
[AK8448]

AK8448

6-Channel Linear Sensor compatible

10 Bit 40 MSPS x 3 Analog Pre-Processor

Functional Description of Each Block

□ Clamp / CDS Sensor Interface Circuit

It samples the Image signal level from the sensor.

The AK8448 has 3 sampling modes – CDS mode, Clamp mode and DC direct-coupled mode.

There are 5 ,number of channel select modes -1, 2, 3, 4 and 6 channels. Channel(s) to be used is selected by the number of channel mode.

CDS circuits, DACs, PGAs and ADCs of the un-used channels are automatically powered-down.

□ DAC Offset addition D/A converter

This is a D/A converter to generate an offset voltage which is added to the sampled signal level at the Sensor Interface part. Voltage range of DAC is ± 298.7 mV (typ.) and its resolution is 8 Bit. An independent offset voltage can be set to each channel by register setting.

D PGA (Programmable Gain Amplifier)

This is a programmable Gain amplifier to adjust signal amplitude of each channel. Adjustable range is from 0 dB to 18.75 dB (typ.), and its resolution is 8 Bit.

An independent gain can be set to each channel by register setting.

□ MUX Channel Multiplexer

This is an Analog Switch to input in the time-division-multiplexed fashion the simultaneously-sampled 2 channel signals to an ADC, in 4 channel mode and 6 channel mode. In 4 channel mode and 6 channel mode, 10 Bit ADCs process dual channels in time-division-multiplexed method.

□ ADC A/D Converter

This is a 10 Bit, 40 MSPS A/D converter to convert an Image signal level into digital data after offset adjustment and gain adjustment are made. There are 3 ADCs and 2 channels are connected to each ADC through a channel multiplexer.

Output Control ADC Output Data Control

Digital circuit to control the Output Form of ADC data. ADC data can be output in either 5 Bit-wide or 10 Bit-wide by register setting.

In case of 5 Bit-wide data operation, the upper 5 Bit of the ADC data is output at the rising edge of ACDK clock, and the lower 5 Bit data ,at the falling edge of ADCK.

In case of 10 Bit-wide data operation, ADC data from two different data channels are output at the rising edge and at the falling edge of ADCK respectively.

It is also possible to output ADC data at only the falling edge of ADCK clock by register setting in 10 Bit-wide data operation.

□ Reference Voltage Reference Voltage Generation Circuit

Circuit to generate internal Clamp level VCLP, Analog Common Level VCOM, ADC Reference Voltages VRP & VRN and DAC Reference Voltages DAREFP & DAREFN.

□ Timing Control Timing Generating Circuit

Digital circuit to generate internal timing pulses from those input clocks, ADCK, SHR, SHD and CLPB.

ADCK is a clock which is used for ADC operation and for operation of ADC Output Data Control part.

SHR is a timing pulse which is used to sample Reference level of Sensor signal.

SHD is a timing pulse which is used to sample Data level of Sensor signal.

CLPB is a timing pulse to show Clamp period.

□ Serial I/F Control Serial Register Interface Circuit

A 4-Wire Interface to set values at the Control registers.

Control registers also can be read out.

By assigning specific address to individual devices by chip enable pins CE0 and CE1, up to 4. AK8448 devices can be connected on the same, 4-wires.

Pin Assignment

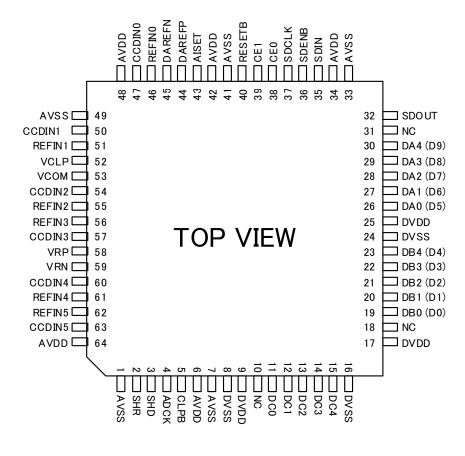


Figure 1 Pin Layout

Pin Function

No.	Name	Туре	Description					
1	AVSS	PWR	Analog ground					
2	SHR	1	Reference level sampling pulse input					
3	SHD	I	Data level sampling pulse input					
4	ADCK	I	ADC sampling clock input					
5	CLPB	1	Clamp control input Low : Clamp operation "ON"					
			High : Clamp operation "OFF"					
			This should be fixed to Low during CDS mode					
6	AVDD	PWR	Analog power supply					
7	AVSS	PWR	Analog ground					
8	DVSS	PWR	Digital ground					
9	DVDD	PWR	Digital power supply					
10	NC		left open or should be connected to VSS					
11	DC0	0	ADC output in a straight binary code(DC0 : LSB side , DC4 : MSB					
12	DC1	0	side)					
13	DC2	0	In 5 Bit-wide output operation in 3-channel and 6 channel modes,					
14	DC3	0	Data output corresponds to CCDIN4 and CCDIN5.					
15	DC4	0	In 10 Bit-wide output operation and in 5 Bit-wide output operation in 1					
			channel, 2 channel and 4 channel modes, these outputs are not used.					
			When these modes are selected, low level is output in normal operation					
			and either low level or high-Z output is programmable in power-down					
			mode by register setting.					
16	DVSS	PWR	Digital ground					
17	DVDD	PWR	Digital power supply					
18	NC		left open or should be connected to AVSS					
19	DB0 (D0)	0	ADC output in a straight binary code.					
20	DB1 (D1)	0	Signal name with parenthesis means a signal name in 10 Bit-wide					
21	DB2 (D2)	0	output operation (in 5 Bit-wide output operation, DB0 : LSB side, DB4 :					
22	DB3 (D3)	0	MSB side and in 10 Bit-wide output operation, D0 : LSB).					
23	DB4 (D4)	0	When in 5 Bit-wide output operation in 1 channel mode, these outputs					
			are not used. They become low level output in normal operation and					
			either low level or high-Z output is programmable by register setting in					
			power-down mode.					
_24	DVSS	PWR	Digital ground					
25	DVDD	PWR	Digital power supply					

No.	Name	Туре	Description
26	DA0 (D5)	0	ADC output in a straight binary code.
27	DA1 (D6)	0	Signal name with parenthesis means a signal name in 10 Bit-wide
28	DA2 (D7)	0	output operation (in 5 Bit-wide output operation, DA0 : LSB side, DA4 :
29	DA3 (D8)	0	MSB side and in 10 Bit-wide output operation, D9 : MSB).
30	DA4 (D9)	0	
31	NC		left open or should be connected to AVSS.
32	SDOUT	0	Serial I/F Data output, Pull up or pull down please.
33	AVSS	PWR	Analog ground
34	AVDD	PWR	Analog power supply
35	SDIN	1	Serial I/F Data input
36	SDENB	I	Serial I/F Data enable
37	SDCLK	I	Serial I/F clock
38	CE0	I	Chip Enable
39	CE1	I	
40	RESETB	I	Reset
41	AVSS	PWR	Analog ground
42	AVDD	PWR	Analog power supply
43	AISET	1	Internal Bias current
			Connect a 8.2Kohm resistor between AVSS and this pin.
44	NC		left open or should be connected to AVSS.
45	TEST	I	For test , connect to AVSS.
46	REFIN0	1	Reference input
			Connect a same value capacitor as CCDIN0 input capacitor between
			AVSS and this pin. In DC direct-coupled mode, an externally-fed signal
			reference level should be input.
47	CCDIN0	I	Sensor signal input
48	AVDD	PWR	Analog power supply
49	AVSS	PWR	Analog ground
50	CCDIN1	1	Sensor signal input
51	REFIN1	I	Reference input
			Connect a same value capacitor as CCDIN1 input capacitor between
			AVSS and this pin.
			In DC direct-coupled mode, an externally-fed signal reference level
			should be input.
52	VCLP	0	Clamp level output
			Connect a stabilizing capacitor between AVSS and this pin.

No.	Name	Туре	Description
53	VCOM	0	Internal Reference voltage
			Connect a stabilizing capacitor between AVSS and this pin
54	CCDIN2	1	Sensor signal input
55	REFIN2	I	Reference input
			Connect a same value capacitor as CCDIN2 input capacitor between
			AVSS and this pin.
			In DC direct-coupled mode, an externally-fed signal reference level
			should be input.
56	REFIN3	I	Reference input
			Connect a same value capacitor as CCDIN3 input capacitor between
			AVSS and this pin.
			IN DC direct-coupled mode, an externally-fed signal reference level
			should be input.
57	CCDIN3	1	Sensor signal input
58	VRP	0	ADC reference voltage positive side
			Connect a stabilizing capacitor between AVSS and this pin.
59	VRN	0	ADC reference voltage negative side
			Connect a stabilizing capacitor between AVSS and this pin.
60	CCDIN4	1	Sensor signal input
61	REFIN4	Ι	Reference input
			Connect a same value capacitor as CCDIN4 input capacitor between
			AVSS and this pin.
			In DC direct-coupled mode, an externally-fed signal reference level
			should be input.
62	REFIN5	Ι	Reference input
			Connect a same value capacitor as CCDIN5 input capacitor between
			AVSS and this pin.
			In DC direct-coupled mode, an externally-fed signal reference level
			should be input.
63	CCDIN5		Sensor signal input
64	AVDD	PWR	Analog power supply

Type descriptionI : input pinO : output pinPWR : power supply pinNote)AVDD is a power supply for Analog part and Digital part.

DVDD is a power supply for the Digital output bufferes.

Absolute Maximum Ratings

AVSS = DVSS = 0 V. All voltages are referenced to ground.

Parameter	Symbol	Min.	Max.	Unit	Notes
Power Supplies	AVDD	-0.3	4.5	V	
	DVDD	-0.3	4.5	V	
Input Current	IIN	-10	10	mA	Except Supply
	IIIN	-10	10	ША	Pins
Analog Input Voltage	VINA	-0.3	AVDD+0.3	V	
Digital Input Voltage	VINL	-0.3	AVDD+0.3	V	
(Input Pins)	VINL	-0.3	AVDD+0.3	v	
Digital Input Voltage	VONL	-0.3	DVDD+0.3	v	Restriction on the
(Output Pins)	VONL	-0.3		v	over input
Ambient Operating	То	0	70	°C	
Temperature	Та	U	70	-C	
Storage Temperature	Tstg	-65	150	°C	

Operation under a condition exceeding above limits may cause permanent damage to the device. Normal operation is not guaranteed under the above extreme conditions.

