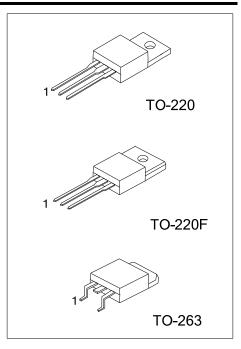
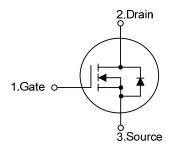
UNISONIC TECHNOLOGIES CO., LTD

7N60K **Power MOSFET**

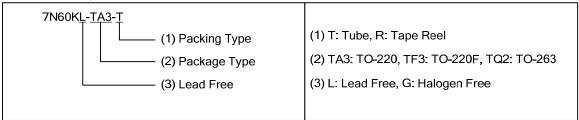

7.4A, 600V N-CHANNEL POWER MOSFET

DESCRIPTION


The U TC 7N60K is a hi gh voltag e po wer MOSF ET and is designed to have better characteristics, such as fast s witching time, low gate char ge, lo w on-state resistance and hav e a high rugged avalanche characteristics. T his power MOS FET is usuall y used at high speed s witching a pplications in s witching po wer sup plies and adaptors.

FEATURES

- * $R_{DS(ON)}$ < 1.2 Ω @ V_{GS} = 10V
- * Ultra Low Gate Charge (Typical 29 nC)
- * Low Reverse Transfer Capacitance (C_{RSS} = typical 16pF)
- * Fast Switching Capability
- * Avalanche Energy Tested
- * Improved dv/dt Capability, High Ruggedness


SYMBOL

ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
7N60KL-TA3-T 7N60	KG-TA3-T	TO-220	G	D	S	Tube	
7N60K L-TF3-T	7N60KG-TF3-T	TO-220F	G	D	S	Tube	
7N60KL-TQ2-R 7N60	KG-TQ2-R	TO-263	G	D	S	Tape Reel	
7N60KL-TQ2-T 7N60	KG-TQ2-T	TO-263	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 6

■ ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, unless otherwise specified)

PARAMETER SYMBOL			RATINGS	UNIT
Drain-Source Voltage		V _{DSS} 600		V
Gate-Source Voltage		V _{GSS} ±30		V
Avalanche Current (Note 2)		I _{AR} 7.4		Α
Drain Current	Continuous I	_D 7.4		Α
	Pulsed (Note 2)	Pulsed (Note 2) I _{DM} 29.6		Α
Avalanche Energy	Single Pulsed (Note 3)	E _{AS} 220		mJ
	Repetitive (Note 2)	E _{AR} 14.2		mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	V/ns
Power Dissipation	TO-220		142	
	TO-220F 48	P_{D}		W
	TO-263		50	
Junction Temperature	unction Temperature		150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

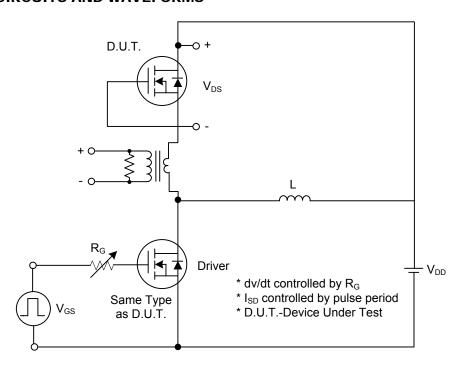
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

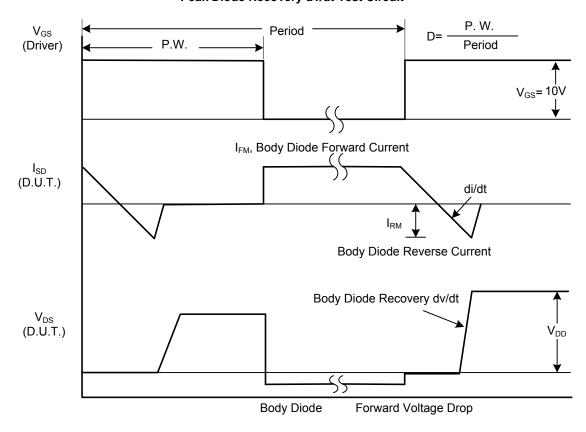
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. L = 9mH, I_{AS} = 7A, V_{DD} = 90V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C
- 4. $I_{SD} \le 7.4A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

■ THERMAL DATA

PARAMETER SYMBOL			RATINGS	UNIT	
Junction to Ambient	TO-220/TO-220F/TO-263	θ_{JA}	62.5	°C/W	
Junction to Case	TO-220		0.88		
	TO-220F 2.6	θ_{JC}		°C/W	
	TO-263		2.5		

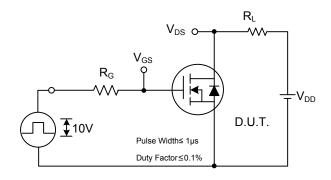

■ **ELECTRICAL CHARACTERISTICS** (T_C =25°C, unless otherwise specified)

