FQD7N10L / FQU7N10L

December 2000

QFET™

D

FQD7N10L / FQU7N10L 100V LOGIC N-Channel MOSFET

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

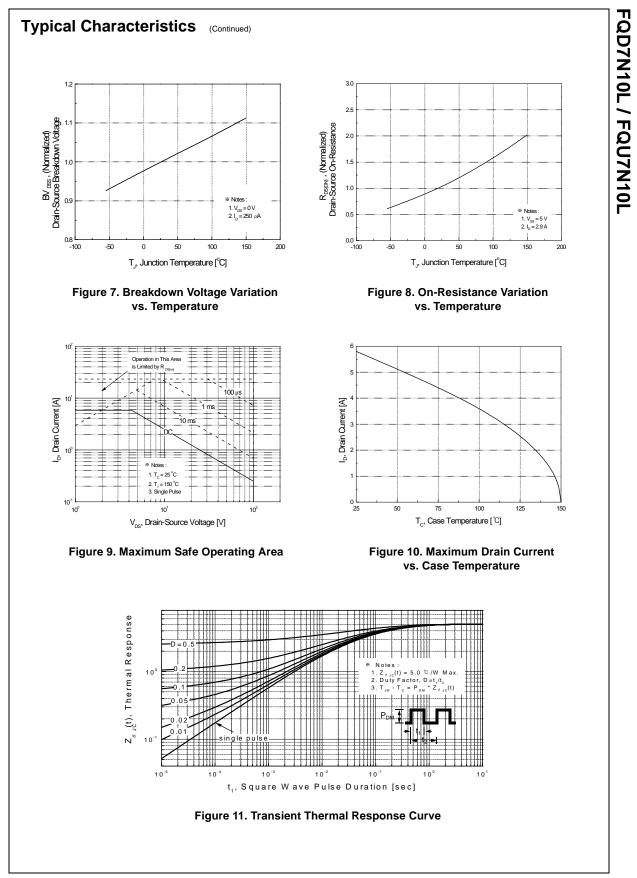
This advanced technology is especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation modes. These devices are well suited for low voltage applications such as high efficiency switching DC/DC converters, and DC motor control.