Recommended Operating Conditions

AVSS = DVSS = 0 V. All voltages are referenced to ground.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supplies						
Analog	AVDD	3.0	3.3	3.6	V	
Output buffer	DVDD	3.0	3.3	3.6	V	
REFINn (n = 0 ~ 5)	VREFIN	0		AVDD-1.3	V	Positive Polarity
Input voltage at DC						
direct-coupled mode						

Electrical Characteristics

DC Characteristics

(AVDD = 3.0 ~ 3.6 V, DVDD = 3.0 ~ 3.6 V, Ta = 0 ~ 70									
Parameter	Symbol	Pin	Min.	Max.	Unit	Notes			
High level input voltage	VIH	Note 1	0.7AVDD		V				
Low level input voltage	VIL	Note 1		0.3AVDD	V				
High level output voltage 1	VOH1	Note 2	0.8DVDD		V	IOH= -1mA			
Low level output voltage 1	VOL1	Note 2		0.2DVDD	V	IOL= 1mA			
High level output voltage 2	VOH2	Note 3	0.8DVDD		V	IOH= -0.25mA			
Low level output voltage 2	VOL2	Note 3		0.2DVDD	V	IOL= 0.25mA			
Input leakage current	ILIKG	Note 1	-10	10	μA				
High-Z leakage current	IOZ	Note 2	-10	10	μA				

(note 1) SHD, SHR, ADCK, CLPB, SDCLK, SDENB, SDIN, CE0, CE1, RESETB

(note 2) DA0 ~ DA4, DB0 ~ DB4, DC0 ~ DC4

(note 3) SDOUT

Analog Characteristics

Symbol		Min.	Тур.	Max.	Unit
VCLP					V
	Negative Polarity				
VCOM		1.1	1.2	1.3	V
					V
VRN		0.7	0.8	0.9	
VI					
					Vpp
		1.20		1.50	
			10		рF
CBW			1		
					pixel
CDS			-35		dB
	Offset Adjust DAC				
DRES				8	Bit
DRNG	Input referred value	±252.0	±298.7	±366.6	mV
DNL	Guaranteed monotonicity	-1.0		+1.5	LSB
	PGA				
GMAX	CCDIN~ADC	18.25	18.75	19.25	dB
	Relative value to 0dB				
GSTA	Guaranteed monotonicity	0.001	0.03		dB
	ADC				
RES				10	bit
	CCDIN~ADC	-1.0			LSB
					202
.1		-talk			
NI			04		LSB _{rms}
VOEST		-50		50	mV
		00		00	111 V
XTALK1	(note 4)		±1		LSB
	Symbol VCLP VCOM VRP VRN VI CIN CBW CDS DRNG DRNG DNL GMAX GSTA RES DNL RES DNL	Symbol Condition Reference Voltage part VCLP Positive Polarity VCOM VRP VRN Clamp / CDS part VI At PGA Gain= 0dB CDS mode Clamp mode DC direct-coupled mode CIN CCDIN CBW CCDIN~ADC At PGA Gain= 0dB CDS noise 0.4Vpp 150kHz signal 0.8Vpp 1MHz Offset Adjust DAC DRNG Input referred value DNL Guaranteed monotonicity ADC RES DNL CCDIN~ADC Relative value to 0dB GSTA Guaranteed monotonicity ADC RES DNL CCDIN~ADC Guaranteed no-missing code Noise, Internal Offset, Cross- NI At PGA Gain=0dB At PGA Gain=0dB At PGA Gain=0dB VOFST At PGA Gain=0dB	SymbolConditionMin.Reference Voltage part0.94VCLPPositive Polarity0.94Negative Polarity2.15VCOM1.1VRP1.5VRN0.7Clamp / CDS part0.7VIAt PGA Gain= 0dBCDS mode1.20Clamp mode1.04DC direct-coupled mode1.20CINCCDINCBWCCDIN~ADCAt PGA Gain= 0dBCDSnoise 0.4Vpp 150kHzsignal 0.8Vpp 1MHzOffset Adjust DACDRESDRNGInput referred value±252.0DNLGuaranteed monotonicity-1.0GMAXCCDIN~ADC Relative value to 0dB18.25GSTAGuaranteed monotonicity0.001ADCRESDNLCCDIN~ADC Relative value to 0dB-1.0GVTAGuaranteed monotonicity-1.0VIAt PGA Gain=0dB At PGA Gain=0dBVOFSTAt PGA Gain=0dB At PGA Gain=0dBVOFSTAt PGA Gain=0dB At PGA Gain=0dBVOFSTAt PGA Gain=0dB	Symbol Condition Min. Typ. Reference Voltage part 0.94 1.04 VCLP Positive Polarity 0.94 2.15 2.3 VCOM 1.1 1.2 2.3 VCOM 1.1 1.2 2.3 VRP 1.5 1.6 0.7 0.8 VRP 0.7 0.8 0.7 0.8 Clamp / CDS part 1.20 1.35 1.6 VRN 0.7 0.8 1.20 1.35 Clamp mode 1.04 1.19 0.2 1.35 CIN CCDIN 10 10 1.35 CBW CCDIN-ADC 1 1 1 At PGA Gain= 0dB 1 1 1 1 CDS noise 0.4Vpp 150kHz -35 3ignal 0.8Vpp 1MHz -35 DRNG Input referred value ±252.0 ±298.7 1 DR Guaranteed monotonicity -1.0 -1.0 -2.6 CDR <td>Reference Voltage part 0.94 1.04 1.14 VCLP Positive Polarity 0.94 1.04 2.45 VCOM 1.1 1.2 1.3 2.45 VCOM 1.1 1.2 1.3 2.45 VCOM 1.1 1.2 1.3 2.45 VRP 1.5 1.6 1.7 0.7 0.8 0.9 Clamp / CDS part VI At PGA Gain= 0dB 1.20 1.35 1.50 Clamp mode 1.04 1.19 1.34 DC direct-coupled mode 1.20 1.35 1.50 CIN CCDIN 10 10 10 CBW CCDIN-ADC 1 1 1 At PGA Gain= 0dB 1 1 1 CDS noise 0.4Vp 150KHz -35 1 5 signal 0.8Vpp 1MHz -1.0 +1.5 1 1 DRES PGA 8 1 0.0 1 G</td>	Reference Voltage part 0.94 1.04 1.14 VCLP Positive Polarity 0.94 1.04 2.45 VCOM 1.1 1.2 1.3 2.45 VCOM 1.1 1.2 1.3 2.45 VCOM 1.1 1.2 1.3 2.45 VRP 1.5 1.6 1.7 0.7 0.8 0.9 Clamp / CDS part VI At PGA Gain= 0dB 1.20 1.35 1.50 Clamp mode 1.04 1.19 1.34 DC direct-coupled mode 1.20 1.35 1.50 CIN CCDIN 10 10 10 CBW CCDIN-ADC 1 1 1 At PGA Gain= 0dB 1 1 1 CDS noise 0.4Vp 150KHz -35 1 5 signal 0.8Vpp 1MHz -1.0 +1.5 1 1 DRES PGA 8 1 0.0 1 G

(AVDD = 3.3V, DVDD = 3.3V, Ta = 23V, ADOI (at volvin 2 diffest of the specified)								
Parameter	Symbol	Condition M		Тур.	Max.	Unit		
		Current Consumption						
Analog Part In Normal Operation	IA	6 channel mode		160	202	mA		
Digital Output Part	ID	6 channel mode, a full scale minus 2 dB 1 MHz sine-wave input signal, CL = 10 pF		14.5	30	mA		
At Power-Down	IPD	Analog part + Digital part			0.1	mA		

(AVDD = 3.3 V, DVDD = 3.3 V, Ta = 25 °C, ADCK at 40MHz unless otherwise specified)

Characteristics above are when same external components and time-constant are used as shown in the recommended , external circuit configuration examples.

(note 1)

Time till the ADC output settles within +/- 1 LSB of the final value when a full-scale minus 2 dB step signal is input.

(note 2)

Defined as a sigma of ADC output code variations.

(note 3)

It defines that the Offset DAC setting value in no input signal condition exists between Offset DAC setting value of A0h (equivalent to an input-referred, -50 mV) and 60h (equivalent to an input-referred, +50 mV) where ADC output code changes from 000h to 001h.

Since a total adjustable range of Offset Adjust DAC includes this internal Offset adjust range, a practical adjustable range of input signal is reduced by the internal Offset amount.

(note 4)

Definition at ADCK = 40 MHz, A/D conversion rate mode, 6 channels, CDS mode. PGA gain of the channel to be measured is set at its maximum value, all other channels' PGA gains are set at minimum values.

Then measure how much the output code of the target channel to be measured fluctuates when input to the measured channel is fixed and a full-scale minus 1 dB step signal is input on all other channels.

(note 5)

Definition at ADCK = 10 MHz, A/D conversion rate mode, all channels' PGA gains at minimum values.

Then measure how much the output code of the target channel to be measured fluctuates when input to the measured channel is fixed and a full-scale minus 1 dB step signal is input on all other channels.

- Switching Characteristics 1 : in ADC conversion rate mode, DC direct-coupled mode
 - Timing Diagrams (1) 5 Bit wide, 1 channel, 2 channel, 3 channel modes
 - Timing Diagrams (3) 5 Bit wide, 4 channel, 6 channel modes
 - Timing Diagrams (5) 10 Bit wide, 1 channel mode
 - Timing Diagrams (7) 10 Bit wide, 2 channel mode
 - Timing Diagrams (9) 10 Bit wide, 4 channel mode

(AVDD = 3.0 ~ 3.6 V, DVDD = 3.0 ~ 3.6 V, Ta = 0 ~ 70 °C)

		(AVDD =	$= 3.0 \sim 3$	<u>.6 V, D</u>	$\frac{1}{100} = 3$.0 ~ 3.6	V, Ta = 0 ~ 70 °C)
No.	Parameter	Pin	Min.	Тур.	Max.	Unit	Condition
1	ADCK Cycle Time(T)	ADCK	33.3		2000	ns	4, 6ch mode
			66.6		2000		1, 2, 3 ch mode
2	ADCK Low Level Width	ADCK	15.0			ns	4, 6 ch mode
			31.7				1, 2, 3 ch mode
3	ADCK High Level Width	ADCK	15.0			ns	4, 6 ch mode
			31.7				1, 2, 3 ch mode
4	ADCK Rise Time	ADCK			6	ns	
5	ADCK Fall Time	ADCK			6	ns	
6	SHD Cycle Time	SHD		2T		ns	4, 6 ch mode
				Т			1, 2, 3 ch mode
7	SHD Pulse Width	SHD	12			ns	
8	SHD Set-up Time	SHD	0			ns	
	(time to ADCK to rise)						
9	SHD Delay Time	SHD	14			ns	
	(time from ADCK to fall)						
10	SHD Aperture Delay	SHD		2.5		ns	
11	Output Data Delay Time	DA4~DA0	1		9	ns	C=10pF
	(time from ADCK edge)	DB4~DB0					
		DC4~DC0					
12	Pipe Line Delay	DA4~DA0		9		unit:	2, 3, 4, 6 ch mode
		DB4~DB0				# of	and
		DC4~DC0				ADCK	1 ch 5 bits Width
						cycles	mode
				8.5			1 ch 10 bits
10							Width mode
13	SHD = " H " inhibit period	SHD	T+1			ns	4, 6ch mode
	(time till the first ADCK						
	to rise after SHD to fall)						