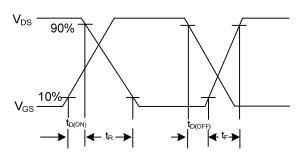
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					•		
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} = 0V, I _D = 250μA 600				V
Drain-Source Leakage Current		I _{DSS}	V _{DS} = 600V, V _{GS} = 0V			1	μA
Gate- Source Leakage Current	Forward	loss	$V_{GS} = 30V, V_{DS} = 0V$			100	nA
	Reverse V		_{GS} = -30V, V _{DS} = 0V			-100	nA
Breakdown Voltage Temperature Coefficient		$\triangle BV_{DSS}/\triangle T_J$	I _D =250μA,Referenced to 25°C		0.67		V/°C
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A 2.5$			4.5	٧
Static Drain-Source On-State Resistance		R _{DS(ON)}	$V_{GS} = 10V, I_D = 3.7A$		1.0	1.2	Ω
DYNAMIC CHARACTERISTICS							
Input Capacitance		C _{ISS}				1400	pF
Output Capacitance		Coss	V _{DS} =25V, V _{GS} =0V, f=1.0 MHz			180	pF
Reverse Transfer Capacitance	Reverse Transfer Capacitance				16	21	pF
SWITCHING CHARACTERISTICS	S						
Turn-On Delay Time		$t_{D(ON)}$				70	ns
Turn-On Rise Time		t _R	V _{DD} =300V, I _D =7.4A,		90	170	ns
Turn-Off Delay Time		t _{D(OFF)}	$R_G = 25\Omega$ (Note 1, 2)			140	ns
Turn-Off Fall Time		t _F			55	130	ns
SWITCHING CHARACTERISTICS	S						
Total Gate Charge		Q_{G}	 V _{DS} =480V, I _D =7.4A,		29	38	nC
Gate-Source Charge		Q_{GS}	V _{GS} =10V (Note 1, 2)		7		nC
Gate-Drain Charge		Q_{GD}	VGS=10V (NOIC 1, 2)		14.5		nC
DRAIN-SOURCE DIODE CHARA	CTERISTIC	S AND MAXI	MUM RATINGS				
Drain-Source Diode Forward Voltage		V _{SD}	$V_{GS} = 0V, I_S = 7.4 A$			1.4	V
Maximum Continuous Drain-Source Diode		Is				7.4	Α
Forward Current						7.7	
Maximum Pulsed Drain-Source Diode		I _{SM}				29.6	Α
Forward Current						20.0	
Reverse Recovery Time		t _{rr}	- ° ′ ° ′ ′ 		0		ns
Reverse Recovery Charge		Q_{RR}	dI _F / dt = 100A/μs (Note 1)		2.4		μC


Notes: 1. Pulse Test: Pulse width≤300µs, Duty cycle≤2%

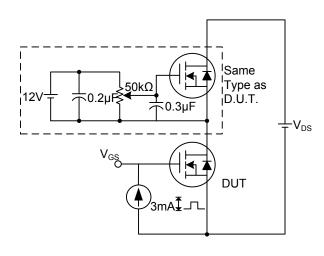
^{2.} Essentially independent of operating temperature

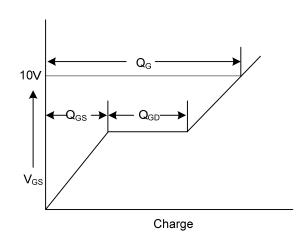
■ TEST CIRCUITS AND WAVEFORMS



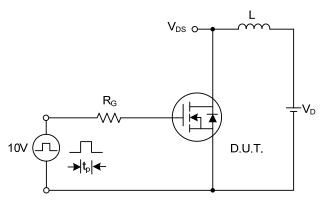

Peak Diode Recovery dv/dt Test Circuit

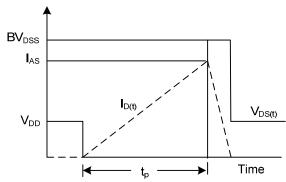
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS (Cont.)



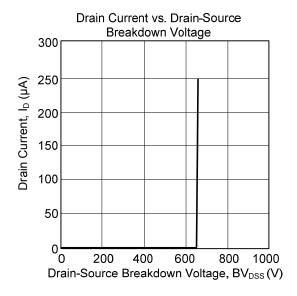
Switching Test Circuit

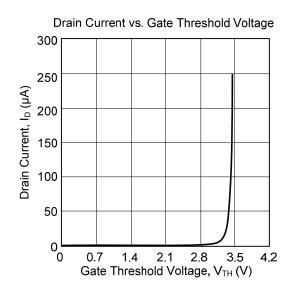

Switching Waveforms

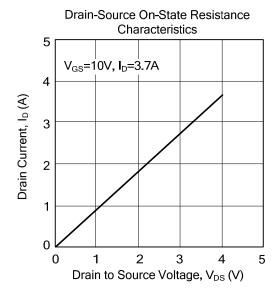


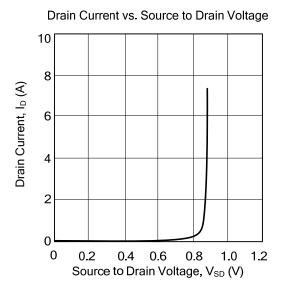
Gate Charge Test Circuit

Gate Charge Waveform






Unclamped Inductive Switching Test Circuit


Unclamped Inductive Switching Waveforms

■ TYPICAL CHARACTERISTICS

UTC as sumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.