

# HC-5513

# PRELIMINARY

July 1995

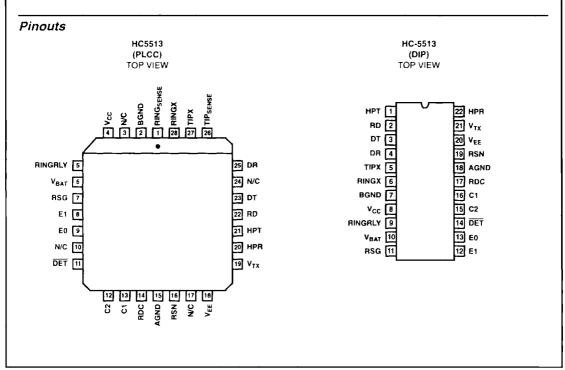
# **Subscriber Line Interface Circuit**

#### Features

- . DI Monolithic High Voltage Process
- · Programmable Current Feed
- · Programmable Loop Current Detector Threshold and **Battery Feed Characteristics**
- . Ground Key and Ring trip Detection
- . Compatible with Industry Standards Types
- · Thermal Shutdown
- · On-Hook Transmission
- . Wide Battery Voltage Range (-24V to -56V)
- . Low Standby Power
- . Meets TR-NWT-000057 Transmission Requirements
- -40°C to +85°C Ambient Temperature Range

### **Applications**

- . Digital Loop Carrier Systems
- · Fiber-In-The-Loop ONUs


# Description

The HC-5513 is a subscriber line interface circuit design to match industry standard PBL3764 for PBX and DLC applications. Enhancements include: lower noise and absence of false signaling in the presence of longitudinal currents.

The HC-5513 is fabricated in a High Voltage Dielectrically Isolated (DI) Bipolar Process that eliminates leakage currents and device latch-up problems normally associated with junction isolated ICs. The elimination of the leakage currents results in improved circuit performance for wide temperature extremes. The latch free benefit of the DI process guarantees operation under adverse transient conditions. This process feature makes the HC-5513 ideally suited for use in harsh outdoor environments.

## Ordering Information

| PART NUMBER | TEMPERATURE<br>RANGE | PACKAGE             |
|-------------|----------------------|---------------------|
| HC5513IMA02 | -40°C to +85°C       | 28 Lead PLCC        |
| HC5513IPA02 | -40°C to +85°C       | 22 Lead Plastic DIP |



### **Absolute Maximum Ratings**

| Temperature                                                                   |
|-------------------------------------------------------------------------------|
| Storage Temperature Range65°C to +150°C                                       |
| Operating Temperature Range40°C to +110°C                                     |
| Operating JunctionTemperature Range40°C to +150°C                             |
| Power Supply $(-40^{\circ}\text{C} \le \text{T}_{A} \le +85^{\circ}\text{C})$ |
| Supply Voltage V <sub>CC</sub> to GND 0.5V to 7V                              |
| Supply Voltage V <sub>EE</sub> to GND                                         |
| Supply Voltage V <sub>BAT</sub> to GND70V to 0.5V                             |
| Ground                                                                        |
| Voltage between AGND and BGND0.3V to 0.3V                                     |
| Relay Driver                                                                  |
| Ring Relay Supply Voltage 0V to V <sub>BAT</sub> +75V                         |
| Ring Relay Current                                                            |
| Ring Trip Comparator                                                          |
| Input Voltage V <sub>BAT</sub> to 0V                                          |
| Input Current5mA to 5mA                                                       |
| Digital Inputs, Outputs (C1, C2, E0, E1, DET)                                 |
| Input Voltage                                                                 |
| Output Voltage (DET not Active)                                               |
| Output Current(DET)                                                           |

| Tipx and Ringx Terminals (-40°C ≤ T <sub>A</sub> ≤ +85°C)                        |
|----------------------------------------------------------------------------------|
| Tipx or Ringx Voltage, Continous (Referenced to GND) . VBAT to+2V                |
| Tipx or Ringx , Pulse <10ms, t <sub>REP</sub> >10s V <sub>BAT</sub> -20V to+5V   |
| Tipx or Ringx , Pulse <10μs, I <sub>REP</sub> >10s V <sub>BAT</sub> -40V to+10V  |
| Tipx or Ringx , Pulse <250ns, t <sub>REP</sub> >10s V <sub>BAT</sub> -70V to+15V |
| Tipx or Ringx Current                                                            |
| Gate Count                                                                       |

| Thermal Information (Typical)      |                       |
|------------------------------------|-----------------------|
| Thermal Resistance                 | $\theta_{JA}$         |
| 22 Lead Plastic DIP                | 75°C/W                |
| 28 Lead PLCC                       | 65°C/W                |
| Package Power Dissipation at +70°C |                       |
| 22 Lead Plastic DIP                | 1.06W                 |
| 28 Lead PLCC                       | 1.23W                 |
| Derate Above +70°C                 |                       |
| Plastic DIP1                       | 3.3mW/ <sup>n</sup> C |
| PLCC1                              | 5.4mW/°C              |
| Lead Temperature (Soldering 10s)   | +300°C                |
| (PLCC - Lead Tips Only)            |                       |

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

#### **Typical Operating Conditions**

These represent the conditions under which the part was developed and are suggested as guidelines.

| PARAMETER                             | CONDITIONS     | MIN   | TYP | МАХ   | UNITS |
|---------------------------------------|----------------|-------|-----|-------|-------|
| Case Temperature                      |                | -40   | -   | 100   |       |
| V <sub>CC</sub> with Respect to AGND  | -40°C to +85°C | 4.75  | -   | 5.25  | ٧     |
| V <sub>EE</sub> with Respect to AGND  | -40°C to +85°C | -5.25 |     | -4.75 | V     |
| V <sub>BAT</sub> with Respect to BGND | -40°C to +85°C | -58   |     | -24   | ٧     |

| PARAMETER                         | CONDITIONS                                      | MIN | TYP | MAX | UNITS             |
|-----------------------------------|-------------------------------------------------|-----|-----|-----|-------------------|
| Overload Level                    | 1% THD, $Z_L$ = 600Ω, 2.16μF (Note 1, Figure 1) | 3.1 | -   | ,   | V <sub>PEAK</sub> |
| Longitudinal Impedance (Tip/Ring) | 0 < f < 100Hz (Note 2, Figure 2)                | -   | 20  | 35  | ΩWire             |

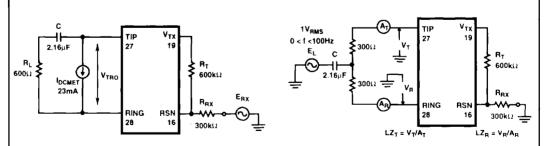


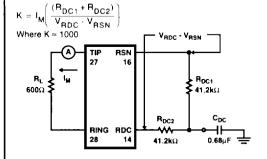

FIGURE 1. OVERLOAD LEVEL (TWO-WIRE PORT)

