) Operating mode: Enable transmission/reception Clock phase: Type 1 Data transfer sequence: MSB first Data length: 8-bit data length

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SCR00	TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	1	DLS	DLS
	00	00	00	00		00	001	000	00		001	000			001	000
Value	1	1	0	0	Ι	×	×	×	0	-	×	×	-	-	1	1

• Bits 15 and 14

TXE00 bit	RXE00 bit	Selection of operating mode of channel n
0	0	Disable communication
0	1	Reception only
1	0	Transmission only
1	1	Transmission/reception

• Bits 13 and 12

DAP00 bit	CKP00 bit	Selection of data and clock phase in CSI mode
0	0	Туре 1
0	1	Туре 2
1	0	Туре 3
1	1	Туре 4

• Bit 7

DIR00 bit	Selection of data transfer sequence in CSI and UART modes
0	Inputs/outputs data with MSB first
1	Inputs/outputs data with LSB first

• Bits 1 and 0

DLS001 bit	DLS000 bit	Setting of data length in CSI and UART modes
0	0	9-bit data length (stored in bits 0 to 8 of the SDR00 register) (settable in UART mode only)
1	0	7-bit data length (stored in bits 0 to 6 of the SDR00 register)
1	1	8-bit data length (stored in bits 0 to 7 of the SDR00 register)
Other that	an above	Setting prohibited

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

Setting the baud rate

Serial data register 00 (SDR00)
 Sets the transfer clock to 9600 bps (9600 bps = fMCK ÷ 208 = 2 MHz ÷ 208)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SDR00	I	-	-	-			-	Ι		-	-	I	Ι	-	-	—
Value	1	1	0	0	1	1	1	Ι								

• Bits 15 to 9

		SD	R00[1	5:9]			Transfer clock set by dividing the operating clock (fMCK)							
0	0	0	0	0	0	0	fмск/2							
0	0	0	0	0	0	1	fмск/4							
1	1	0	0	1	1	1	fмск/208 (=fмск/[(103+1) × 2])							

Setting the output values from pins SCK00 and SO00

• Serial output register 0 (SO0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SO0	0	0	0	0	CKO03	CKO02	CKO01	CKO00	0	0	0	0	SO03	SO02	SO01	SO00
Value	Ι	-	-	-	×	×	×	1	-	-		-	×	×	×	

• Bit 8

CKO00 bit	Serial clock output of channel 0
0	Serial clock output value is "0"
1	Serial clock output value is "1"

• Serial output register 0 (SO0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SO0	0	0	0	0	CKO03	CKO02	CKO01	CKO00	0	0	0	0	SO03	SO02	SO01	SO00
Value	-	-	-	-	×	×	×		-	-	-	-	×	×	×	0

• Bit 0

SO00 bit	Serial data output of channel 0
0	Serial clock output value is "0"
1	Serial clock output value is "1"

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

Enabling the CSI00 output

• Serial output enable register 0 (SOE0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOE0	0	0	0	0	0	0	0	0	0	0	0	0	SOE03	SOE02	SOE01	SOE00
Value	-	I	-	I		-			Ι	-	Ι	Ι	×	×	×	1

• Bit 0

SOE00 bit	Serial output enable/stop of channel 0
0	Stops output by serial communication operation
1	Enables output by serial communication operation

Setting the pin used by CSI00

• Port mode register 5 (PM5)

Symbol	7	6	5	4	3	2	1	0
PM5	PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50
Value	×	×	×	×	×	×		1

• Bit 0

PM50 bit	P50 pin I/O mode selection
0	Output mode (output buffer on)
1	Input mode (output buffer off)

• Port register 5 (P5)

Symbol	7	6	5	4	3	2	1	0
P5	P57	P56	P55	P54	P53	P52	P51	P50
Value	×	×	×	×	×	×	1	

• Bit 0

P51 bit	Output data control (in output mode)
0	Output 0
1	Output 1

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

• Port mode register 5 (PM5)

Symbol	7	6	5	4	3	2	1	0
PM5	PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50
Value	×	×	×	×	×	×	0	

