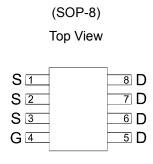
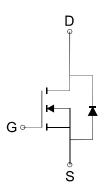


GENERAL DESCRIPTION

The LT4420C is the N-Channel logic enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology. This high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other battery powered circuits where high-side switching, and low in-line power loss are needed in a very small outline surface mount package.


FEATURES


- 30V/13.5A,RDS(ON)=13mΩ@VGS=10V
- 30V/11A,RDS(ON)= $18m\Omega@VGS=4.5V$
- Super high density cell design for extremely low RDS(ON)
- Exceptional on-resistance and maximum DC current capability

APPLICATIONS

- Power Management in Note book
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch
- DSC
- LCD Display inverter

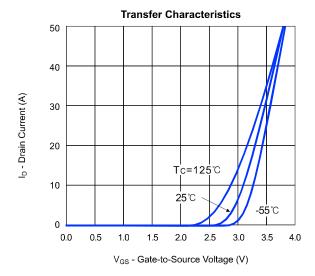
PIN CONFIGURATION

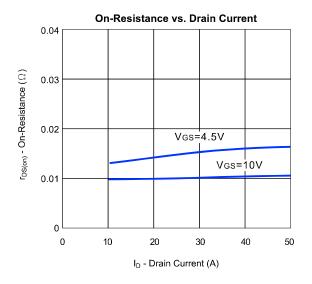
N-Channel MOSFET

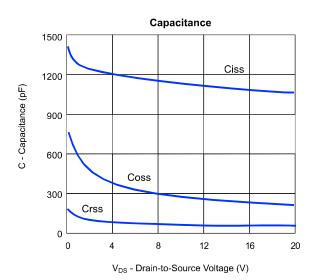
Absolute Maximum Ratings (TA=25°C Unless Otherwise Noted)

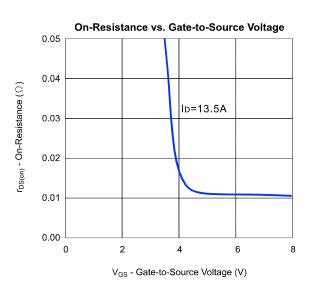
Parameter		Symbol	10 secs	Steady State	Unit	
Drain-Source Voltage		VDSS		V		
Gate-Source Voltage		Vgss	=	V		
Continuous Drain	Ta=25°C	1-	13.5	9.5	Α	
Current(tJ=150°C)	Ta=70°C	l _D	10.8	7.0		
Pulsed Drain Current		Ірм		Α		
Continuous Source Current (Diode Conduction)		Is	2.7	1.36	Α	
Maximum Power Dissipation	Ta=25°C	D-	3	1.5	W	
	Ta=70°C	PD	1.9	0.95	VV	
Operating Junction Temperature		TJ	-55	$^{\circ}\!\mathbb{C}$		
Thermal Resistance-Junction to Ambient*		Reja	$T \leq 10 \text{ sec}$	33	°CW	
			Steady State	63		
Thermal Resistance-Junction to Case		Rejc		°CW		

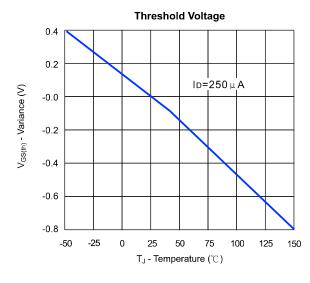
^{*}The device mounted on 1in2 FR4 board with 2 oz copper

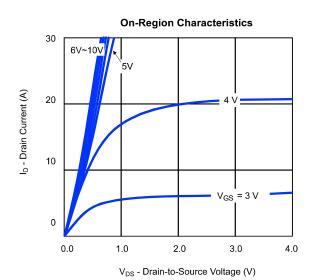

Electrical Characteristics (TA = 25°C Unless Otherwise Specified)