- Switching Characteristics 2 : in ADC conversion rate mode, CDS, Clamp modes
 - Timing Diagrams (2) 5 Bit wide,1 channel, 2 channel, 3 channel modes
 - Timing Diagrams (4) 5 Bit wide, 4 channel, 6 channel modes
 - Timing Diagrams (6) 10 Bit wide, 1 channel mode
 - Timing Diagrams (8) 10 Bit wide, 2 channel mode
 - Timing Diagrams (10) 10 Bit wide, 4 channel mode

(AVDD = 3.0 ~ 3.6 V, DVDD = 3.0 ~ 3.6 V, Ta = 0 ~ 70 °C)

No.	Parameter	Pin	Min.	Тур.	Max.	Unit	Condition
1	ADCK Cycle Time (T)	ADCK	25		2000	ns	
2	ADCK Low Level Width	ADCK	10.9			ns	
3	ADCK High Level Width	ADCK	10.9			ns	
4	SHR, SHD Cycle Time	SHR, SHD		2T		ns	4, 6ch mode
				Т			1, 2, 3ch mode
5	SHR Pulse Width	SHR	8			ns	
6	SHD Pulse Width	SHD	8			ns	
7	SHD Set-up Time	SHD	0			ns	
8	(time to ADCK to rise) SHD Delay Time	SHD	10			ns	
0	(time from ADCK to fall)		10			115	
9	SHR Aperture Delay	SHR		3.0		ns	
10	SHD Aperture Delay	SHD		2.5		ns	
11	Output Data Delay Time	DA4~DA0	1		9	ns	C=10pF
	(time from ADCK edge)	DB4~DB0 DC4~DC0					
12	Pipe Line Delay	DA4~DA0		9		unit:	2, 3, 4, 6ch mode
		DB4~DB0				# of	and
		DC4~DC0				ADCK	1CH 5 bits Width
						cycles	mode
				8.5			1CH 10 bits
							Width mode
13	SHD = " H " inhibit period	SHD	T+1			ns	4, 6ch mode
	(time till the first ADCK to						
	rise after SHD to fall)						

- Switching Characteristics 3 : in total pixel rate mode, DC direct-coupled mode
 - Timing Diagrams (11) 10 Bit wide, 2 channel mode
 - Timing Diagrams (13) 10 Bit wide, 3 channel mode
 - Timing Diagrams (15) 10 Bit wide, 4 channel mode
 - Timing Diagrams (17) 10 Bit wide, 6 channel mode

		(AVDD	= 3.0 ~ 3	<u>3.6 V, D'</u>	VDD = 3.	0~3.6	V, Ta = 0 ~ 70°C)
No.	Parameter	Pin	Min.	Тур.	Max.	Unit	Condition
1	ADCK Cycle Time(T)	ADCK	12.5		333	ns	6ch mode
			16.6		500		4ch mode
			22.2		666		3ch mode
			33.3		1000		2ch mode
2	ADCK Low Level Width	ADCK	4.6			ns	6ch mode
			6.7				4ch mode
			9.5				3ch mode
			15.0				2ch mode
3	ADCK High Level Width	ADCK	4.6			ns	6ch mode
			6.7				4ch mode
			9.5				3ch mode
			15.0				2ch mode
4	SHD Cycle Time	SHD		6T		ns	6ch mode
				4T			4ch mode
				3T			3ch mode
				2T			2ch mode
6	SHD Pulse Width	SHD	12			ns	
7	SHD Set-up Time	SHD	0		T/2-2	ns	
	(time to ADCK to rise)						
8	SHD Delay Time	SHD	14			ns	
	(note 1)						
9	SHD Aperture Delay	SHD		2.5		ns	
10	Output Data Delay Time	DA4~DA0	1		9	ns	C=10pF
	(time from ADCK edge)	DB4~DB0					
11	Pipe Line Delay	DA4~DA0		30		unit:	3ch,6ch mode
		DB4~DB0				# of	
				20		ADC	2ch,4ch mode
						K	
						cycle	
						S	
12	SHD = " H " inhibit period	SHD	3T+1			ns	6ch mode
	(time till the first ADCK to		2T+1			1	4ch mode
	rise after SHD to fall)						

(note 1)

Time from the ADCK edge where a falling edge of the internal A / D clock is generated.

In 2 channel, 4 channel modes, it is from ADCK to rise.

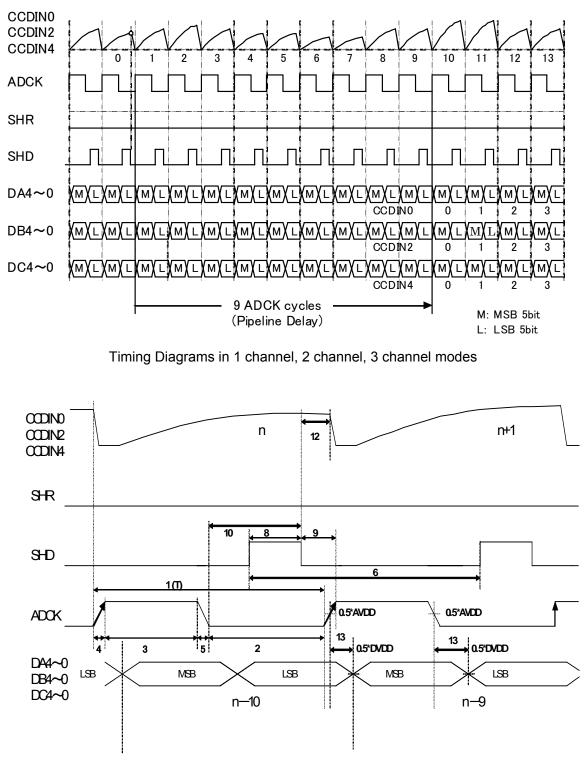
In 3 channel, 6 channel modes, it is from ADCK to fall.

- Switching Characteristics 4 : in total pixel rate mode, CDS, Clamp modes
 - Timing Diagrams (12) 10 Bit wide, 2 channel mode
 - Timing Diagrams (14) 10 Bit wide, 3 channel mode
 - Timing Diagrams (16) 10 Bit wide, 4 channel mode
 - Timing Diagrams (18) 10 Bit wide, 6 channel mode

i		(AVDD :	= 3.0 ~ 3	<u>3.6 V, D</u>	VDD = 3.	<mark>0 ~ 3.6</mark>	V, Ta = 0 ~ 70°C)
No.	Parameter	Pin	Min.	Тур.	Max.	Unit	Condition
1	ADCK Cycle Time (T)	ADCK	12.5		333	ns	6ch mode
			12.5		500		4ch mode
			12.5		666		3ch mode
			12.5		1000		2ch mode
2	ADCK Low Level Width	ADCK	4.6			ns	
3	ADCK High Level Width	ADCK	4.6			ns	
4	SHR, SHD Cycle Time	SHR, SHD		6T		ns	6ch mode
				4T			4ch mode
				3T			3ch mode
				2T			2ch mode
5	SHR Pulse Width	SHR	8			ns	
6	SHD Pulse Width	SHD	8			ns	
7	SHD Set-up Time	SHD	0		T/2-2	ns	
	(time to ADCK to rise)						
8	SHD Delay Time	SHD	10			ns	
	(note 1)						
11	SHR Aperture Delay	SHR		3.0		ns	
12	SHD Aperture Delay	SHD		2.5		ns	
11	Output Data Delay Time	DA4~DA0	1		9	ns	C=10pF
	(time from ADCK edge)	DB4~DB0					
12	Pipe Line Delay	DA4~DA0		30		unit:	3ch,6ch mode
		DB4~DB0				# of	
				20		ADC	2ch,4ch mode
						K	
						cycle	
						S	
13	SHD = " H " inhibit period	SHD	3T+1			ns	6ch mode
	(time till the first ADCK to		2T+1			1	4ch mode
	rise after SHD to fall)						

(note 1)

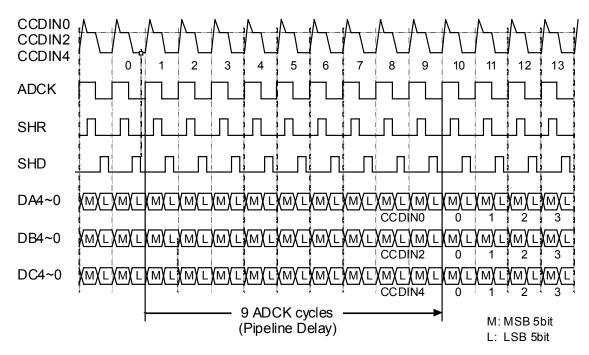
Time from the ADCK edge where a falling edge of the internal A / D clock is generated.

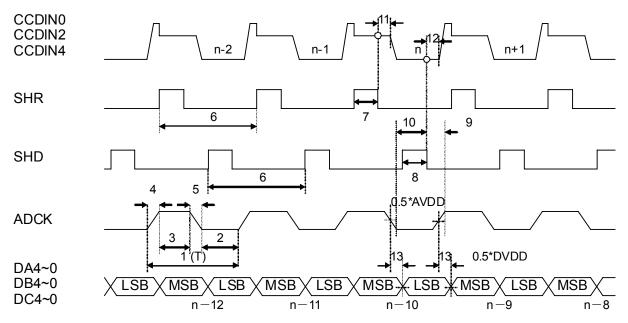

In 2 channel, 4 channel modes, it is from ADCK to rise.

In 3 channel, 6 channel modes, it is from ADCK to fall.

Timings are specified at the points where specified levels by the DC Characteristics are intersected.