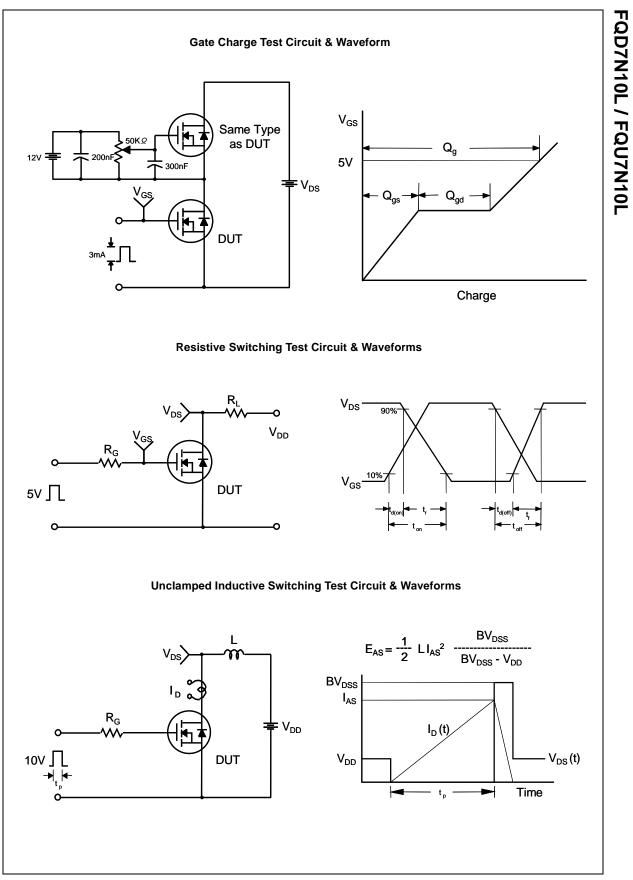
D

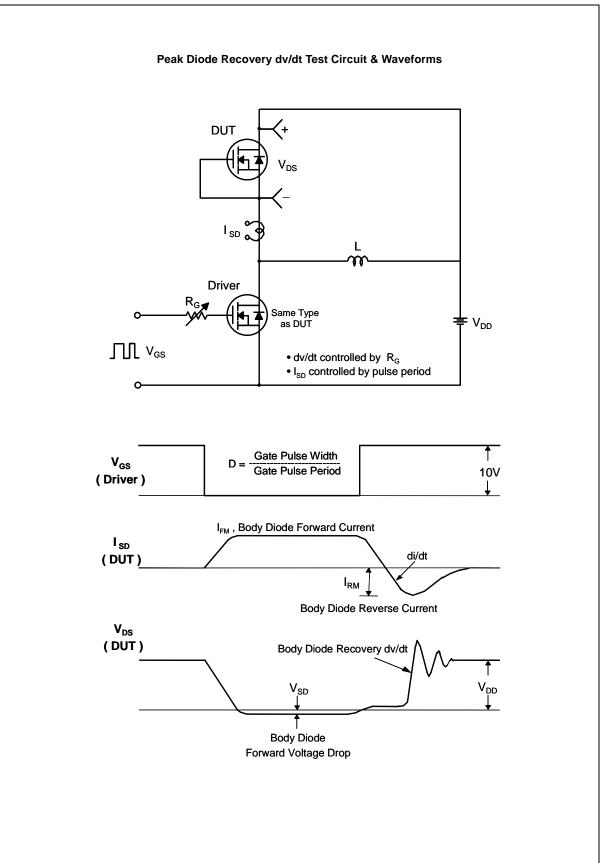
Features

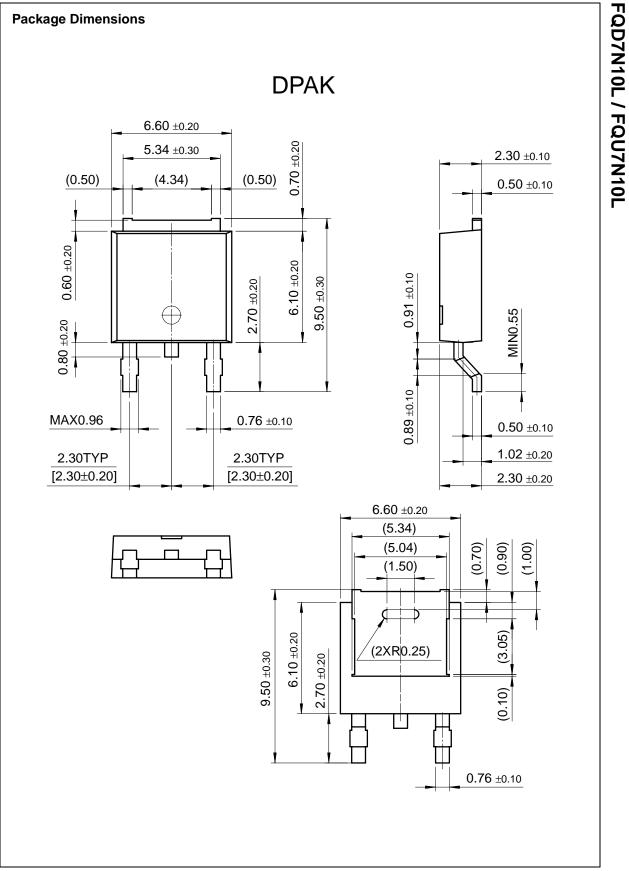
- 5.8A, 100V, R_{DS(on)} = 0.35Ω @V_{GS} = 10 V
- Low gate charge (typical 4.6 nC)
- Low Crss (typical 12 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- Low level gate drive requirments allowing direct operation from logic drives