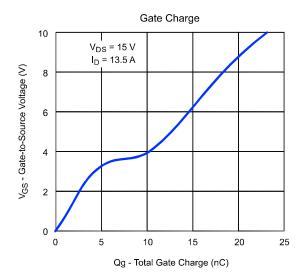

Symbol	Parameter	Limit	Min	Тур	Max	Unit
STATIC		<u> </u>	1	•	•	•
VGS(th)	Gate Threshold Voltage	Vps=Vgs, Ip=250 μ A	1.0	2.0	3.0	V
Igss	Gate Leakage Current	V _{DS} =0V, V _{GS} =±20V			±100	nA
		V _{DS} =30V, V _{GS} =0V			1	
IDSS	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V T _J =55°C			5	μΑ
ID(ON)	On-State Drain Current ^a	V _{DS} ≧5V, V _{GS} = 10V	30			Α
RDS(ON)	Drain-Source On-State Resistance ^a	Vgs=10V, Ip= 13.5A	11 13		13	$m\Omega$
	Diam-Source On-State Resistance	Vgs=4.5V, ID= 11A		15	18	11177
GFS	Forward Transconductance ^a	VDS=15V, ID=10A		17		S
VsD	Diode Forward Voltage	Is=2.3A, Vgs=0V		0.76	1.1	V
DYNAMIC						
Qg	Gate Charge	VDS=15V, VGS=4.5V, ID=10A		12	14	nC
Qgt	Total Gate Charge			23	26	
Qgs	Gate-Source Charge	V _{DS} =15V, V _{GS} =10V, I _D =10A		5		
Qgd	Gate-Drain Charge			4.9		
Ciss	Input capacitance			1100	1300	pF
Coss	Output Capacitance	V _{DS} =-15V, V _{GS} =0V, f=1MHz		250		
Crss	Reverse Transfer Capacitance			65		
Rg	Gate Resistance	f =1MHz		1.8		Ω
td(on)	Turn-On Delay Time	\/25\/ D: -25 \		15	18	ns
tr	Turn-On Rise Time	V _{DD} =25V, R _L =25Ω		14	17	
td(off)	Turn-Off Delay Time	ID=1A, VGEN=10V $\longrightarrow RG=6\Omega$		50	65	
tf	Turn-On Fall Time			6	8	

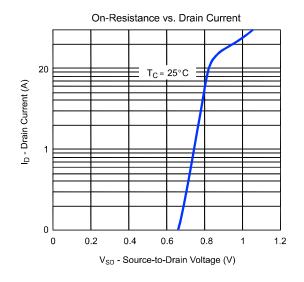

Notes: a. Pulse test; pulse width \leq 300us, duty cycle \leq 2%

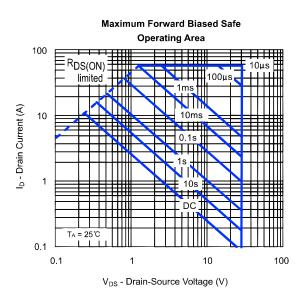


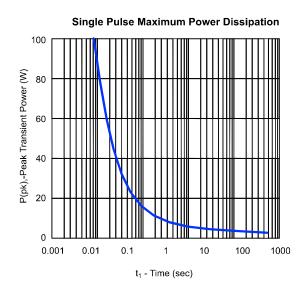

Typical Characteristics (TJ =25℃ Noted)

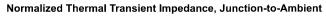


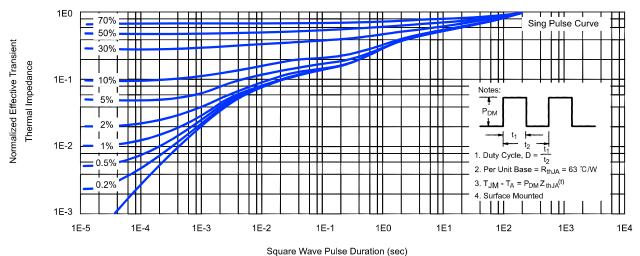


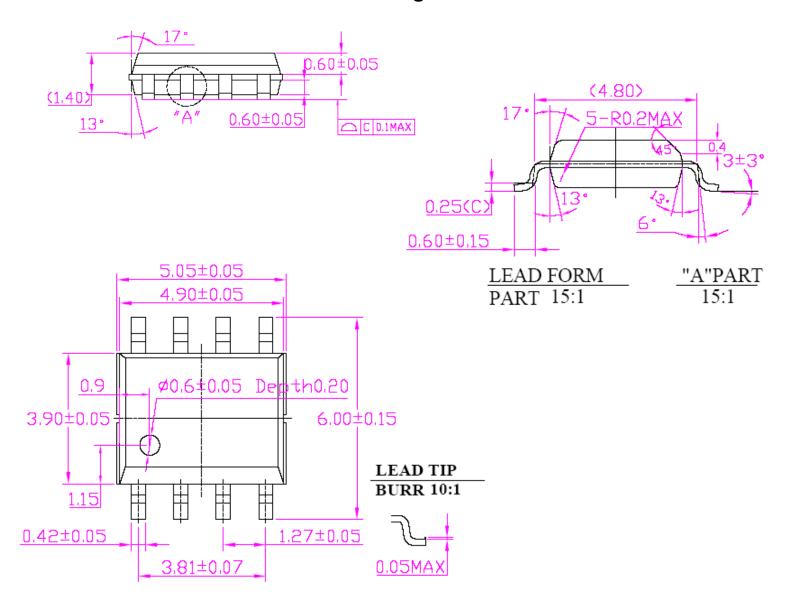


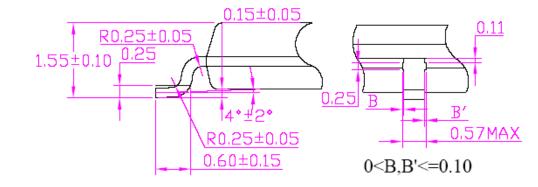





Typical Characteristics (TJ =25℃ Noted)







SOP-8 Package Outline

NOTES:

- 1. PKG ALL SURFACES ARE Ra0.8-1.2um.
- 2. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm in total (both sides).

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.