FIGURE 2. LONGITUDINAL IMPEDANCE

Electrical Specifications

T<sub>A</sub> = -40°C to +85°C, V<sub>CC</sub> = +5V ±5%, V<sub>EE</sub> = +5V ±5%, V<sub>BAT</sub> = -28V, AGND = BGND = 0V, R<sub>DC1</sub> = R<sub>DC2</sub> = 41.2kΩ, R<sub>D</sub> = 39kΩ, R<sub>SG</sub> = ∞, C<sub>HP</sub> = 10nF, C<sub>DC</sub> = 1.5μF, Z<sub>L</sub> = 600Ω, Unless Otherwise Specified. All nin number references in the figures refer to the 28 lead PLCC package (Continued)

| Property of False Detections, (GND Key, Loop current), LB > 45dB (Note 3, Figure 3A) of False Detections (GND Key, Loop current) (Note 4, Figure 3B)  368Ω  RE 3. LONGITUDINAL CURRENT LIMI  EE 455 - 1985, R <sub>LR</sub> , R <sub>LT</sub> = 368Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39ki)<br>39ki)<br>-5V                                                                                                                                                                                                                                                                                   | R <sub>D</sub>                                                                                                                                                                                                                            | R <sub>DC2</sub> C 41.2ks2                     | mA <sub>PEAI</sub> Wire  mA <sub>PEAI</sub> /Wire  A1.2kΩ  C <sub>DC</sub> 0.68μF |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------|
| RE 3. LONGITUDINAL CURRENT LIMI  EE 455 - 1985, R <sub>LR</sub> , R <sub>LT</sub> = 368Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39kı) 39kı) A FIGURE 3                                                                                                                                                                                                                                                                                  | 27 1 RD RING RDI 28 1 DET 1 3B. ON-HO                                                                                                                                                                                                     | 5<br>N 6<br>R <sub>DC2</sub><br>C 4<br>41.2ki2 | Mire  MAPEAI  Mire  A1.2kt2  CDC  0.68µF                                          |
| RE 3. LONGITUDINAL CURRENT LIMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39kı) 39kı) A FIGURE 3                                                                                                                                                                                                                                                                                  | 27 1 RD RING RDI 28 1 DET 1 3B. ON-HO                                                                                                                                                                                                     | R <sub>DC2</sub> C 4 41.2ki.2                  | ## Roc1 41.2k(1) CDC 0.68µF                                                       |
| $\begin{array}{c} R_{DC1} \\ 41.2k\Omega \\ C_{DC} \\ 2 \\ 0.68 \text{ Ji F} \end{array} = \begin{array}{c} 2.16 \text{ Ji F} \\ C \\ 2.16 \text{ Ji F} \\ C \\ 368 \Omega \end{array}$ $\begin{array}{c} 2.16 \text{ Ji F} \\ C \\ C_{DC} \\ C$ | 39ki<br>-5V  A  FIGURE 3                                                                                                                                                                                                                                                                                | 27 1 RD RING RDI 28 1 DET 1 3B. ON-HO                                                                                                                                                                                                     | R <sub>DC2</sub> C 41.2ks2                     | 41.2kΩ<br>C <sub>DC</sub><br>0.68μF                                               |
| EE 455 - 1985, R <sub>LR</sub> , R <sub>LT</sub> = 368Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>,</b>                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                        | T .                                            | dB                                                                                |
| EE 455 - 1985, R <sub>LR</sub> , R <sub>LT</sub> = 368Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55                                                                                                                                                                                                                                                                                                      | 70                                                                                                                                                                                                                                        | Τ.                                             | dB                                                                                |
| 2kHz < f < 4.0kHz (Note 5, Figure 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                |                                                                                   |
| _R, R <sub>LT</sub> = 300Ω, 0.2kHz < f < 4.0kHz<br>lote 5, Figure 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55                                                                                                                                                                                                                                                                                                      | 70                                                                                                                                                                                                                                        | -                                              | dB                                                                                |
| CC Part 68, Para 68.310<br>2kHz < f < 1.0kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                                                                                                                                                                                                                                                                                                      | 55                                                                                                                                                                                                                                        | -                                              | dB                                                                                |
| 0kHz < f < 4.0kHz (Note 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50                                                                                                                                                                                                                                                                                                      | 55                                                                                                                                                                                                                                        |                                                | dB                                                                                |
| 2kHz < f < 4.0kHz (Note 7, Figure 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55                                                                                                                                                                                                                                                                                                      | 70                                                                                                                                                                                                                                        | -                                              | dB                                                                                |
| <sub>_R</sub> , R <sub>LT</sub> = 300Ω, 0.2kHz < f < 4.0kHz<br>lote 8, Figure 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50                                                                                                                                                                                                                                                                                                      | 55                                                                                                                                                                                                                                        |                                                | dB                                                                                |
| 2kHz < f < 4.0kHz (Note 9, Figure 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                                                                      | 55                                                                                                                                                                                                                                        | -                                              | dB                                                                                |
| 13τ V <sub>TX</sub> 2.16μF C V <sub>L</sub> R <sub>LR</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E <sub>TR</sub>                                                                                                                                                                                                                                                                                         | 27 19<br>RING RSN                                                                                                                                                                                                                         | R <sub>T</sub> 600ks2                          | E <sub>RX</sub>                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OC Part 68, Para 68.310 2kHz < f < 1.0kHz 0kHz < f < 4.0kHz (Note 6) 2kHz < f < 4.0kHz (Note 7, Figure 4) 2kHz < f < 4.0kHz (Note 7, Figure 4) 2kHz < f < 4.0kHz (Note 9, Figure 5) 2kHz < f < 4.0kHz (Note 9, Figure 5) 2kHz < f < 4.0kHz (Note 9, Figure 5) 300kΩ R <sub>RX</sub> 300kΩ FIGURE 5. MET | OC Part 68, Para 68.310 2kHz < f < 1.0kHz 0kHz < f < 4.0kHz (Note 6) 2kHz < f < 4.0kHz (Note 7, Figure 4) 55 2kHz < f < 4.0kHz (Note 7, Figure 4) 55 2kHz < f < 4.0kHz (Note 9, Figure 5) 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60 | Oct   2   10   10   10   10   10   10   10     | Occ   2                                                                           |


