

Surface Mount Thyristor Surge Protective Devices TSP0080SB

TSP0080SB is a solid-state crowbar device designed to protect telecom equipment during hazardous transient conditions. It is a two terminal solid-state device capable to drain a surge current pulse to ground when a transient voltage appears in between its two terminals when a specific maximum voltage delimited by the maximum break over voltage of the device is reached.

FEATURES

Biderectional crowbar protection

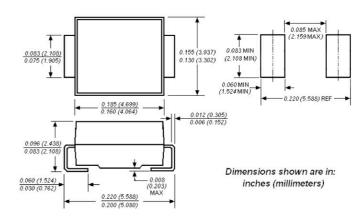
Continuous reverse voltage :8V

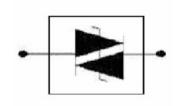
Low leakage current : IR=2uAmax.

Holding current :IH=50mAmin

MECHANICAL DATA

Case: SMB Molded plastic

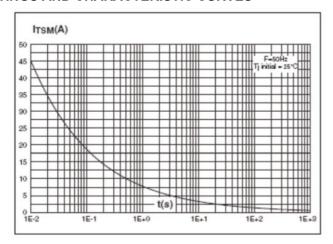

Main applications

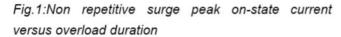

Interface circuit

Analog line cards

DO-214AA (SMB)

Symbol	Parameter	Value	Unit	
Ts	Storage temperature rai	-55 to +150	$^{\circ}\!\mathbb{C}$	
Tj	Maximum junction temper	150	°C	
Ірр	Repetitive peak pulse current	10/1000µs	75	
		10/560µs	100	
		10/160µs	150	Α
		8/20µs	250	
		2/10µs	250	
I _{TSM}	Non repetitive surge peak on-state current (sinusoidal)	t=1s	8	А


Electrical Parameters


Symbol	Parameter		
V_{RM}	Stand-off voltage		
V_{BR}	Breakdown voltage		
V_{BO}	Switching Voltage		
I_{BO}	Breakover current		
I _{RM}	Leakage current at VRM		
I _{PP}	Peak pulse current		
I _H	Holding current		
V _T	On-state Voltage at I _T		
Co	Off-state Capacitance		

Electrical Characteristics (T _{amb} =25℃)											
Туре	V_{RM}	I _{RM}	V_{BO}	I _{BO}	V _T	I _T	Co	I _H			
	Min.		Max.	Max.	Max.		Max.	Min.			
	V	μA	V	mA	V	Α	pF	mA			
TSP008SB	6	2	15	800	2	1	80	50			

RATINGS AND CHARACTERISTIC CURVES

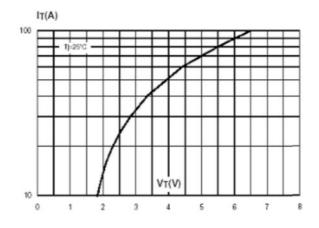


Fig.2:On-state voltage versus on-state current(typical values)

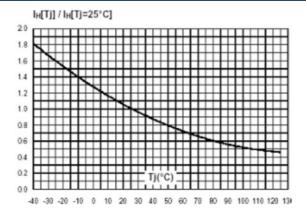


Fig.3:Relative variation of holding current versus junction temperature

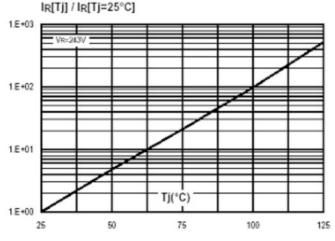


Fig.5:Relative variation of leakage current versus reverse voltage applied(typical values)

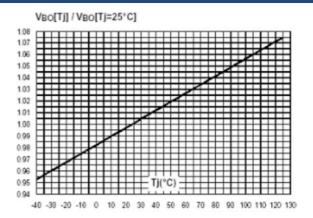


Fig.4:Relative variation of breakover voltage versus junction temperature

Fig.6:Variation of thermal impedance junction to ambient versus pulse duration(Printed circuit board FR4,Scu=35um,recommended pad layout)