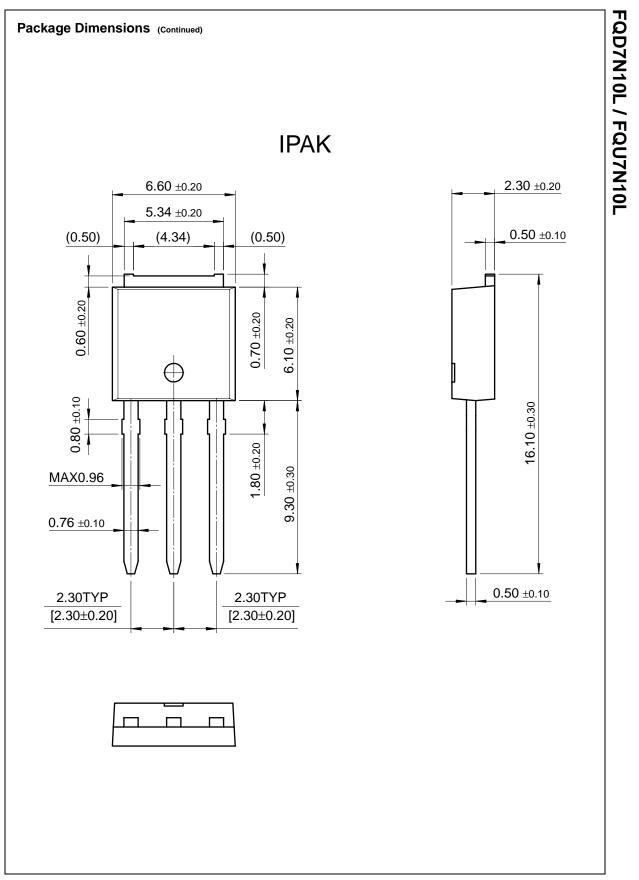

Absolute Maximum Ratings T_C = 25°C unless otherwise noted


Symbol	Parameter		FQD7N10L / FQU7N10L	Units
V _{DSS}	Drain-Source Voltage		100	V
I _D	Drain Current - Continuous (T _C = 25°	(O°	5.8	А
	- Continuous (T _C = 100	D°C)	3.67	А
I _{DM}	Drain Current - Pulsed	(Note 1)	23.2	А
V _{GSS}	Gate-Source Voltage		± 20	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	50	mJ
I _{AR}	Avalanche Current	(Note 1)	5.8	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	2.5	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		6.0	V/ns
P _D	Power Dissipation ($T_A = 25^{\circ}C$) *		2.5	W
	Power Dissipation ($T_C = 25^{\circ}C$)		25	W
	- Derate above 25°C		0.2	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C


Thermal Characteristics


Symbol	Parameter	Тур	Max	Units	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		5.0	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		50	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W	


Off Cha ^{BV_{DSS}}		Test Conditions	<u> </u>	Min	Тур	Max	Units
	aracteristics						
- 033	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA		100			V
ΔΒV _{DSS} / ΔΤ _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced	to 25°C		0.1		V/°C
		V _{DS} = 100 V, V _{GS} = 0 V				1	μA
	Zero Gate Voltage Drain Current	V _{DS} = 80 V, T _C = 125°C				10	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V_{GS} = -20 V, V_{DS} = 0 V				-100	nA
On Cha	aracteristics						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		1.0		2.0	V
R _{DS(on)}	Static Drain-Source	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 2.9 \text{ A}$			0.275	0.35	-
20(01)	On-Resistance $V_{GS} = 5 V, I_D = 2.9 A$				0.300	0.38	Ω
9fs	Forward Transconductance	$V_{DS} = 30 \text{ V}, \text{ I}_{D} = 2.9 \text{ A}$	(Note 4)		4.6		S
Dynami	ic Characteristics						
•	Input Capacitance	<u> </u>			220	290	pF
Cinc		$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$					۳۰.
					55	72	nF
C _{oss} C _{rss}	Output Capacitance Reverse Transfer Capacitance	f = 1.0 MHz			55 12	72 15	pF pF
C _{iss} C _{oss} C _{rss} Switchi	Output Capacitance	f = 1.0 MHz					-
C _{oss} C _{rss} Switchi	Output Capacitance Reverse Transfer Capacitance ing Characteristics				12	15	pF
C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)}	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time	f = 1.0 MHz V _{DD} = 50 V, I _D = 7.3 A,			12 9	15 30	pF
C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time	f = 1.0 MHz V _{DD} = 50 V, I _D = 7.3 A,	(Note 4, 5)		12 9 100	15 30 210	pF ns ns
C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	f = 1.0 MHz V _{DD} = 50 V, I _D = 7.3 A,	(Note 4, 5)		12 9 100 17	15 30 210 45	pF ns ns ns
C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs}	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	f = 1.0 MHz V _{DD} = 50 V, I _D = 7.3 A, R _G = 25 Ω	(Note 4, 5)	 	12 9 100 17 50	15 30 210 45 110	pF ns ns ns
C _{oss} C _{rss} Switchi	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	f = 1.0 MHz $V_{DD} = 50 \text{ V}, \text{ I}_{D} = 7.3 \text{ A},$ $R_{G} = 25 \Omega$ $V_{DS} = 80 \text{ V}, \text{ I}_{D} = 7.3 \text{ A},$	(Note 4, 5) (Note 4, 5)		9 100 17 50 4.6	15 30 210 45 110 6.0	pF ns ns ns ns nC
C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	f = 1.0 MHz $V_{DD} = 50 \text{ V}, \text{ I}_{D} = 7.3 \text{ A},$ $R_{G} = 25 \Omega$ $V_{DS} = 80 \text{ V}, \text{ I}_{D} = 7.3 \text{ A},$ $V_{GS} = 5 \text{ V}$	(Note 4, 5)		9 100 17 50 4.6 1.0	15 30 210 45 110 6.0 	pF ns ns ns ns nC nC
C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	f = 1.0 MHz $V_{DD} = 50 V, I_D = 7.3 A,$ $R_G = 25 \Omega$ $V_{DS} = 80 V, I_D = 7.3 A,$ $V_{GS} = 5 V$	(Note 4, 5)		9 100 17 50 4.6 1.0	15 30 210 45 110 6.0 	pF ns ns ns ns nC nC
C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	f = 1.0 MHz $V_{DD} = 50 \text{ V}, \text{ I}_D = 7.3 \text{ A},$ $R_G = 25 \Omega$ $V_{DS} = 80 \text{ V}, \text{ I}_D = 7.3 \text{ A},$ $V_{GS} = 5 \text{ V}$ Ind Maximum Rating inde Forward Current	(Note 4, 5)	 	12 9 100 17 50 4.6 1.0 2.6	15 30 210 45 110 6.0 	pF ns ns ns nC nC nC
C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gg} Q _{gd} Drain-S I _s	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics ar Maximum Continuous Drain-Source Diode	f = 1.0 MHz $V_{DD} = 50 \text{ V}, \text{ I}_D = 7.3 \text{ A},$ $R_G = 25 \Omega$ $V_{DS} = 80 \text{ V}, \text{ I}_D = 7.3 \text{ A},$ $V_{GS} = 5 \text{ V}$ Ind Maximum Rating inde Forward Current	(Note 4, 5)	 	12 9 100 17 50 4.6 1.0 2.6	15 30 210 45 110 6.0 5.8	pF ns ns ns nC nC nC A
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline \end{array} \\ \hline \begin{array}{c} Switchi \\ t_{d(on)} \\ t_r \\ \hline t_{d(off)} \\ t_f \\ \hline \\ Q_g \\ \hline \\ Q_{gs} \\ \hline \\ Q_{gd} \\ \hline \\ $	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics ar Maximum Continuous Drain-Source Diode Maximum Pulsed Drain-Source Diode F	f = 1.0 MHz $V_{DD} = 50 \text{ V}, \text{ I}_D = 7.3 \text{ A},$ $R_G = 25 \Omega$ $V_{DS} = 80 \text{ V}, \text{ I}_D = 7.3 \text{ A},$ $V_{GS} = 5 \text{ V}$ nd Maximum Rating inde Forward Current forward Current	(Note 4, 5)	 	12 9 100 17 50 4.6 1.0 2.6	15 30 210 45 110 6.0 5.8 23.2	pF ns ns ns nC nC nC A A



TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FASTrTM GTOTM HiSeC[™] ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[®] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

		l	
		sSEARCH]	Parametric Cross Reference
Fairchild Semiconductor			
		space	Product Folders and Applica
find products	Home >> Find products >>		
Products groups Analog and Mixed	FQD7N10L 100V N-Channel Logic Level QFET		Related Links
<u>Signal</u> <u>Discrete</u> Interface	Contents General description Features Product	Datasheet Download this	Request samples Dotted line How to order products Dotted line
Logic Microcontrollers	status/pricing/packaging Models	datasheet PDF	Product Change Notices (PCNs)
<u>Non-Volatile</u> <u>Memory</u> Optoelectronics	General description	e-mail this datash	Support
Markets and applications New products Product selection and	These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.	This page Print version	representatives Dotted line Quality and reliability Dotted line Design tools
parametric search Cross-reference search technical information	This advanced technology is especially tailored to minimize on-state resistance, provide superior switching performance, and withstand a high energy pulse in the avalanche and		Design tools
buy products	 commutation modes. These devices are well suited for low voltage applications such as high efficiency switching DC/DC converters, and 		
technical support	DC motor control.		
my Fairchild	-	-	
company	back to top		

back to top

Features

10V

rating

drives

• Fast switching

• 5.8A, 100V, $R_{DS(on)} = 0.35\Omega @V_{GS} =$

• 175°C maximum junction temperature

• Low level gate drive requirments allowing direct operation from logic

• Low gate charge (typical 4.6nC)

• Low Crss (typical 12pF)

100% avalanche testedImproved dv/dt capability

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQD7N10LTF	Full Production	\$0.34	TO-252(DPAK)	2	TAPE REEL
FQD7N10LTM	Full Production	\$0.34	TO-252(DPAK)	2	TAPE REEL

* 1,000 piece Budgetary Pricing

back to top

Models

Package & leads	Condition	Temperature range	Software version	Revision date
PSPICE				
TO-252(DPAK)-2	Electrical	25°C	9.2	Apr 29, 2002

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor