

32176 Group User's Manual

RENESAS 32-BIT RISC SINGLE-CHIP MICROCOMPUTER M32R FAMILY / M32R/ECU SERIES

Before using this material, please visit our website to confirm that this is the most current document available.

Rev. 1.01 Revision date: Oct 31, 2003 RenesasTechnology www.renesas.com

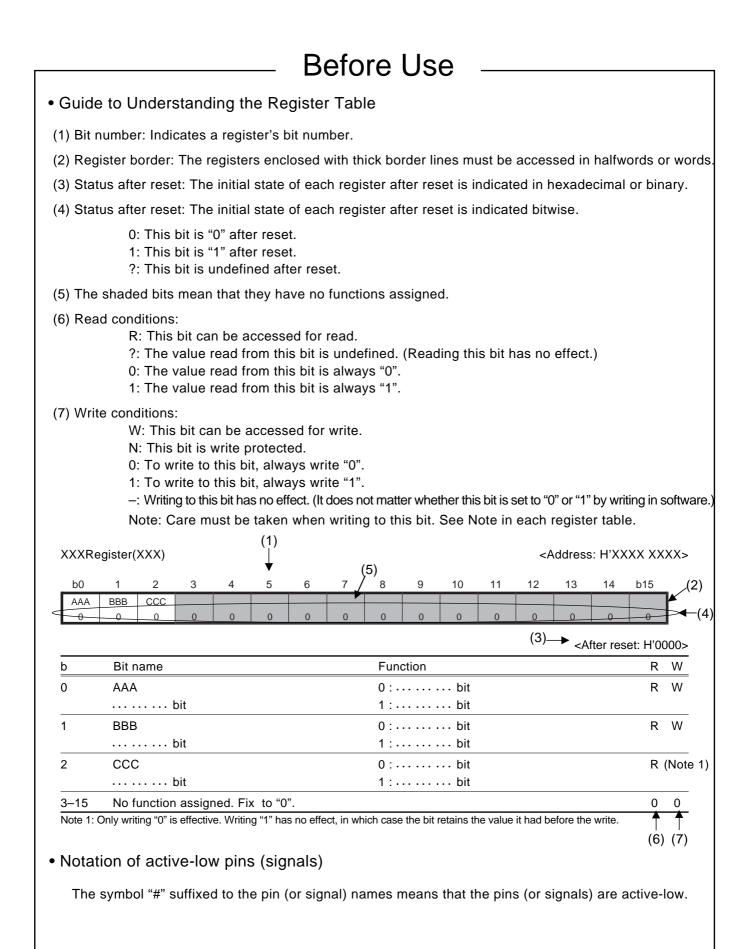
Keep safety first in your circuit designs!

 Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.


Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

REVISION HISTORY

32176 Group User's Manual

Rev.	ev. Date Description				
Nev.	Dale	Page	Summary		
1.01	Oct 31, 2003		First edition issued		
	00001,2000				
1					
1					
1					

Table of contents

CHAPTER 1 OVERVIEW

1.1 Outline	of the 32176 Group	- 1-2
1.1.1	M32R Family CPU Core	- 1-2
1.1.2	Built-in Multiplier/Accumulator	- 1-2
1.1.3	Built-in Flash Memory and RAM	- 1-3
1.1.4	Built-in Clock Frequency Multiplier	- 1-3
1.1.5	Powerful Built-in Peripheral Functions	- 1-4
1.1.6	Product List of the 32176 Group	- 1-4
1.2 Block D	Diagram	- 1-5
1.3 Pin Fur	nctions	- 1-8
1.4 Pin Assignments 1-1		

CHAPTER 2 CPU

2.1 CPU R	egisters	- 2-2
2.2 Genera	al-purpose Registers	- 2-2
2.3 Control	Registers	- 2-3
2.3.1	Processor Status Word Register: PSW (CR0)	- 2-4
2.3.2	Condition Bit Register: CBR (CR1)	- 2-5
2.3.3	Interrupt Stack Pointer: SPI (CR2) and User Stack Pointer: SPU (CR3)	- 2-5
2.3.4	Backup PC: BPC (CR6)	-2-5
2.4 Accum	ulator	-2-6
2.5 Program	m Counter	-2-6
2.6 Data F	ormats	- 2-7
2.6.1	Data Types	- 2-7
2.6.2	Data Formats	- 2-8
2.7 Supplementary Explanation for LOCK and UNLOCK Instruction Execution		

CHAPTER 3 ADDRESS SPACE

3.1 Outline	e of the Address Space	3-2
3.2 Operat	tion Modes	3-6
3.3 Interna	I ROM and External Extension Areas	3-8
3.3.1	Internal ROM Area	3-8
3.3.2	External Extension Area	3-8
3.4 Interna	al RAM and SFR Areas	3-9
3.4.1	Internal RAM Area	3-9
3.4.2	SFR (Special Function Register) Area	3-9
3.5 EIT Ve	3.5 EIT Vector Entry	
3.6 ICU Vector Table		3-34
3.7 Notes	3.7 Notes about Address Space	

CHAPTER 4 EIT

4.1	Outline of EIT	1-2
4.2	EIT Events2	1-3

4.2.1	Exception	4-3
4.2.2	Interrupt	4-3
4.2.3	Trap	4-3
4.3 EIT Pr	ocessing Procedure	4-4
4.4 EIT Pr	ocessing Mechanism	4-6
4.5 Accep	tance of EIT Events	4-7
4.6 Saving	g and Restoring the PC and PSW	4-7
4.7 EIT Ve	ector Entry	4-9
4.8 Except	tion Processing	4-10
4.8.1	Reserved Instruction Exception (RIE)	4-10
4.8.2	Address Exception (AE)	4-12
4.9 Interru	pt Processing	4-14
4.9.1	Reset Interrupt (RI)	4-14
4.9.2	System Break Interrupt (SBI)	4-15
4.9.3	External Interrupt (EI)	4-17
4.10 Trap	Processing	4-19
4.10.1	Trap	4-19
4.11 EIT F	Priority Levels	4-21
4.12 Exam	nple of EIT Processing	4-22
4.13 Preca	autions on EIT	4-24

CHAPTER 5 INTERRUPT CONTROLLER (ICU)

5.1 Outline	e of the Interrupt Controller	5-2
5.2 ICU R	elated Registers	5-4
5.2.1	Interrupt Vector Register	5-5
5.2.2	Interrupt Request Mask Register	5-6
5.2.3	SBI (System Break Interrupt) Control Register	5-7
5.2.4	Interrupt Control Registers	5-8
5.3 Interru	pt Request Sources in Internal Peripheral I/O	5-11
5.4 ICU V	ector Table	5-12
5.5 Descri	ption of Interrupt Operation	5-13
5.5.1	Acceptance of Internal Peripheral I/O Interrupts	5-13
5.5.2	Processing by Internal Peripheral I/O Interrupt Handlers	5-15
5.6 Description of System Break Interrupt (SBI) Operation		5-18
5.6.1	Acceptance of SBI	5-18
5.6.2	SBI Processing by Handler	5-18

CHAPTER 6 INTERNAL MEMORY

6.1 Outline	of the Internal Memory	6-2
6.2 Interna	I RAM	6-2
6.3 Interna	I Flash Memory	6-2
6.4 Registe	ers Associated with the Internal Flash Memory	6-6
6.4.1	Flash Mode Register	6-7
6.4.2	Flash Status Register	6-8
6.4.3	Flash Control Registers	6-9
6.4.4	Virtual Flash L Bank Registers	6-15
6.4.5	Virtual Flash S Bank Registers	6-16
6.5 Progra	mming the Internal Flash Memory	6-17

6.5.1	Outline of Internal Flash Memory Programming	6-17
6.5.2	Controlling Operation Modes during Flash Programming	6-23
6.5.3	Procedure for Programming/Erasing the Internal Flash Memory	6-26
6.5.4	Flash Programming Time (Reference)	6-34
6.6 Virtual	Flash Emulation Function	6-36
6.6.1	Virtual Flash Emulation Area	6-37
6.6.2	Entering Virtual Flash Emulation Mode	6-44
6.6.3	Application Example of Virtual Flash Emulation Mode	6-45
6.7 Connec	cting to A Serial Programmer (CSIO Mode)	6-47
6.8 Interna	I Flash Memory Protect Function	6-49
6.9 Precau	itions To Be Taken when Rewriting the Internal Flash Memory	6-50

CHAPTER 7 RESET

7.1 Outline of Reset		7-2
7.2 Reset	Operation	7-2
7.2.1	Reset at Power-on	7-3
7.2.2	Reset during Operation	7-3
7.2.3	Reset Vector Relocation during Flash Programming	7-3
7.3 Internal State Immediately after Exiting Reset		7-4
7.4 Things to Be Considered after Exiting Reset		7-4

CHAPTER 8 INPUT/OUTPUT PORTS AND PIN FUNCTIONS

8.1 Outlin	e of Input/Output Ports	8-2
8.2 Select	ting Pin Functions	8-3
8.3 Input/	Output Port Related Registers	8-5
8.3.1	Port Data Registers	8-7
8.3.2	Port Direction Registers	8-8
8.3.3	Port Operation Mode Registers	8-9
8.3.4	Port Peripheral Function Select Register	8-14
8.3.5	Port Input Special Function Control Register	8-15
8.4 Port Ir	nput Level Switching Function	8-18
8.5 Port P	eripheral Circuits	8-20
8.6 Preca	8.6 Precautions on Input/Output Ports8	

CHAPTER 9 DMAC

9.1 Outline of the DMAC	9-2
9.2 DMAC Related Registers	9-4
9.2.1 DMA Channel Control Registers	9-6
9.2.2 DMA Software Request Generation Registers	9-12
9.2.3 DMA Source Address Registers	9-13
9.2.4 DMA Destination Address Registers	9-14
9.2.5 DMA Transfer Count Registers	9-15
9.2.6 DMA Interrupt Related Registers	9-16
9.3 Functional Description of the DMAC	9-22
9.3.1 DMA Transfer Request Sources	9-22
9.3.2 DMA Transfer Processing Procedure	9-25
9.3.3 Starting DMA	9-26

9.3.4	DMA Channel Priority	9-26
9.3.5	Gaining and Releasing Control of the Internal Bus	9-26
9.3.6	Transfer Units	9-27
9.3.7	Transfer Counts	9-27
9.3.8	Address Space	9-27
9.3.9	Transfer Operation	9-27
9.3.10	End of DMA and Interrupt	9-30
9.3.11	Each Register Status after Completion of DMA Transfer	9-30
9.4 Precau	tions about the DMAC	9-31

CHAPTER 10 MULTIJUNCTION TIMERS

10.1 Outline	e of Multijunction Timers	10-2
10.2 Comm	non Units of Multijunction Timers	
10.2.1	MJT Common Unit Register Map	10-8
10.2.2	Prescaler Unit	10-9
10.2.3	Clock Bus and Input/Output Event Bus Control Unit	
10.2.4	Input Processing Control Unit	10-14
10.2.5	Output Flip-flop Control Unit	
10.2.6	Interrupt Control Unit	
10.3 TOP (Output-Related 16-Bit Timer)	
10.3.1	Outline of TOP	10-42
10.3.2	Outline of Each Mode of TOP	
10.3.3	TOP Related Register Map	
10.3.4	TOP Control Registers	
10.3.5	TOP Counters (TOP0CT-TOP10CT)	
10.3.6	TOP Reload Registers (TOP0RL-TOP10RL)	
10.3.7	TOP Correction Registers (TOP0CC-TOP10CC)	
10.3.8	TOP Enable Control Registers	10-56
10.3.9	Operation in TOP Single-shot Output Mode (with Correction Function)	10-58
10.3.10	Operation in TOP Delayed Single-shot Output Mode (with Correction Function)	10-64
10.3.11	Operation in TOP Continuous Output Mode (without Correction Function)	
10.4 TIO (I	nput/Output-Related 16-Bit Timer)	
10.4.1	Outline of TIO	10-72
10.4.2	Outline of Each Mode of TIO	
10.4.3	TIO Related Register Map	
10.4.4	TIO Control Registers	
10.4.5	TIO Counters (TIO0CT-TIO9CT)	
10.4.6	TIO Reload 0/ Measure Registers (TIO0RL0–TIO9RL0)	
10.4.7	TIO Reload 1 Registers (TIO0RL1–TIO9RL1)	
10.4.8	TIO Enable Control Registers	
10.4.9	Operation in TIO Measure Free-Run/Clear Input Modes	
10.4.10	Operation in TIO Noise Processing Input Mode	
10.4.11	Operation in TIO PWM Output Mode	10-95
10.4.12	Operation in TIO Single-shot Output Mode (without Correction Function)	10-98
10.4.13	Operation in TIO Delayed Single-shot Output Mode (without Correction Function)	10-100
10.4.14		
10.5 TMS (Input-Related 16-Bit Timer)	
10.5.1	Outline of TMS	10-104

10.5.2	Outline of TMS Operation	10-104
10.5.3	TMS Related Register Map	10-106
10.5.4	TMS Control Registers	10-107
10.5.5	TMS Counters (TMS0CT, TMS1CT)	10-108
10.5.6	TMS Measure Registers (TMS0MR3-0, TMS1MR3-0)	10-108
10.5.7	Operation of TMS Measure Input	10-109
10.6 TML	(Input-Related 32-Bit Timer)	10-110
10.6.1	Outline of TML	10-110
10.6.2	Outline of TML Operation	10-111
10.6.3	TML Related Register Map	10-111
10.6.4	TML Control Registers	10-112
10.6.5	TML Counters	10-113
10.6.6	TML Measure Registers	10-114
10.6.7	Operation of TML Measure Input	10-116

CHAPTER 11 A-D CONVERTER

11.1 Outli	ne of A-D Converter	
11.1.1	Conversion Modes	11-5
11.1.2	Operation Modes	
11.1.3	Special Operation Modes	
11.1.4	A-D Converter Interrupt and DMA Transfer Requests	11-11
11.1.5	Sample-and-Hold Function	11-11
11.2 A-D	Converter Related Registers	
11.2.1	A-D Single Mode Register 0	11-14
11.2.2	A-D Single Mode Register 1	
11.2.3	A-D Scan Mode Register 0	11-18
11.2.4	A-D Scan Mode Register 1	
11.2.5	A-D Conversion Speed Control Register	11-22
11.2.6	A-D Disconnection Detection Assist Function Control Register	11-23
11.2.7	A-D Disconnection Detection Assist Method Select Register	11-24
11.2.8	A-D Successive Approximation Register	
11.2.9	A-D Comparate Data Register	
11.2.10	5	
11.2.11	5	
11.3 Fund	tional Description of A-D Converter	
11.3.1	How to Find Analog Input Voltages	
11.3.2	A-D Conversion by Successive Approximation Method	11-32
11.3.3	Comparator Operation	
11.3.4	Calculating the A-D Conversion Time	11-34
11.3.5	Accuracy of A-D Conversion	11-37
	w Current Bypass Circuit	
11.5 Prec	autions on Using A-D Converter	11-41

CHAPTER 12 SERIAL I/O

12.1 Outlin	ne of Serial I/O	12-2
12.2 Seria	II I/O Related Registers	12-5
12.2.1	SIO Interrupt Related Registers	12-6
12.2.2	SIO Interrupt Control Registers	12-9

12.2.3	SIO Transmit Control Registers	- 12-13
12.2.4	SIO Transmit/Receive Mode Registers	- 12-15
12.2.5	SIO Transmit Buffer Registers	- 12-18
12.2.6	SIO Receive Buffer Registers	- 12-19
12.2.7	SIO Receive Control Registers	- 12-20
12.2.8	SIO Baud Rate Registers	- 12-23
12.2.9	SIO Special Mode Registers	- 12-24
12.3 Trans	mit Operation in CSIO Mode	- 12-25
12.3.1	Setting the CSIO Baud Rate	
12.3.2	Initializing CSIO Transmission	- 12-26
12.3.3	Starting CSIO Transmission	- 12-28
12.3.4	Successive CSIO Transmission	
12.3.5	Processing at End of CSIO Transmission	
12.3.6	Transmit Interrupts	
12.3.7	Transmit DMA Transfer Request	
12.3.8	Example of CSIO Transmit Operation	
12.4 Recei	ve Operation in CSIO Mode	
12.4.1	Initialization for CSIO Reception	
12.4.2	Starting CSIO Reception	
12.4.3	Processing at End of CSIO Reception	
12.4.4	About Successive Reception	
12.4.5	Flags Showing the Status of CSIO Receive Operation	
12.4.6	Example of CSIO Receive Operation	
	utions on Using CSIO Mode	
12.6 Trans	mit Operation in UART Mode	
12.6.1	Setting the UART Baud Rate	
12.6.2	UART Transmit/Receive Data Formats	
12.6.3	Initializing UART Transmission	
12.6.4	Starting UART Transmission	- 12-45
12.6.5	Successive UART Transmission	
12.6.6	Processing at End of UART Transmission	
12.6.7	Transmit Interrupts	
12.6.8	Transmit DMA Transfer Request	
12.6.9	Example of UART Transmit Operation	
12.7 Recei	ve Operation in UART Mode	
12.7.1	Initialization for UART Reception	
12.7.2	Starting UART Reception	
12.7.3	Processing at End of UART Reception	
12.7.4	Example of UART Receive Operation	
12.7.5	Start Bit Detection during UART Reception	
	Period Clock Output Function	
12.9 Preca	utions on Using UART Mode	- 12-57

CHAPTER 13 CAN MODULE

13.1 Outlin	ne of the CAN Module	- 13-2
13.2 CAN	Module Related Registers	-13-4
13.2.1	CAN Control Registers	13-15
13.2.2	CAN Status Registers	-13-18

13.2.3	CAN FExtended ID Registers	13-21
13.2.4	CAN Configuration Registers	13-22
13.2.5	CAN Timestamp Count Registers	13-24
13.2.6	CAN Error Count Registers	13-25
13.2.7	CAN Baud Rate Prescalers	13-26
13.2.8	CAN Interrupt Related Registers	13-27
13.2.9	CAN Cause of Error Registers	13-45
13.2.10	CAN Mode Registers	
13.2.11	CAN DMA Transfer Request Select Registers	
13.2.12	CAN Mask Registers	
13.2.13	CAN Single-Shot Mode Control Registers	
13.2.14	CAN Message Slot Control Registers	13-54
13.2.15	CAN Message Slots	
13.3 CAN I	Protocol	
13.3.1	CAN Protocol Frames	
13.3.2	Data Formats during CAN Transmission/Reception	13-74
13.3.3	CAN Controller Error States	
13.4 Initiali	zing the CAN Module	
13.4.1	Initializing the CAN Module	13-76
13.5 Trans	mitting Data Frames	13-79
13.5.1	Data Frame Transmit Procedure	
13.5.2	Data Frame Transmit Operation	13-80
13.5.3	Transmit Abort Function	13-81
13.6 Recei	ving Data Frames	
13.6.1	Data Frame Receive Procedure	
13.6.2	Data Frame Receive Operation	13-83
13.6.3	Reading Out Received Data Frames	
13.7 Trans	mitting Remote Frames	
13.7.1	Remote Frame Transmit Procedure	13-87
13.7.2	Remote Frame Transmit Operation	13-88
13.7.3	Reading Out Received Data Frames when Set for Remote Frame Transmission	13-90
13.8 Recei	ving Remote Frames	13-92
13.8.1	Remote Frame Receive Procedure	
13.8.2	Remote Frame Receive Operation	13-93
13.9 Preca	utions about CAN Module	13-96
CHAPTER 14	REAL TIME DEBUGGER (RTD)	
	e of the Real-Time Debugger (RTD)	
	Inctions of RTD	
14.3 RTD F	Related Register	
14.3.1	RTD Write Function Disable Register	
14.4 Functi	onal Description of RTD	
14.4.1	Outline of RTD Operation	
14.4.2	Operation of RDR (Real-time RAM Content Output)	14-4

14.4.7	Method for Setting a Specified Address when Using RTD	14-9
14.4.8	Resetting RTD	14-10
14.5 Typical	Connection with the Host	14-11