Electrical Specifications  $\begin{array}{ll} T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \ V_{\text{CC}} = +5\text{V} \pm 5\%, \ V_{\text{EE}} = +5\text{V} \pm 5\%, \ V_{\text{BAT}} = -28\text{V}, \ \text{AGND} = \text{BGND} = 0\text{V}, \ R_{\text{DC1}} = R_{\text{DC2}} \\ = 41.2\text{K}\Omega, \ R_D = 39\text{k}\Omega, \ R_{\text{SG}} = \infty, \ C_{\text{HP}} = 10\text{nF}, \ C_{\text{DC}} = 1.5\text{\mu F}, \ Z_{\text{L}} = 600\Omega. \ \text{Unless Otherwise Specified. All} \\ \text{pin number references in the figures refer to the 28 lead PLCC package. (Continued)} \end{array}$ 

| PARAMETER                                                                                                                                                                 | CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIN                                                                | TYP                                                 | MAX                                                                    | UNITS                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------|
| 2-Wire Return Loss                                                                                                                                                        | 0.2kHz to 0.5kHz (Note 10, Figure 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                                 |                                                     | -                                                                      | dB                                        |
|                                                                                                                                                                           | 0.5kHz to 1.0kHz (Note 10, Figure 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27                                                                 | -                                                   | -                                                                      | dB                                        |
|                                                                                                                                                                           | 1.0kHz to 3.4kHz (Note 10, Figure 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23                                                                 |                                                     |                                                                        | dB                                        |
| TIP IDLE VOLTAGE                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                     |                                                                        |                                           |
| Active, I <sub>t</sub> = 0                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | -4                                                  |                                                                        | ٧                                         |
| Standby, I <sub>L</sub> = 0                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                  | <0                                                  |                                                                        | V                                         |
| RING IDLE VOLTAGE                                                                                                                                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                  |                                                     |                                                                        |                                           |
| Active, I <sub>L</sub> = 0                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | -24                                                 |                                                                        | ٧                                         |
| Standby, I <sub>L</sub> = 0                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | -28                                                 | -                                                                      | V                                         |
| 4-WIRE TRANSMIT PORT (V <sub>TX</sub> )                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                     | <u>.                                    </u>                           |                                           |
| Overload Level                                                                                                                                                            | (Z <sub>L</sub> > 20kΩ, 1% THD) (Note 11, Figure 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1                                                                | -                                                   | -                                                                      | VPEAR                                     |
| Output Offset Voltage                                                                                                                                                     | E <sub>G</sub> = 0, Z <sub>L</sub> = •, (Note 12, Figure 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -30                                                                | -                                                   | 30                                                                     | mV                                        |
| Output Impedance (Guaranteed by Design)                                                                                                                                   | 0.2kHz < f < 03.4kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                  | 5                                                   | 20                                                                     | Ω                                         |
| 2- to 4-Wire (Metallic to V <sub>TX</sub> ) Voltage Gain                                                                                                                  | 0.3kHz < f < 03.4kHz (Note 13, Figure 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.98                                                               | 1.0                                                 | 1.02                                                                   | V/V                                       |
| V <sub>S</sub> V <sub>M</sub> 27 19 V <sub>M</sub> RING RSN 28 16                                                                                                         | R <sub>T</sub> 600ki 2 I <sub>DCMET</sub> 23mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>TR</sub> 27                                                 | G RSN                                               | R <sub>RX</sub>                                                        | / <sub>TXO</sub> }                        |
| Vs O R Z <sub>IN</sub> RING RSN                                                                                                                                           | R <sub>T</sub> 600kΩ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RING 28                                                            | 3 RSN<br>16<br>VEL (4-WIR                           | H <sub>RX</sub>                                                        | Vix = = = = = = = = = = = = = = = = = = = |
| V <sub>S</sub> Z <sub>IN</sub> RING RSN 28 16                                                                                                                             | R <sub>T</sub> 600kΩ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RING RING RING REDOAD LET PUT OFFSI RE VOLTA                       | 3 RSN<br>16<br>VEL (4-WIR                           | H <sub>RX</sub> 300kΩ E TRANSM 3E, 2-WIRE                              | Vix = = = = = = = = = = = = = = = = = = = |
| V <sub>S</sub> R  R  Z <sub>IN</sub> RING RSN 28 16  FIGURE 8. TWO-WIRE RETURN  4-WIRE RECEIVE PORT (RSN)                                                                 | R <sub>T</sub> 600kΩ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RING RING RING REDOAD LET PUT OFFSI RE VOLTA                       | 3 RSN<br>16<br>VEL (4-WIR                           | H <sub>RX</sub> 300kΩ E TRANSM 3E, 2-WIRE                              | Vix = = = = = = = = = = = = = = = = = = = |
| Vs R ZIN RING RSN 28 16  FIGURE 8. TWO-WIRE RETURN  4-WIRE RECEIVE PORT (RSN)  DC Voltage                                                                                 | R <sub>T</sub> 600k12 R <sub>RX</sub> 300k12 R <sub>RX</sub> FIGURE 9. OVE OUT 4-WI DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RING RING RING REDOAD LET PUT OFFSI RE VOLTA                       | 3 RSN<br>16<br>VEL (4-WIR<br>ET VOLTAC<br>GE GAIN A | H <sub>RX</sub> 300kΩ E TRANSM 3E, 2-WIRE                              | TT PORT TO ONIC                           |
| V <sub>S</sub> Q R V <sub>M</sub> V <sub>M</sub> RING RSN 28 16  FIGURE 8. TWO-WIRE RETURE                                                                                | R <sub>T</sub>   600k12   1 <sub>DCMET</sub>   23mA   1 <sub>DCMET</sub>   1 <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RING RING RING REDOAD LET PUT OFFSI RE VOLTA                       | 3 RSN<br>16<br>VEL (4-WIR<br>ET VOLTAC<br>GE GAIN A | P <sub>RX</sub> γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ                  | TIT PORT TO DNIC                          |
| V <sub>S</sub> R Z <sub>IN</sub> RING RSN 28 16  FIGURE 8. TWO-WIRE RETURE  4-WIRE RECEIVE PORT (RSN)  DC Voltage  R <sub>X</sub> Sum Node Impedance                      | R <sub>T</sub> 6000Ω 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RING<br>28<br>RLOAD LE<br>PUT OFFSI<br>RE VOLTAI<br>ORTION         | 3 RSN<br>16<br>VEL (4-WIR<br>ET VOLTAC<br>GE GAIN A | H <sub>RX</sub> 300kΩ E TRANSM SE, 2-WIRE ND HARMO                     | TE PORT TO DNIC                           |
| 4-WIRE RECEIVE PORT (RSN)  DC Voltage  R <sub>X</sub> Sum Node Impedance  Current Gain-RSN to Metallic  FREQUENCY RESPONSE (OFF HOOK)                                     | R <sub>T</sub> 6000Ω 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RING<br>28<br>RLOAD LE<br>PUT OFFSI<br>RE VOLTAI<br>ORTION         | 3 RSN<br>16<br>VEL (4-WIR<br>ET VOLTAC<br>GE GAIN A | H <sub>RX</sub> 300kΩ E TRANSM SE, 2-WIRE ND HARMO                     | T PORT TO DNIC                            |
| 4-WIRE RECEIVE PORT (RSN)  DC Voltage  R <sub>X</sub> Sum Node Impedance  Current Gain-RSN to Metallic  FREQUENCY RESPONSE (OFF HOOK)  2-Wire to 4-Wire                   | R <sub>RX</sub>   D <sub>DCMET</sub>   D <sub>DCMET</sub>   23mA   R <sub>RX</sub>   D <sub>DCMET</sub>   23mA   R <sub>RX</sub>   R <sub>RX</sub> | RING 28  RLOAD LE' PUT OFFSI RE VOLTAI ORTION                      | O 1000                                              | H <sub>RX</sub> 300kΩ  E TRANSM GE, 2-WIRE ND HARMO  20  1020          | TT PORT TO DNIC                           |
| A-WIRE RECEIVE PORT (RSN)  DC Voltage  R <sub>X</sub> Sum Node Impedance  Current Gain-RSN to Metallic  FREQUENCY RESPONSE (OFF HOOK)  2-Wire to 4-Wire  4-Wire to 2-Wire | R <sub>RX</sub>   SOO(1)   SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RING<br>28<br>RLOAD LE'<br>PUT OFFSI<br>RE VOLTAI<br>ORTION<br>980 | O 1000                                              | 900kΩ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                            | VTX TX T |
| 4-WIRE RECEIVE PORT (RSN)  DC Voltage  R <sub>X</sub> Sum Node Impedance  Current Gain-RSN to Metallic  FREQUENCY RESPONSE (OFF HOOK)  2-Wire to 4-Wire  4-Wire to 2-Wire | N LOSS   FIGURE 9. OVE OUT 4-WI DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RING<br>28<br>RLOAD LE<br>PUT OFFSI<br>RE VOLTAI<br>ORTION<br>980  | 3 RSN<br>16 VEL (4-WIR<br>ET VOLTAC<br>GE GAIN A    | H <sub>RX</sub> 300kΩ 300kΩ ETRANSM SE, 2-WIRE ND HARMO 1020 1020 1020 | VTX TTX TO DNIC V Ω Ratio                 |
| 4-WIRE RECEIVE PORT (RSN)  DC Voltage  R <sub>X</sub> Sum Node Impedance  Current Gain-RSN to Metallic  FREQUENCY RESPONSE (OFF HOOK)  2-Wire to 4-Wire  4-Wire to 2-Wire | N LOSS   FIGURE 9. OVE OUT 4-WI DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RING<br>28<br>RLOAD LE<br>PUT OFFSI<br>RE VOLTAI<br>ORTION<br>980  | 3 RSN<br>16 VEL (4-WIR<br>ET VOLTAC<br>GE GAIN A    | H <sub>RX</sub> 300kΩ 300kΩ ETRANSM SE, 2-WIRE ND HARMO 1020 1020 1020 | VTX TTX TO DNIC V Ω Ratio                 |

### **Electrical Specifications**

 $T_A$  = -40°C to +85°C,  $V_{CC}$  = +5V ±5%,  $V_{EE}$  = +5V ±5%,  $V_{BAT}$  = -28V, AGND = BGND = 0V,  $R_{DC1}$  =  $R_{DC2}$  = 41.2kΩ,  $R_D$  = 39kΩ,  $R_{SG}$  = ∞,  $C_{HP}$  = 10nF,  $C_{DC}$  = 1.5μF,  $Z_L$  = 600Ω, Unless Otherwise Specified. All pin number references in the figures refer to the 28 lead PLCC package. (Continued)

| PARAMETER                         | CONDITIONS                            | MIN  | TYP   | MAX | UNITS |
|-----------------------------------|---------------------------------------|------|-------|-----|-------|
| GAIN TRACKING (Ref = -10dBm, at 1 | .0kHz)                                |      | •     | •   | •     |
| 2-Wire to 4-Wire                  | -40dBm to +3dBm (Note 20, Figure 11)  | -0.1 | -     | 0.1 | dB    |
| 2-Wire to 4-Wire                  | -55dBm to -40dBm (Note 20, Figure 11) |      | ±0.03 | -   | dB    |
| 4-Wire to 2-Wire                  | -40dBm to +3dBm (Note 21, Figure 11)  | -0.1 | -     | 0.1 | dB    |
| 4-Wire to 2-Wire                  | -55dBm to -40dBm (Note 21, Figure 11) |      | ±0.03 | -   | dΒ    |



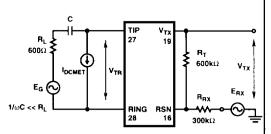



FIGURE 10. CURRENT GAIN -RSN TO METALLIC

FIGURE 11. FREQUENCY RESPONSE, INSERTION LOSS,
GAIN TRACKING AND HARMONIC DISTORTION

| NOISE                                                        |                                                                                           |                    |                     |                    |       |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------|-------|
| Idle Channel Noise at 2-Wire                                 | C-Message Weighting (Note 22, Figure 12)                                                  |                    | 7.5                 | 8.9                | dBrnC |
| Idle Channel Noise at 4-Wire                                 | C-Message Weighting (Note 23, Figure 12)                                                  |                    |                     | 8.9                | dBrnC |
| HARMONIC DISTORTION                                          |                                                                                           | •                  |                     |                    |       |
| 2-Wire to 4-Wire                                             | 0dBm, 1kHz (Note 24, Figure 9)                                                            | -                  | -65                 | -54                | ₫B    |
| 4-Wire to 2-Wire                                             | 0dBm, 0.3kHz to 3.4kHz (Note 25, Figure 11)                                               |                    | -65                 | -54                | dΒ    |
| BATTERY FEED CHARACTERISTICS                                 |                                                                                           | •                  |                     |                    |       |
| Constant Loop Current Tolerance $R_{DCX} = 41.2k\Omega$      | I <sub>L</sub> =2500/(R <sub>DC1</sub> + R <sub>DC2</sub> ),<br>-40°C to +85°C (Note 26)  | 0.9۱ر              | l <sub>L</sub>      | 1.11 <sub>L</sub>  | mA    |
| Loop Current Tolerance (Standby)                             | I <sub>L</sub> =(V <sub>BAT</sub> -3)/(R <sub>L</sub> +1800),<br>-40°C to +85°C (Note 27) | 0.81 <sub>L</sub>  | lι                  | 1.2l <sub>L</sub>  | mA    |
| Open Circuit Voltage (V <sub>TIP</sub> - V <sub>RING</sub> ) | -40°C to +85°C, (Active)                                                                  | 15                 |                     | 19                 | ٧     |
| LOOP CURRENT DETECTOR                                        |                                                                                           |                    | •                   |                    |       |
| On Hook to Off Hook                                          | $R_D = 39k\Omega$<br>-40°C to +85°C                                                       | 372/R <sub>D</sub> | 465/Pi <sub>D</sub> | 558/R <sub>D</sub> | mA    |
| Off Hook to On Hook                                          | R <sub>D</sub> = 39kΩ<br>-40°C to +85°C                                                   | 325/R <sub>D</sub> | 405/R <sub>D</sub>  | 485/R <sub>D</sub> | mA    |
| Loop Current Hysteresis                                      | $R_D = 39k\Omega$<br>-40°C to +85°C                                                       | 25/R <sub>D</sub>  | 60/R <sub>D</sub>   | 95/R <sub>D</sub>  | mA    |

Electrical Specifications  $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \ V_{CC} = +5\text{V} \pm 5\%, \ V_{EE} = +5\text{V} \pm 5\%, \ V_{BAT} = -28\text{V}, \ AGND = BGND = 0\text{V}, \ R_{DC1} = R_{DC2} = 41.2k\Omega, \ R_D = 39k\Omega, \ R_{SG} = \infty, \ C_{HP} = 10\text{nF}, \ C_{DC} = 1.5\mu\text{F}, \ Z_L = 600\Omega. \ Unless Otherwise Specified. All pin number references in the figures refer to the 28 lead PLCC package. (Continued)$ 

| PARAMETER                                                      | CONDITIONS                                                                                  | MIN                                                             | TYP    | MAX             | UNITS                                                                            |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------|-----------------|----------------------------------------------------------------------------------|
| GROUND KEY DETECTOR                                            |                                                                                             |                                                                 |        | -               |                                                                                  |
| Tip/Ring Current Difference - Trigger                          | (Note 28, Figure 13)                                                                        | 8                                                               | 12     | 17              | mA                                                                               |
| Tip/Ring Current Difference - Reset                            | (Note 28, Figure 13)                                                                        | 3                                                               | 7      | 12              | mA                                                                               |
| Hysteresis                                                     | (Note 28, Figure 13)                                                                        | 0                                                               | 5      | 9               | mA                                                                               |
| RING RSN                                                       | 7<br>00ks2 V <sub>TX</sub><br>3 <sub>RX</sub> 8mA < IA <sub>1</sub> -A <sub>2</sub> I < 17m | -(A <sub>1</sub> )- ΤΙΡ<br>27<br>-(A <sub>2</sub> )- RIN1<br>28 | DET 14 | 41.2kΩ          | R <sub>DC1</sub> 41.2kΩ  C <sub>DC</sub> 1.5µF 2 1.5µF 2 1 = 0, C <sub>2</sub> = |
| RING TRIP DETECTOR (DT, DR)                                    |                                                                                             |                                                                 |        |                 |                                                                                  |
| Offset Voltage                                                 | Source Res = 0                                                                              | -20                                                             | -      | 20              | mV                                                                               |
| Input Bias Current                                             | Source Res = 0                                                                              | -500                                                            |        | 500             | nA                                                                               |
| Input Common-Mode Range                                        | Source Res = 0                                                                              | V <sub>BAT</sub> +1                                             | -      | 0               | ٧                                                                                |
| Input Resistance                                               | Source Res = 0<br>Balanced                                                                  | 3                                                               |        | -               | MΩ                                                                               |
| RING RELAY DRIVER                                              |                                                                                             |                                                                 |        |                 |                                                                                  |
| V <sub>SAT</sub> at 25mA                                       | 1 <sub>OL</sub> = 25mA                                                                      | -                                                               | 1.0    | 1.5             | ٧                                                                                |
| Off-State Leakage Current                                      | V <sub>OH</sub> = 12V                                                                       | -                                                               |        | 10              | μА                                                                               |
| DIGITAL INPUTS (E0, E1, C1, C2)                                | •                                                                                           | ·                                                               |        | •               |                                                                                  |
| Input Low Voltage, V <sub>IL</sub>                             |                                                                                             | 0                                                               | •      | 8.0             | V                                                                                |
| Input High Voltage, V <sub>IH</sub>                            |                                                                                             | 2                                                               | •      | V <sub>CC</sub> | V                                                                                |
| Input Low Current, I <sub>IL</sub> : C1,C2                     | V <sub>IL</sub> =0.4V                                                                       | -200                                                            | -      |                 | μА                                                                               |
| Input Low Current, I <sub>IL</sub> : E0,E1                     | V <sub>IL</sub> =0.4V                                                                       | -100                                                            |        | -               | μА                                                                               |
| Input High Current                                             | V <sub>IH</sub> =2.4V                                                                       |                                                                 | -      | 40              | μA                                                                               |
| DETECTOR OUTPUT (DET)                                          | •                                                                                           |                                                                 |        |                 | =                                                                                |
| 0 1 11 11 11                                                   | I <sub>OL</sub> = 2mA                                                                       | -                                                               | -      | 0.45            | ٧                                                                                |
| Output Low Voltage, V <sub>OL</sub>                            |                                                                                             | 2.7                                                             | -      |                 | ٧                                                                                |
| Output High Voltage, V <sub>OH</sub>                           | I <sub>OH</sub> = 100μ <b>A</b>                                                             | 2.1                                                             |        |                 |                                                                                  |
|                                                                | I <sub>OH</sub> = 100μA                                                                     | 10                                                              | 15     | 20              | kΩ                                                                               |
| Output High Voltage, V <sub>OH</sub>                           | I <sub>OH</sub> = 100μ <b>A</b>                                                             |                                                                 | 15     | 20              | kΩ                                                                               |
| Output High Voltage, V <sub>OH</sub> Internal Pull-up Resistor | I <sub>OH</sub> = 100μA  C1 = C2 = 0                                                        |                                                                 | 15     | 20              | kΩ                                                                               |

Electrical Specifications  $\begin{array}{ll} T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \ V_{CC} = +5\text{V} \pm 5^{\circ}\text{N}, \ V_{EE} = +5\text{V} \pm 5^{\circ}\text{N}, \ V_{BAT} = -28\text{V}, \ AGND = BGND = 0\text{V}, \ R_{DC1} = R_{DC2} \\ = 41.2k\Omega, \ R_D = 39k\Omega, \ R_{SG} = \infty, \ C_{HP} = 10nF, \ C_{DC} = 1.5\mu F, \ Z_L = 600\Omega, \ Unless \ Otherwise \ Specified. \ All pin number references in the figures refer to the 28 lead PLCC package. (Continued) \\ \end{array}$ 

| mW<br>W<br>W<br>W |
|-------------------|
| w<br>w<br>°C      |
| °C                |
| °С                |
|                   |
|                   |
| mA                |
| mA                |
|                   |
| mA                |
|                   |
| dB                |
| dB                |
| ₫B                |
|                   |

#### NOTES:

- Overload Level (Two-Wire port) The overload level is specified at the 2-wire port (V<sub>TRO</sub>) with the signal source at the 4-wire receive port (E<sub>RX</sub>). I<sub>DCMET</sub> = 23mA, increase the amplitude of E<sub>RX</sub> until 1% THD is measured at V<sub>TRO</sub>. Reference Figure 1.
- Longitudinal Impedance The longitudinal impedance is computed using the following equations, where TIP and RING voltages are referenced to ground. L<sub>ZT</sub>, L<sub>ZR</sub>, V<sub>T</sub>, V<sub>R</sub>, A<sub>R</sub> and A<sub>T</sub> are defined in Figure 2.

```
(TIP) L_{ZT} = V_T/A_T

(RING) L_{ZR} = V_R/A_R

where: E_L = 1V_{RMS} (0Hz to 100Hz)
```

- 3. Longitudinal Current Limit (Off Hook Active) Off Hook (Active, C1 = 1, C2 = 0) longitudinal current limit is determined by increasing the amplitude of E<sub>1</sub> (Figure 3a) until the 2-wire longitudinal balance drops below 45dB. DET pin remains high (no false detection).
- 4. Longitudinal Current Limit (On Hook Standby) On Hook (Active, C1 = 1, C2 = 1) longitudinal current limit is determined by increasing the amplitude of E<sub>L</sub> (Figure 3b) until the 2-wire longitudinal balance drops below 45dB. DET pin remains high (no false detection)
- 5. Longitudinal to Metallic Balance The longitudinal to metallic balance is computed using the following equation BLME = 20 • log (E<sub>L</sub>/V<sub>TB</sub>), where: E<sub>L</sub> and V<sub>TB</sub> are defined in Figure 4.
- 6. Metallic to Longitudinal FCC Part 68, Para 68.310 The metallic to longitudinal balance is defined in the above mentioned spec.
- Longitudinal to Four-Wire Balance The longitudinal to 4-wire balance is computed using the following equation
  BLFE = 20 log (E<sub>1</sub>/V<sub>TX</sub>).: E<sub>1</sub> and V<sub>TX</sub> are defined in Figure 4.
- Metallic to Longitudinal Balance The metallic to longitudinal balance is computed using the following equation.
   BMLE = 20 log (E<sub>TR</sub>/V<sub>I</sub>). E<sub>RX</sub> = 0

where: E<sub>TR</sub> V<sub>1</sub> and E<sub>BX</sub> are defined in Figure 5.

9. Four-Wire to Longitudinal Balance - The 4-wire to longitudinal balance is computed using the following equation.

BFLE = 20 • log ( $E_{RX}/V_L$ ),  $E_{TR}$  = source is removed. where:  $E_{RX}/V_L$  and  $E_{TR}$  are defined in Figure 5.

10. Two-Wire Return Loss - The 2-wire return loss is computed using the following equation:

```
r = -20 \cdot \log (2V_M/V_S)
```

where: Z<sub>D</sub> = The desired impedance; e.g., the characteristic impedance of the line, nominally 600Ω (Reference Figure 8).

- 11. Overload Level (4-Wire port) The overload level is specified at the 4-wire transmit port (V<sub>TXO</sub>) with the signal source (E<sub>G</sub>) at the 2-wire port, I<sub>DCMET</sub> = 23mA, ZL = 20kΩ (Reference Figure 9). Increase the amplitude of E<sub>G</sub> until 1% THD is measured at V<sub>TXO</sub>. Note that the gain from the 2-wire port to the 4-wire port is equal to 1.
- 12. Output Offset Voltage The output offset voltage is specified with the following conditions: E<sub>G</sub> = 0, I<sub>DCMET</sub> = 23mA, ZL = ∞ and is measured at V<sub>TX</sub> E<sub>G</sub>, I<sub>DCMET</sub>, V<sub>TX</sub> and Z<sub>L</sub> are defined in Figure 9.
- 13. Two-Wire to Four-Wire (Metallic to V<sub>TX</sub>) Voltage Gain The 2-wire to 4-wire (metallic to V<sub>TX</sub>) voltage gain is computed using the following equation.

 $G_{2\cdot4}$  =  $V_{TX}/V_{TR}$ ),  $E_G$  = 0dBm0,  $V_{TX}$ ,  $V_{TR}$ , and  $E_G$  are defined in Figure 9.

14. Current Gain RSN to Metallic - The current gain RSN to Metallic is computed using the following equation.

 $K = I_{M} \left[ \left( R_{DC1} + R_{DC2} \right) / \left( V_{RDC} \cdot V_{RSN} \right) \right] \quad K, I_{M}, R_{DC1}, R_{DC2}, V_{RDC} \text{ and } V_{RSN} \text{ are defined in Figure 10.}$ 

15. Two-Wire to Four-Wire Frequency Response - The 2-wire to 4-wire frequency response is measured with respect to E<sub>G</sub> = 0dBm at 1.0kHz, E<sub>RX</sub> = 0V, I<sub>DCMET</sub> = 23mA. The frequency response is computed using the following equation.

 $F_{2.4}$  = 20 • log ( $V_{TX}/V_{TR}$ ), vary frequency from 300Hz to 3.4kHz and compare to 1kHz reading  $V_{TX}$ ,  $V_{TR}$ , and  $E_G$  are defined in Figure 11.

16. Four-Wire to Two-Wire Frequency Response - The 4-wire to 2-wire frequency response is measured with respect to E<sub>RX</sub> = 0dBm at 1.0kHz, E<sub>G</sub> = 0V, I<sub>DCME1</sub> = 23mA. The frequency response is computed using the following equation:

 $F_{4:2} = 20 \bullet log (V_{TR}/E_{RX})$ , vary frequency from 300Hz to 3.4kHz and compare to 1kHz reading

V<sub>TR</sub> and E<sub>RX</sub> are defined in Figure 11

17. Four-Wire to Four-Wire Frequency Response - The 4-wire to 4-wire frequency response is measured with respect to  $E_{RX}$  = 0dBm at 1.0kHz, $E_G$  = 0V,  $I_{DCMET}$  = 23mA. The frequency response is computed using the following equation.

 $F_{4\cdot4}$  = 20  $\bullet$  log ( $V_{TX}/E_{RX}$ ), vary frequency from 300Hz to 3.4kHz and compare to 1kHz reading

V<sub>TX</sub> and E<sub>RX</sub> are defined in Figure 11

18. Two-Wire to Four-Wire Insertion Loss - The 2-wire to 4-wire Insertion loss is measured with respect to E<sub>G</sub> = 0dBm at 1.0kHz input signal, E<sub>RX</sub> = 0, I<sub>DOMET</sub> = 23mA and is computed using the following equation.

 $L_{2,4} = 20 \cdot \log (V_{TX}/V_{TR})$ 

- where:  $V_{TX_1}$ ,  $V_{TR_1}$  and  $E_G$  are defined in Figure 11. (Note: The fuse resistors,  $R_F$ , impact the insertion loss. The specified insertion loss is for  $R_F = 0$ )
- 19. Four-Wire to Two-Wire Insertion Loss The 4-wire to 2-wire Insertion loss is measured based upon E<sub>RX</sub> = 0dBm, 1.0kHz input signal, E<sub>G</sub> = 0, I<sub>DOMET</sub> = 23mA and is computed using the following equation.

 $L_{4.2} = 20 \cdot \log \left( V_{TB} / E_{BX} \right)$ 

where: VTB and EBY are defined in Figure 11

20. Two-Wire to Four-Wire Gain Tracking - The 2-wire to 4-wire gain tracking is referenced to measurements taken for E<sub>G</sub> = 10dBm, 1.0kHz signal, E<sub>BY</sub> = 0, I<sub>DCMET</sub> = 23mA and is computed using the following equation.