• Bit 1

PM51 bit	P51 pin I/O mode selection
0	Output mode (output buffer on)
1	Input mode (output buffer off)

• Port register 3 (P3)

Symbol	7	6	5	4	3	2	1	0
P3	0	0	0	0	0	0	P31	P30
Value	-	-	_	_	_	_	×	1

• Bit 0

P30 bit	Output data control (in output mode)
0	Output 0
1	Output 1

• Port mode register 3 (PM3)

Symbol	7	6	5	4	3	2	1	0
PM3	1	1	1	1	1	1	PM31	PM30
Value	×	×	×	×	×	×	×	0

• Bit 0

PM30 bit	P30 pin I/O mode selection
0	Output mode (output buffer on)
1	Input mode (output buffer off)

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

4.8.7 CSI00 Operation Start

Figure 4.11 shows the CSI00 operation start.

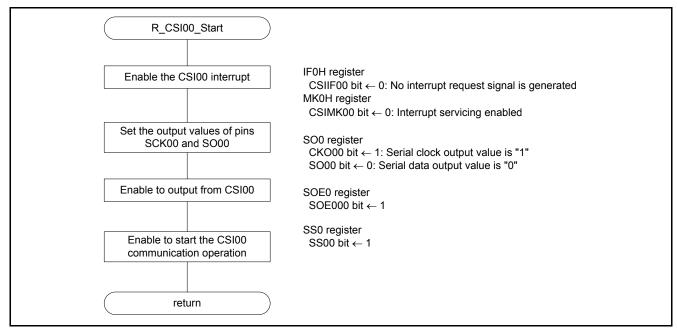


Figure 4.11 CSI00 Operation Start

Enabling the CSI00 interrupt

• Interrupt request flag register (IF0H)

Symbol	7	6	5	4	3	2	1	0
IF0H	SREIF0	SRIF0	STIF0	0	0	SREIF2	SRIF2	STIF2
	TMIF01H	CSIIF01	CSIIF00			TMIF11H	CSIIF21	CSIIF20
		IICIF01	IICIF00				IICIF21	IICIF20
Value	×	×	0	-	-	×	×	×

• Bit 5

CSIIF00 bit	Interrupt request flag
0	No interrupt request signal is generated
1	Interrupt request signal is generated, interrupt request status

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

• Interrupt mask flag register (MK0H)

Symbol	7	6	5	4	3	2	1	0
MK0H	SREMK0	SRMK0	STMK0	1	1	SREMK2	SRMK2	STMK2
	TMMK01H	CSIMK01	CSIMK00			TMMK11H	CSIMK21	CSIMK20
		IICMK01	IICMK00				IICMK21	IICMK20
Value	×	×	0	_	—	×	×	×

• Bit 5

CSIMK00 bit	Interrupt servicing control
0	Interrupt servicing enabled
1	Interrupt servicing disabled

Setting the output values from pins SCK00 and SO00

• Serial output register 0 (SO0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SO0	0	0	0	0	CKO03	CKO02	CKO01	CKO00	0	0	0	0	SO03	SO02	SO01	SO00
Value	-	-	-	-	×	×	×	1	-	_	-	-	×	×	×	

• Bit 8

CKO00 bit	Serial clock output of channel 0
0	Serial clock output value is "0"
1	Serial clock output value is "1"

• Serial output register 0 (SO0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SO0	0	0	0	0	CKO03	CKO02	CKO01	CKO00	0	0	0	0	SO03	SO02	SO01	SO00
Value	-	-	-	-	×	×	×		-	-	-	-	×	×	×	0

• Bit 0

	SO00 bit	Serial data output of channel 0
ſ	0	Serial clock output value is "0"
	1	Serial clock output value is "1"

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

Enabling the CSI00 output

• Serial output enable register 0 (SOE0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOE0	0	0	0	0	0	0	0	0	0	0	0	0	SOE03	SOE02	SOE01	SOE00
Value	-	Ι	-	I	I	-	I		Ι	Ι	-	Ι	×	×	×	1

• Bit 0

SOE00 bit	Serial output enable/stop of channel 0
0	Stops output by serial communication operation
1	Enables output by serial communication operation

Enabling to start the CSI00 communication operation

• Serial channel start register 0 (SS0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SS0	0	0	0	0	0	0	0	0	0	0	0	0	SS03	SS02	SS01	SS00
Value	Ι	_	_	_	_	_	-	_	_	-	_	_	×	×	×	1

• Bit 0

SS00 bit	Operation start trigger of channel 0
0	No trigger operation
1	Sets the SE00 bit to 1 and enters the communication wait status

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

4.8.8 CSI00 Transmission/Reception Start

Figure 4.12 shows the CSI00 transmission/reception start.