CHAPTER 15 EXTERNAL BUS INTERFACE

15.1 External Bus Interfac	e Related Signals	15-2
15.2 External Bus Interfac	ce Related Registers	15-4
15.2.1 Port Operation	on Mode Register	15-4
15.2.2 Bus Mode Co	ontrol Register	15-5
15.3 Read/Write Operations15		15-6
15.4 Bus Arbitration 15-12		
15.5 Typical Connection of External Extension Memory15-		15-14

CHAPTER 16 WAIT CONTROLLER

16.1 Outline of the Wait Controller	16-2
16.2 Wait Controller Related Register	16-4
16.2.1 Wait Cycles Control Register	16-4
16.3 Typical Operation of the Wait Controller	16-5

CHAPTER 17 RAM BACKUP MODE

17.1 Outlin	e of RAM Backup Mode	17-2
17.2 Exam	ple of RAM Backup when Power is Off	17-2
17.2.1	Normal Operating State	17-3
17.2.2	RAM Backup State	17-4
17.3 Exam	ple of RAM Backup for Saving Power Consumption	17-5
17.3.1	Normal Operating State	17-6
17.3.2	RAM Backup State	17-7
17.3.3	Precautions to Be Observed at Power-On	17-8
17.4 Exitin	g RAM Backup Mode (Wakeup)	17-9

CHAPTER 18 OSCILLATOR CIRCUIT

18.1 Oscilla	ator Circuit	18-2
18.1.1	Example of an Oscillator Circuit	18-2
18.1.2	XIN Oscillation Stoppage Detection Function	18-3
18.1.3	Oscillation Drive Capability Select Function	18-5
18.1.4	System Clock Output Function	18-7
18.1.5	Oscillation Stabilization Time at Power-On	18-7
18.2 Clock	Generator Circuit	18-8

CHAPTER 19 JTAG

19.1 Outlir	ne of JTAG	19-2
19.2 Config	guration of JTAG Circuit	19-3
19.3 JTAG	B Registers	19-4
19.3.1	Instruction Register (JTAGIR)	19-4
19.3.2	Data Register	19-5
19.4 Basic	Coperation of JTAG	19-6
19.4.1	Outline of JTAG Operation	19-6

19	9.4.2	IR Path Sequence	19-8
19	9.4.3	DR Path Sequence	19-9
19	9.4.4	Inspecting and Setting Data Registers	19-10
19.5	Bounda	ary Scan Description Language	19-11
19.6	Notes c	on Board Design when Connecting JTAG	19-12
19.7	Proces	sing Pins when Not Using JTAG	19-13

CHAPTER 20 POWER SUPPLY CIRCUIT

20.1 Config	guration of the Power Supply Circuit	20-2
20.2 Powe	r-On Sequence	20-3
20.2.1	Power-On Sequence when Not Using RAM Backup	20-3
20.2.2	Power-On Sequence when Using RAM Backup	20-4
20.3 Powe	r-Off Sequence	20-5
20.3.1	Power-Off Sequence when Not Using RAM Backup	20-5
20.3.2	Power-Off Sequence when Using RAM Backup	20-6

CHAPTER 21 ELECTRICAL CHARACTERISTICS

21.1 Abso	lute Maximum Ratings	21-2
21.2 Electr	rical Characteristics when VCCE = 5 V, f(XIN) = 10 MHz	21-3
21.2.1	Recommended Operating Conditions (when VCCE = 5 V, f(XIN) = 10 MHz)	21-3
21.2.2	D.C. Characteristics (when VCCE = 5 V, f(XIN) = 10 MHz)	21-5
21.2.3	A-D Conversion Characteristics (when VCCE = 5 V, f(XIN) = 10 MHz)	21-6
21.3 Elect	rical Characteristics when VCCE = 5 V, f(XIN) = 8 MHz	21-7
21.3.1	Recommended Operating Conditions (when VCCE = 5 V, f(XIN) = 8 MHz)	21-7
21.3.2	D.C. Characteristics (when VCCE = 5 V, f(XIN) = 8 MHz)	
21.3.3	A-D Conversion Characteristics (when VCCE = 5 V, f(XIN) = 8 MHz)	
21.4 Elect	rical Characteristics when VCCE = 3.3 V, f(XIN) = 10 MHz	21-11
21.4.1	Recommended Operating Conditions (when VCCE = $3.3 \text{ V} \pm 0.3 \text{ V}$, f(XIN) = 10 MHz)	
21.4.2	D.C. Characteristics (when VCCE = $3.3 \text{ V} \pm 0.3 \text{ V}$, f(XIN) = 10 MHz)	21-13
21.4.3	A-D Conversion Characteristics (when VCCE = 3.3 V \pm 0.3 V, f(XIN) = 10 MHz)	
21.5 Elect	rical Characteristics when VCCE = 3.3 V, f(XIN) = 8 MHz	
21.5.1	Recommended Operating Conditions (when VCCE = $3.3 \text{ V} \pm 0.3 \text{ V} \text{ f}(\text{XIN}) = 8 \text{ MHz}$)	
21.5.2	D.C. Characteristics (when VCCE = $3.3 \text{ V} \pm 0.3 \text{ V}$, f(XIN) = 8 MHz)	
21.5.3	A-D Conversion Characteristics (when VCCE = $3.3 \text{ V} \pm 0.3 \text{ V}$, f(XIN) = 8 MHz)	
	Memory Related Characteristics	
	nal Capacitance for Power Supply	
21.8 A.C.	Characteristics (when VCCE = 5 V)	
21.8.1	Timing Requirements	
21.8.2	Switching Characteristics	
21.8.3	A.C. Characteristics	
21.9 A.C.	Characteristics (when VCCE = 3.3 V)	
21.9.1	Timing Requirements	
21.9.2	Switching Characteristics	
21.9.3	A.C. Characteristics	21-43

CHAPTER 22 TYPICAL CHARACTERISTICS

To be written at a later time	22-2
-------------------------------	------

APPENDIX 1 MECHANICAL SPECIFICAITONS	
Appendix 1.1 Dimensional Outline Drawing	Appendix 1-2
APPENDIX 2 INSTRUCTION PROCESSING TIME	
Appendix 2.1 M32R/ECU Instruction Processing Time	Appendix 2-2
APPENDIX 3 PROCESSING OF UNUSED PINS	
Appendix 3.1 Example Processing of Unused Pins	Appendix 3-2
APPENDIX 4 SUMMARY OF PRECAUTIONS	
Appendix 4.1 Precautions about the CPU	Appendix 4-2
Appendix 4.2 Precautions about the Address Space	Appendix 4-3
Appendix 4.3 Precautions about EIT	Appendix 4-3
Appendix 4.4 Precautions To Be Observed when Programming Internal Flash Memory	Appendix 4-3
Appendix 4.5 Precautions to Be Observed after Exiting Reset	Appendix 4-4
Appendix 4.6 Precautions about Input/Output Ports	Appendix 4-4
Appendix 4.7 Precautions about the DMAC	
Appendix 4.8 Precautions about the Multijunction Timers	
Appendix 4.8.1 Precautions on Using TOP Single-Shot Output Mode	Appendix 4-6
Appendix 4.8.2 Precautions on Using TOP Delayed Single-Shot Output Mode	Appendix 4-8
Appendix 4.8.3 Precautions on Using TOP Continuous Output Mode	Appendix 4-9
Appendix 4.8.4 Precautions on Using TIO Measure Free-Run/Clear Input Modes	
Appendix 4.8.5 Precautions on Using TIO PWM Output Mode	
Appendix 4.8.6 Precautions on Using TIO Single-Shot Output Mode	
Appendix 4.8.7 Precautions on Using TIO Delayed Single-Shot Output Mode	
Appendix 4.8.8 Precautions on Using TIO Continuous Output Mode	Appendix 4-10
Appendix 4.8.9 Precautions on Using TMS Measure Input	
Appendix 4.8.10 Precautions on Using TML Measure Input	Appendix 4-11
Appendix 4.9 Precautions about the A-D Converters	Appendix 4-12
Appendix 4.10 Precautions about Serial I/O	Appendix 4-15
Appendix 4.10.1 Precautions on Using CSIO Mode	Appendix 4-15
Appendix 4.10.2 Precautions on Using UART Mode	Appendix 4-16
Appendix 4.11 Precautions about CAN Module	Appendix 4-17
Appendix 4.12 Precautions about RAM Backup Mode	Appendix 4-18
Appendix 4.13 Precautions about JTAG	Appendix 4-19
Appendix 4.13.1 Notes on Board Design when Connecting JTAG	Appendix 4-19
Appendix 4.13.2 Processing Pins when Not Using JTAG	Appendix 4-20
Appendix 4.14 Precautions about Noise	Appendix 4-21
Appendix 4.14.1 Reduction of Wiring Length	Appendix 4-21
Appendix 4.14.2 Inserting a Bypass Capacitor between VSS and VCC Lines	••
Appendix 4.14.3 Processing Analog Input Pin Wiring	
Appendix 4.14.4 Consideration about the Oscillator	
Appendix 4.14.5 Processing Input/Output Ports	Appendix 4-28

CHAPTER 1

OVERVIEW

- 1.1 Outline of the 32176 Group
- 1.2 Block Diagram
- 1.3 Pin Functions
- 1.4 Pin Assignments

1.1 Outline of the 32176 Group

1.1.1 M32R Family CPU Core

(1) Based on a RISC architecture

- The 32176 is a 32-bit RISC single-chip microcomputer which is built around the M32R family CPU core (hereinafter referred to as the M32R) and incorporates flash memory, RAM and various other peripheral functions-all integrated into a single chip.
- The M32R is based on a RISC architecture. Memory is accessed using load/store instructions, and various arithmetic operations are executed using register-to-register operation instructions. The M32R internally contains sixteen 32-bit general-purpose registers and has 83 instructions.
- The M32R supports compound instructions such as Load & Address Update and Store & Address Update, in addition to ordinary load and store instructions. These instructions help to speed up data transfers.

(2) Five-stage pipelined processing

- The M32R supports five-stage pipelined instruction processing consisting of Instruction Fetch, Decode, Execute, Memory Access and Write Back. Not just load/store instructions and register-to-register operation instructions, compound instructions such as Load & Address Update and Store & Address Update are executed in one CPUCLK period (which is equivalent to 25 ns when f(CPUCLK) = 40 MHz).
- Although instructions are supplied to the execution stage in the order in which they were fetched, it is
 possible that if the load/store instruction supplied first is extended by wait cycles inserted in memory
 access, the subsequent register-to-register operation instruction will be executed before that instruction. Using such a facility, which is known as the "out-of-order-completion" mechanism, the M32R is
 able to control instruction execution without wasting clock cycles.

(3) Compact instruction code

- The M32R supports two instruction formats: one 16 bits long, and one 32 bits long. Use of the 16-bit instruction format especially helps to suppress the code size of a program.
- Moreover, the availability of 32-bit instructions makes programming easier and provides higher performance at the same clock speed than in architectures where the address space is segmented. For example, some 32-bit instructions allow control to jump to an address 32 Mbytes forward or backward from the currently executed address in one instruction, making programming easy.

1.1.2 Built-in Multiplier/Accumulator

(1) Built-in high-speed multiplier

• The M32R contains a 32 bits × 16 bits high-speed multiplier which enables the M32R to execute a 32 bits × 32 bits integral multiplication instruction in three CPUCLK periods.

(2) DSP-comparable multiply-accumulate instructions

- The M32R supports the following four types of multiply-accumulate instructions (or multiplication instructions) which each can be executed in one CPUCLK period using a 56-bit accumulator.
 - (1) 16 high-order bits of register \times 16 high-order bits of register
 - (2) 16 low-order bits of register \times 16 low-order bits of register
 - (3) Whole 32 bits of register \times 16 high-order bits of register
 - (4) Whole 32 bits of register × 16 low-order bits of register
- The M32R has some special instructions to round the value stored in the accumulator to 16 or 32 bits or shift the accumulator value before storing in a register to have its digits adjusted. Because these instructions are also executed in one CPUCLK period, when used in combination with high-speed data transfer instructions such as Load & Address Update or Store & Address Update, they enable the M32R to exhibit data processing capability comparable to that of a DSP.

1.1.3 Built-in Flash Memory and RAM

- The 32176 contains a RAM that can be accessed with zero wait state, allowing to design a high-speed embedded system.
- The internal flash memory can be written to while mounted on a printed circuit board (on-board writing). Use of flash memory facilitates development work, because the chip used at the development stage can be used directly in mass-production, allowing for a smooth transition from prototype to mass-production without the need to change the printed circuit board.
- The internal flash memory has a virtual flash emulation function, allowing the internal RAM to be virtually mapped into part of the internal flash memory. When combined with the internal Real-Time Debugger (RTD), this function makes the ROM table data tuning easy.
- The internal RAM can be accessed for reading or rewriting data from an external device independently of the M32R by using the Real-Time Debugger. The external device is communicated using the Real-Time Debugger's exclusive clock-synchronized serial I/O.

1.1.4 Built-in Clock Frequency Multiplier

• The 32176 contains a clock frequency multiplier, which is schematically shown in Figure 1.1.1 below.

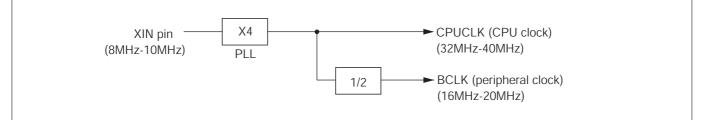


Figure 1.1.1 Conceptual Diagram of the Clock Frequency Multiplier

Table 1.1.1 Clock

Functional Block	Features		
CPUCLK	• CPU clock: Defined as f(CPUCLK) when it indicates the operating clock frequency for		
	the M32R core, internal flash memory and internal RAM.		
BCLK	Peripheral clock: Defined as f(BCLK) when it indicates the operating clock frequency		
	for the internal peripheral I/O and external data bus.		
Clock output (BCLK pin output)	 A clock with the same frequency as f(BCLK) is output from this pin. 		

- (1) Multijunction timer (MJT)
- (2) 10-channel DMAC
- (3) 16-channel A-D converter (ADC)
- (4) 4-channel high-speed serial I/O (SIO)
- (5) Real-time debugger (RTD)
- (6) 8-level interrupt controller (ICU)
- (7) Three operation modes
- (8) Wait controller
- (9) 2-channel Full-CAN
- (10) M32R family's common debug function (Scalable Debug Interface or SDI)

1.1.6 Product List of the 32176 Group

Table 1.1.2 Product List

Type Name	ROM Size	RAM Size	Package Type	CPUCLK (max frequency)	BCLK (max frequency)	Operating Ambient Temperature
M32176F2VFP	256 Kbytes	24 Kbytes	144-pin LQFP	32 MHz	16 MHz	-40°C to 125°C
M32176F3VFP	384 Kbytes	24 Kbytes	144-pin LQFP	32 MHz	16 MHz	-40°C to 125°C
M32176F4VFP	512 Kbytes	24 Kbytes	144-pin LQFP	32 MHz	16 MHz	-40°C to 125°C
M32176F2TFP	256 Kbytes	24 Kbytes	144-pin LQFP	40 MHz	20 MHz	-40°C to 85°C
M32176F3TFP	384 Kbytes	24 Kbytes	144-pin LQFP	40 MHz	20 MHz	–40°C to 85°C
M32176F4TFP	512 Kbytes	24 Kbytes	144-pin LQFP	40 MHz	20 MHz	-40°C to 85°C

1.2 Block Diagram

Figure 1.2.1 shows a block diagram of the 32176. The features of each block are described in Table 1.2.1.

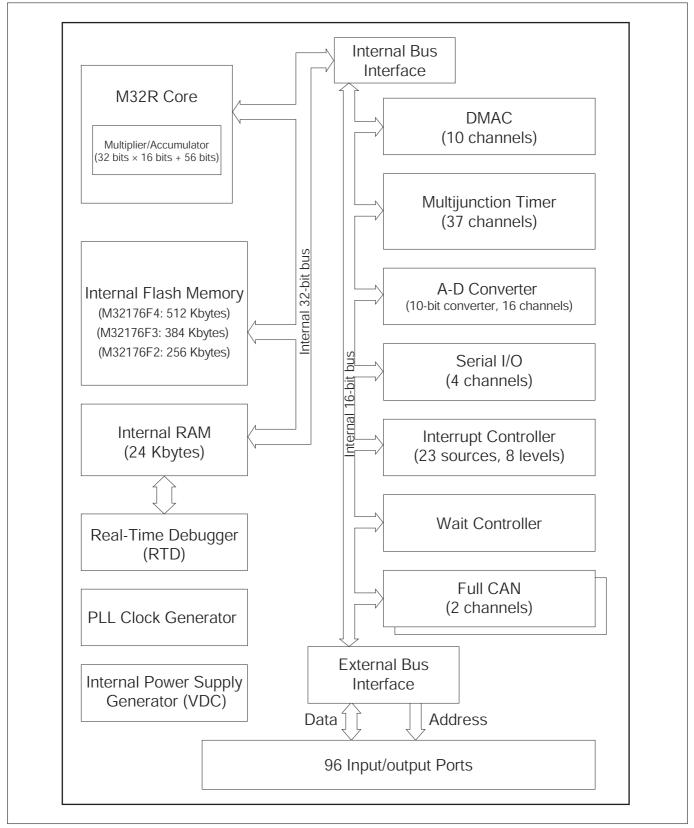


Figure 1.2.1 Block Diagram of the 32176

Table 1.2.1 Features of the 32176 (1/2)

Functional Block	Features						
M32R CPU core	 Implementation: Five-stage pipelined instruction processing 						
	Internal 32-bit structure of the core						
	Register configuration						
	General-purpose registers: 32	bits × 16 registers					
	Control registers: 32 bits × 5 re	egisters					
	Instruction set						
	16 and 32-bit instruction forma	ts					
	83 instructions and six addres	sing modes					
	• Internal multiplier/accumulator (32 bi	ts × 16 bits + 56 bits)					
RAM	Capacity: 24 Kbytes						
	Zero-wait access						
	• The internal RAM can be accessed for	or reading or rewriting data fron	n the outside independently of				
	the M32R by using the Real-Time De						
	decrease.						
Flash memory	Capacity:						
· · · · · · · · · · · · · · · · · · ·	M32176F2: 256 Kbytes, M3217	6F3: 384 Kbytes, M32176F4: 5	512 Kbytes				
	• Zero-wait access		· ··· , · · · ·				
	• Durability:						
	Standard product	: 100 times					
	10000 (10k) times rewritable	: 4-Kbyte block (Note 2)	: 10,000 (10k) times				
	-product (Note 1)	: Other blocks	: 1,000 (1k) times				
	· · · · ·		. 1,000 (11) 11103				
Bus specification	• Fundamental bus cycle : 25 ns (when f(CPUCLK = 40 MHz)						
	Logical address space : 4 Gbytes linear						
	 Internal bus specification : Internal 32-bit data bus (for CPU <-> internal flash memory and RAM access) : Internal 16-bit data bus (for internal peripheral I/O access) 						
			ripheral I/O access)				
	External area: Maximum 2 Mbytes (during processor mode)						
	External extention area: Maximum 2 Mbytes						
	• External data address bus: 19-bit ad	adress					
	• External data bus: 16-bit data bus						
	Shortest external bus access: 2 BC	CLK periods during read, 2 BC	LK periods during write				
DMAC	Number of channels: 10						
	• Transfers between internal peripheral I/O's or internal RAM's or between internal peripheral I/O						
	and internal RAM are supported.						
	 Capable of advanced DMA transfers when used in combination with internal peripheral I/O 						
	• Transfer request: Software or internal	I peripheral I/O (A-D converter,	MJT, serial I/O or CAN)				
	 Transfer request: Software or internal DMA channels can be cascaded. (DM) 	I peripheral I/O (A-D converter,	MJT, serial I/O or CAN)				
	 Transfer request: Software or internal DMA channels can be cascaded. (DN transfer on another channel.) 	l peripheral I/O (A-D converter, MA transfer on a channel can b	MJT, serial I/O or CAN)				
	 Transfer request: Software or internal DMA channels can be cascaded. (DM) 	l peripheral I/O (A-D converter, MA transfer on a channel can b	MJT, serial I/O or CAN)				
Multijunction timer (MJT)	 Transfer request: Software or internal DMA channels can be cascaded. (DN transfer on another channel.) 	l peripheral I/O (A-D converter, MA transfer on a channel can b	MJT, serial I/O or CAN)				
Multijunction timer (MJT)	 Transfer request: Software or internal DMA channels can be cascaded. (DM transfer on another channel.) Interrupt request: DMA transfer counters 	l peripheral I/O (A-D converter, MA transfer on a channel can b ter register underflow	MJT, serial I/O or CAN) be started by completion of a				
Multijunction timer (MJT)	 Transfer request: Software or internal DMA channels can be cascaded. (DM transfer on another channel.) Interrupt request: DMA transfer coun 37-channel multi-functional timer 	l peripheral I/O (A-D converter, MA transfer on a channel can b ter register underflow channels, 16-bit input/output	MJT, serial I/O or CAN) be started by completion of a related timer × 10 channels				
Multijunction timer (MJT)	 Transfer request: Software or internal DMA channels can be cascaded. (DM transfer on another channel.) Interrupt request: DMA transfer coun 37-channel multi-functional timer 16-bit output related timer × 11 	I peripheral I/O (A-D converter, MA transfer on a channel can b ter register underflow channels, 16-bit input/output nannels, 32-bit input related tir	MJT, serial I/O or CAN) be started by completion of a related timer × 10 channels ner × 8 channels				
Multijunction timer (MJT)	 Transfer request: Software or internal DMA channels can be cascaded. (DM transfer on another channel.) Interrupt request: DMA transfer coun 37-channel multi-functional timer 16-bit output related timer × 11 16-bit input related timer × 8 ch 	I peripheral I/O (A-D converter, MA transfer on a channel can b ter register underflow channels, 16-bit input/output nannels, 32-bit input related tir ple by interconnecting these tir	MJT, serial I/O or CAN) be started by completion of a related timer × 10 channels ner × 8 channels mer channels.				
Multijunction timer (MJT)	 Transfer request: Software or internal DMA channels can be cascaded. (DM transfer on another channel.) Interrupt request: DMA transfer count 37-channel multi-functional timer 16-bit output related timer × 11 16-bit input related timer × 8 ch Flexible timer configuration is possible 	I peripheral I/O (A-D converter, MA transfer on a channel can b ter register underflow channels, 16-bit input/output nannels, 32-bit input related tir ole by interconnecting these tir overflow and rising or falling or b	MJT, serial I/O or CAN) be started by completion of a related timer × 10 channels mer × 8 channels mer channels. poth edges or high or low leve				
Multijunction timer (MJT)	 Transfer request: Software or internal DMA channels can be cascaded. (DM transfer on another channel.) Interrupt request: DMA transfer cound 37-channel multi-functional timer 16-bit output related timer × 11 16-bit input related timer × 8 ch Flexible timer configuration is possible Interrupt request: Counter underflow or 	I peripheral I/O (A-D converter, MA transfer on a channel can b ter register underflow channels, 16-bit input/output nannels, 32-bit input related tir ole by interconnecting these tir overflow and rising or falling or b as external interrupt inputs irresp	MJT, serial I/O or CAN) be started by completion of a related timer × 10 channels ner × 8 channels mer channels. both edges or high or low leve bective of timer operation.)				
Multijunction timer (MJT)	 Transfer request: Software or internal DMA channels can be cascaded. (DM transfer on another channel.) Interrupt request: DMA transfer cound 37-channel multi-functional timer 16-bit output related timer × 11 16-bit input related timer × 8 ch Flexible timer configuration is possible Interrupt request: Counter underflow or from the TIN pin (These can be used an another channel and the second sec	I peripheral I/O (A-D converter, MA transfer on a channel can b ter register underflow channels, 16-bit input/output nannels, 32-bit input related tir ble by interconnecting these tir overflow and rising or falling or b as external interrupt inputs irresp flow or overflow and rising or fa	MJT, serial I/O or CAN) be started by completion of a related timer × 10 channels ner × 8 channels mer channels. both edges or high or low leve bective of timer operation.) alling or both edges or high o				
Multijunction timer (MJT)	 Transfer request: Software or internal DMA channels can be cascaded. (DM transfer on another channel.) Interrupt request: DMA transfer cound 37-channel multi-functional timer 16-bit output related timer × 11 16-bit input related timer × 8 ch Flexible timer configuration is possible Interrupt request: Counter underflow or from the TIN pin (These can be used at 0 DMA transfer request: Counter underflow or from the TIN pin (These can be used at 0 DMA transfer request: Counter underflow or from the TIN pin (These can be used at 0 DMA transfer request: Counter underflow or from the TIN pin (These can be used at 0 DMA transfer request: Counter underflow or from the transfer request: Counter underflow or from the TIN pin (These can be used at 0 DMA transfer request: Counter underflow or from the transfer request: Counter underflow or flow or	I peripheral I/O (A-D converter, MA transfer on a channel can b ter register underflow channels, 16-bit input/output nannels, 32-bit input related tir ble by interconnecting these tir overflow and rising or falling or b as external interrupt inputs irresp flow or overflow and rising or fa	MJT, serial I/O or CAN) be started by completion of related timer × 10 channels ner × 8 channels mer channels. both edges or high or low leve bective of timer operation.) alling or both edges or high o				
	 Transfer request: Software or internal DMA channels can be cascaded. (DM transfer on another channel.) Interrupt request: DMA transfer coun 37-channel multi-functional timer 16-bit output related timer × 11 16-bit input related timer × 8 ch Flexible timer configuration is possible Interrupt request: Counter underflow or from the TIN pin (These can be used at 0 DMA transfer request: Counter underflow 	I peripheral I/O (A-D converter, MA transfer on a channel can b ter register underflow channels, 16-bit input/output nannels, 32-bit input related tir ole by interconnecting these tir overflow and rising or falling or b as external interrupt inputs irresp flow or overflow and rising or fa n be used as external DMA tra	MJT, serial I/O or CAN) be started by completion of a related timer × 10 channels mer × 8 channels mer channels. both edges or high or low leve bective of timer operation.) alling or both edges or high of ansfer request inputs				

Block 2: H'0000 3000 to H'0000 3FFFF

Table 1.2.1 Features of the 32176 (2/2)

Functional Block	Features				
A-D converter (ADC)	16 channels: 10-bit resolution A-D converter				
	 Conversion modes: Ordinary conversion modes plus comparator mode 				
	 Operation modes: Single conversion mode and n-channel scan mode (n = 1–16) 				
	• Sample-and-hold function: Sample-and-hold function can be enabled or disabled as necessary.				
	• A-D disconnection detection assist function: Influences of the analog input voltage leakage from				
	any preceding channel during scan mode operation are suppressed.				
	 An inflow current bypass circuit is built-in. 				
	 Can generate an interrupt or start DMA transfer upon completion of A-D conversion. 				
	Either 8 or 10-bit conversion results can be read out.				
	 Interrupt request: Completion of A-D conversion 				
	DMA transfer request: Completion of A-D conversion				
Serial I/O (SIO)	• 4-channel serial I/O				
	 Can be chosen to be clock-synchronized serial I/O or UART. 				
	• Data can be transferred at high speed (2 Mbits per second during clock-synchronized mode or				
	156 Kbits per second during UART mode when f(BCLK) = 20 MHz).				
	• Interrupt request: Reception completed, receive error, transmit buffer empty or transmission completed				
	DMA transfer request: Reception completed or transmit buffer empty				
CAN	16 message slots × 2 blocks				
	Compliant with CAN specification 2.0B active.				
	• Interrupt request: Transmission completed, reception completed, bus error, error-passive, bus-off				
	or single shot				
	• DMA transfer request: Transmission failed, transmission completed or reception completed				
Real-Time Debugger	• Internal RAM can be rewritten or monitored independently of the CPU by entering a command				
(RTD)	from the outside.				
()	Comes with exclusive clock-synchronized serial ports.				
	Interrupt request: RTD interrupt command input				
Interrupt Controller (ICU)	Controls interrupt requests from the internal peripheral I/O.				
	Supports 8-level interrupt priority including an interrupt disabled state.				
	• External interrupt: 11 sources (SBI#, TIN0,TIN3, TIN16-TIN23)				
	• TIN pin input sensing: Rising, falling or both edges or high or low level				
Wait Controller	Controls wait states for access to the external extention area.				
	 Insertion of 1-4 wait states by setting up in software + wait state extension by entering WAIT# signal 				
PLL	• A multiply-by-4 clock generating circuit				
Clock	Maximum external input clock frequency (XIN) is 10.0 MHz. (Note 1)				
	• CPUCLK: Operating clock for the M32R-CPU core, internal flash memory and internal RAM				
	The maximum CPU clock is 40 MHz (when $f(XIN) = 10$ MHz).				
	BCLK: Operating clock for the internal peripheral I/O and external data bus				
	The maximum peripheral clock is 20 MHz (peripheral module access when				
	f(XIN) = 10 MHz				
	Clock output (BCLK pin output): A clock with the same frequency as BCLK is output from this pin.				
JTAG	Boundary scan function				
VDC	• Internal power supply generating circuit: Generates the internal power supply (2.5 V) from an				
	external single power supply (5 or 3.3 V).				
Ports	Input/output pins: 96 pins				
	• The port input threshold can be set in a program to one of three levels individually for each port				
	group (with or without Schmitt circuit, selectable).				

Note 1: Maximum external input clock frequency (XIN) for the M32176F2VFP, M32176F3VFP and M32176F4VFP is 8.0 MHz.

1.3 Pin Functions

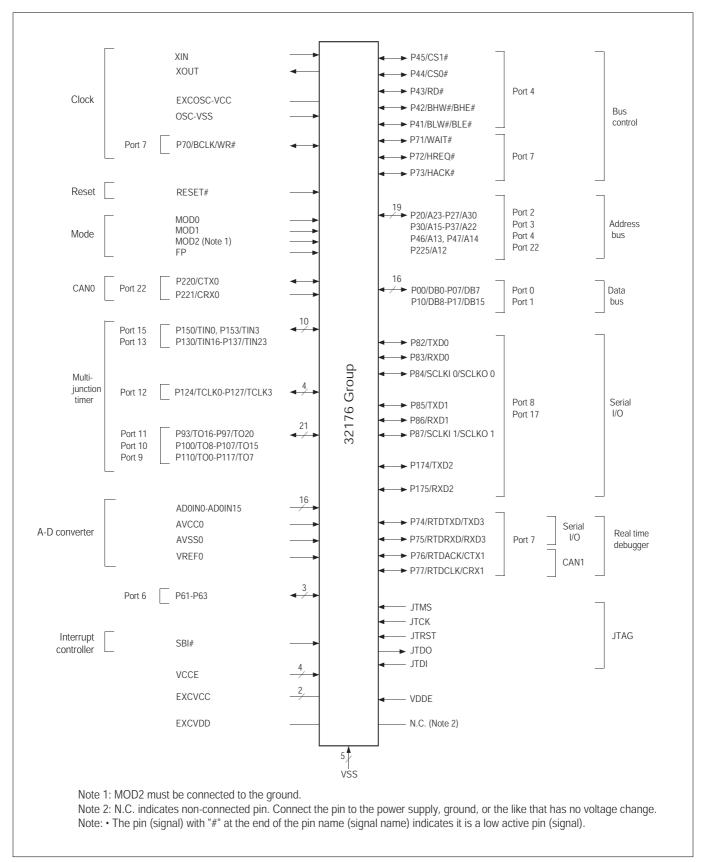


Figure 1.3.1 shows the 32176's pin function diagram. Pin functions are described in Table 1.3.1.

Figure 1.3.1 Pin Function Diagram

Туре	Pin Name	Signal Name	Input/Output	Descripti	on			
Power supply	VCCE	Main power supply	_	Power su	pply for t	he device	$\pm (5.0 \text{ V} \pm 0.5 \text{ V} \text{ or } 3.3 \text{ V} \pm 0.3 \text{ V}).$	
	EXCVCC	Internal power supply	/ -	This pin	connects	an exter	nal capacitor.	
	VDDE	RAM power supply	-	Backup power supply for the internal RAM (5.0 V \pm 0.5 V or 3.3 V \pm 0.3 V).				
	EXCVDD	Internal power supply of RAM	_	This pin connects an external capacitor for the internal power supply of the internal RAM.				
	VSS	Ground	-	Connect all VSS pins to ground (GND).				
Clock	XIN, XOUT	Clock input Clock output	Input Output	These are clock input/output pins. A PLL-based ×4 frequency multiplier is included, which accepts as input a clock whose frequency is $1/4$ of the internal CPU clock frequency. (XIN input is 10 MHz when f(CPUCLK) = 40 MHz.)				
	BCLK	System clock	Output	This pin outputs a clock whose frequency is twice that of the external input clock (XIN). (BCLK output is 20 MHz when f(CPUCLK) = 40 MHz.) Use this clock to synchronize the operation of external devices.				
	EXCOSC -VCC	Clock power supply	-	This pin connects an external capacitor for the oscillator circuit				
	OSC-VSS	Clock ground	_	Connect OSC-VSS to ground.				
Reset	RESET#	Reset	Input	Reset inp	out pin fo	r the inter	nal circuit.	
Mode	MOD0-	Mode	Input	Set the microcomputer's operation mode.			peration mode.	
	MOD2			MOD0	MOD1	MOD2	Mode	
				L	L	L	Single-chip mode	
				L	н	L	External extension mode	
				Н	L	L	Processor mode	
				Н	Н	L	(Settings inhibited) (Note 1)	
				X	Х	Н	(Settings inhibited)	
				X: Don't	care			
Flash	FP	Flash protect	Input	This special pin protects the flash memory against rewrites in hardware.				
Address bus	A12–A30	Address bus	Output	To allow two areas of up to 1 MB memory space to be connected external to the chip, the device has 19 address lines (A12–A30). A31 is not output.				

Table 1.3.1 Description of Pin Functions (1/4)

Note 1: Boot mode requires that the FP pin should be at the high level. For details about boot mode, see Chapter 6, "Internal Memory."

Туре	Pin Name	Signal Name	Input/Output	Description
Data bus	DB0-DB15	Data bus	Input/output	This 16-bit data bus is used to connect external devices.
				When writing in byte units during a write cycle, the output
				data at the invalid byte position is undefined. During a
				read cycle, data on the entire 16-bit bus is always read in.
				However, only the data at the valid byte position is
				transferred into the internal circuit.
Bus control	CS0#,CS1#	Chip select	Output	These are chip select signals for external devices.
	RD#	Read	Output	This signal is output when reading an external device.
	WR#	Write	Output	This signal is output when writing to an external device.
	BHW#,BLW#	Byte high write/	Output	When writing to an external device, this signal indicates the
		Byte low write		valid byte position to which data is transferred. BHW# and
				BLW# correspond to the upper address side (bits 0-7 are
				valid) and the lower address side (bits 8–15 are valid),
				respectively.
	BHE#	Byte high enable	Output	During an external device access, this signal indicates that
				the high-order data (bits 0–7) is valid.
	BLE#	Byte low enable	Output	During an external device access, this signal indicates that
				the low-order data (bits 8–15) is valid.
	WAIT#	Wait	Input	When accessing an external device, a low-level input on
				WAIT# pin extends the wait cycle.
	HREQ#	Hold request	Input	This input is used by an external device to request control
				of the external bus. A low-level input on HREQ# pin places
				the CPU in a hold state.
	HACK#	Hold acknowledge	Output	This signal notifies that the CPU has entered a hold state
				and relinquished control of the external bus.
Multijunction	TIN0, TIN3,	Timer input	Input	Input pins for the multijunction timer.
timer	TIN16–TIN23	5		
	TO0–TO20	Timer output	Output	Output pins for the multijunction timer.
	TCLK0	Timer clock	Input	Clock input pins for the multijunction timer.
	-TCLK3			
A-D converter	AVCC0	Analog power supply	_	AVCC0 is the power supply for the A-D0 converter.
				Connect AVCC0 to the power supply rail.
	AVSS0	Analog ground	_	AVSS0 is the analog ground for the A-D0 converter.
				Connect AVSS0 to ground.
	AD0IN0	Analog input	Input	16-channel analog input pins for the A-D0 converter.
	-AD0IN15			-
	VREF0	Reference voltage	Input	VREF0 is the reference voltage input pin for the A-D0
		input		converter.
Interrupt	SBI#	System break	Input	This is the system break interrupt (SBI) input pin for the
controller		interrupt		interrupt controller.

Table 1.3.1 Description of Pin Functions (2/4)

Туре	Pin Name	Signal Name	Input/Output	Description
Serial I/O	SCLKI0/	UART transmit/receive	Input/output	When channel 0 is in UART mode:
	SCLKO0	clock output or CSIO		This pin outputs a clock derived from BRG output by
		transmit/receive clock		dividing it by 2.
		input/output		When channel 0 is in CSIO mode:
				This pin accepts as input a transmit/receive clock wher
				external clock is selected or outputs a transmit/receive
				clock when internal clock is selected.
	SCLKI1/	UART transmit/receive	Input/output	When channel 1 is in UART mode:
	SCLKO1	clock output or CSIO		This pin outputs a clock derived from BRG output by
		transmit/receive clock		dividing it by 2.
		input/output		When channel 1 is in CSIO mode:
				This pin accepts as input a transmit/receive clock when
				external clock is selected or outputs a transmit/receive
				clock when internal clock is selected.
	TXD0	Transmit data	Output	Transmit data output pin for serial I/O channel 0.
	RXD0	Received data	Input	Received data input pin for serial I/O channel 0.
	TXD1	Transmit data	Output	Transmit data output pin for serial I/O channel 1.
	RXD1	Received data	Input	Received data input pin for serial I/O channel 1.
	TXD2	Transmit data	Output	Transmit data output pin for serial I/O channel 2.
	RXD2	Received data	Input	Received data input pin for serial I/O channel 2.
	TXD3	Transmit data	Output	Transmit data output pin for serial I/O channel 3.
	RXD3	Received data	Input	Received data input pin for serial I/O channel 3.
Real-time	RTDTXD	Transmit data	Output	Serial data output pin for the real-time debugger.
debugger	RTDRXD	Received data	Input	Serial data input pin for the real-time debugger.
(RTD)	RTDCLK	Clock input	Input	Serial data transmit/receive clock input pin for the real-time
				debugger.
	RTDACK	Acknowledge	Output	A low-level pulse is output from this pin synchronously with
				the start clock for the real-time debugger's serial data output
				word. The low-level pulse width indicates the type of command/
				data received by the real-time debugger.
CAN	CTX0, CTX1	Data output	Output	This pin outputs data from the CAN module.
	CRX0, CRX1	Data input	Input	This pin accepts as input the data for the CAN module.
JTAG	JTMS	Test mode	Input	Test mode select input to control the state transition of the
				test circuit.
	JTCK	Clock	Input	Clock input for the debug module and test circuit.
	JTRST	Test reset	Input	Test reset input to initialize the test circuit asynchronously
				with device operation.
	JTDI	Serial input	Input	This pin accepts as input the test instruction code or test data
				that is serially received.

Table 1.3.1 Description of Pin Functions (3/4)

Туре	Pin Name	Signal Name	Input/Output	Description
Input/output	P00–P07	Input/output port 0	Input/output	Programmable input/output port.
ports	P10–P17	Input/output port 1		
(Note 1)	P20–P27	Input/output port 2		
	P30–P37	Input/output port 3		
	P41–P47	Input/output port 4		
	P61–P63	Input/output port 6		
	P70–P77	Input/output port 7		
	P82–P87	Input/output port 8		
	P93–P97	Input/output port 9		
	P100–P107	Input/output port 10		
	P110–P117	Input/output port 11		
	P124–P127	Input/output port 12		
	P130–P137	Input/output port 13		
	P150, P153	Input/output port 15		
	P174, P175	Input/output port 17		
	P220, P225,	Input/output port 22		
	P221(Note 1))		

(D: (. _

Note 1: • Input/output port 5 is reserved for future use. Also, input/output ports 14, 16 and 18-21 are nonexistent. Note 2: • P221 is input-only port.

1.4 Pin Assignments

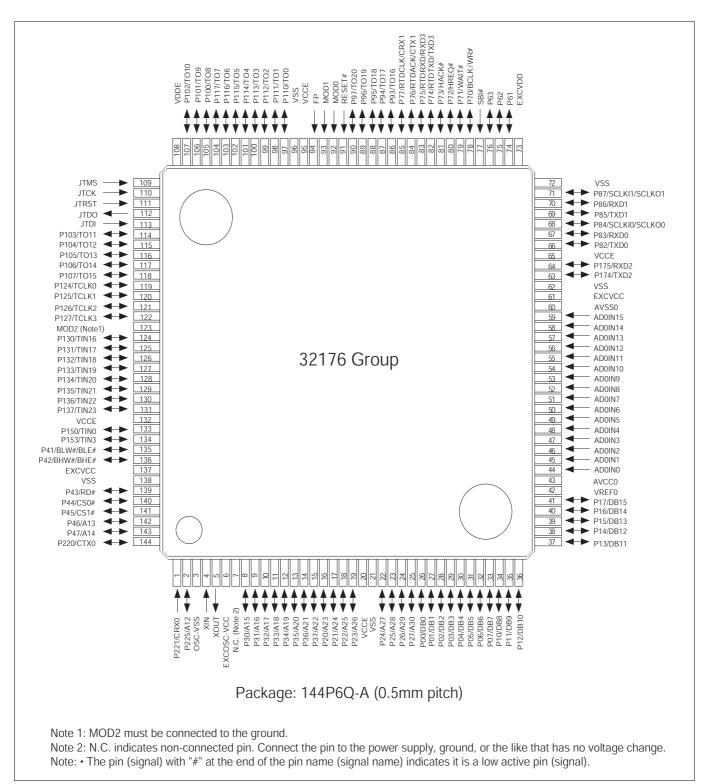


Figure 1.4.1 shows the 32176's pin assignment diagram. A pin assignment table is shown in Table 1.4.1.

Figure 1.4.1 Pin Assignment Diagram (Top View)

The pins directed for input go to a high-impedance state (Hi-z) when reset. The term "when reset" reffers to the period when input on RESET# pin is held low (the device remains reset), as well as when the RESET# pin is released back high (the device comes out of reset).

		<u> </u>	Function		ŕ		Pin State When Reset				
Pin No.	Symbol	Port	Other than port	Other than port	Туре	Condition	Function	Туре	State during reset	State upon exiting reset	
1	P221/CRX0	P221	CRX0	-	Input		P221	Input	Hi-z	Hi-z	
				-	<u> </u>	During single-chip mode	P225	Input	Hi-z	Hi-z	
2	P225/A12	P225	A12	-	Input/output	During external extension and processor modes	A12	Output	Hi-z	Undefined	
3	OSC-VSS	-	OSC-VSS	-	-		OSC-VSS	-	-	-	
	XIN	-	XIN	-	Input		XIN	Input	-	-	
	XOUT	-	XOUT	-	Output		XOUT	Output	XOUT	XOUT	
	EXCOSC-VCC	-	EXCOSC-VCC	-	-		EXCOSC-VCC	-	-	-	
7	N.C.	-	-	-	•	D is stated at the set	-	-	-	-	
8	P30/A15	P30	A15	-	Input/output	During single-chip mode During external extension and processor modes	P30 A15	Input Output	Hi-z Hi-z	Hi-z Undefined	
						During single-chip mode	P31	Input	Hi-z	Hi-z	
9	P31/A16	P31	A16	-	Input/output	During external extension and	A 16		Hi-z	Undefined	
						processor modes	A16	Output			
10	P32/A17	P32	A17		Input/output	During single-chip mode	P32	Input	Hi-z	Hi-z	
10	1 92/11/	1 32		-	Input/output	During external extension and processor modes	A17	Output	Hi-z	Undefined	
						During single-chip mode	P33	Input	Hi-z	Hi-z	
11	P33/A18	P33	A18	-	Input/output	During external extension and	A18	Output	Hi-z	Undefined	
						processor modes		-			
12	P34/A19	P34	A19	_	Input/output	During single-chip mode	P34	Input	Hi-z	Hi-z	
12	1 34/113	1 34	/110	-	mparoarpar	During external extension and processor modes	A19	Output	Hi-z	Undefined	
				-		During single-chip mode	P35	Input	Hi-z	Hi-z	
13	P35/A20	P35	A20	-	Input/output	During external extension and processor modes	A20	Output	Hi-z	Undefined	
		_				During single-chip mode	P36	Input	Hi-z	Hi-z	
14	P36/A21	P36	A21	-	Input/output	During external extension and	A21	Output	Hi-z	Undefined	
						processor modes During single-chip mode	P37	Input	Hi-z	Hi-z	
15	P37/A22	P37	A22	-	Input/output	During external extension and		•			
						processor modes	A22	Output	Hi-z	Undefined	
16	P20/A23	P20	A 22	-	Input/output	During single-chip mode	P20	Input	Hi-z	Hi-z	
10	F20/A23	F20	A23			During external extension and processor modes	A23	Output	Hi-z	Undefined	
						During single-chip mode	P21	Input	Hi-z	Hi-z	
17	P21/A24	P21	A24	-	Input/output	During external extension and	A24	Output	Hi-z	Undefined	
						processor modes					
18	P22/A25	P22	A25	_	Input/output	During single-chip mode During external extension and	P22	Input	Hi-z	Hi-z	
10	1 22/1125	1 22	7120			processor modes	A25	Output	Hi-z	Undefined	
						During single-chip mode	P23	Input	Hi-z	Hi-z	
19	P23/A26	P23	A26	-	Input/output	During external extension and	A26	Output	Hi-z	Undefined	
20	VCCE	-	VCCE	-		processor modes	VCCE		-		
	VSS	-	VSS				VSS	-	-	-	
- '		-	,00	-		During single-chip mode	P24	- Input	- Hi-z	- Hi-z	
22	P24/A27	P24	A27	-	Input/output	During external extension and					
						processor modes	A27	Output	Hi-z	Undefined	
22	D25/A29	P25	A 20	-	Input/output	During single-chip mode	P25	Input	Hi-z	Hi-z	
23	P25/A28	F20	A28	-	Input/output	During external extension and processor modes	A28	Output	Hi-z	Undefined	
-+				L	<u> </u>	During single-chip mode	P26	Input	Hi-z	Hi-z	
24	P26/A29	P26	A29	-	Input/output	During external extension and processor modes	A29	Output	Hi-z	Undefined	
						During single-chip mode	P27	Input	Hi-z	Hi-z	
25	P27/A30	P27	A30	-	Input/output	During external extension and processor modes	A30	Output	Hi-z	Undefined	
		_	_			During single-chip mode	P00	Input	Hi-z	Hi-z	
26	P00/DB0	P00	DB0	-	Input/output	During external extension and processor modes	DB0	Input/output	Hi-z	Hi-z	

Table 1.4.1	Pin Assignmen	ts of the 32176 (1/4)
-------------	---------------	-----------------------

Table 1.4.1 Pin Assignments of the 32176 (2/4)

Pin			Function				Pin State When Reset					
No.	Symbol	Port	Other than port	Other than port	Туре	Condition	Function	Туре	State during reset	State upon exiting reset		
						During single-chip mode	P01	Input	Hi-z	Hi-z		
27	P01/DB1	P01	DB1	-	Input/output	During external extension and processor modes	DB1	Input/output	Hi-z	Hi-z		
28	P02/DB2	P02	DB2	_	Input/output	During single-chip mode	P02	Input	Hi-z	Hi-z		
20	1 02/002	1 02	002	-	mpuroutput	During external extension and processor modes	DB2	Input/output	Hi-z	Hi-z		
29	P03/DB3	P03	DB3	_	Input/output	During single-chip mode During external extension and	P03	Input	Hi-z	Hi-z		
20	1 00/000	1 00	000		mparoatpat	processor modes	DB3	Input/output	Hi-z	Hi-z		
30	P04/DB4	P04	DB4	_	Input/output	During single-chip mode During external extension and	P04	Input	Hi-z	Hi-z		
						processor modes	DB4	Input/output	Hi-z	Hi-z		
31	P05/DB5	P05	DB5	_	Input/output	During single-chip mode During external extension and	P05	Input	Hi-z	Hi-z		
01	1 00,000	1.00	220			processor modes	DB5	Input/output	Hi-z	Hi-z		
						During single-chip mode	P06	Input	Hi-z	Hi-z		
32	P06/DB6	P06	DB6	-	Input/output	During external extension and processor modes	DB6	Input/output	Hi-z	Hi-z		
						During single-chip mode	P07	Input	Hi-z	Hi-z		
33	P07/DB7	P07	DB7	-	Input/output	During external extension and	DB7	Input/output	Hi-z	Hi-z		
						processor modes		· ·				
34	P10/DB8	P10	DB8	-	Input/output	During single-chip mode During external extension and	P10	Input	Hi-z	Hi-z		
						processor modes	DB8	Input/output	Hi-z	Hi-z		
			550			During single-chip mode	P11	Input	Hi-z	Hi-z		
35	P11/DB9	P11	DB9	-	Input/output	During external extension and	DB9	Input/output	Hi-z	Hi-z		
						processor modes During single-chip mode	P12	Input	Hi-z	Hi-z		
36	P12/DB10	P12	DB10	-	Input/output	During external extension and	DB10	Input/output	Hi-z	Hi-z		
				processor modes		· ·						
37	37 P13/DB11	P13	DB11	-	Input/output	During single-chip mode During external extension and	P13	Input	Hi-z	Hi-z		
•						processor modes	DB11	Input/output	Hi-z	Hi-z		
						During single-chip mode	P14	Input	Hi-z	Hi-z		
38	P14/DB12	P14	DB12	-	Input/output	During external extension and processor modes	DB12	Input/output	Hi-z	Hi-z		
						During single-chip mode	P15	Input	Hi-z	Hi-z		
39	P15/DB13	P15	DB13	-	Input/output	During external extension and	DB13	Input/output	Hi-z	Hi-z		
						processor modes		· ·				
40	P16/DB14	P16	DB14	-	Input/output	During single-chip mode During external extension and	P16	Input	Hi-z	Hi-z		
						processor modes	DB14	Input/output	Hi-z	Hi-z		
44		D47	DD45		In most (most most	During single-chip mode	P17	Input	Hi-z	Hi-z		
41	P17/DB15	P17	DB15	-	Input/output	During external extension and processor modes	DB15	Input/output	Hi-z	Hi-z		
42	VREF0	-	VREF0	-	-	P	VREF0	-	-	-		
43	AVCC0	-	AVCC0	-	-		AVCC0	-	-	-		
44	AD0IN0	-	AD0IN0	-	Input		AD0IN0	Input	Hi-z	Hi-z		
45	AD0IN1	-	AD0IN1	-	Input		AD0IN1	Input	Hi-z	Hi-z		
46	ADOIN2	-	AD0IN2	-	Input		AD0IN2	Input	Hi-z	Hi-z		
47 48	AD0IN3 AD0IN4	-	AD0IN3 AD0IN4	-	Input Input		AD0IN3 AD0IN4	Input Input	Hi-z Hi-z	Hi-z Hi-z		
40	ADOIN4 ADOIN5	-	AD0IN4 AD0IN5	-	Input		AD0IN4 AD0IN5	Input	Hi-z	Hi-z		
50	AD0IN6	-	AD0IN6	-	Input		AD0IN6	Input	Hi-z	Hi-z		
51	AD0IN7	-	AD0IN7	-	Input		AD0IN7	Input	Hi-z	Hi-z		
52	AD0IN8	-	AD0IN8	-	Input		AD0IN8	Input	Hi-z	Hi-z		
53	AD0IN9	-	AD0IN9	-	Input		AD0IN9	Input	Hi-z	Hi-z		
54	AD0IN10	-	AD0IN10	-	Input		AD0IN10	Input	Hi-z	Hi-z		
55	ADOIN11	-	AD0IN11	-	Input		AD0IN11	Input	Hi-z	Hi-z		
56 57	AD0IN12 AD0IN13	-	AD0IN12 AD0IN13	-	Input Input		AD0IN12 AD0IN13	Input Input	Hi-z Hi-z	Hi-z Hi-z		
58	ADOIN13 ADOIN14	-	AD0IN13 AD0IN14	-	Input		AD0IN13 AD0IN14	Input	Hi-z	Hi-z		
59	AD0IN15	-	AD0IN15	-	Input		AD0IN15	Input	Hi-z	Hi-z		

Table 1.4.1 Pin Assignments of the 32176 (3/4)

Pin			Function					Pin State When Reset			
No.	Symbol	Port	Other than port	Other than port	Туре	Condition	Function	Туре	State during reset	State upon exiting reset	
60	AVSS0	-	AVSS0	-	-		AVSS0	-	-	-	
61	EXCVCC	-	EXCVCC	-	-		EXCVCC	-	-	-	
62	VSS	-	VSS	-	-		VSS	-	-	-	
63	P174/TXD2	P174	TXD2	-	Input/output		P174	Input	Hi-z	Hi-z	
64	P175/RXD2	P175	RXD2	-	Input/output		P175	Input	Hi-z	Hi-z	
65	VCCE	-	VCCE	-	Input/output		VCCE	-	-	-	
66	P82/TXD0	P82	TXD0	-	Input/output		P82	Input	Hi-z	Hi-z	
67	P83/RXD0	P83	RXD0	-	Input/output		P83	Input	Hi-z	Hi-z	
68	P84/SCLKI0/SCLKO0	P84	SCLKI0	SCLKO0	Input/output		P84	Input	Hi-z	Hi-z	
69	P85/TXD1	P85	TXD1	-	Input/output		P85	Input	Hi-z	Hi-z	
70	P86/RXD1	P86	RXD1	-	Input/output		P86	Input	Hi-z	Hi-z	
71	P87/SCLKI1/SCLKO1	P87	SCLKI1	SCLKO1	Input/output		P87	Input	Hi-z	Hi-z	
72	VSS	-	VSS	-	-		VSS	-	-	-	
73	EXCVDD	-	EXCVDD	-	-		EXCVDD	-	-	-	
74	P61	P61	-	-	Input/output		P61	Input	Hi-z	Hi-z	
75	P62	P62	-	-	Input/output		P62	Input	Hi-z	Hi-z	
76	P63	P63	-	-	Input/output		P63	Input	Hi-z	Hi-z	
77	SBI#		SBI#	-	Input		SBI#	Input	Hi-z	Hi-z	
78	P70/BCLK/WR#	P70	BCLK	WR#	Input/output		P70	Input	Hi-z	Hi-z	
79	P71/WAIT#	P71	WAIT#	-	Input/output		P71	Input	Hi-z	Hi-z	
80	P72/HREQ#	P72	HREQ#	-	Input/output		P72	Input	Hi-z	Hi-z	
81	P73/HACK#	P73	HACK#	-	Input/output		P73	Input	Hi-z	Hi-z	
82	P74/RTDTXD/TXD3	P74	RTDTXD	TXD3	Input/output		P74	Input	Hi-z	Hi-z	
83	P75/RTDRXD/RXD3	P75	RTDRXD	RXD3	Input/output		P75	Input	Hi-z	Hi-z	
84	P76/RTDACK/CTX1	P76	RTDACK	CTX1	Input/output		P76	Input	Hi-z	Hi-z	
85	P77/RTDCLK/CRX1	P77	RTDCLK	CRX1	Input/output		P77	Input	Hi-z	Hi-z	
86	P93/TO16	P93	TO16	-	Input/output		P93	Input	Hi-z	Hi-z	
87	P94/TO17	P94	TO17	-	Input/output		P94	Input	Hi-z	Hi-z	
88	P95/TO18	P95	TO18	-	Input/output		P95	Input	Hi-z	Hi-z	
89	P96/TO19	P96	TO19	-	Input/output		P96	Input	Hi-z	Hi-z	
90	P97/TO20	P97	TO20	-	Input/output		P97	Input	Hi-z	Hi-z	
	RESET#	-	RESET#	-	Input		RESET#	Input	Hi-z	Hi-z	
	MOD0	-	MOD0	-	Input		MOD0	Input	Hi-z	Hi-z	
	MOD1	-	MOD1	-	Input		MOD1	Input	Hi-z	Hi-z	
	FP	-	FP	-	Input		FP	Input	Hi-z	Hi-z	
95	VCCE	-	VCCE	-	-		VCCE	-	-	-	
96	VSS	-	VSS	-	-		VSS	-	-	-	
	P110/TO0	P110	TO0	-	Input/output		P110	Input	Hi-z	Hi-z	
	P111/TO1	P111	TO1	-	Input/output		P111	Input	Hi-z	Hi-z	
99	P112/TO2	P112	TO2	-	Input/output		P112	Input	Hi-z	Hi-z	
	P113/TO3	P113	TO3	-	Input/output		P113	Input	Hi-z	Hi-z	
100	P114/TO4	P114	TO4	-	Input/output		P114	Input	Hi-z	Hi-z	
	P115/TO5	P115	TO5	-	Input/output		P115	Input	Hi-z	Hi-z	
	P116/TO6	P116	TO6	-	Input/output		P116	Input	Hi-z	Hi-z	
	P117/T07	P117	T07	-	Input/output		P117	Input	Hi-z	Hi-z	
	P100/TO8	P100	TO8	-	Input/output		P100	Input	Hi-z	Hi-z	
	P101/TO9	P101	TO9	-	Input/output		P101	Input	Hi-z	Hi-z	
	P102/TO10	P102	TO10	-	Input/output		P102	Input	Hi-z	Hi-z	
108	VDDE	-	VDDE	-			VDDE	-	-	-	
109	JTMS (Note 1)	-	JTMS	-	Input		JTMS	Input	Hi-z	Hi-z	
	JTCK (Note 1)	-	JTCK	-	Input		JTCK	Input	Hi-z	Hi-z	
110		-	JTRST	-	Input		JTRST	Input	Hi-z	Hi-z	
110 111	JTRST (Note 1)	_			Output		JTDO	Output	Hi-z	Hi-z	
111	JTRST (Note 1)	-	JITDO				0.00	Julpul	1 11-2	1 11-2	
111 112	JTDO (Note 1)	-	JTDO	-	· · ·		וחדן	Input	Hi-7		
111 112 113	JTDO (Note 1) JTDI (Note 1)	-	JTDI	-	Input		JTDI P103	Input	Hi-z Hi-z	Hi-z	
111 112 113 114	JTDO (Note 1) JTDI (Note 1) P103/TO11	- P103	JTDI TO11	-	Input Input/output		P103	Input	Hi-z	Hi-z Hi-z	
111 112 113 114 115	JTDO (Note 1) JTDI (Note 1)	-	JTDI	-	Input					Hi-z	

Note 1: The JTCK, JTDI, JTDO and JTMS pins are reset by input from the JTRST pin, and not reset from the RESET# pin. When a low level is applied to the JTRST pin, the JTCK, JTDI, JTDO and JTMS pins are in the high impedance state.

Table 1.4.1 Pin Assignments of the 32176 (4/4)

Pin		Function					Pin State When Reset				
No.	Symbol	Port	Other than port	Other than port	Туре	Condition	Function	Туре	State during reset	State upon exiting reset	
118	P107/TO15	P107	TO15	-	Input/output		P107	Input	Hi-z	Hi-z	
119	P124/TCLK0	P124	TCLK0	-	Input/output		P124	Input	Hi-z	Hi-z	
120	P125/TCLK1	P125	TCLK1	-	Input/output		P125	Input	Hi-z	Hi-z	
121	P126/TCLK2	P126	TCLK2	-	Input/output		P126	Input	Hi-z	Hi-z	
122	P127/TCLK3	P127	TCLK3	-	Input/output		P127	Input	Hi-z	Hi-z	
123	MOD2	-	MOD2	-	-		MOD2	-	-	-	
124	P130/TIN16	P130	TIN16	-	Input/output		P130	Input	Hi-z	Hi-z	
125	P131/TIN17	P131	TIN17	-	Input/output		P131	Input	Hi-z	Hi-z	
126	P132/TIN18	P132	TIN18	-	Input/output		P132	Input	Hi-z	Hi-z	
127	P133/TIN19	P133	TIN19	-	Input/output		P133	Input	Hi-z	Hi-z	
128	P134/TIN20	P134	TIN20	-	Input/output		P134	Input	Hi-z	Hi-z	
129	P135/TIN21	P135	TIN21	-	Input/output		P135	Input	Hi-z	Hi-z	
130	P136/TIN22	P136	TIN22	-	Input/output		P136	Input	Hi-z	Hi-z	
131	P137/TIN23	P137	TIN23	-	Input/output		P137	Input	Hi-z	Hi-z	
132	VCCE	-	VCCE	-	-		VCCE	-	-	-	
133	P150/TIN0	P150	TINO	-	Input/output		P150	Input	Hi-z	Hi-z	
134	P153/TIN3	P153	TIN3	-	Input/output		P153	Input	Hi-z	Hi-z	
135	P41/BLW#/BLE#	P41	BLW#	BLE#	Input/output		P41	Input	Hi-z	Hi-z	
136	P42/BHW#/BHE#	P42	BHW#	BHE#	Input/output		P42	Input	Hi-z	Hi-z	
137	EXCVCC	-	EXCVCC	-	-		EXCVCC	-	-	-	
138	VSS	-	VSS	-	-		VSS	-	-	-	
						During single-chip mode	P43	Input	Hi-z	Hi-z	
139	P43/RD#	P43	RD#	-	Input/output	During external extension and processor modes	RD#	Output	Hi-z	High level	
						During single-chip mode	P44	Input	Hi-z	Hi-z	
140	P44/CS0#	P44	CS0#	-	Input/output	During external extension and processor modes	CS0#	Output	Hi-z	High level	
						During single-chip mode	P45	Input	Hi-z	Hi-z	
141	P45/CS1#	P45	CS1#	-	Input/output	During external extension and processor modes	CS1#	Output	Hi-z	High level	
						During single-chip mode	P46	Input	Hi-z	Hi-z	
142	P46/A13	P46	A13	-	Input/output	During external extension and processor modes	A13	Output	Hi-z	Undefined	
						During single-chip mode	P47	Input	Hi-z	Hi-z	
143	P47/A14	P47	A14	-	Input/output	During external extension and processor modes	A14	Output	Hi-z	Undefined	
144	P220/CTX0	P220	CTX0	-	Input/output		P220	Input	Hi-z	Hi-z	

This page is blank for reasons of layout.

CHAPTER 2

CPU

- 2.1 CPU Registers
- 2.2 General-purpose Registers
- 2.3 Control Registers
- 2.4 Accumulator
- 2.5 Program Counter
- 2.6 Data Formats
- 2.7 Supplementary Explanation for LOCK and UNLOCK Instruction Execution

2.1 CPU Registers

The M32R contains 16 general-purpose registers, five control registers, an accumulator and a program counter. The accumulator is configured with 56 bits, and all other registers are 32 bits wide.

2.2 General-purpose Registers

The 16 general-purpose registers (R0–R15) are of 32-bit width and are used to retain data, base address, etc. R14 is used as the link register and R15 as the stack pointer. The link register is used to store the return address when executing a subroutine call instruction. The Interrupt Stack Pointer (SPI) and the User Stack Pointer (SPU) are alternately represented by R15 depending on the value of the Stack Mode (SM) bit in the Processor Status Word Register (PSW).

Upon exiting the reset state, the value of the general-purpose registers is undefined.

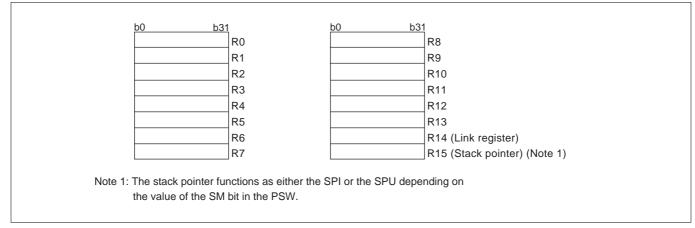


Figure 2.2.1 General-purpose Registers

2.3 Control Registers

There are 5 control registers which are the Processor Status Word Register (PSW), the Condition Bit Register (CBR), the Interrupt Stack Pointer (SPI), the User Stack Pointer (SPU) and the Backup PC (BPC). The dedicated MVTC and MVFC instructions are used for writing and reading these control registers.

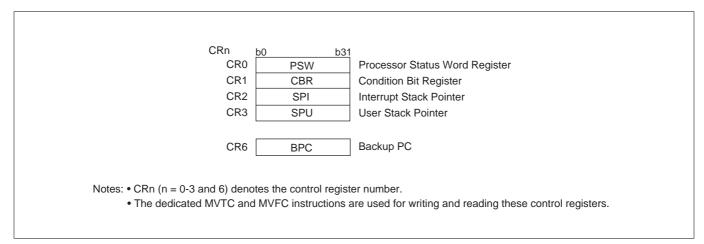


Figure 2.3.1 Control Registers

2.3.1 Processor Status Word Register: PSW (CR0)

The Processor Status Word Register (PSW) indicates the M32R status. It consists of the PSW field which is regularly used, and the BPSW field where a copy of the PSW field is saved when an EIT occurs.

The PSW field consists of the Stack Mode (SM) bit, the Interrupt Enable (IE) bit and the Condition (C) bit.

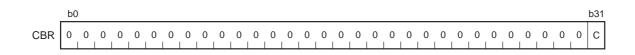
The BPSW field consists of the Backup Stack Mode (BSM) bit, the Backup Interrupt Enable (BIE) bit and the Backup Condition (BC) bit.

Upon exiting the reset state, BSM, BIE and BC are undefined. All other bits are "0".

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
0		I 0	Ι 0	1 0	10	1 0	1 0	I 0	0		10	1 0	1 0	1 0	10
0	0		0											0	
b16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	b31
BSM	BIE	0	Ι 0	1 0	10	1 0	BC 2	SM 0	IE 0	0	1 0	1 0	1 0		C
				0			<u> </u>		0	0					

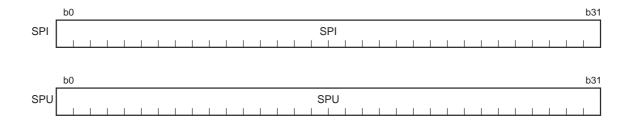
BPSW field

PSW field


<Upon exiting reset: B'0000 0000 0000 0000 ??00 000? 0000 0000>

		-1 - 3		
b	Bit Name	Function	R	W
0–15	No function assigned. Fix to "0".		0	0
16	BSM	Saves value of SM bit when EIT occurs	R	W
	Backup SM Bit			
17	BIE	Saves value of IE bit when EIT occurs	R	W
	Backup IE Bit			
18–22	No function assigned. Fix to "0".		0	0
23	BC	Saves value of C bit when EIT occurs	R	W
	Backup C Bit			
24	SM	0: Uses R15 as the interrupt stack pointer	R	W
	Stack Mode Bit	1: Uses R15 as the user stack pointer		
25	IE	0: Does not accept interrupt	R	W
	Interrupt Enable Bit	1: Accepts interrupt		
26–30	No function assigned. Fix to "0".		0	0
31	С	Indicates carry, borrow or overflow resulting	R	W
	Condition Bit	from operations (instruction dependent)		

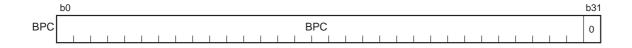
2.3.2 Condition Bit Register: CBR (CR1)


The Condition Bit Register (CBR) is derived from the PSW register by extracting its Condition (C) bit. The value written to the PSW register's C bit is reflected in this register. The register can only be read. (Writing to the register with the MVTC instruction is ignored.)

Upon exiting the reset state, the value of CBR is H'0000 0000.

2.3.3 Interrupt Stack Pointer: SPI (CR2) and User Stack Pointer: SPU (CR3)

The Interrupt Stack Pointer (SPI) and the User Stack Pointer (SPU) retain the address of the current stack pointer. These registers can be accessed as the general-purpose register R15. R15 switches between representing the SPI and SPU depending on the value of the Stack Mode (SM) bit in the PSW. Upon exiting the reset state, the values of the SPI and SPU are undefined.

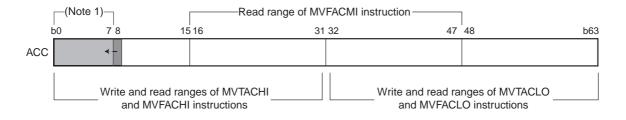


2.3.4 Backup PC: BPC (CR6)

The Backup PC (BPC) is used to save the value of the Program Counter (PC) when an EIT occurs. Bit 31 is fixed to "0".

When an EIT occurs, the register sets either the PC value immediately before the EIT occurred or the PC value for the next instruction. The BPC value is loaded to the PC when the RTE instruction is executed. However, the values of the lower 2 bits of the PC are always "00" when returned. (PC always returns to the word-aligned address.)

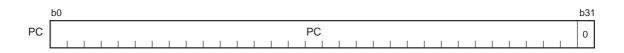
Upon exiting the reset state, the value of the BPC is undefined.


2.4 Accumulator

The Accumulator (ACC) is a 56-bit register used for DSP function instructions.

The accumulator is handled as a 64-bit register when accessed for read or write. When reading data from the accumulator, the value of bit 8 is sign-extended. When writing data to the accumulator, bits 0 to 7 are ignored. The accumulator is also used for the multiply instruction "MUL," in which case the accumulator value is destroyed by instruction execution.

Use the MVTACHI and MVTACLO instructions for writing to the accumulator. The MVTACHI and MVTACLO instructions write data to the high-order 32 bits (bits 0–31) and the low-order 32 bits (bits 32–63), respectively. Use the MVFACHI, MVFACLO and MVFACMI instructions for reading data from the accumulator. The MVFACHI, MVFACLO and MVFACMI instructions read data from the high-order 32 bits (bits 0–31), the low-order 32 bits (bits 32–63) and the middle 32 bits (bits 16–47), respectively.


Upon exiting the reset state, the value of accumulator is undefined.

Note 1: When read, bits 0 to 7 always show the sign-extended value of the value of bit 8. Writing to this bit field is ignored.

2.5 Program Counter

The Program Counter (PC) is a 32-bit counter that retains the address of the instruction being executed. Since the M32R instruction starts with even-numbered addresses, the LSB (bit 31) is always "0". Upon exiting the reset state, the value of PC is H'0000 0000.

2.6 Data Formats

2.6.1 Data Types

The data types that can be handled by the M32R instruction set are signed or unsigned 8, 16 and 32-bit integers. The signed integers are represented by 2's complements.

Signed byte (8-bit) integer	b0 b7			
Unsigned byte (8-bit) integer	b0 b7			
Signed halfword (16-bit) integer	b0 S	b15		
Unsigned halfword (16-bit) integer	b0	b15		
Signed word (32-bit) integer	b0 S		b31	
Unsigned word (32-bit) integer	b0		b31	
	S: Sign bit			

Figure 2.6.1 Data Types

2.6.2 Data Formats

(1) Data formats in registers

The data sizes in the M32R registers are always words (32 bits).

When loading byte (8-bit) or halfword (16-bit) data from memory into a register, the data is sign-extended (LDB, LDH instructions) or zero-extended (LDUB, LDUH instructions) to a word (32-bit) quantity before being loaded in the register.

When storing data from a register into a memory, the 32-bit data, the 16-bit data on the LSB side and the 8bit data on the LSB side of the register are stored into memory by the ST, STH and STB instructions, respectively.

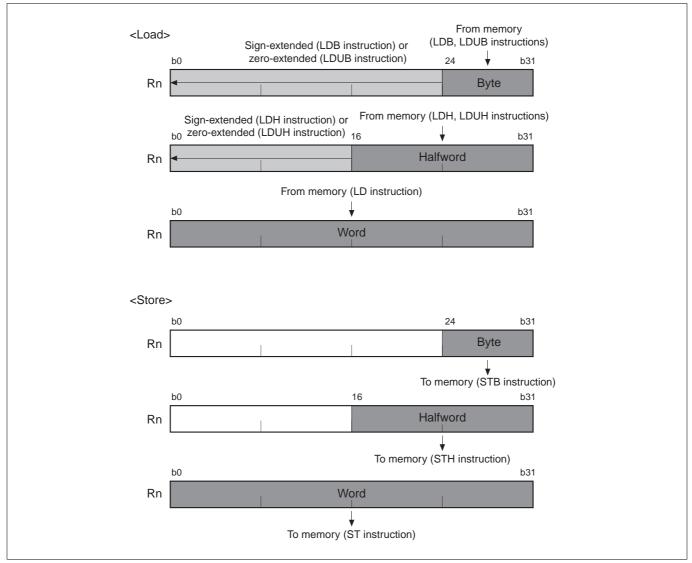


Figure 2.6.2 Data Formats in Registers

(2) Data formats in memory

The data sizes in memory can be byte (8 bits), halfword (16 bits) or word (32 bits). Although byte data can be located at any address, halfword and word data must be located at the addresses aligned with a halfword boundary (least significant address bit = "0") or a word boundary (two low-order address bits = "00"), respectively. If an attempt is made to access memory data that overlaps the halfword or word boundary, an address exception occurs.

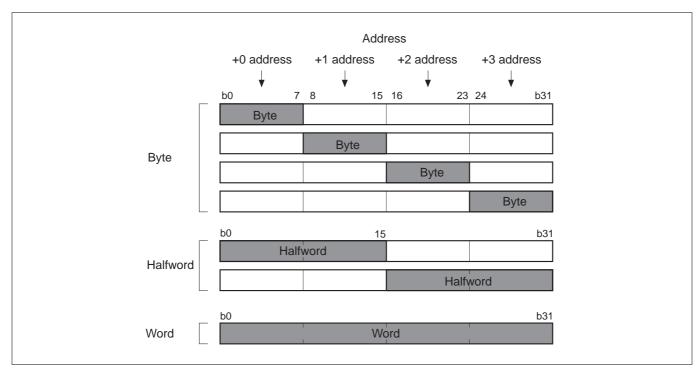


Figure 2.6.3 Data Formats in Memory

(3) Endian

The diagrams below show a general endian system and the endian adopted for the M32R family microcomputers.

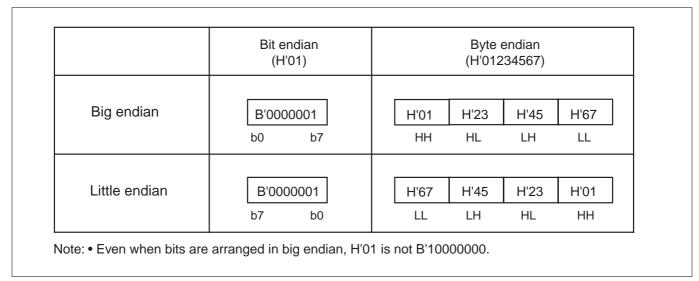
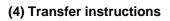



Figure 2.6.4 General Endian System

Renesas microcomputer family name	7700 and M16C families		<u>M32R family</u>
Endian (bit/byte)	Little/little	Little/big	Big/big
Address	+0 +1 +2 +3	+0 +1 +2 +3	+0 +1 +2 +3
Data arrangement			HH HL LH LL
Bit number	7–0 15–8 23–16 31–24	31–24 23–16 15–8 7–0	0–7 8–15 16–23 24–31
Example: 0x01234567	.byte 67,45,23,01	.byte 01,23,45,67	.byte 01,23,45,67

Figure 2.6.5 Endian Adopted for the M32R Family

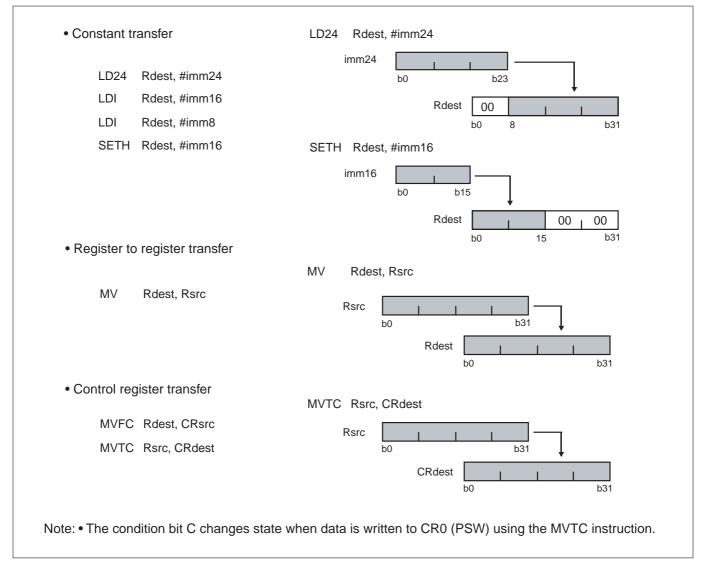


Figure 2.6.6 Transfer Instructions

(5) Transfer from memory (signed) to registers

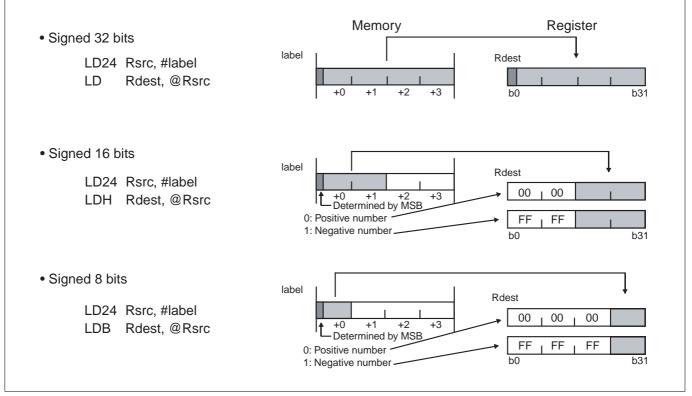


Figure 2.6.7 Transfer from Memory (Signed) to Registers

(6) Transfer from memory (unsigned) to registers

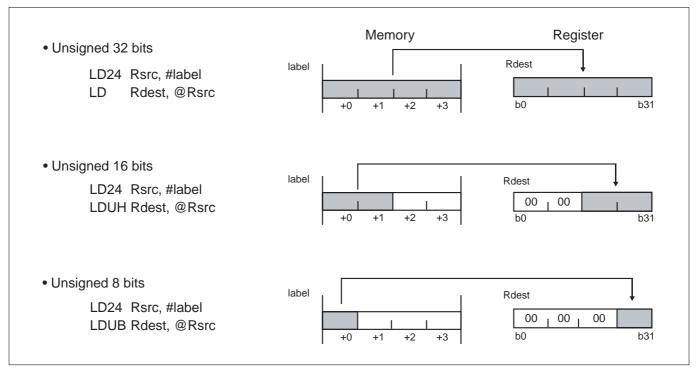
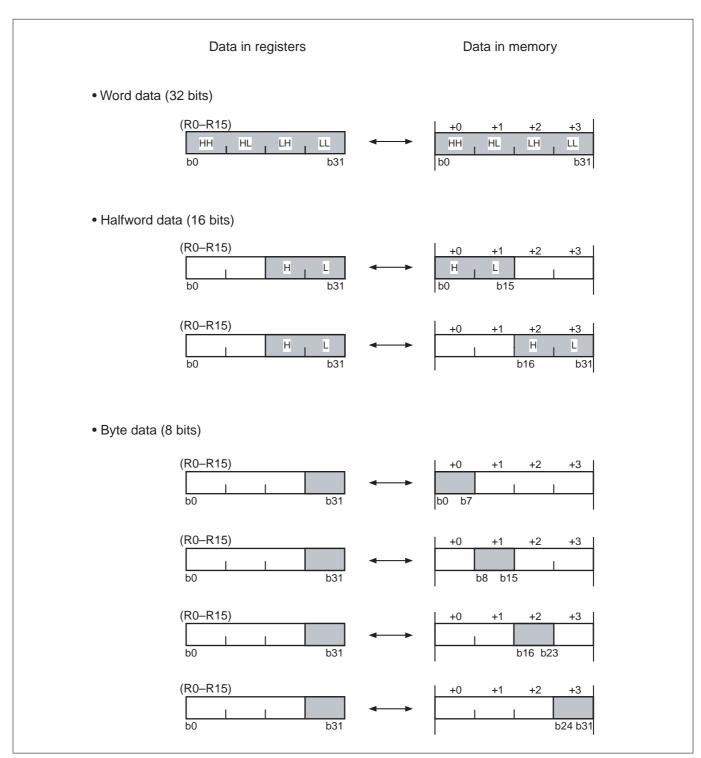



Figure 2.6.8 Transfer from Memory (Unsigned) to Registers

(7) Notes on data transfer

When transferring data, be aware that data arrangements in registers and memory are different.