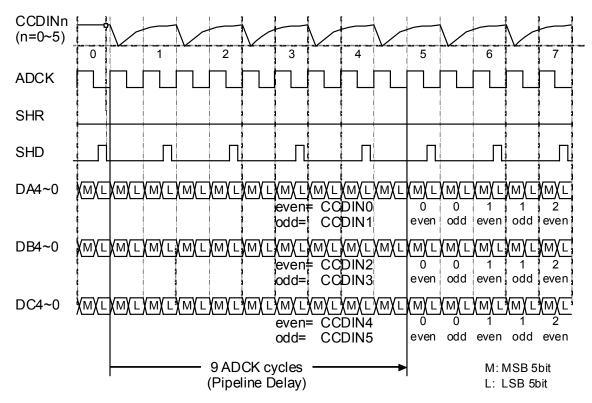
■ Timing Diagrams (1) : ADCK frequency = A/D conversion rate mode (5 Bit-wide output)

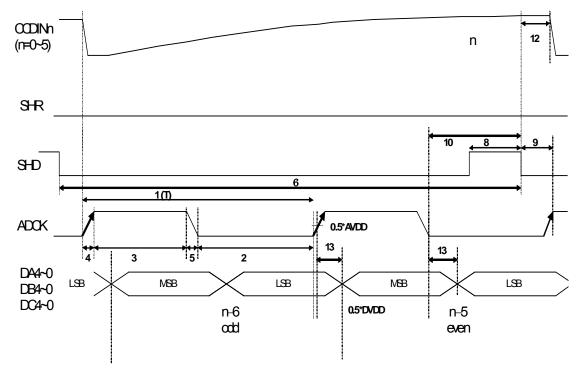

• 1 channel, 2 channel, 3 channel modes (DC direct-coupled, positive polarity) Please refer to Switching Characteristics 1 table.


Detailed Timing Diagrams in 1 channel, 2 channel, 3 channel modes

- Timing Diagrams (2) : ADCK frequency = A/D conversion rate mode (5 Bit-wide output)
 - 1 channel, 2 channel, 3 channel modes
 - (CDS mode & Clamp modes, negative polarity)

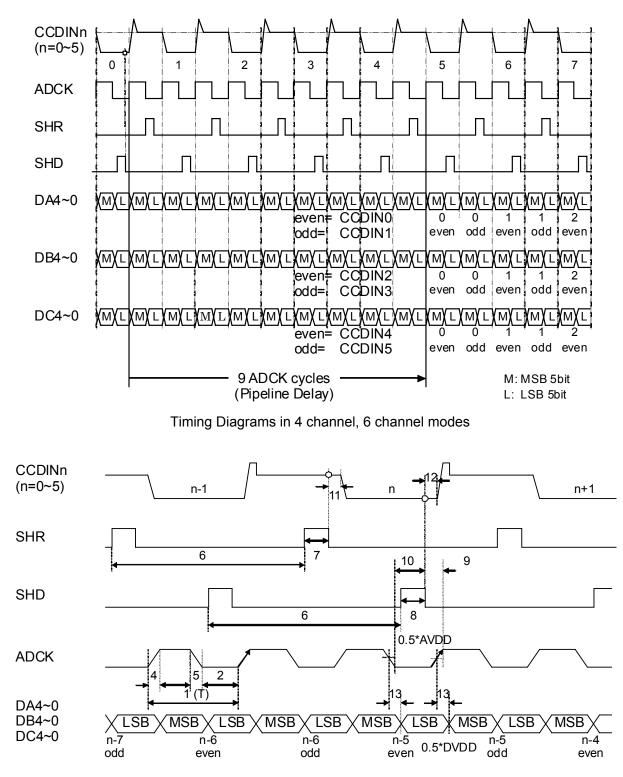
Please refer to Switching Characteristics 2 table.


Timing Diagrams in 1 channel, 2 channel, 3 channel modes


Detailed Timing Diagrams in 1 channel, 2 channel, 3 channel modes

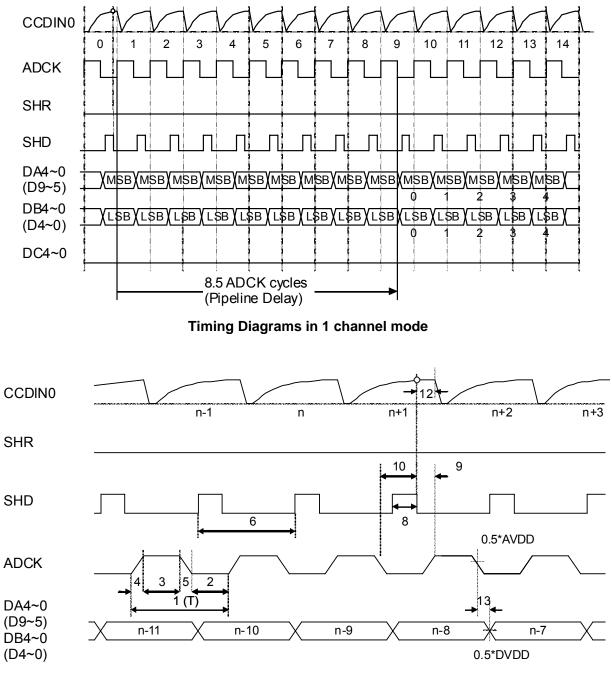
■ Timing Diagrams (3) : ADCK frequency = A/D conversion rate (5 Bit-wide output)

• 4 channel, 6 channel modes (DC direct-coupled mode, positive polarity) Please refer to Switching Characteristics 1 table.


Timing Diagrams in 4 channel, 6 channel modes

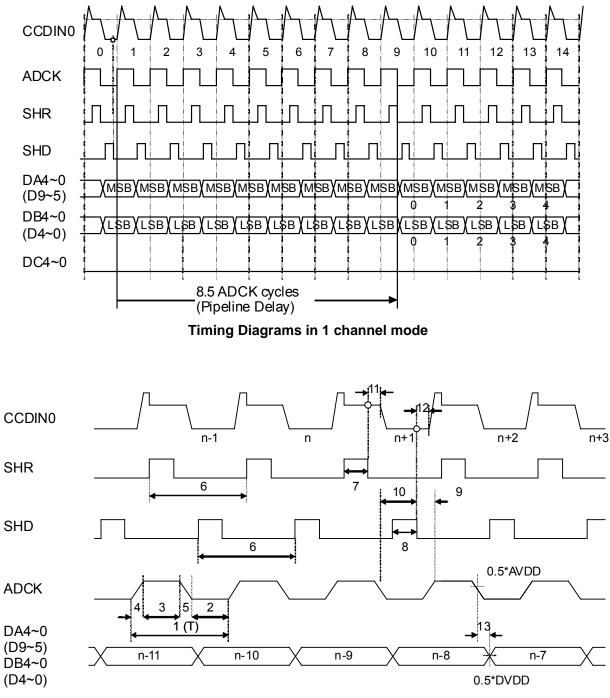
Detailed Timing Diagrams in 4 channel, 6 channel modes

■ Timing Diagrams (4) : ADCK frequency = A/D conversion rate mode (5 Bit-wide output)


• 4 channel, 6 channel modes (CDS mode & Clamp mode, negative polarity) Please refer to Switching Characteristics 2 table.

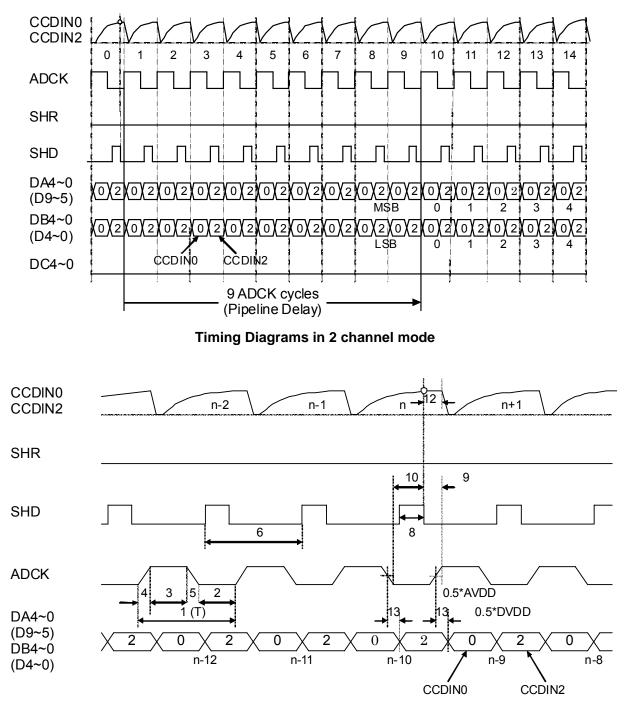
Detailed Timing Diagrams in 4 channel, 6 channel modes

■ Timing Diagrams(5): ADCK frequency = A/D conversion rate mode (10 Bit-wide output)


• 1 channel mode (DC direct-coupled mode, positive polarity) Please refer to Switching Characteristics 1 table.

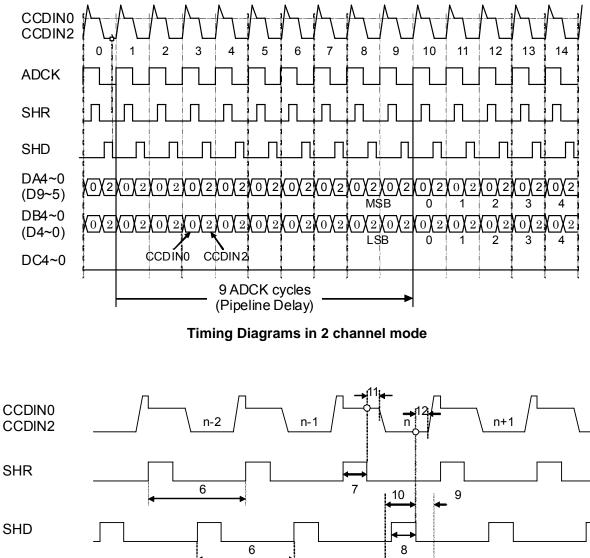
Detailed Timing Diagrams in 1 channel mode

■ Timing Diagrams(6): ADCK frequency = A/D conversion rate mode (10 Bit-wide output)


• 1 channel mode (CDS mode & Clamp mode, negative polarity) Please refer to Switching Characteristics 2 table.

Detailed Timing Diagrams in 1 channel mode

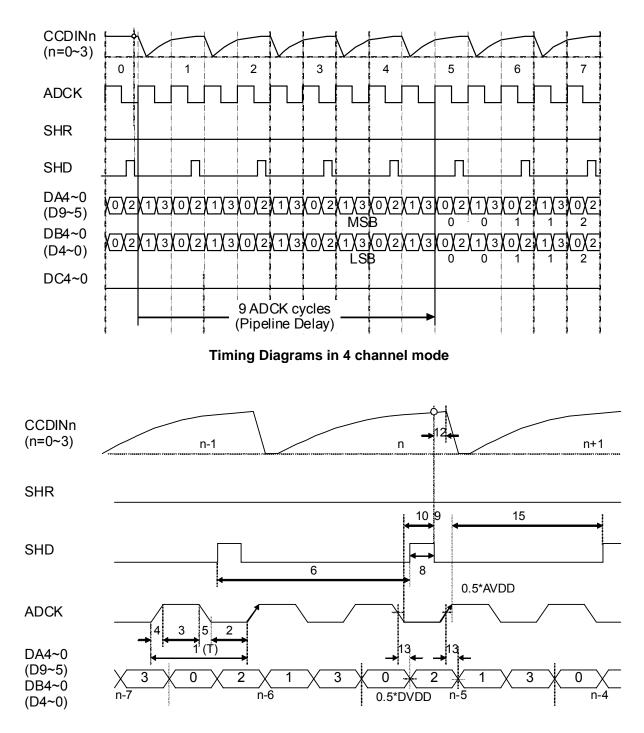
■ Timing Diagrams(7): ADCK frequency = A/D conversion rate mode (10 Bit-wide output)


• 2 channel mode (DC direct-coupled mode, positive polarity) Please refer to Switching Characteristics 1 table.