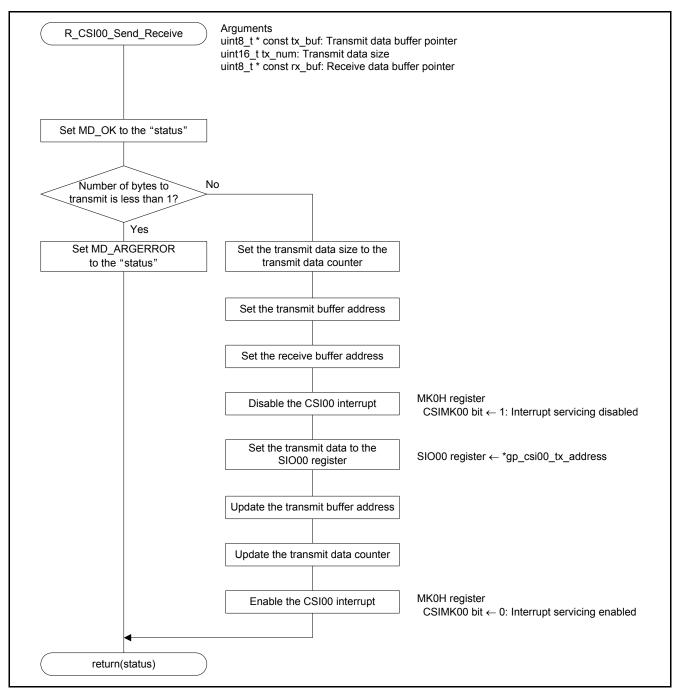
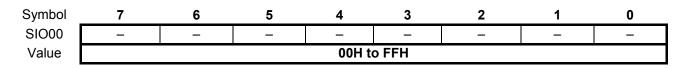


Figure 4.12 CSI00 Transmission/Reception Start

Disabling the CSI00 interrupt

• Interrupt mask flag register (MK0H)


Symbol	7	6	5	4	3	2	1	0
MK0H	SREMK0	SRMK0	STMK0	1	1	SREMK2	SRMK2	STMK2
	TMMK01H	CSIMK01	CSIMK00			TMMK11H	CSIMK21	CSIMK20
		IICMK01	IICMK00				IICMK21	IICMK20
Value	×	×	1	_	-	×	×	×

• Bit 5

CSIMK00 bit	Interrupt servicing control
0	Interrupt servicing enabled
1	Interrupt servicing disabled

Setting the transmit data

• CSI00 data register (SIO00)

Enabling the CSI00 interrupt

• Interrupt mask flag register (MK0H)

Symbol	7	6	5	4	3	2	1	0
MK0H	SREMK0	SRMK0	STMK0	1	1	SREMK2	SRMK2	STMK2
	TMMK01H	CSIMK01	CSIMK00			TMMK11H	CSIMK21	CSIMK20
		IICMK01	IICMK00				IICMK21	IICMK20
Value	×	×	0	-	-	×	×	×

• Bit 5

CSIMK00 bit	Interrupt servicing control
0	Interrupt servicing enabled
1	Interrupt servicing disabled

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

4.8.9 CSI00 Transfer End Interrupt

Figure 4.13 shows the CSI00 transfer end interrupt.