2.7 Supplementary Explanation for LOCK and UNLOCK Instruction Execution

The LOCK instruction sets the LOCK bit, as well as performs an ordinary load operation. The UNLOCK instruction is used to clear the LOCK bit.

The LOCK bit is located inside the CPU, and cannot directly be accessed for read or write by users. This bit controls granting of bus control requested by devices other than the CPU.

• When LOCK bit = "0"

Control of the bus requested by devices other than the CPU is granted

• When LOCK bit = "1"

Control of the bus requested by devices other than the CPU is denied

Control of the bus may be requested by devices other than the CPU in the following two cases:

- When DMA transfer is requested by the internal DMAC
- When HREQ# input is pulled low to request that the CPU be placed in a hold state

CHAPTER 3

ADDRESS SPACE

- 3.1 Outline of the Address Space
- 3.2 Operation Modes
- 3.3 Internal ROM and External Extension Areas
- 3.4 Internal RAM and SFR Areas
- 3.5 EIT Vector Entry
- 3.6 ICU Vector Table
- 3.7 Notes about Address Space

3.1 Outline of the Address Space

The logical addresses of the M32R are always handled in 32 bits, providing a linear address space of up to 4 Gbytes. The address space of the M32R consists of the following:

(1) User space

- Internal ROM area
- External extension area
- Internal RAM area
- SFR (Special Function Register) area
- (2) System space (not open to the user)

(1) User space

The 2 Gbytes from the address H'0000 0000 to the address H'7FFF FFFF comprise the user space. Located in this space are the internal ROM area, an external extension area, the internal RAM area and the SFR (Special Function Register) area (in which a set of internal peripheral I/O registers exist). Of these, the internal ROM and external extension areas are located differently depending on mode settings as will be described later.

(2) System space

The 2 Gbytes from the address H'8000 0000 to the address H'FFFF FFFF comprise the system space. This space is reserved for use by development tools such as an in-circuit emulator and debug monitor, and cannot be used by the user.

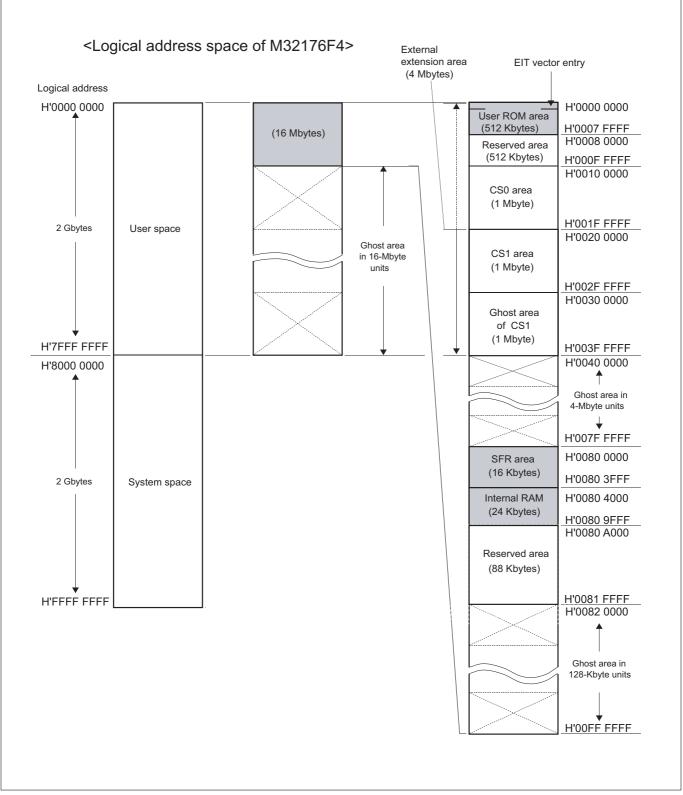


Figure 3.1.1 Address Space of the M32176F4

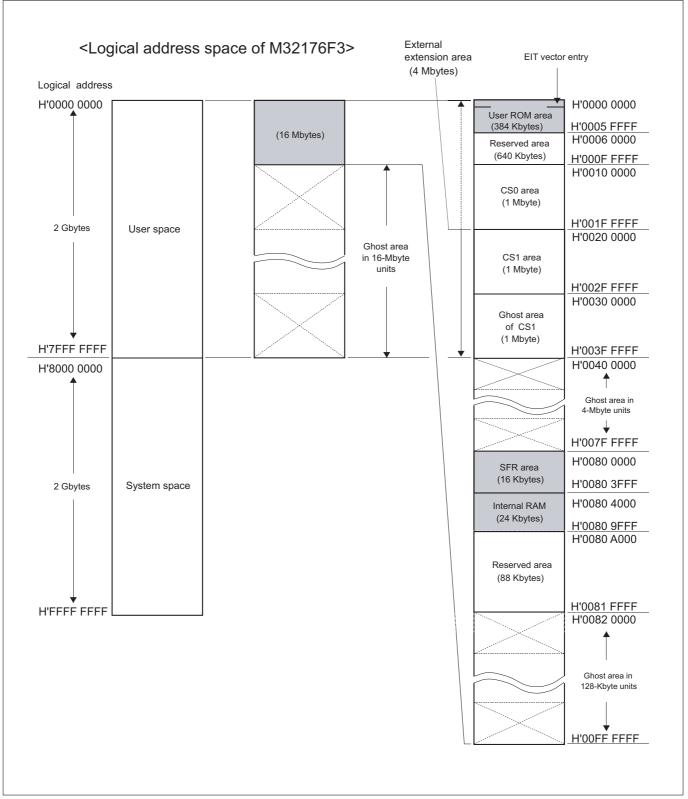


Figure 3.1.2 Address Space of the M32176F3

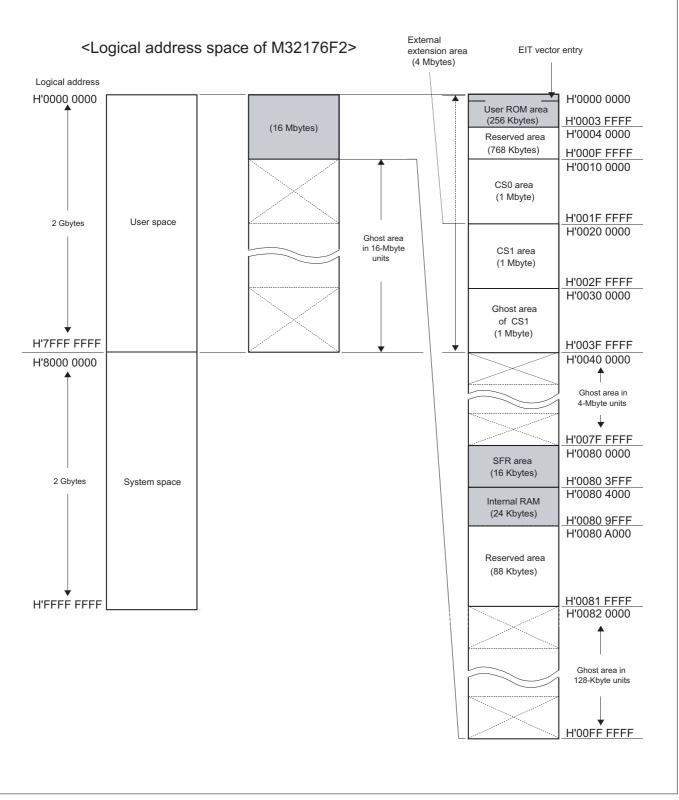


Figure 3.1.2 Address Space of the M32176F2

3.2 Operation Modes

The microcomputer is placed in one of the following modes depending on how CPU operation mode is set by MOD0 and MOD1 pins. The operation mode used for rewriting the internal flash memory is described separately in Section 6.5, "Programming the Internal Flash Memory."

	-	-	
MOD0	MOD1	MOD2 (Note 1)	Operation mode (Note 2)
VSS	VSS	VSS	Single-chip mode
VSS	VCCE	VSS	External extension mode
VCCE	VSS	VSS	Processor mode (FP = VSS)
VCCE	VCCE	VSS	Reserved (use inhibited)
-	-	VCCE	Reserved (use inhibited)

Table 3.2.1 Operation Mode Settings

Note 1: Connect VCCE and VSS to the VCCE input power supply and ground, respectively.

Note 2: For the operation mode used to rewrite the internal flash memory (FP = VCCE) which is not shown in the above table, see Section 6.5, "Programming the Internal Flash Memory."

The internal ROM and external extension areas are located differently depending on how operation mode is set. (All other areas in the address space are located the same way.) The diagram below shows how the internal ROM and external extension areas are mapped into the address space in each operation mode. (For flash rewrite mode, see Section 6.5, "Programming the Internal Flash Memory.")

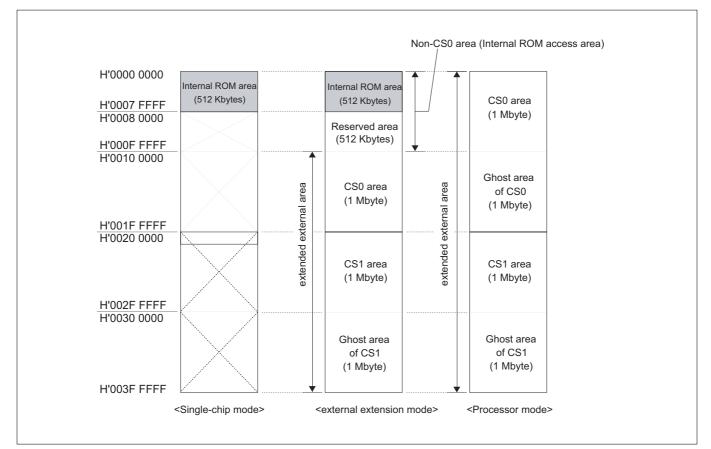


Figure 3.2.1 M32176F4 Operation Modes and Internal ROM/External Extension Areas

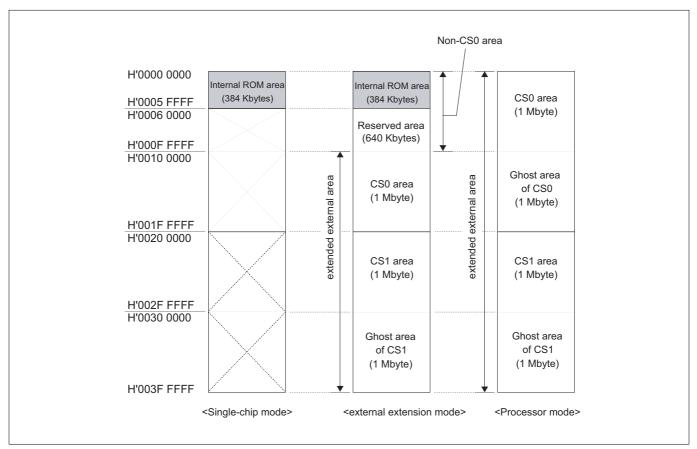


Figure 3.2.2 M32176F3 Operation Modes and Internal ROM/External Extension Areas

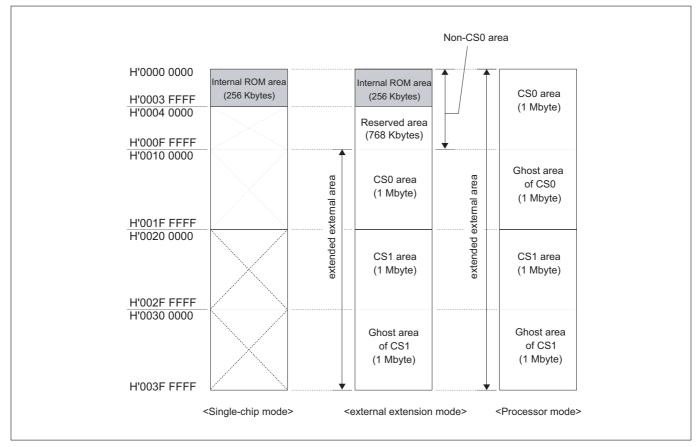


Figure 3.2.3 M32176F2 Operation Modes and Internal ROM/External Extension Areas

3.3 Internal ROM and External Extension Areas

The 8-Mbyte area in the user space from the address H'0000 0000 to the address H'007F FFFF comprise the internal ROM and external extension areas. For the address mapping of these areas that differs with each operation mode, see Section 3.2, "Operation Modes."

3.3.1 Internal ROM Area

The internal ROM is allocated to the addresses shown below. Located at the beginning of this area is the EIT vector entry (and the ICU vector table).

Type Name	Size	Allocation Address
M32176F4	512 Kbytes	H'0000 0000 to H'0007 FFFF
M32176F3	384 kbytes	H'0000 0000 to H'0005 FFFF
M32176F2	256 Kbytes	H'0000 0000 to H'0003 FFFF

Table 3.3.1 Internal ROM Allocation Address

3.3.2 External Extension Area

The external extension area is only available when external extension or processor mode is selected by operation mode settings. When accessing the external extension area, the control signals necessary to access external devices are output.

The CS0# and CS1# signals are output corresponding to the address mapping of the external extension area. The CS0# and CS1# signals are output for the CS0 and CS1 areas, respectively.

Table 3.3.2 Address Mapping of the External	Extension Area in Each Operation Mode
---	---------------------------------------

Operation Mode	Address Mapping of External Extension Area	
Single-chip mode	None	
External extension mode	H'0010 0000 to H'001F FFFF (CS0 area: 1 Mbyte)	
	H'0020 0000 to H'002F FFFF (CS1 area: 1 Mbyte)	(Note 1)
Processor mode	H'0000 0000 to H'000F FFFF (CS0 area: 1 Mbyte)	(Note 2)
	H'0020 0000 to H'002F FFFF (CS1 area: 1 Mbyte)	(Note 2)

Note 1: During external extension mode, a ghost (1 Mbyte) of the CS1 area appears in an area of H'0030 0000 through H'003F FFFF.

Note 2: During processor mode, a ghost (1 Mbyte) of the CS0 area appears in an area of H'0010 0000 through H'001F FFFF and a ghost (1 Mbyte) of the CS1 area appears in an area of H'0030 0000 through H'003F FFFF.

3.4 Internal RAM and SFR Areas

The 8-Mbyte area from the address H'0080 0000 to the address H'00FF FFFF comprise the internal RAM and SFR (Special Function Register) areas. Of these, the space that the user can actually use is a 128-Kbyte area from the address H'0080 0000 to the address H'0081 FFFF. The other areas here are ghosts in 128-Kbyte units. (Do not use the ghost area intentionally during programming.)

3.4.1 Internal RAM Area

The internal RAM area is allocated to the addresses shown below.

		1000	
Type Name	Size	Allocation Address	
M32176F4	24 Kbytes	H'0080 4000 to H'0080 9FFF	
M32176F3	24 Kbytes	H'0080 4000 to H'0080 9FFF	
M32176F2	24 Kbytes	H'0080 4000 to H'0080 9FFF	

Table 3.4.1 Internal RAM Allocation Address

3.4.2 SFR (Special Function Register) Area

The addresses H'0080 0000 to H'0080 3FFFF comprise the SFR (Special Function Register) area. Located in this area are the internal peripheral I/O registers.

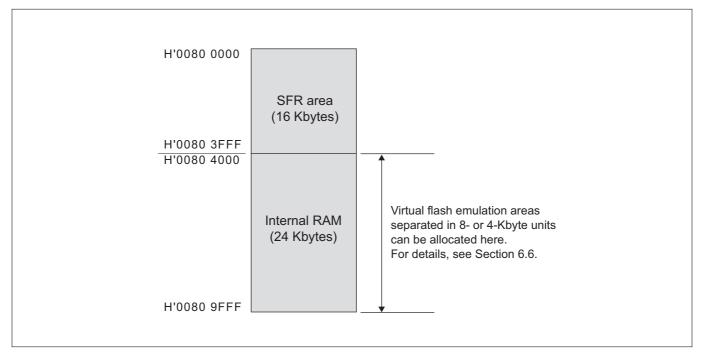


Figure 3.4.1 Internal RAM and SFR (Special Function Register) Areas

ADDRESS SPACE 3.4 Internal RAM and SFR Areas

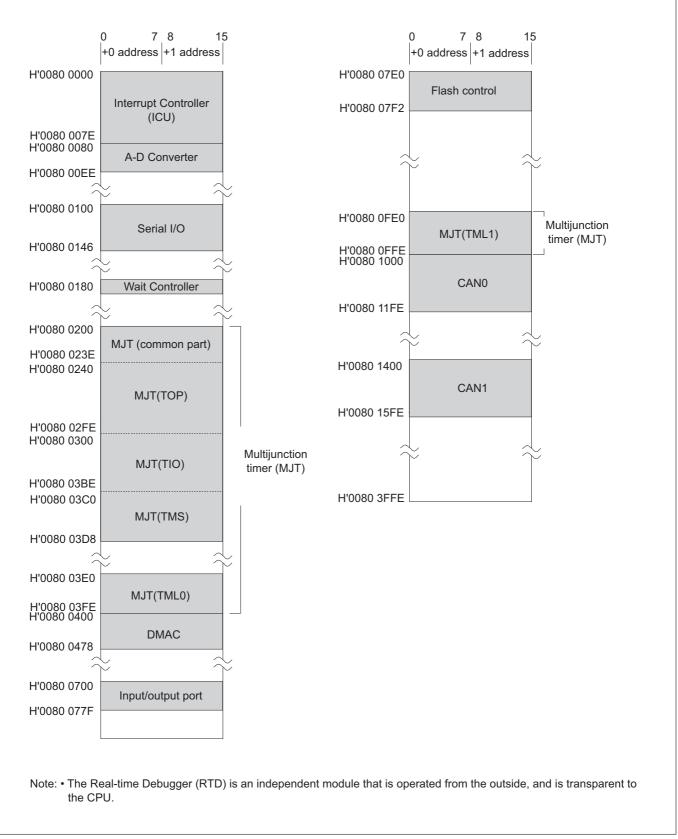


Figure 3.4.2 Outline Mapping of the SFR Area

SFR Area Register Map (1/22)