Detailed Timing Diagrams in 2 channel mode

■ Timing Diagrams(8): ADCK frequency = A/D conversion rate mode (10 Bit-wide output)

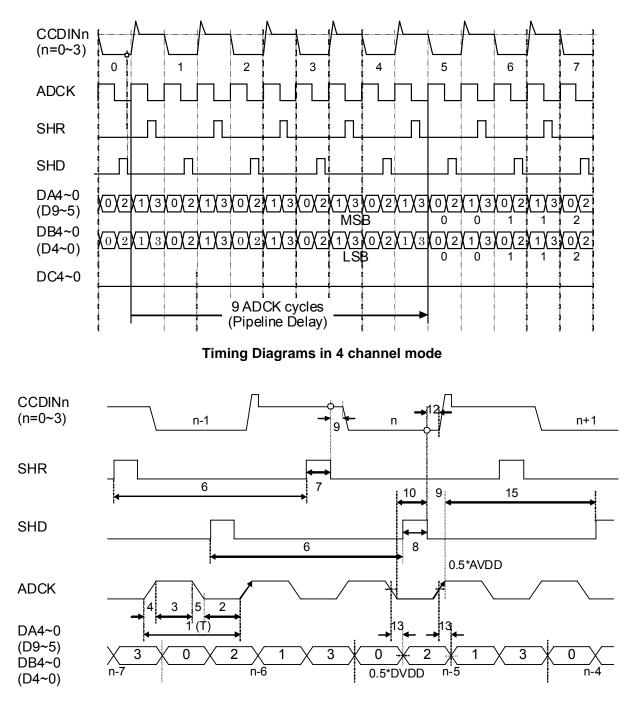
• 2 channel mode (CDS mode & Clamp mode, negative polarity) Please refer to Switching Characteristics 2 table.



ADCK 0.5*AVDD 3 2 5 0.5*DVDD (T) 13 1 DA4~0 (D9~5) 2 0 2 0 2 0 $\overline{2}$ 0 2 0 DB4~0 n-12 n-11 n-8 n-10 n-9 (D4~0) CCDIN0 CCDIN2

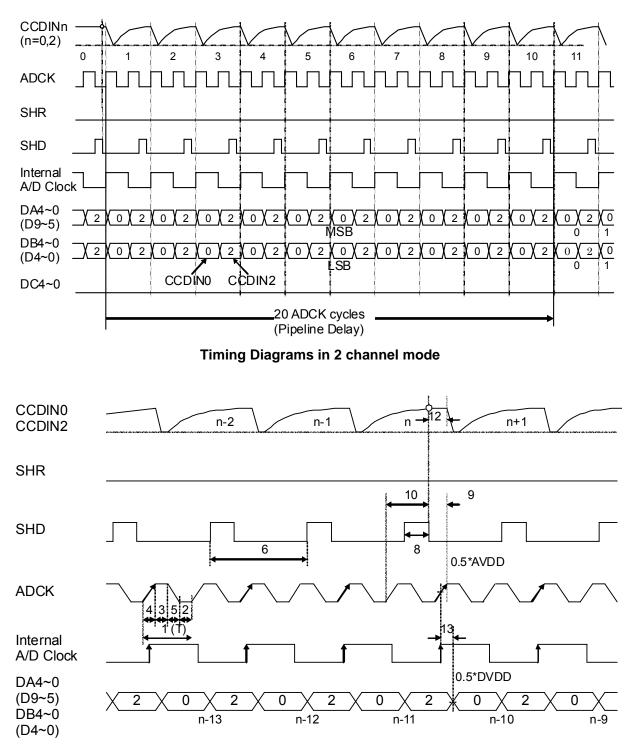
Detailed Timing Diagrams in 2 channel mode

■ Timing Diagrams(9): ADCK frequency = A/D conversion rate mode (10 Bit-wide output)


• 4 channel mode (DC direct-coupled mode, positive polarity) Please refer to Switching Characteristics 1 table.

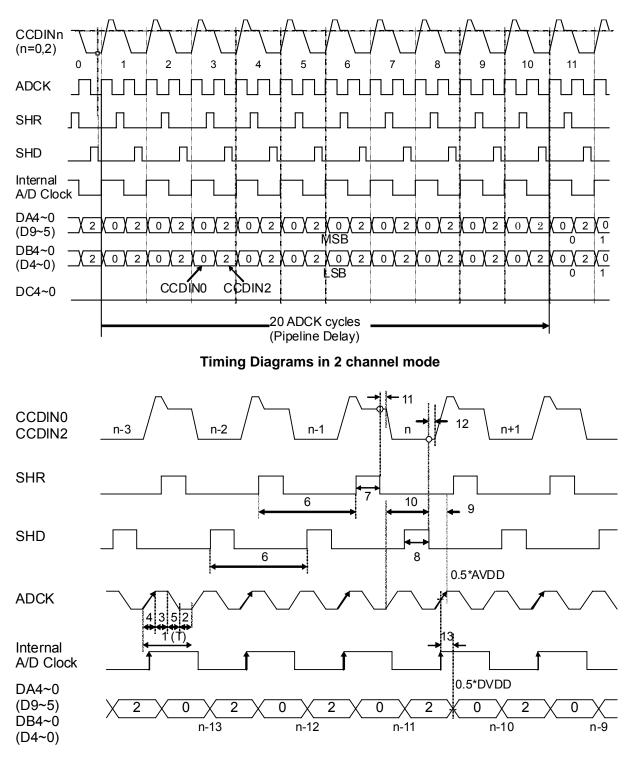
Detailed Timing Diagrams in 4 channel mode

■ Timing Diagrams(10):ADCK frequency = A/D conversion rate mode (10Bit-wide output)


• 4 channel mode (CDS mode & Clamp mode, negative polarity) Please refer to Switching Characteristics 2 table.

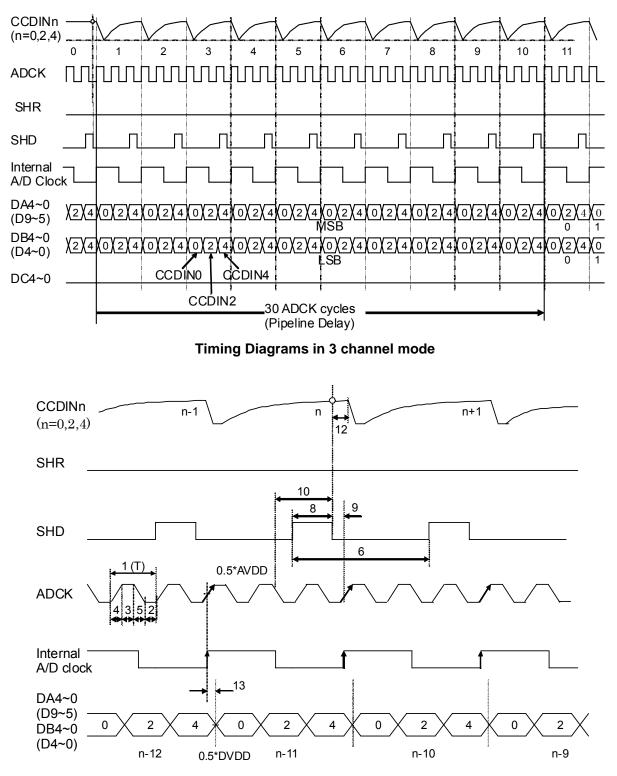
Detailed Timing Diagrams in 4 channel mode

■ Timing Diagrams(11): ADCK frequency = total pixel rate mode (10 Bit-wide output)


• 2 channel mode (DC direct-coupled mode, positive polarity) Please refer to Switching Characteristics 3 table.

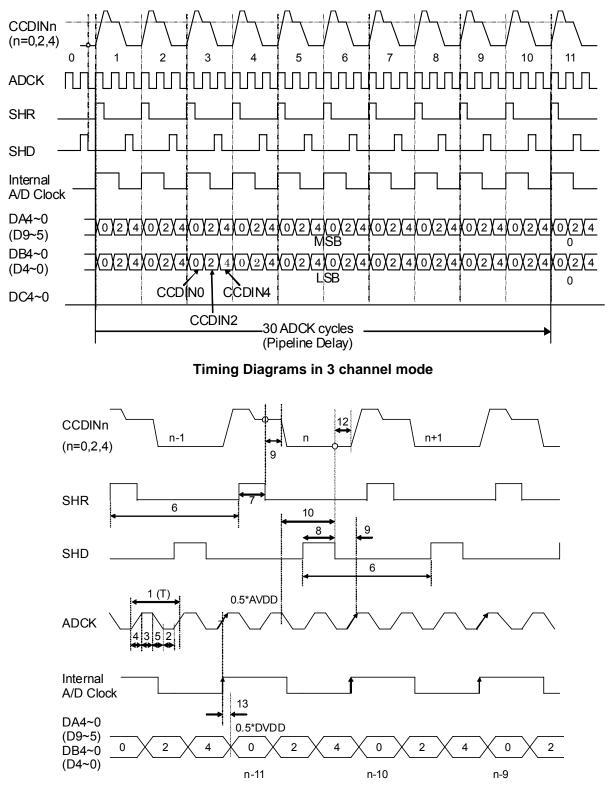
Detailed Timing Diagrams in 2 channel mode

■ Timing Diagrams(12): ADCK frequency = total pixel rate mode (10 Bit-wide output)

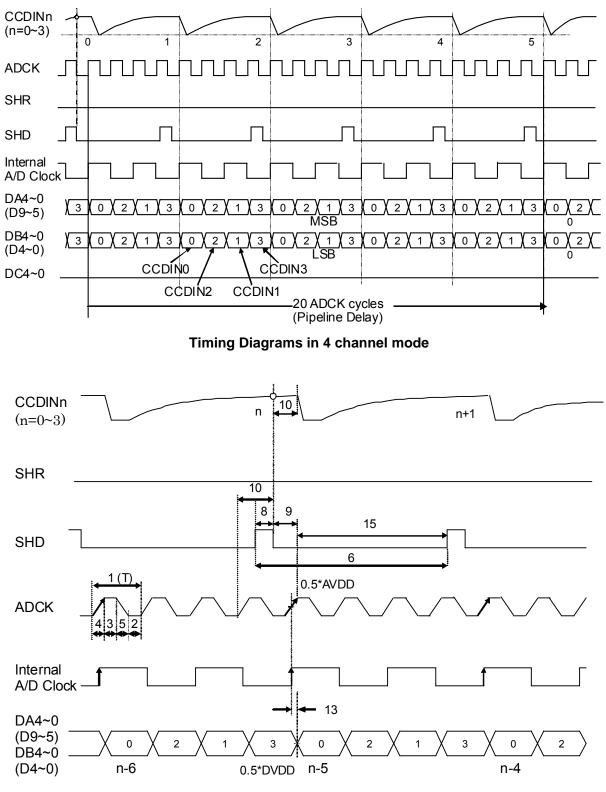

• 2 channel mode (CDS mode & Clamp mode, negative polarity) Please refer to Switching Characteristics 4 table.