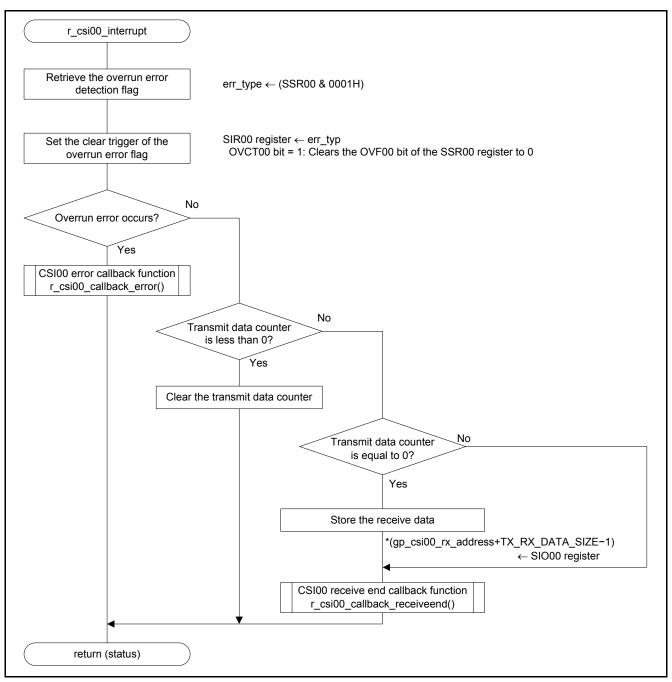


Figure 4.13 CSI00 Transfer End Interrupt

Retrieving the overrun error detection flag status

• Serial status register 00 (SSR00)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSR00	0	0	0	0	0	0	0	0	0	TSF	BFF	0	0	FEC	PEC	OVC
										00	00			00	00	00

• Bit 0

OVC00 bit	Overrun error detection flag of channel 0
0	No error occurs
1	An error occurs

Setting the clear trigger of the overrun error flag

• Serial flag clear trigger register (SIR00) Clears an overrun error flag when an overrun error occurs.

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SIR00	0	0	0	0	0	0	0	0	0	0	0	0	0	FECT00	PECT00	OVCT00
Value	-	-	-	-	-	-	-	-	-	_	-	-	-	×	×	1

• Bit 0

OVCT00 bit	Clear trigger of overrun error flag of channel 0							
0	Not cleared							
1	Clears the OVF00 bit of the SSR00 register to 0							

Storing the receive data

• CSI00 data register 00 (SIO00) Reads the receive data

Symbol	7	6	5	4	3	2	1	0
SIO00	_	-	-	-	-	_	-	-

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

4.8.10 CSI00 Receive End Callback Function

Figure 4.14 shows the CSI00 receive end callback function.

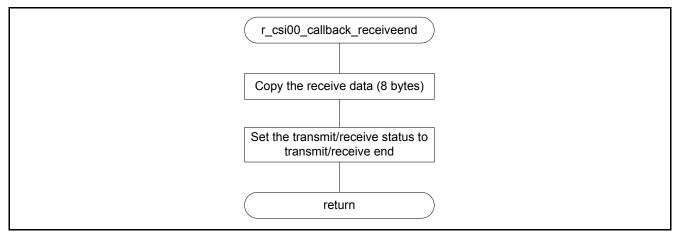


Figure 4.14 CSI00 Receive End Callback Function

4.8.11 CSI00 Error Callback Function

Figure 4.15 shows the CSI00 error callback function.

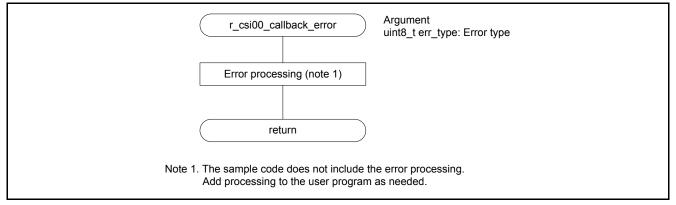


Figure 4.15 CSI00 Error Callback Function

4.8.12 DTC Initialization

Figure 4.16 shows the DTC initialization.

Figure 4.16 DTC Initialization

Supplying an input clock to the DTC

• Peripheral enable register 1 (PER1)

Symbol	7	6	5	4	3	2	1	0
PER1	DACEN	TRGEN	CMPEN	TRD0EN	DTCEN	0	0	TRJ0EN
Value	×	×	×	×	1	_	_	×

• Bit 3

DTCEN bit	Control of DTC input clock supply
0	Stops input clock supplyDTC cannot run.
1	Enables input clock supplyDTC can run.

Disabling to activate DTC0

• DTC activation enable register i (DTCENi, i = 0 to 4)

Symbol	7	6	5	4	3	2	1	0
DTCENi	DTCENi7	DTCENi6	DTCENi5	DTCENi4	DTCENi3	DTCENi2	DTCENi1	DTCENi0
Value	0	0	0	0	0	0	0	0

• Bit 7

DTCENi7 bit	DTC activation enable i7
0	Activation disabled
1	Activation enabled

• Bit 6

DTCENi6 bit	DTC activation enable i6
0	Activation disabled
1	Activation enabled

• Bit 5

DTCENi5 bit	DTC activation enable i5
0	Activation disabled
1	Activation enabled

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

• Bit 4

DTCENi4 bit	DTC activation enable i4
0	Activation disabled
1	Activation enabled

• Bit 3

DTCENi3 bit	DTC activation enable i3
0	Activation disabled
1	Activation enabled

• Bit 2

DTCENi2 bit	DTC activation enable i2			
0	Activation disabled			
1	Activation enabled			

• Bit 1

DTCENi1 bit	DTC activation enable i1
0	Activation disabled
1	Activation enabled

• Bit 0

DTCENi0 bit	DTC activation enable i0
0	Activation disabled
1	Activation enabled

Setting the DTC base address

• DTC base address register (DTCBAR) Sets the start address of the DTC control data area.

Symbol	7	6	5	4	3	2	1	0	
DTCBAR	DTCBAR7	DTCBAR6	DTCBAR5	DTCBAR4	DTCBAR3	DTCBAR2	DTCBAR1	DTCBAR0	
Value	FDH								

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

Setting the DTCD0

 DTC control register 0 (DTCCR0) Data size: 8 bits Chain transfer: Enabled Transfer destination address: Incremented Transfer source address: Fixed Transfer mode: Normal mode

Symbol	7	6	5	4	3	2	1	0
DTCCR0	0	SZ	RPTINT	CHNE	DAMOD	SAMOD	RPTSEL	MODE
Value	_	0	×	1	1	0	×	0

• Bit 6

SZ bit	Data size selection
0	8 bits
1	16 bits

• Bit 4

CHNE bit	Enabling/disabling chain transfers
0	Chain transfers disabled
1	Chain transfers enabled

• Bit 3

DAMOD bit	Transfer destination address control
0	Fixed
1	Incremented

• Bit 2

SAMOD bit	Transfer source address control
0	Fixed
1	Incremented

• Bit 0

MODE bit	Transfer mode selection								
0	Normal mode								
1	Repeat mode								

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

• DTC block size register 0 (DTBLS0) Set the DTC0 block size to 1 byte.

Symbol	7	6	5	4 3		2	1	0				
DTBLS0	DTBLS07	DTBLS06	DTBLS05	DTBLS05 DTBLS04 DTBLS03			DTBLS01	DTBLS00				
Value	01H											

• DTC transfer count register 0 (DTCCT0) Set the number of transfers by DTC0 to 7.

Symbol	7	6	5 4 3			2	1	0			
DTCCT0	DTCCT07	DTCCT06	DTCCT05	DTCCT04	DTCCT03	DTCCT02	DTCCT01	DTCCT00			
Value	07H										

• DTC transfer count reload register 0 (DTRLD0) Set the number of transfers in repeat mode to 7 (This register can be used in repeat mode).

Symbol	7	6	5	4	3 2		1	0				
DTRLD0	DTRLD07	DTRLD06	DTRLD05	DTRLD04	DTRLD03	DTRLD02	DTRLD01	DTRLD00				
Value	07H											

• DTC source address register 0 (DTSAR0) Specify the transfer source address for data transfer to FF10H.

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DTSAR0	DTSA															
	R015	R014	R013	R012	R011	R010	R09	R08	R07	R06	R05	R04	R03	R02	R01	R00
Value								FF1	10H							

• DTC destination address register 0 (DTDAR0)

Specify the transfer destination address for data transfer to E900H.

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DTDAR0	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA
	R015	R014	R013	R012	R011	R010	R09	R08	R07	R06	R05	R04	R03	R02	R01	R00
Value		E900H														

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

Setting the DTCD1

• DTC control register 1 (DTCCR1) Data size: 8 bits Chain transfer: Disabled Transfer destination address: Fixed Transfer source address: Incremented Transfer mode: Normal mode

Symbol	7	6	5	4	3	2	1	0
DTCCR1	0	SZ	RPTINT	CHNE	DAMOD	SAMOD	RPTSEL	MODE
Value	_	0	×	0	0	1	×	0

• Bit 6

SZ bit	Data size selection
0	8 bits
1	16 bits

• Bit 4

CHNE bit	Enabling/disabling chain transfers							
0	Chain transfers disabled							
1	Chain transfers enabled							

• Bit 3

DAMOD bit	Transfer destination address control
0	Fixed
1	Incremented

• Bit 2

SAMOD bit	Transfer source address control
0	Fixed
1	Incremented

• Bit 0

MODE bit	Transfer mode selection
0	Normal mode
1	Repeat mode

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

• DTC block size register 1 (DTBLS1) Sets the DTC1 block size to 1 byte.

Symbol	7	6	5	4	3	2	1	0
DTBLS1	DTBLS17	DTBLS16	DTBLS15	DTBLS14	DTBLS13	DTBLS12	DTBLS11	DTBLS10
Value				01	Η			

• DTC transfer count register 1 (DTCCT1) Set the number of transfers by DTC1 to 7.

Symbol	7	6	5	4	3	2	1	0			
DTCCT1	DTCCT17	DTCCT16	DTCCT15	DTCCT14	DTCCT13	DTCCT12	DTCCT11	DTCCT10			
Value	07H										

• DTC source address register 1 (DTSAR1) Specify the transfer source address for data transfer to E911H.

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DTSAR1	DTSA	DTSA	DTSA	DTSA	DTSA	DTSA	DTSA	DTSA	DTSA	DTSA	DTSA	DTSA	DTSA	DTSA	DTSA	DTSA
	R115	R114	R113	R112	R111	R110	R19	R18	R17	R16	R15	R14	R13	R12	R11	R10
Value	E911H															

• DTC destination address register 1 (DTDAR1) Specify the transfer destination address for data transfer to FF10H.

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DTDAR1	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA	DTDA
	R115	R114	R113	R112	R111	R110	R19	R18	R17	R16	R15	R14	R13	R12	R11	R10
Value	FF10H															

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

4.8.13 DTCD0 Operation Start

Figure 4.17 shows the DTCD0 operation start.

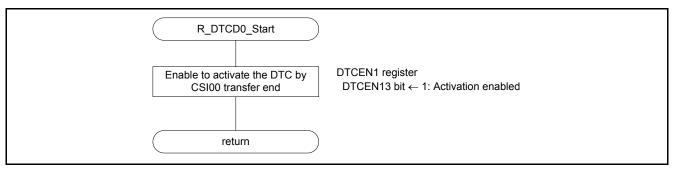


Figure 4.17 DTCD0 Operation Start

Enabling to activate the DTC by CSI00 transfer end

• DTC activation enable register 1 (DTCEN1)

Symbol	7	6	5	4	3	2	1	0
DTCEN1	DTCEN1 DTCEN17 D		DTCEN15	DTCEN14	DTCEN13	DTCEN12	DTCEN11	DTCEN10
Value	×	×	×	×	1	×	×	×

• Bit 3

DTCEN13 bit	DTC activation enable 13
0	Activation disabled
1	Activation enabled

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

4.8.14 DTCD0 Operation Stop

Figure 4.18 shows DTCD0 operation stop.