G<sub>2-4</sub> = 20 • log (V<sub>TX</sub>/V<sub>TR</sub>) vary amplitude -40dBm to +3dBm, or -55dBm to -40dBm and compare to -10dBm reading V<sub>TX</sub> and V<sub>TX</sub> are defined in Figure 11.

- 21. Four-Wire to Two-Wire Gain Tracking The 4-wire to 2-wire gain tracking is referenced to measurements taken for E<sub>RX</sub> = -10dBm, 1.0kHz signal, E<sub>G</sub> = 0, I<sub>DCMET</sub> = 23mA and is computed using the following equation.
  - $G_{4\cdot2}$  = 20 log (V<sub>TR</sub>/E<sub>RX</sub>) vary amplitude -40dBm to +3dBm, or -55dBm to -40dBm and compare to -10dBm reading.

V<sub>TR</sub> and E<sub>RX</sub> are defined in Figure 11. The level is specified at the 4-wire receive port and referenced to a 600Ω impedance level.

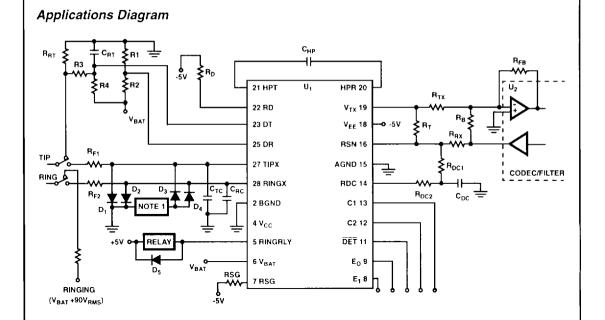
- 22. Two-Wire Idle Channel Noise The 2-wire idle channel noise at V<sub>TR</sub> is specified with the 2-wire port terminated in 600Ω (R<sub>L</sub>) and with the 4-wire receive port grounded (Reference Figure 12).
- 23. Four-Wire Idle Channel Noise The 4-wire idle channel noise at V<sub>TX</sub> is specified with the 2-wire port terminated in 600Ω (R<sub>L</sub>). The noise specification is with respect to a 600Ω impedance level *i* t<sup>-1</sup>/<sub>TX</sub>. The 4-wire receive port is grounded (Reference Figure 12).
- 24. Harmonic Distortion (2-Wire to 4-Wire) The harmonic disrortion is measured with the following conditions. E<sub>G</sub> = OdBm at 1kHz, I<sub>DOMET</sub> = 23mA. Measurement taken at V<sub>TX</sub>. (Reference Figure 9).
- 25. Harmonic Distortion (4-Wire to 2-Wire) The harmonic distortion is measured with the following conditions. E<sub>RX</sub> = OdBm0. Vary frequency between 300Hz and 3.4kHz, I<sub>DCMFT</sub> = 23mA. Measurement taken at V<sub>TR</sub>. (Reference Figure 11).
- 26. Constant Loop Current The constant loop current is calculated using the following equation  $I_L = 2500 / (R_{\rm DC1} + R_{\rm DC2})$
- 27. Standby State Loop Current The Standby state loop current is calculated using the following equation.

 $I_L = [|V_{BAT}| - 3] / [R_L + 1800], T_{amb} = 25^{\circ}C$ 

28. Ground Key Detector - (TRIGGER) Increase the input current to verify that if A<sub>1</sub> - A<sub>2</sub> > 8mA then DET goes Low. A<sub>1</sub> and A<sub>2</sub> are defined in Figure 13.

(RESET) Decrease the input current to verify that if  $A_1 - A_2 < 3mA$  then  $\overline{DET}$  goes high.  $A_1$  and  $A_2$  are defined in Figure 13 (Hysteresis) Compare difference between trigger and reset.

29. Power Supply Rejection Ratio - Inject a 100mV<sub>RMS</sub> signal (50Hz to 4kHz) on V<sub>BAT</sub>, V<sub>CC</sub> and V<sub>EE</sub> supplies. PSRR is computed using the following equation.


PSRR = 20 • log (V<sub>TX</sub>/V<sub>IN</sub>). V<sub>TX</sub> and V<sub>IN</sub> are defined in Figure 14.

# Pin Descriptions

| PLCC | PDIP | SYMBOL           | DESCRIPTION                                                                                                                                                                                                                 |  |  |  |  |  |
|------|------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1    |      | RINGSENSE        | Internally connected to output of RING power amplifier.                                                                                                                                                                     |  |  |  |  |  |
| 2    | 7    | BGND             | Battery Ground - To be connected to zero potential. All loop current and longitudinal current flow from this ground. Internally separate from AGND but it is recommended that it is connected to the same potential as AGND |  |  |  |  |  |
| 4    | 8    | v <sub>cc</sub>  | +5V power supply.                                                                                                                                                                                                           |  |  |  |  |  |
| 5    | 9    | RINGRLY          | Ring relay driver output.                                                                                                                                                                                                   |  |  |  |  |  |
| 6    | 10   | V <sub>BAT</sub> | Battery supply voltage, -48V to -56V                                                                                                                                                                                        |  |  |  |  |  |
| 7    | 11   | RSG              | Saturation guard programming resistor pin.                                                                                                                                                                                  |  |  |  |  |  |