Detailed Timing Diagrams in 2 channel mode

■ Timing Diagrams(13): ADCK frequency = total pixel rate mode (10 Bit-wide output)


• 3 channel mode (DC direct-coupled mode, positive polarity) Please refer to Switching Characteristics 3 table.

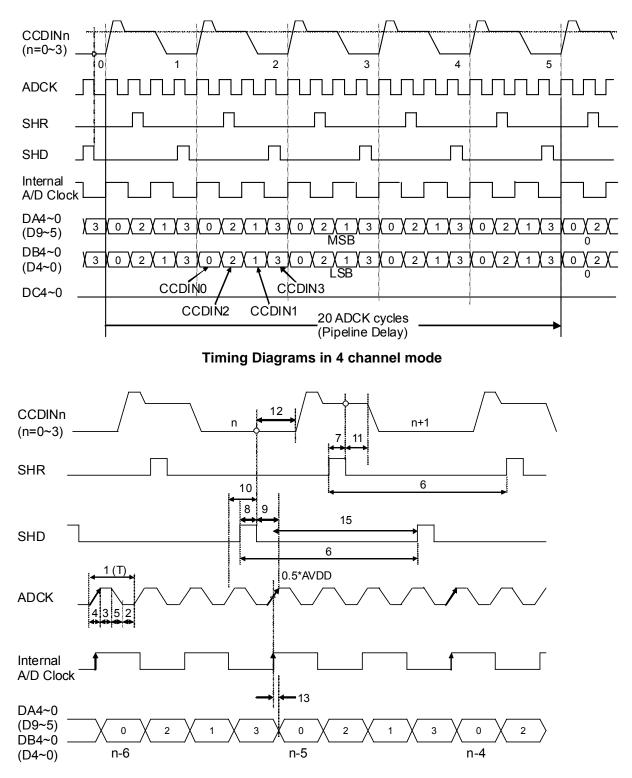
Detailed Timing Diagrams in 3 channel mode


Timing Diagrams(14): ADCK frequency = total pixel rate mode (10 Bit-wide output)

• 3 channel mode (CDS mode & Clamp mode, negative polarity) Please refer to Switching Characteristics 4 table.

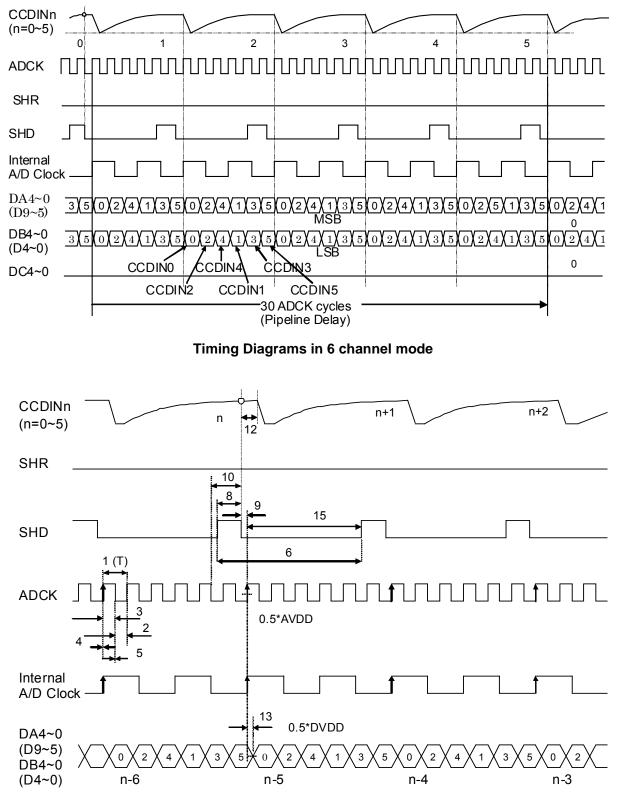
Detailed Timing Diagrams in 3 channel mode

- Timing Diagrams(15): ADCK frequency = total pixel rate mode (10 Bit-wide output)
 - 4 channel mode (DC direct-coupled mode, positive polarity) Please refer to Switching Characteristics 3 table.



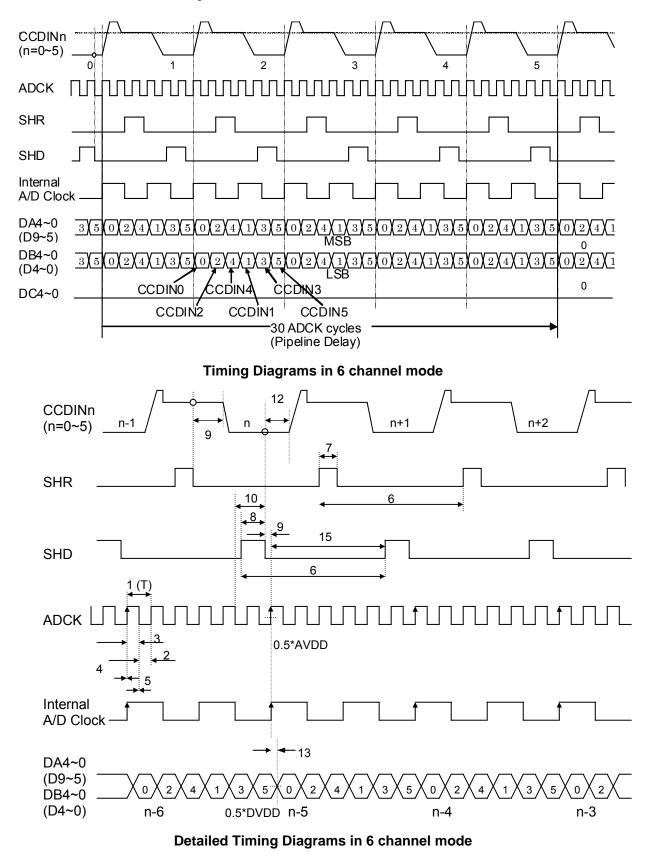
[AK8448]

ASAHI KASEI


- Timing Diagrams(16): ADCK frequency = total pixel rate mode (10 Bit-wide output)
 - 4 channel mode (CDS mode & Clamp mode, negative polarity) Please refer to Switching Characteristics 4 table.

■ Timing Diagrams(17): ADCK frequency = total pixel rate mode (10 Bit-wide output)

• 6 channel mode (DC direct-coupled mode, positive polarity) Please refer to Switching Characteristics 3 table.

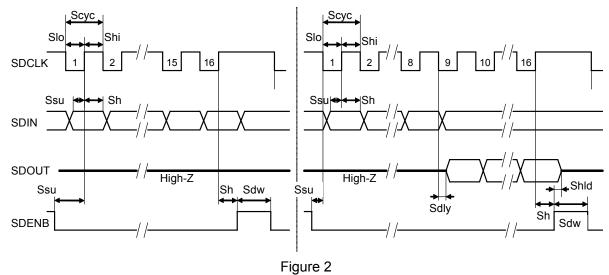

Detailed Timing Diagrams in 6 channel mode

MS1513-E-00

[AK8448]

ASAHI KASEI

- Timing Diagrams(18): ADCK frequency = total pixel rate mode (10 Bit-wide output)
 - 6 channel mode (CDS mode & Clamp mode, negative polarity) Please refer to Switching Characteristics 4 table.



_ .

ASAHI KASEI

Switching Characteristics : Serial I / F

		(AVDD = 3	<u>3.</u> 0 ~ 3.6	V, DVD	D = 3.0	~ 3.6 V,	Ta = 0 ~ 70 °C)
Parameter	Symb ol	Pin	Min.	Тур.	Max.	Unit	Condition
Clock Cycle	Scyc	SDCLK			10	MHz	
Clock Pulse Width (" H " period)	Shi	SDCLK	40			ns	
Clock Pulse Width (" L " period)	Slo	SDCLK	40			ns	
Set-up Time (time to SDCLK)	Ssu	SDIN SDENB	20			ns	
Hold Time (time from SDCLK)	Sh	SDIN SDENB	20			ns	
Rise Time of SDCLK, SDENB	Sr	SDCLK SDENB			6	ns	0.3 AVDD →0.7 AVDD
Fall Time of SDCLK, SDENB	Sf	SDCLK SDENB			6	ns	0.3 AVDD →0.7 AVDD
SDENB High Level Pulse Width	Sdw	SDENB	40			ns	
Data delay time (time from SDCLK)	Sdly	SDOUT			30	ns	
Data Hold Time (time from SDENB)	Shld	SDOUT	0			ns	
Number of Serial Data	Snum	SDCLK		16			

Write to AK8448

Read from AK8448

	Control Registers								
Address	Data								
(Hex)	Initial	D7	D6	D5	D4 D3 D2 D1				D0
	(Hex)								
0	00	Sensor	Interface	Signal	Channel Number ADCK Pow				Power
		Mode		Polarity	Freq. Dow				Down
1	00	SHR	Output	Test	0	Output	Order of	Order of	Order of
		SHD	as	pattern		Data	Channel	Channel	
		Polarity	Power	output		Width	0 and 1	2 and 3	3 and 4
			Down						
2	80	Offset Data for CCDIN0							
3	80	Offset Data for CCDIN1							
4	80	Offset Data for CCDIN2							
5	80	Offset Data for CCDIN3							
6	80		Offset Data for CCDIN4						
7	80		Offset Data for CCDIN5						
8	00		PGA Gain Data for CCDIN0						
9	00		PGA Gain Data for CCDIN1						
Α	00		PGA Gain Data for CCDIN2						
В	00	PGA Gain Data for CCDIN3							
С	00	PGA Gain Data for CCDIN4							
D	00		PGA Gain Data for CCDIN5						
E	08	TEST							
F	00	TEST							

In this data sheet, R0 indicates a register at address 0, for example.

R0, D0 description means, D0 bit of register at address 0.

Each bit of registers to be described in the following is set to a condition as noted to be default after the reset.

□ R0 Register

■ R0, D7-D6 Sensor I/F mode

D7	D6	Sensor Interface Mode
0	0	DC direct-coupled (default)
0	1	CDS
1	0	Clamp

■ R0, D5 Signal polarity

	-	
D5	Signal	Sensor Type
	Polarity	
0	Negative	Signal swings to low voltage side from the reference level. CCD
		sensors etc. (default)
1	Positive	Signal swings to high voltage side from the reference level. CIS
		sensors etc.

■ R0, D4 ~ D2 Cannel Number

D4	D3	D2	Cannel	CCDIN					
			Number	0	1	2	3	4	5
0	0	0	1(default)	0	-	-	-	-	-
0	0	1	2	0	-	0	-	-	-
0	1	0	3	0	-	0	-	0	-
0	1	1	4	0	0	0	0	-	-
1	0	0	6	0	0	0	0	0	0

O: denotes input channel(s) to be used in the selected # of channel mode.

Un-used functional blocks, CDS, DAC, PGA and ADC are automatically powered-down. No capacitor connection is required on CCDINn & REFINn pins for the un-used channels. Those, un-used pins should be connected to AVSS.

■ R0, D1 ADCK Frequency

D1	ADCK Input Frequency	Note
0	A/D Conversion Rate (default)	Either 5 Bit-wide or 10 Bit-wide output data is output both at the rising edge and the falling edge of ADCLK.
1	Total Pixel Rate	10 Bit-wide output data is output at the rising edge of ADCK.

In the default mode, ADCK at the same frequency as ADC conversion rate should be input.

ADC data is output both at the rising edge and the falling edge of ADCK.

In total pixel rate mode, ADCK at the same frequency as a total sum of pixel rate of effective channels should be input. ADC data is output at the rising edge of ADCK.

■ R0, D0 Power-Down

D0	Operation
0	Normal Operation (default)
1	Power-Down

In Power-down mode, clock feed to the Digital part is stopped while Analog part is powered-down.

ADC data output conditions (DA0 ~ DA4, DB0 ~ DB4, DC0 ~ DC4) at power-down can be selected to be either fixed low or high-Z output by D6 bit of register R1.

□ R1 Register

R1, D7 SHR, SHD Polarity Select

D7	Polarity
0	Active High (default)
1	Active Low

All diagrams shown in this data sheet are when SHR and SHD polarities are set at default conditions (active high).

■ R1, D6 Output Conditions at Power-Down

D6	Output conditions
0	Fixed to low (default)
1	High Z

R1, D5 Test pattern output

D5	Output					
0	Normal (default)					
1	Test pattern output					

10-bit increment pattern is outputted at test pattern output.

(0,1,2,3,...,1022,1023,0,1,2,3,...)

■ R1, D3 Output Data width

D3	Output Data width
0	5 Bit (default)
1	10 Bit

When the setting of ADCK frequency is equal to total pixel rate mode (R0, D1 = 1), output data is output in 10 Bit-wide mode, regardless of output data width setting.

■ R1, D2-D0 Channel Processing Order

	5					
D2	Channels 0, 1 Processing Order					
0	$CCDIN0 \rightarrow CCDIN1 \rightarrow CCDIN0 \rightarrow CCDIN1$ (default)					
1	$CCDIN1 \to CCDIN0 \to CCDIN1 \to CCDIN0 \dots$					

D1	Channels 2, 3 Processing Order				
0	$CCDIN2 \to CCDIN3 \to CCDIN2 \to CCDIN3 (\text{ default })$				
1	$CCDIN3 \to CCDIN2 \to CCDIN3 \to CCDIN2 \dots$				

D0	Channels 4, 5 Processing Order
0	$CCDIN4 \to CCDIN5 \to CCDIN4 \to CCDIN5 (\text{ default })$
1	$CCDIN5 \to CCDIN4 \to CCDIN5 \to CCDIN4 \dots$

This is to select the processing order of corresponding input channel pair of the selected, single ADC. Processing order can be individually set at every pair.

This register is valid either in 4 channel mode / 5 Bit-wide output or 6 channel mode / 5 Bit-wide output.

All diagrams shown in this data sheet are when the channel processing order is set at default condition.

□ R2~R7 Registers

■ D7-D0 Offset Data

_	e encor Bata				
Ē	D7-D0	Offset Voltage	At Negative Mode	At Positive	
	(Straight Binary)			Mode	
	1111111	–298.7mV	Maximum Shift to	Maximum Shift to	
ſ	1111110	-296.3mV	White Level Side	Black level side	
ſ	:	:	(ADC code large)	(ADC code small)	
	1000001	-2.4mV	↑		
	10000000 (default)	0mV			
	01111111	2.4mV			
ſ	:		Maximum Shift to	Maximum Shift to	
	0000001	298.7mV	Black Level Side	White Level Side	
	00000000(Inhibition)	(298.7mV)	(ADC code small)	(ADC code large)	

$$Offset(x) = \frac{298.7}{127} \times (128 - x) \quad mV \qquad 0 \le x \le 255$$

Default x=128

□ R8~RD Registers

■ D7-D0 PGA Gain Data

Setting code and gain (ideal value) relation is expressed in the following equation.

$$Gain(x) = \frac{2 \times 208}{33.3 + 255 - x}$$
 Where x is register set value (0 < = x < = 255)

At default x = 0

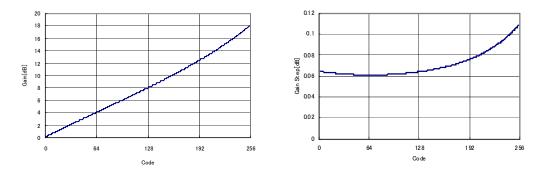


Figure 3 PGA Gain Curves (ideal values)

Sensor I/F Mode

AK8448 has three sensor interface modes: CDS, Clamp and DC connect. The sensor interface mode is selected by Sensor Interface Mode register R0, D7~D6.

CDS mode

A mode to process the <u>difference Vpix</u> as its pixel level which is <u>between</u> the reference level Vprec of each pixel from the sensor output signal <u>and</u> its data level Vdata.

Reference level of the sensor signal is sampled at SHR and data level of the sensor signal is sampled at SHD respectively.

Sampling point is at the falling edge of SHR and SHD respectively.

When polarity of SHR and SHD is inverted by register (R1, D7 = 1), the sampling point becomes at the rising edge.

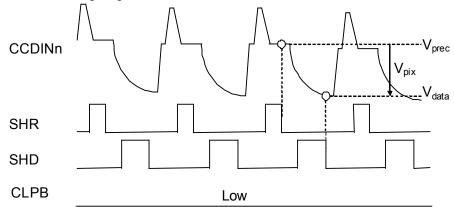
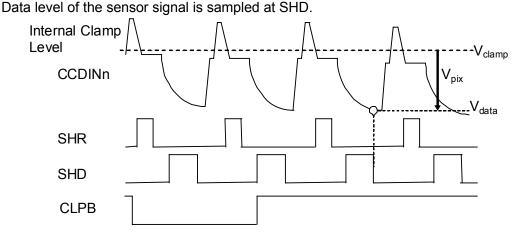



Figure 4 CDS Mode Timing Outline

• Clamp mode

A mode to process the <u>difference Vpix</u> as its pixel level which is <u>between</u> the internally generated Clamp level Vclamp <u>and</u> data level Vdata of the sensor output signal.

• DC direct-coupled mode

A mode to process a <u>difference Vpix</u> as its pixel level which is <u>between</u> a reference level fed on REFINn pin externally, <u>and</u> data level Vdata of the sensor output signal.

When no reference level exists in sensor output signal, this mode is used as an example. Data level of the sensor signal is sampled at SHD. Since SHR is not used, connect it to either Low or High.

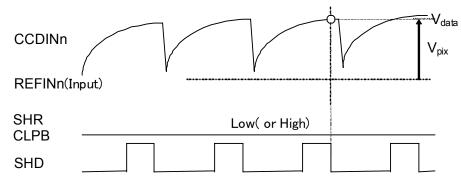
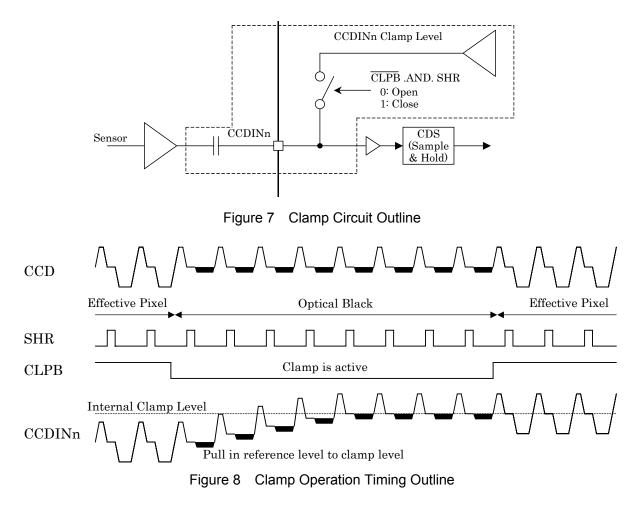


Figure 6 DC Direct-coupled Mode Timing Outline

Clamp Operation

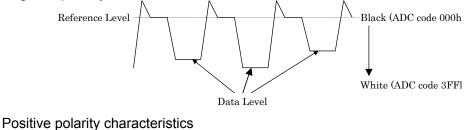

In CDS mode and Clamp mode, Clamping is made in order to adjust the reference DC level of sensor signal to match the internal reference level of the AK8448.

Clamp operation is controlled by CLPB and SHR.

Clamp switch closes during CLPB = Low and SHR = High ("Low "when SHR, SHD polarities are inverted), and CCDINn ($n = 0 \sim 5$) pin signal is pulled toward the internal clamp level.

REFINn ($n = 0 \sim 5$) is also clamped in the same way.

In CDS mode, fix CLPB to low so that clamping is always enabled.


Signal Polarity

The AK8448 accepts both positive and negative input polarities.

Either signal polarity is selected by setting Signal Polarity register (R0,D5) to meet sensor types to be used.

In general, CCD exhibits negative polarity characteristics and CIS exhibits positive polarity characteristics. Either polarity can be selected, regardless of sensor I/F mode setting.

• Negative polarity characteristics

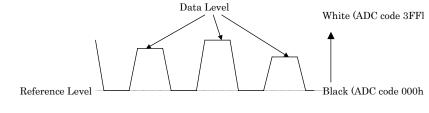


Figure 9 Signal Polarities

Output Data Control

ADC output data is output in either 5 Bit-wide or 10 Bit-wide by setting Data Width register (R1, D3).

When 5 Bit-wide data mode is selected, data is output on each of three 5 Bit buses – $DA4 \sim DA0$, $DB4 \sim DB0$ and $DC4 \sim DC0$ respectively which correspond to each ADC.

When 10 Bit-wide data mode is selected, data is output on 10 pins – DA4 (MSB) ~ DA0 and DB4 ~ DB0 (LSB).

In 5 Bit-wide data mode, the upper 5 Bit of data is output at the rising edge of ADCK, and the lower 5 Bit at the falling edge of ADCK.

In 10 Bit-wide data mode, two different channel data are output at the rising edge and at the falling edge of ADCK respectively.

It is also possible to output data at only the falling edge of ADCK in 10 Bit-wide data mode, by setting ADCK Frequency register (R0, D1).

In this operation, it is required to input ADCK at the frequency of a total sum of pixel rate of all channels (total pixel rate). Un-used buses DB4 ~ DB0 and DC4 ~ DC0 such as a case in 1 channel mode with 5 Bit-wide output, will output Low levels.

ADCK

A/D Conversion Rate mode and Total Pixel Rate mode

ADCK generates ADC conversion timing and ADC data output timing.

<u>Whether</u> to output data at both the rising edge and the falling edge of ADCK <u>or</u> to output data at only the rising edge can be selected by ADCK Frequency mode register.

A/D conversion rate mode is a mode where data is output at both the rising edge and the falling edge of ADCK.

In A/D conversion rate mode, input an ADCK clock of same frequency as ADC conversion rate.

Total pixel rate mode is a mode where data is output at only the ADCK rising edge. In this mode, input an ADCK clock of same frequency as a total sum of effective channels' pixel rates.

For example, when to process a 20 MHz / channel sensor signal in 3 channel mode, a 20 MHz ADCK is input in A/D conversion rate mode which is equal to ADC conversion rate.

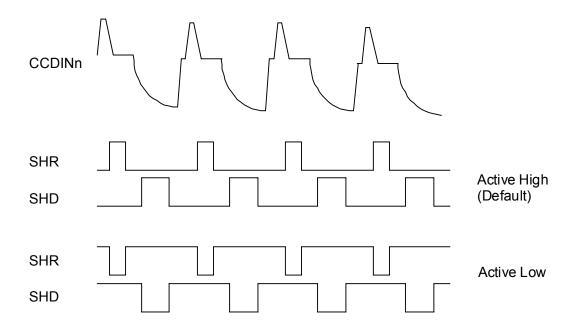
Maximum Conversion Rate

Maximum operating speed of ADC data output buffers DA0 ~ DA4, DB0 ~ DB4, DC0 ~ DC4 is designed to be 80 Mbps.

When a total pixel rate mode is selected as ADCK frequency mode, maximum sampling rate per channel in 3 channel and 6 channel modes is limited by this output buffer speed. For example, maximum conversion rate in 6 channel mode is 80 MSPS / 6 = 13.3 MSPS per channel, and not 20 MSPS.

Number of channels and its ADCK frequency, a possible data width combination and its maximum conversion rate per channel are listed in the following table.

	A/D (Conversio	n Rate Mode	Total Pixel Rate Mode			
# of Channels	5 bits Width	10 bits Width	Maximum Conversion Rate [SPS/CH]	5 bits Width	10 bits Width	Maximum Conversion Rate [SPS/CH]	
1	0	0	40M	-	O ^{Note1}	40M	
2	0	0	40M	-	0	40M	
3	0	-	40M	-	0	26.6M	
4	0	0	20M	-	0	20M	
6	0	-	20M	-	0	13.3M	


[CDS, Clamp mode]

[DC Direct mode]

-	A/D C	A/D Conversion Rate Mode			Total Pixel Rate Mode		
# of Channels	5 bits Width	10 bits Width SPS/CH]		5 bits Width	10 bits Width	Maximum Conversion Rate [SPS/CH]	
1	0	0	15M	-	O ^{Note1}	15M	
2	0	0	15M	-	0	15M	
3	0	-	15M	-	0	15M	
4	0	0	15M	-	0	15M	
6	0	-	15M	-	0	13.3M	

Note1: A/D conversion rate mode and total pixel rate mode have same timing waveforms in 1 channel / 10 Bit-wide output operation. Please use A/D conversion rate mode at the default state.

■ SHR/SHD Polarity

SHR/SHD polarity can be changed by register R1 Register.

Write operation into and Read operation from Control registers are executed via a 4 – wire Serial Interface.

SDIN data while SDENB is at low is taken at the rising edge of SDCLK.

When the starting bit of SDIN data is " zero ", writing into register is made and when it is " one ", reading from register is made.

The second and the third bits (C1, C0) correspond to CE1 and CE0 pin data respectively and only when logical levels are at C1 = CE1 and C0 = CE0, either write in or read out operation is enabled.

The fourth bit must be zero.

Bits from the fifth to the eighth are for register address. MSB is the fifth bit and LSB is the eighth bit.

Bits from ninth to sixteenth are data for register. MSB (= D7) is the ninth bit and LSB (= D0) is the sixteenth bit.

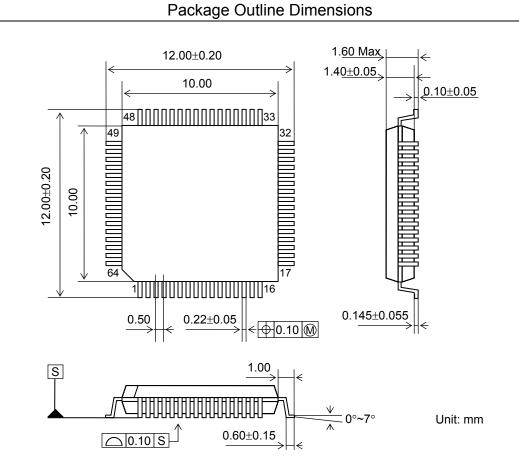
Reset

Register values at the power-up are indeterminate including registers for test.

In order to avoid test registers from disturbing normal operation, a reset should be made right after the power-up.

When RESETB pin is set to low, each register is set to its default value while test registers are set to necessary values for normal operation.

Low duration time of RESETB should be 100 ns and longer.

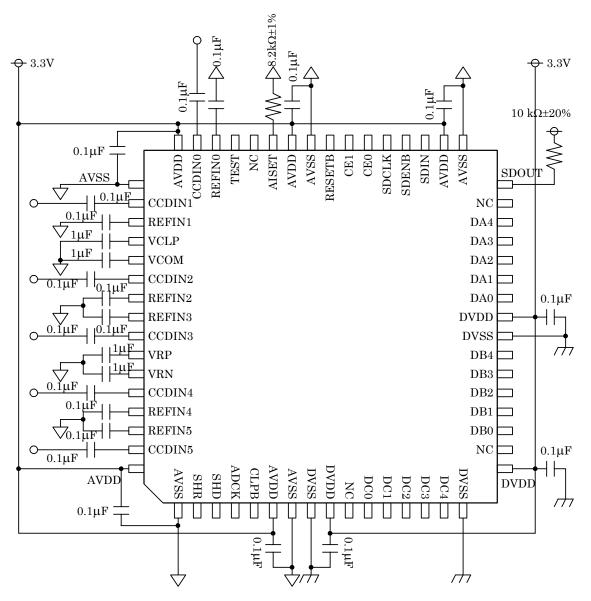

Return RESETB pin to high after the reset, and necessary value should be written to each register. When reset is not made after power-up, write default values into test registers.

Power-Down

The AK8448 enters power-down mode when operation mode register R0,D1 is set at "1 ". In power-down mode, supplying operation clock to Digital part is also stopped while current supply to Analog part is ceased.

When returning to normal operation from power-down mode (R0, D0 = 0), a wait time is required so that VCOM (reference voltage) is stabilized to its normal voltage since VCOM is made to 0 V at power-down.

	Serial Interface
 Writing into 	the AK8448
SDCLK	
SDIN _	\overline{W} $C1$ $C0$ 0 $A3$ $A2$ $A1$ $A0$ $D7$ $D6$ $D5$ $D4$ $D3$ $D2$ $D1$ $D0$
SDOUT -	High Z
50001	
SDENB	
	Figure 10 Write Into Register
Reading from	m the AK8448
SDCLK	
SDIN	R C1 C0 0 A3 A2 A1 A0
SDOUT -	$\begin{array}{c c} High Z \\ \hline \\$
SDENB	
	Figure 11 Read From Register

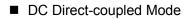

Package Marking

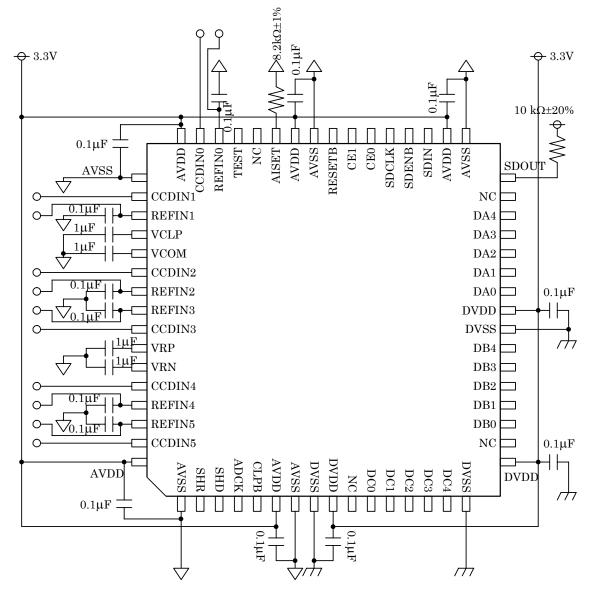
- (1) Pin #1 identifier (The chamfered corner indicates pin number 1)
- (2) Marketing code : AK8448VQ
- (3) Date code : xxxxxxx (7 digits) Upper 4 digits : week code Lower 3 bits : AKM's control code

	Ň
AK8448VQ XXXXXXX	

External Circuit Examples

CDS Mode




Above example is for reference. Please select optimum capacitor values for a target system. Figure 12 CDS Mode

Clamp Mode

Above example is for reference. Please select optimum capacitor values for a target system. Figure 13 Clamp Mode

Above example is for reference. Please select optimum capacitor values for a target system. Figure 14 DC Direct-Coupled Mode

IMPORTANT NOTICE -

- These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.

- status of the products. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of any information contained herein. Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. AKM products are neither intended nor authorized for use as critical components_{Note1}) in any safety, life support, or other hazard related device or system_{Note2}), and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. Note2) A hazard related device or system is one designed or intended for life support or maintenance of

- safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
- It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.