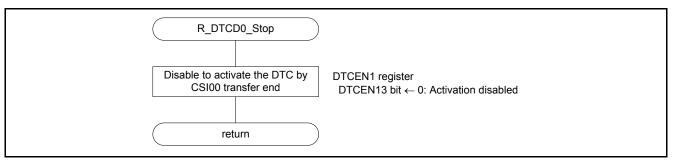


Figure 4.18 DTCD0 Operation Stop

Disabling to activate the DTC by CSI00 transfer end

• DTC activation enable register 1 (DTCEN1)

Symbol	7	6	5	4	3	2	1	0
DTCEN1	DTCEN17	DTCEN16	DTCEN15	DTCEN14	DTCEN13	DTCEN12	DTCEN11	DTCEN10
Value	×	×	×	×	0	×	×	×

• Bit 3

DTCEN13 bit	DTC activation enable 13	
0	Activation disabled	
1	Activation enabled	

For details on register setting, refer to the RL78/G14 User's Manual: Hardware.

Legend symbol:

4.8.15 Main Processing

Figure 4.19 shows the main processing.

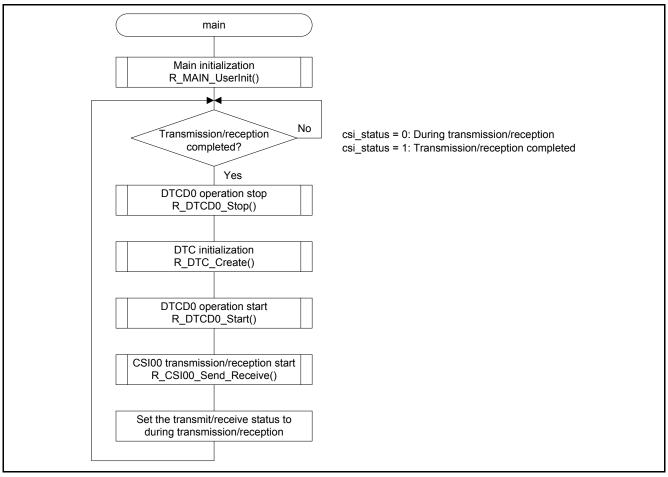


Figure 4.19 Main Processing

4.8.16 Main Initialization

Figure 4.20 shows the main initialization.

Figure 4.20 Main Initialization

4.8.17 Transmit Data Setting

Figure 4.21 shows the transmit data setting.

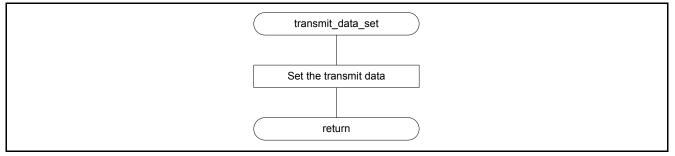


Figure 4.21 Transmit Data Setting

5. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

6. Reference Documents

RL78/G14 User's Manual: Hardware Rev.2.00 (R01UH0186EJ) RL78 Family User's Manual: Software Rev.1.00 (R01US0015EJ)

The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com

Inquiries http://www.renesas.com/contact/

REVISION HISTORY

RL78/G14 Using the DTC to Perform Continuous Clock Synchronous Serial Communication

Rev.	Date		Description
		Page	Summary
1.00	Feb. 14, 2014	—	First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

- 1. Handling of Unused Pins
 - Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

- 3. Prohibition of Access to Reserved Addresses
 - Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.
- The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment: and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the se of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics 8 products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products. 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics RENESAS

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1406-5888-000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe BmH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-65031327 Renesas Electronics (China) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-1-8235-1155, Fax: +86-1-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 LanGao Rd., Putuo District, Shanghai, China Tel: +86-2-12226-0388, Fax: +852-2886-9022/9044 Renesas Electronics Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +86-2-8175-9800, Fax: +882-2876-980 Renesas Electronics Taiwan Co., Ltd. 137, No. 33, Fu Shing North Road, Taipei, Taiwan Tel: +88-2-8175-9900, Fax: +882-19670 Renesas Electronics Taiwan Co., Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 Tel: +86-213-0200, Fax: +862-213-0300 Renesas Electronics Korea Co., Ltd. 109 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Korea Co., Ltd. 109 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 Tel: +65-6713-0200, Fax: +65-6213-0300 Renesas Electronics Korea Co., Ltd. 127, 234 Teheran-ro, Gangman-Gu, Seoul, 135-080, Korea Tel: +62-258-3737, Fax: +65-6213-0300