# Pin Descriptions (Continued)

| PLCC PDIP SYMBOL |    |                 | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|------------------|----|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 8                | 12 | E1              | TTL compatible logic input. The logic state of E1 in conjunction with the logic state of C1 determine which detector is gated to the DET (pin 11) output.                                                                                                                                                                                                                              |  |  |  |  |  |
| 9                | 13 | E0              | TTL compatible logic input. Enables the DET (pin 11) output when set to logic level zero and disable DET output when set to a logic level one.                                                                                                                                                                                                                                         |  |  |  |  |  |
| 11               | 14 | DET             | Detector output. TTL compatible logic output. A zero logic level indicates that the selected detect was triggered (see truth table for selection of Ground Key detector, Loop Current detector or the R Trip detector). The $\overline{\text{DET}}$ output is an open collector with an internal pull-up of approximately 15k $\Omega$ VCC                                             |  |  |  |  |  |
| 12               | 15 | C2              | TTL compatible logic input. The logic states of C1 and C2 determine the operating states (Open Circuit, Active, Ringing or Standby) of the SLIC.                                                                                                                                                                                                                                       |  |  |  |  |  |
| 13               | 16 | C1              | TTL compatible logic input. The logic states of C1 and C2 determine the operating states (Open Circuit, Active, Ringing or Standby) of the SLIC.                                                                                                                                                                                                                                       |  |  |  |  |  |
| 14               | 17 | RDC             | DC feed current programming resistor pin. Constant current feed is programmed by resistors $R_{\rm D}$ and $R_{\rm DC2}$ connected in series from this pin to the receive summing node (RSN, pin16). The resistance point is decoupled to AGND to isolate the AC signal components.                                                                                                    |  |  |  |  |  |
| 15               | 18 | AGND            | Analog ground.                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 16               | 19 | ASN             | Receive Summing Node. The AC and DC current flowing into this pin establishes the metallic locurrent that flows between TIP (pin 27) and RING (pin 28). The magnitude of the metallic loop cur is 1000 times greater than the current into the RSN pin. The constant current programming resis and the networks for program receive gain and 2-wire impedance all connect to this pin. |  |  |  |  |  |
| 18               | 20 | V <sub>EE</sub> | -5V power supply.                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 19               | 21 | V <sub>TX</sub> | Transmit audio output. This output is equivalent to the TIP to RING metallic Voltage. The network for programming the 2-wire input impedance connects between this pin and RSN (pin 16).                                                                                                                                                                                               |  |  |  |  |  |
| 20               | 22 | HPR             | RING side of AC/DC separation capacitor $C_{HP}$ . $C_{Hp}$ is required to properly separate the RING AC current from the DC loop current. The other end of $C_{HP}$ is connected to pin 21 HPT.                                                                                                                                                                                       |  |  |  |  |  |
| 21               | 1  | НРТ             | TIP side of AC/DC separation capacitor $C_{HP}$ . $C_{Hp}$ is required to properly separate the TIP AC current from the DC loop current. The other end of $C_{HP}$ is connected to pin 20 HPR.                                                                                                                                                                                         |  |  |  |  |  |
| 22               | 2  | RD              | Loop current programming resistor. Resistor $R_D$ sets the trigger level for the loop current detect circuit. A filter capacitor $C_D$ is also connected between this pin and $V_{EE}$ (pin 18).                                                                                                                                                                                       |  |  |  |  |  |
| 23               | 3  | DT              | Input to ring trip comparator. Ring trip detection is accomplished by connecting an external network to a comparator in the SLIC with inputs DT (pin 23) and DR (pin 25).                                                                                                                                                                                                              |  |  |  |  |  |
| 25               | 4  | DR              | Input to ring trip comparator. Ring trip detection is accomplished by connecting an external netw to a comparator in the SLIC with inputs DT (pin 23) and DR (pin 25).                                                                                                                                                                                                                 |  |  |  |  |  |
| 26               |    | TIPSENSE        | Internally connected to output of TIP power amplifier.                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 27               | 5  | TIPX            | Output of TIP power amplifier.                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 28               | 6  | RINGX           | Output of RING power amplifier.                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 3, 10,<br>17, 24 |    | N/C             | No internal connection.                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |



- U1 SLIC (SUBSCRIBER LINE INTERFACE CIRCUIT) HC-5513
- U2 COMBINATION CODEC/FILTER E.G. CD22354A OR PROGRAMMABLE CODEC/ FILTER, E.G. SLAC
- C<sub>DC</sub> 1.5µF, 20%,10V
- C<sub>HP</sub> 10nF, 20%,100V
- C<sub>RT</sub> 0.39μF, 20%,100V
- C<sub>TC</sub>, C<sub>RC</sub> 2200pF, 20%,10V
  - RELAY RELAY, 2C CONTACTS, 12V COIL D1 - D4 DIODE, 100V, 3A
  - D<sub>5</sub> DIODE 1N4454

- R<sub>F1</sub>, R<sub>F2</sub> LINE RESISTOR, 20Ω, 1% MATCH
- R<sub>1</sub>, R<sub>3</sub> 200kΩ, 5%, 1/4W
  - R<sub>2</sub> 910kΩ, 5%, 1/4W
  - R<sub>4</sub> 1.2MΩ, 5%, 1/4W
  - R<sub>B</sub> 75.5k(2,1%, 1/4W
  - R<sub>D</sub> 39kΩ, 5%, 1/4W
- R<sub>DC1</sub>, R<sub>DC2</sub> 41.2kΩ, 5%, 1/4W
  - R<sub>FB</sub> 20.0kΩ, 1%, 1/4W
  - R<sub>RX</sub> 300kΩ, 1%, 1/4W
  - R<sub>T</sub> 600kΩ, 1%, 1/4W R<sub>TX</sub> 20kΩ, 1%, 1/4W
  - R<sub>RT</sub> 150Ω, 5%, 2W
  - R<sub>SG</sub> Open Circuit

#### NOTE

 The anodes of D<sub>3</sub> and D<sub>4</sub> may be connected directly to the V<sub>BAT</sub> supply if the application is exposed to only low energy transients. For harsher environments it is recommended that the anodes of D<sub>3</sub> and D<sub>4</sub> be shorted to ground through a transzorb or surgector

# HC-5513

# SLIC Operating States

| STATE | E0 | E1 | C1 | C2 | SLIC OPERATING<br>STATE | ACTIVE DETECTOR       | DET OUTPUT          |
|-------|----|----|----|----|-------------------------|-----------------------|---------------------|
| 1     | 0  | 0  | 0  | 0  | Open Circuit            | No Active Detector    | Logic Level High    |
| 2     | 0  | 0  | 0  | 1  | Active                  | Ground Key Detector   | Ground Key Status   |
| 3     | 0  | 0  | 1  | 0  | Ringing                 | No Active Detector    | Logic Level High    |
| 4     | 0  | 0  | 1  | 1  | Standby                 | Ground Key Detector   | Ground Key Status   |
|       |    |    |    |    |                         |                       |                     |
| 5     | 0  | 1  | 0  | 0  | Open Circuit            | No Active Detector    | Logic Level High    |
| 6     | 0  | 1  | 0  | 1  | Active                  | Loop Current Detector | Loop Current Status |
| 7     | 0  | 1  | 1  | 0  | Ringing                 | Ring Trip Detector    | Ring Trip Status    |
| 8     | 0  | 1  | 1  | 1  | Standby                 | Loop Current Detector | Loop Current Status |
|       |    |    |    |    |                         |                       |                     |
| 9     | 1  | 0  | 0  | 0  | Open Circuit            | No Active Detector    | Logic Level High    |
| 10    | 1  | 0  | 0  | 1  | Active                  | Ground Key Detector   | 7                   |
| 11    | 1  | 0  | 1  | 0  | Ringing                 | No Active Detector    | 7                   |
| 12    | 1  | 0  | 1  | 1  | Standby                 | Ground Key Detector   | 7                   |
|       |    |    |    |    |                         | •                     | 7                   |
| 13    | 1  | 1  | 0  | 0  | Open Circuit            | No Active Detector    | 7                   |
| 14    | 1  | 1  | 0  | 1  | Active                  | Loop Current Detector | 7                   |
| 15    | 1  | 1  | 1  | 0  | Ringing                 | Ring Trip Detector    | 7                   |
| 16    | 1  | 1  | 1  | 1  | Standby                 | Loop Current Detector | 7                   |