Address	+0 address b0 b7	+1 address b8 b15	See pages
H'0080 0000	Interrupt Vec		5-5
H'0080 0002	(Use inhib	,	
H'0080 0004	Interrupt Request Mask Register (IMASK)	(Use inhibited area)	5-6
H'0080 0006	SBI Control Register (SBICR)	(Use inhibited area)	5-7
I	(Use inhib	ited area)	
H'0080 0060	CAN0 Transmit/Receive & Error Interrupt Control Register (ICAN0CR)	(Use inhibited area)	5-8
H'0080 0062	(Use inhib	ited area)	
H'0080 0064	(Use inhib	ited area)	
H'0080 0066	(Use inhibited area)	RTD Interrupt Control Register (IRTDCR)	5-8
H'0080 0068	SIO2, 3 Transmit/Receive Interrupt Control Register (ISIO23CR)	DMA5–9 Interrupt Control Register (IDMA59CR)	5-8
H'0080 006A	(Use inhib	ited area)	
H'0080 006C	A-D0 Conversion Interrupt Control Register (IAD0CCR)	SIO0 Transmit Interrupt Control Register (ISIO0TXCR)	5-8
H'0080 006E	SIO0 Receive Interrupt Control Register (ISIO0RXCR)	SIO1 Transmit Interrupt Control Register (ISIO1TXCR)	5-8
H'0080 0070	SIO1 Receive Interrupt Control Register (ISIO1RXCR)	DMA0–4 Interrupt Control Register (IDMA04CR)	5-8
H'0080 0072	MJT Output Interrupt Control Register 0 (IMJTOCR0)	MJT Output Interrupt Control Register 1 (IMJTOCR1)	5-8
H'0080 0074	MJT Output Interrupt Control Register 2 (IMJTOCR2)	MJT Output Interrupt Control Register 3 (IMJTOCR3)	5-8
H'0080 0076	MJT Output Interrupt Control Register 4 (IMJTOCR4)	MJT Output Interrupt Control Register 5 (IMJTOCR5)	5-8
H'0080 0078	MJT Output Interrupt Control Register 6 (IMJTOCR6)	MJT Output Interrupt Control Register 7 (IMJTOCR7)	5-8
H'0080 007A	(Use inhibited area)	MJT Input Interrupt Control Register 1 (IMJTICR1)	5-8
H'0080 007C	MJT Input Interrupt Control Register 2 (iIMJTICR2)	MJT Input Interrupt Control Register 3 (IMJTICR3)	5-8
H'0080 007E	MJT Input Interrupt Control Register 4 (IMJTICR4)	CAN1 Transmit/Receive & Error Interrupt Control Register (ICAN1CR)	5-8
H'0080 0080	A-D0 Single Mode Register 0 (AD0SIM0)	A-D0 Single Mode Register 1 (AD0SIM1)	11-14 11-16
H'0080 0082	(Use inhib	ited area)	
H'0080 0084	A-D0 Scan Mode Register 0 (AD0SCM0)	A-D0 Scan Mode Register 1 (AD0SCM1)	11-18 11-20
H'0080 0086	A-D0 Disconnection Detection Assist Function Control Register (AD0DDACR)	A-D0 Conversion Speed Control Register (AD0CVSCR)	11-23 11-22
H'0080 0088	A-D0 Successive Ap (AD0		11-27
H'0080 008A	A-D0 Disconnection Detectio (AD0DI	on Assist Method Select Register DASEL)	11-24
H'0080 008C	A-D0 Comparat (AD0		11-28
H'0080 008E	(Use inhib	ited area)	
H'0080 0090	10-bit A-D0 Da (AD0		11-29
H'0080 0092	10-bit A-D0 D (AD0	ata Register 1 DT1)	11-29
H'0080 0094	10-bit A-D0 D (AD0	ata Register 2 DT2)	11-29
H'0080 0096	10-bit A-D0 D (AD0		11-29
H'0080 0098	10-bit A-D0 Da (AD0	ata Register 4 DT4)	11-29
H'0080 009A	10-bit A-D0 D (AD0	ata Register 5 DT5)	11-29

SFR Area Register Map (2/22)

Address	+0 address b0 b7	+1 address b8 b15	See pages
H'0080 009C		ata Register 6 DT6)	11-29
H'0080 009E	10-bit A-D0 D	ata Register 7 DT7)	11-29
H'0080 00A0	10-bit A-D0 D	ata Register 8 DDT8)	11-29
H'0080 00A2	10-bit A-D0 D	ata Register 9 DT9)	11-29
H'0080 00A4	10-bit A-D0 Da	ata Register 10 DT10)	11-29
H'0080 00A6	10-bit A-D0 Da	ata Register 11 DT11)	11-29
H'0080 00A8	10-bit A-D0 Da	ata Register 12 DT12)	11-29
H'0080 00AA	10-bit A-D0 Da	ata Register 13 DT13)	11-29
H'0080 00AC	10-bit A-D0 Da	ata Register 14 DT14)	11-29
H'0080 00AE	10-bit A-D0 Da	ata Register 15 DT15)	11-29
H'0080 00D0	(Use inhibited area)	8-bit A-D0 Data Register 0 (AD08DT0)	11-30
H'0080 00D2	(Use inhibited area)	8-bit A-D0 Data Register 1 (AD08DT0)	11-30
H'0080 00D4	(Use inhibited area)	8-bit A-D0 Data Register 2 (AD08DT2)	11-30
H'0080 00D6	(Use inhibited area)	8-bit A-D0 Data Register 3 (AD08DT3)	11-30
H'0080 00D8	(Use inhibited area)	8-bit A-D0 Data Register 4 (AD08DT4)	11-30
H'0080 00DA	(Use inhibited area)	8-bit A-D0 Data Register 5 (AD08DT5)	11-30
H'0080 00DC	(Use inhibited area)	8-bit A-D0 Data Register 6 (AD08DT6)	11-30
H'0080 00DE	(Use inhibited area)	8-bit A-D0 Data Register 7 (AD08DT7)	11-30
H'0080 00E0	(Use inhibited area)	8-bit A-D0 Data Register 8 (AD08DT8)	11-30
H'0080 00E2	(Use inhibited area)	8-bit A-D0 Data Register 9 (AD08DT9)	11-30
H'0080 00E4	(Use inhibited area)	8-bit A-D0 Data Register 10 (AD08DT10)	11-30
H'0080 00E6	(Use inhibited area)	8-bit A-D0 Data Register 11 (AD08DT11)	11-30
H'0080 00E8	(Use inhibited area)	8-bit A-D0 Data Register 12 (AD08DT12)	11-30
H'0080 00EA	(Use inhibited area)	8-bit A-D0 Data Register 13 (AD08DT13)	11-30
H'0080 00EC	(Use inhibited area)	8-bit A-D0 Data Register 14 (AD08DT14)	11-30
H'0080 00EE	(Use inhibited area)	8-bit A-D0 Data Register 15 (AD08DT15)	11-30
I	(Use inhit	bited area)	
H'0080 0100	SIO23 Interrupt Request Status Register (SI23STAT)	SIO03 Interrupt Request Mask Register (SI03MASK)	12-9 12-10
H'0080 0102	SIO03 Interrupt Request Source Select Register (SI03SEL)	(Use inhibited area)	12-10
1		j pited area)	
H'0080 0110	SIO0 Transmit Control Register (S0TCNT)	SIO0 Transmit/Receive Mode Register (S0MOD)	12-13 12-15
H'0080 0112	SIO0 Transmit	Buffer Register	12-15
H'0080 0114	SIO0 Receive	TXB) Buffer Register	12-19
H'0080 0116	SIO0 Receive Control Register (S0RCNT)	RXB) SIO0 Baud Rate Register (S0BAUR)	12-20 12-23

SFR Area Register Map (3/22)

Address b0	+0 address	+1 address b8 b15	See pages
H'0080 0118	SIO0 Special Mode Register (S0SMOD)	(Use inhibited area)	12-24
	(Use inhib	ited area)	
H'0080 0120	SIO1 Transmit Control Register (S1TCNT)	SIO1 Transmit/Receive Mode Register (S1MOD)	12-13 12-15
H'0080 0122	SIO1 Transmit (S1T	Buffer Register	12-18
H'0080 0124	SIO1 Receive I (S1R	Suffer Register	12-19
H'0080 0126	SIO1 Receive Control Register (S1RCNT)	SIO1 Baud Rate Register (S1BAUR)	12-20 12-23
H'0080 0128	SIO1 Special Mode Register (S1SMOD)	(Use inhibited area)	12-24
1	(Use inhib	ited area)	
H'0080 0130	SIO2 Transmit Control Register (S2TCNT)	SIO2 Transmit/Receive Mode Register (S2MOD)	12-13 12-15
H'0080 0132	SIO2 Transmit (S2T	Buffer Register	12-18
H'0080 0134	SIO2 Receive B (S27	Juffer Register	12-19
H'0080 0136	SIO2 Receive Control Register (S2RCNT)	SIO2 Baud Rate Register (S2BAUR)	12-20 12-23
1	(Use inhib		12-23
H'0080 0140	SIO3 Transmit Control Register (S3TCNT)	SIO3 Transmit/Receive Mode Register (S3MOD)	12-13 12-15
H'0080 0142	SIO3 Transmit (S3TCNT)	Buffer Register	12-13
H'0080 0144	SIO3 Receive I (S37 SIO3 Receive I	Suffer Register	12-19
H'0080 0146	SIO3 Receive Control Register (S3RCNT)	SIO3 Baud Rate Register (S3BAUR)	12-20 12-23
	(Use inhib		12-23
H'0080 0180	Wait Cycles Control Register	(Use inhibited area)	16-4
1	(WTCCR) (Use inhib	ited area)	
H'0080 0200	(Use inhibited area)	Clock Bus & Input Event Bus Control Register (CKIEBCR)	10-13
H'0080 0202	Prescaler Register 0 (PRS0)	Prescaler Register 1 (PRS1)	10-9
H'0080 0204	Prescaler Register 2 (PRS2)	Output Event Bus Control Register (OEBCR)	10-9 10-14
1	(Use inhib		10-14
H'0080 0210	TCLK Input Process (TCL		10-17
H'0080 0212	TIN Input Processing (TIN	g Control Register 0	10-18
H'0080 0214	(Use inhib	,	
H'0080 0216	(Use inhib	ited area)	
H'0080 0218	TIN Input Processing (TIN)	g Control Register 3	10-19
H'0080 021A	TIN Input Processing	g Control Register 4	10-19
H'0080 021C	(TINC) (Use inhib	,	
H'0080 021E	(Use inhib	ited area)	
H'0080 0220	F/F Source Se		10-21
H'0080 0222	(FF (Use inhibited area)	F/F Source Select Register 1	10-22
H'0080 0224	F/F Protect		10-23
	(FF	PU)	

SFR Area Register Map (4/22)

+0 address b0 b7	+1 address b15	See pages
		10-24
(Use inhibited area)	F/F Protect Register 1 (FFP1)	10-23
(Use inhibited area)	F/F Data Register 1 (FFD1)	10-24
(Use inhit	ited area)	
TOP Interrupt Control Register 0 (TOPIR0)	TOP Interrupt Control Register 1 (TOPIR1)	10-29
TOP Interrupt Control Register 2 (TOPIR2)	TOP Interrupt Control Register 3 (TOPIR3)	10-31 10-32
TIO Interrupt Control Register 0 (TIOIR0)	TIO Interrupt Control Register 1 (TIOIR1)	10-33 10-34
TIO Interrupt Control Register 2 (TIOIR2)	TMS Interrupt Control Register (TMSIR)	10-35 10-36
TIN Interrupt Control Register 0	TIN Interrupt Control Register 1	10-37 10-38
TIN Interrupt Control Register 4 (TINIR4)	TIN Interrupt Control Register 5 (TINIR5)	10-39
TIN Interrupt Control Register 6	(Use inhibited area)	10-41
TOP0 (10-53
TOP0 Relo	ad Register	10-54
	,	
		10-55
· · · · · · · · · · · · · · · · · · ·	,	
		10-53
TOP1 Relo	ad Register	10-54
\	,	
		10-55
	,	
TOP2 (Counter	10-53
TOP2 Relo	ad Register	10-54
		10-55
	,	
		10-53
TOP3 Relo	ad Register	10-54
TOP3 Correc	ction Register	10-55
· · · · · · · · · · · · · · · · · · ·	,	
		10-53
TOP4 Relo	ad Register	10-54
(TOF	24RL)	
	(FF (Use inhibited area) (Use inhibited area) (TOPIR2) TIO Interrupt Control Register 0 (TIOIR2) TIN Interrupt Control Register 0 (TINIR6) (Use inhibited area) (Use in	(Use inhibited area) (FFP1) (Use inhibited area) F/F Data Register 1 (FFD1) (Use inhibited area) (Use inhibited area) TOP Interrupt Control Register 0 (TOPIR0) TOP Interrupt Control Register 1 (TOPIR1) TOP Interrupt Control Register 2 (TOPIR2) TOP Interrupt Control Register 3 (TOPIR3) TIO Interrupt Control Register 0 (TIOIR0) TIO Interrupt Control Register 1 (TIOIR1) TIO Interrupt Control Register 2 (TIOIR2) TMS Interrupt Control Register 1 (TINIR1) TIN Interrupt Control Register 0 (TINIR0) TIN Interrupt Control Register 1 (TINIR1) TIN Interrupt Control Register 4 (TINIR4) TIN Interrupt Control Register 5 (TINIR5) TIN Interrupt Control Register 6 (Use inhibited area)

SFR Area Register Map (5/22)

Address b0	+0 address +1 address b7 b8 b15	See pages
H'0080 0286	TOP4 Correction Register (TOP4CC)	10-55
I	(Use inhibited area)	
H'0080 0290	TOP5 Counter (TOP5CT)	10-53
H'0080 0292	TOP5 Reload Register (TOP5RL)	10-54
H'0080 0294	(Use inhibited area)	
H'0080 0296	TOP5 Correction Register (TOP5CC)	10-55
H'0080 0298	(Use inhibited area)	
H'0080 029A	TOP0–5 Control Register 0 (TOP05CR0)	10-49
H'0080 029C	(Use inhibited area) TOP0–5 Control Register 1 (TOP05CR1)	10-49
H'0080 029E	(Use inhibited area)	
H'0080 02A0	TOP6 Counter (TOP6CT)	10-53
H'0080 02A2	TOP6 Reload Register (TOP6RL)	10-54
H'0080 02A4	(Use inhibited area)	
H'0080 02A6	TOP6 Correction Register (TOP6CC)	10-55
H'0080 02A8	(Use inhibited area)	
H'0080 02AA	TOP6, 7 Control Register (TOP67CR)	10-51
1	(Use inhibited area)	
H'0080 02B0	TOP7 Counter (TOP7CT)	10-53
H'0080 02B2	TOP7 Reload Register (TOP7RL)	10-54
H'0080 02B4	(Use inhibited area)	
H'0080 02B6	TOP7 Correction Register (TOP7CC)	10-55
1	(Use inhibited area)	
H'0080 02C0	TOP8 Counter (TOP8CT)	10-53
H'0080 02C2	TOP8 Reload Register (TOP8RL)	10-54
H'0080 02C4	(Use inhibited area)	
H'0080 02C6	TOP8 Correction Register (TOP8CC)	10-55
I	(Use inhibited area)	
H'0080 02D0	TOP9 Counter	10-53
H'0080 02D2	(TOP9CT) TOP9 Reload Register	10-54
H'0080 02D4	(TOP9RL) (Use inhibited area)	
H'0080 02D6	TOP9 Correction Register (TOP9CC)	10-55
I	(Use inhibited area)	
H'0080 02E0	TOP10 Counter	10-53
H'0080 02E2	(TOP10CT) TOP10 Reload Register	10-54
H'0080 02E4	(TOP10RL) (Use inhibited area)	

SFR Area Register Map (6/22)

Address	+0 address b7	+1address b8	b15	See pages
H'0080 02E6	TOP10 Corre (TOP1	tion Register 0CC)		10-55
H'0080 02E8	(Use inhib	,		
H'0080 02EA	TOP8–10 Col (TOP8	ntrol Register		10-52
	(Use inhib			
H'0080 02FA	TOP0-10 External Er (TOP	able Permit Register		10-56
H'0080 02FC	TOP0-10 Enable (TOP	Protect Register		10-56
H'0080 02FE	TOP0-10 Count (TOP)	Enable Register		10-57
H'0080 0300	TIOO C (TIO	ounter		10-87
H'0080 0302	(Use inhib	,		
H'0080 0304	TIO0 Reload (TIO0	I 1 Register		10-89
H'0080 0306	TIO0 Reload 0/ M (TIO0 Reload 0/ M	leasure Register		10-88
1	(Use inhib	,		
H'0080 0310	TIO1 C (TIO			10-87
H'0080 0312	(Use inhib	,		
H'0080 0314	TIO1 Reload (TIO1			10-89
H'0080 0316	TIO1 Reload 0/ M (TIO1 Reload 0/ M (TIO1	leasure Register		10-88
H'0080 0318	(Use inhib	,		
H'0080 031A	TIO0-3 Contr (TIO03			10-80
H'0080 031C	(Use inhibited area)	TIO0–3 Control Register 1 (TIO03CR1)		10-81
H'0080 031E	(Use inhib	· · · · · · · · · · · · · · · · · · ·		
H'0080 0320	TIO2 C (TIO2			10-87
H'0080 0322	(Use inhib			
H'0080 0324	TIO2 Reload (TIO2			10-89
H'0080 0326	TIO2 Reload 0/ N (TIO2 Reload 0/ N (TIO2	leasure Register		10-88
	(Use inhib			
H'0080 0330	TIO3 C (TIO3	ounter		10-87
H'0080 0332	(Use inhib	,		
H'0080 0334	TIO3 Reload (TIO3	I 1 Register		10-89
H'0080 0336	TIO3 Reload 0/ M (TIO3 Reload 0/ M (TIO3	leasure Register		10-88
	(Use inhib			
H'0080 0340	TIO4 C (TIO4			10-87
H'0080 0342	(HD4) (Use inhib	,		
H'0080 0344	TIO4 Reload			10-89
H'0080 0346	(TIO4) TIO4 Reload 0/ N (TIO4)	leasure Register		10-88
H'0080 0348	(1104 (Use inhib	,		

SFR Area Register Map (7/22)

+0 address +1 address b7 b8 b15	See pages
TIO4 Control Register TIO5 Control Register	10-82 10-84
(Use inhibited area)	10-04
TIO5 Counter (TIO5CT)	10-87
(Use inhibited area)	
TIO5 Reload 1 Register (TIO5RI 1)	10-89
TIO5 Reload 0/ Measure Register	10-88
(Use inhibited area)	
TIO6 Counter (TIO6CT)	10-87
(Use inhibited area)	
TIO6 Reload 1 Register (TIO6RI 1)	10-89
TIO6 Reload 0/ Measure Register	10-88
(Use inhibited area)	
TIO6 Control Register TIO7 Control Register	10-85 10-86
(Use inhibited area)	10.00
TIO7 Counter	10-87
(Use inhibited area)	
TIO7 Reload 1 Register	10-89
TIO7 Reload 0/ Measure Register	10-88
(Use inhibited area)	
TIO8 Counter	10-87
(Use inhibited area)	
TIO8 Reload 1 Register (TIO8RI 1)	10-89
TIO8 Reload 0/ Measure Register	10-88
(Use inhibited area)	
TIO8 Control Register TIO9 Control Register	10-86 10-87
(Use inhibited area)	10-07
TIO9 Counter	10-87
(Use inhibited area)	
TIO9 Reload 1 Register	10-89
TIO9 Reload 0/ Measure Register	10-88
(Use inhibited area)	
TIO0-9 Enable Protect Register	10-90
TIO0-9 Count Enable Register	10-91
TMS0 Counter	10-108
TMS0 Measure 3 Register (TMS0MR3)	10-108
	b0 b7 b8 b8 b75 control Register (TIO4 Control Register (TIO4 CR) (Use inhibited area) TIO5 Reload 1 Register (TIO5 Reload 1 Register TIO5 Reload 1 Register TIO7 Control Register TIO7 Control Register TIO7 Control Register TIO7 Reload 1 Register TIO7 Control Register TIO7 Control Register TIO7 Reload 1 Register TIO8 Control (Use inhibited area) TIO8 Reload 1 Register TIO8 Reload 1 Register TIO9 Reload 3 Resource Register TIO9 Reload 3 Reso

SFR Area Register Map (8/22)

H0080 03C4 TMS0 Measure 2 Register (TMS0MR2) H0080 03C6 TMS0 Measure 1 Register (TMS0MR1) H0080 03C8 TMS0 Control Register (TMS0MR0) H0080 03C6 TMS0 Control Register (TMS0MR0) H0080 03C6 TMS0 Control Register (TMS0MR0) H0080 03C6 TMS1 Control Register (TMS0MR0) H0080 03D0 TMS1 Control Register (TMS1MR3) H0080 03D2 TMS1 Measure 3 Register (TMS1MR3) H0080 03D4 TMS1 Control Register (TMS1MR2) H0080 03D5 TMS1 Measure 1 Register (TMS1MR2) H0080 03D6 TMS1 Control Register (TMS1MR2) H0080 03D8 TMS1 Measure 1 Register (TMS1MR2) H0080 03E0 TMS1 Control Register (TMS1MR2) H0080 03E0 TML0 Control Register (TML0CTH) H0080 03F0 TML0 Measure 3 Register (TML0CR) H0080 03F0 TML0 Measure 3 Register (TML0CR2) H0080 03F0 TML0 Measure 3 Register (TML0R2) H0080 03F0 TML0 Measure 3 Register (TML0R2) H0080 03F6 TML0 Measure 3 Register (TML0R2) H0080 03F6 TML0 Measure 3 Register (TML0R2) H0080 03F6 TML0 Measure 3 Register (TML0MEAR1) <tr< th=""><th>See</th><th>+1address b8 b15</th><th>+0 address b0 b7</th><th>Address</th></tr<>	See	+1address b8 b15	+0 address b0 b7	Address
H0080 03C6 TMS0 Mesure 1 Register (TMS0MR0) H0080 03C8 TMS0 Control Register (TMS0MR0) H0080 03CA TMS0 Control Register (TMS0R0) I (Use inhbited area) H0080 03D0 TMS1 Control Register (TMS1C7) H0080 03D0 TMS1 Counter (TMS1C7) H0080 03D0 TMS1 Mesure 3 Register (TMS1MR1) H0080 03D4 TMS1 Mesure 2 Register (TMS1MR1) H0080 03D6 TMS1 Mesure 2 Register (TMS1MR0) H0080 03D6 TMS1 Mesure 2 Register (TMS1MR0) H0080 03D6 TMS1 Mesure 0 Register (TMS1MR0) H0080 03D6 TML0 Counter (TML0CTH) H0080 03E0 TML0 Counter (TML0CTH) H0080 03E4 (Use inhibited area) H0080 03E4 (Use inhibited area) H0080 03E6 TML0 Counter (TML0CR1) H0080 03F0 TML0 Messure 3 Register (TML0CR1) H0080 03F0 TML0 Messure 3 Register (TML0CR1) H0080 03F6 TML0 Messure 3 Register (TML0MR2H) H0080 03F6 TML0 Messure 3 Register (TML0MR2H) H0080 03F6 TML0 Messure 3 Register (TML0MR2H) H0080 03F6 TML0 Messure 1 Register (TML0MR2H)	pages 10-108	re 2 Register	C4 TMS0 Measu	F
H0080 03C8 TMSD Measure 0 Register (TMSDRM) H0080 03CA TMSD Control Register (TMSDCR) TMST Control Register (TMSTCD) I (Use inhibited area) H0080 03D0 TMST Counter (TMSTCD) H0080 03D2 TMST Counter (TMSTCD) H0080 03D4 TMST Measure 3 Register (TMSTMR3) H0080 03D4 TMST Measure 3 Register (TMSTMR3) H0080 03D6 TMST Measure 1 Register (TMSTMR3) H0080 03D6 TMST Measure 1 Register (TMSTMR3) H0080 03D6 TMST Measure 1 Register (TMLCCD) H0080 03D6 TMST Measure 1 Register (TMLCCD) H0080 03E0 (Use inhibited area) H0080 03EA (Use inhibited area) H0080 03F4 TMLO Counter (TMLOMR3L) (Lower) H0080 03F4 TMLO Measure 3 Register (TMLOMR3L) (Lower) H0080 03F4 TMLO Measure 3 Register (TMLOMR3L) (Lower) H0080 03F4 TMLO Measure 3 Register (TMLOMR3L) (Lower) H0080 03F4 TMLO Measur	10-108	re 1 Register	C6 TMS0 Measu	H'0080 03C6
H0080 03CA TMS1 Control Register TMS1 Control Register I (Use inhibited area) H0080 03D0 TMS1 Counter (TMS1CR) H0080 03D2 TMS1 Measure 3 Register H0080 03D4 TMS1 Measure 3 Register H0080 03D6 TMS1 Measure 3 Register H0080 03E0 TMLC Counter H0080 03E2 TMLC Counter H0080 03E2 TMLC Counter H0080 03E4 (Use inhibited area) H0080 03E4 (Use inhibited area) H0080 03E6 TMLC Counter I (Use inhibited area) H0080 03E4 (Use inhibited area) H0080 03E6 TML0 Measure 3 Register I (Use inhibited area) H0080 03F6 TML0 Measure 3 Register H0080 03F6 TML0 Measure 3 Register H0080 03F6 TML0 Measure 3 Register H0080 03F6 TML0 Measure 7 Register H0080 03F6 TML0 Measure 7 Register </td <td>10-108</td> <td>re 0 Register</td> <td>C8 TMS0 Measu</td> <td>H'0080 03C8</td>	10-108	re 0 Register	C8 TMS0 Measu	H'0080 03C8
Image: constraint of the second se	10-107	TMS1 Control Register	CA TMS0 Control Register	H'0080 03CA
(TMS1CT) H0080 0302 TMS1 Measure 3 Register H0080 0304 (TMS1MR3) H0080 0306 TMS1 Measure 2 Register H0080 0308 (TMS1MR1) H0080 0308 (TMS1MR1) H0080 0308 (TMS1MR1) H0080 0308 (TMS1MR2) H0080 0308 (TMS1MR2) H0080 0320 (TMS1MR0) H0080 0320 (TMS1MR0) H0080 0322 TML0 Counter H0080 0322 (Use inhibited area) H0080 0324 (Use inhibited area) H0080 0325 (Use inhibited area) H0080 0326 (Use inhibited area) H0080 0326 (Use inhibited area) H0080 0327 TML0 Measure 3 Register H0080 0326 TML0 Measure 3 Register H0080 0327 TML0 Measure 2 Register H0080 0326 TML0 Measure 2 Register H0080 0376 TML0 Measure 2 Register H008				
H0080 03D2 TMS1 Measure 3 Register (TMS1MR3) H0080 03D6 TMS1 Measure 2 Register (TMS1MR3) H0080 03D6 TMS1 Measure 1 Register (TMS1MR3) H0080 03D8 TMS1 Measure 1 Register (TMS1MR3) H0080 03D8 TMS1 Measure 0 Register (TMS1MR3) H0080 03E0 TML0 Counter (TML0TH) H0080 03E2 TML0 Counter (TML0TH) H0080 03E4 (Use inhibited area) H0080 03F0 TML0 Counter (TML0MR3H) H0080 03F0 TML0 Measure 3 Register (Upper) H0080 03F4 TML0 Measure 3 Register (Upper) H0080 03F4 TML0 Measure 2 Register (Upper) H0080 03F6 TML0 Measure 2 Register (Upper) H0080 03F6 TML0 Measure 2 Register (Lower) H0080 03F6 TML0 Measure 2 Register (Upper) H0080 03F6 TML0 Measure 2 Register (Lower) H0080 03F6 TML0 Measure 2 Register (Lower) H0080 03F6 TML0 Measure 2 Register (LOWE1H) H0080 03F6 TML0 Measure 2 Register (LOWE1H)	10-108			H'0080 03D0
H0080 0304 TMST Measure 2 Register (TMSTMR2) H0080 0306 TMST Measure 1 Register (TMSTMR0) H0080 0308 TMST Measure 0 Register (TMSTMR0) I (Use inhibited area) H0080 0320 TML0 Counter (TML0CTH) H0080 0322 TML0 Counter (TML0CTL) I (Use inhibited area) H0080 03EA (Use inhibited area) H0080 03EA (Use inhibited area) H0080 03F0 TML0 Control Register (TML0MR3H) H0080 03F0 (Use inhibited area) H0080 03F2 TML0 Measure 3 Register (Upper) H0080 03F4 TML0 Measure 2 Register (Lower) H0080 03F6 TML0 Measure 2 Register (IMMR2H) H0080 03F6 TML0 Measure 1 Register (IMMR2H) H0080 03F6 TML0 Measure 1 Register (IMMR1H) H0080 03F6 TML0 Measure 1 Register (IMMR1H) <tr< td=""><td>10-108</td><td>re 3 Register</td><td>D2 TMS1 Measu</td><td>H'0080 03D2</td></tr<>	10-108	re 3 Register	D2 TMS1 Measu	H'0080 03D2
H0080 03D6 TMS1 Measure 1 Register (TMS1MR1) H0080 03D8 TMS1 Measure 0 Register (TMS1MR0) I (Use inhibited area) H0080 03E0 TML0 Counter (TML0CTH) H0080 03E2 TML0 Counter (TML0CTL) I (Use inhibited area) H0080 03EA (Use inhibited area) H0080 03EA (Use inhibited area) H0080 03F0 TML0 Control Register (TML0CR) H0080 03F0 TML0 Measure 3 Register (TML0MR3H) H0080 03F2 TML0 Measure 3 Register (Upper) H0080 03F4 TML0 Measure 2 Register (TML0MR3H) H0080 03F6 TML0 Measure 3 Register (Upper) H0080 03F6 TML0 Measure 1 Register (UMWR1L) H0080 03F6 TML0 Measure 1 Register (UMWR1L) H0080 03F6 TML0 Measure 1 Register (DM04T1MK1) H0080 03F6 TML0 Measure 0 Register (DM04T1MK1) H0080 03F6 TML0 Measure 0 Register (DM04T1MK1) H0080 03F6 TML0 Measure 0 Register (DM04T1MK1)<	10-108	re 2 Register	D4 TMS1 Measu	H'0080 03D4
H0080 03D8 TMS1 Measure 0 Register (TMS1MR0) I (Use inhibited area) H0080 03E2 TML0 Counter (TML0CTH) (Upper) I (Use inhibited area) H0080 03E4 (Use inhibited area) I (Use inhibited area) H0080 03E4 (Use inhibited area) I (Use inhibited area) H0080 03E4 (Use inhibited area) H0080 03F0 TML0 Measure 3 Register (TML0MR3H) H0080 03F2 TML0 Measure 3 Register (TML0MR3H) H0080 03F4 TML0 Measure 3 Register (TML0MR2H) H0080 03F4 TML0 Measure 1 Register (TML0MR2H) H0080 03F6 TML0 Measure 1 Register (Lower) H0080 03F6 TML0 Measure 1 Register (DM04TST) H0080 03F6 TML0 Measure 1 Register (DM04TST) H0080 0400 DMA5-9 Interrupt Request Status Register (DM04TST)	10-108	re 1 Register	D6 TMS1 Measu	H'0080 03D6
Image: space spac	10-108	re 0 Register	D8 TMS1 Measu	H'0080 03D8
(TMLOCTH) TML0 Counter (TML0CTL) (Lower) I (Use inhibited area) TML0 Control Register (TML0CR) H0080 03EA (Use inhibited area) TML0 Control Register (TML0CR) I (Use inhibited area) TML0 Control Register (TML0MR3H) H0080 03F0 TML0 Measure 3 Register (TML0MR3H) (Upper) H0080 03F2 TML0 Measure 2 Register (TML0MR2H) (Lower) H0080 03F4 TML0 Measure 2 Register (TML0MR2H) (Lower) H0080 03F6 TML0 Measure 1 Register (TML0MR2H) (Lower) H0080 03F6 TML0 Measure 1 Register (TML0MR2H) (Lower) H0080 03F6 TML0 Measure 1 Register (Upper) (Lower) H0080 03F6 TML0 Measure 1 Register (Lower) (Lower) H0080 03F6 TML0 Measure 0 Register (TML0MR2L) (Lower) H0080 03F6 TML0 Measure 0 Register (DM04TMK) (Lower) H0080 03F6 TML0 Measure 0 Register (DM04TMK) (Lower) H0080 03F6 TML0 Measure 0 Register (DM04TMK) (Lower) H0080 0400 DMA0-4 Interrupt Request Status Register (DM04TMK) (Lower) I (Use inhibited area) DMA0-4 Interrupt Request Status Register (DM04TMK) (DM		,		
H'0080 03E2 TML0 Counter (TMLOCTL) (Lower) I (Use inhibited area) (Use inhibited area) H'0080 03EA (Use inhibited area) TML0 Control Register (TMLORR) I (Use inhibited area) (TMLOCR) I (Use inhibited area) (Upper) H'0080 03F0 TML0 Measure 3 Register (TMLOMR3L) (Upper) H'0080 03F2 TML0 Measure 2 Register (TMLOMR3L) (Upper) H'0080 03F4 TML0 Measure 2 Register (TMLOMR2L) (Upper) H'0080 03F6 TML0 Measure 2 Register (TMLOMR2L) (Lower) H'0080 03F6 TML0 Measure 1 Register (TMLOMR1H) (Upper) H'0080 03FA TML0 Measure 0 Register (TMLOMR1H) (Lower) H'0080 03FA TML0 Measure 0 Register (TMLOMR1H) (Lower) H'0080 03FA TML0 Measure 0 Register (TMLOMR0H) (Lower) H'0080 03FE TML0 Measure 0 Register (DMO4TIST) (Lower) H'0080 03FE TML0 Measure 0 Register (DM04TIST) (Lower) H'0080 0400 DMA0-4 Interrupt Request Status Register (DM04TIST) (Lower) I (Use inhibited area) (DM04TIMK) I (Use inhibited area) (DM3	10-113			H'0080 03E0
Image: start start in the start start in the start start in the start s	10-113	counter (Lower)	E2 TML0 (H'0080 03E2
Image: constraint of the second se		,		
Image: constraint of the second se	10-112		EA (Use inhibited area)	H'0080 03EA
H'0080 03F2 TMLO Measure 3 Register (TMLOMR3L) (Lower) H'0080 03F4 TML0 Measure 2 Register (TMLOMR2L) (Upper) H'0080 03F6 TML0 Measure 2 Register (Lower) (Upper) H'0080 03F6 TML0 Measure 1 Register (TMLOMR2L) (Uoper) H'0080 03F8 TML0 Measure 1 Register (TMLOMR1H) (Upper) H'0080 03FA TML0 Measure 1 Register (TMLOMR1L) (Upper) H'0080 03FC TML0 Measure 0 Register (TMLOMR1L) (Lower) H'0080 03FE TML0 Measure 0 Register (DM04TIST) (Lower) H'0080 0400 DMA0-4 Interrupt Request Status Register (DM04TIST) (Lower) H'0080 0408 DMA5-9 Interrupt Request Status Register (DM59TIST) DMA5-9 Interrupt Request Mask Register (DM059TIST) H'0080 0410 DMA0 Channel Control Register (DM02A) DMA0 Transfer Count Register (DM05A) H'0080 0412 DMA0 Channel Control Register (DM02A) DMA0 Transfer Count Register (DM05A) H'0080 0414 DMA0 Destination Address Register (DM0DA) DMA0 Transfer Count Register			(Use inhit	
H'0080 03F2 TML0 Measure 3 Register (Lower) (TML0MR3L) H'0080 03F4 TML0 Measure 2 Register (Upper) (TML0MR2H) H'0080 03F6 TML0 Measure 2 Register (Lower) H'0080 03F6 TML0 Measure 1 Register (Upper) H'0080 03F8 TML0 Measure 1 Register (Upper) H'0080 03FA TML0 Measure 1 Register (Upper) H'0080 03FA TML0 Measure 1 Register (Lower) H'0080 03FA TML0 Measure 1 Register (Upper) H'0080 03FC TML0 Measure 0 Register (Upper) H'0080 03FE TML0 Measure 0 Register (Lower) H'0080 03FE TML0 Measure 0 Register (Lower) H'0080 0400 DMA0-4 Interrupt Request Status Register (DM04ITMK) H'0080 0400 DMA5-9 Interrupt Request Status Register (DM04ITMK) I (Use inhibited area) H'0080 0408 DMA5-9 Interrupt Request Status Register (DM59ITMK) I (Use inhibited area) H'0080 0410 DMA0 Channel Control Register (DM05A) H'0080 0412 DMA0 Channel Control Register (DM05A) H'0080 0414 DMA0 Destination Address Register (DM05A) H'0080 0416 (Use inhibited area)	10-114			H'0080 03F0
H'0080 03F4 TML0 Measure 2 Register (Upper) (TML0MR2H) H'0080 03F6 TML0 Measure 1 Register (Lower) H'0080 03F8 TML0 Measure 1 Register (Upper) H'0080 03F8 TML0 Measure 1 Register (Upper) H'0080 03FA TML0 Measure 1 Register (Lower) H'0080 03FA TML0 Measure 1 Register (Lower) H'0080 03FA TML0 Measure 1 Register (Lower) H'0080 03FC TML0 Measure 0 Register (Lower) H'0080 03FE TML0 Measure 0 Register (Lower) H'0080 03FE TML0 Measure 0 Register (Lower) H'0080 0400 DMA0-4 Interrupt Request Status Register (DM04HTMK) H'0080 0400 DMA0-9 Interrupt Request Status Register (DM04HTMK) H'0080 0408 DMA5-9 Interrupt Request Status Register (DM04TTMK) H'0080 0410 DMA0 Channel Control Register (DM05HTMK) H'0080 0410 DMA0 Channel Control Register (DM00CNT) H'0080 0414 DMA0 Destination Address Register (DM0TCT) H'0080 0416 (Use inhibited area)	10-114	re 3 Register (Lower)	F2 TML0 Measu	H'0080 03F2
H'0080 03F6 TML0 Measure 2 Register (Lower) (TML0MR2L) H'0080 03F8 TML0 Measure 1 Register (Upper) (TML0MR1L) H'0080 03FA TML0 Measure 1 Register (Lower) H'0080 03FC TML0 Measure 1 Register (Lower) H'0080 03FC TML0 Measure 0 Register (Lower) H'0080 03FE TML0 Measure 0 Register (Lower) H'0080 03FE TML0 Measure 0 Register (Lower) H'0080 0400 DMA0-4 Interrupt Request Status Register (DM04ITST) H'0080 0400 DMA5-9 Interrupt Request Status Register (DM59ITMK) (Use inhibited area) H'0080 0410 DMA5-9 Interrupt Request Status Register (DM59ITMK) (Use inhibited area) H'0080 0410 DMA0 Channel Control Register (DM02NT) H'0080 0412 DMA0 Channel Control Register (DM02NT) H'0080 0414 DMA0 Destination Address Register (DM0TCT) H'0080 0414 DMA0 Destination Address Register (DM02A) H'0080 0418 DMA5 Channel Control Register (DM02N)	10-114	e 2 Register (Upper)	F4 TML0 Measu	H'0080 03F4
H'0080 03F8 TML0 Measure 1 Register (Upper) (TML0MR1H) H'0080 03FA TML0 Measure 1 Register (Lower) (TML0MR1H) H'0080 03FC TML0 Measure 0 Register (Upper) (TML0MR0H) H'0080 03FE TML0 Measure 0 Register (Lower) (TML0MR0H) H'0080 03FE TML0 Measure 0 Register (Lower) (TML0MR0H) H'0080 0400 DMA0-4 Interrupt Request Status Register (DM04ITMK) (Use inhibited area) H'0080 0408 DMA5-9 Interrupt Request Status Register (DM59ITMK) (Use inhibited area) H'0080 0410 DMA0 Channel Control Register (DM050ITMK) H'0080 0412 DMA0 Channel Control Register (DM050A) H'0080 0414 DMA0 Destination Address Register (DM02A) H'0080 0416 (Use inhibited area)	10-114	re 2 Register (Lower)	F6 TML0 Measu	H'0080 03F6
H'0080 03FA TML0 Measure 1 Register (Lower) H'0080 03FC TML0 Measure 0 Register (Upper) H'0080 03FE TML0 Measure 0 Register (Lower) H'0080 03FE TML0 Measure 0 Register (Lower) H'0080 03FE TML0 Measure 0 Register (Lower) H'0080 0400 DMA0-4 Interrupt Request Status Register (DM04ITST) I (Use inhibited area) H'0080 0408 DMA5-9 Interrupt Request Status Register (DM59ITST) I (Use inhibited area) H'0080 0410 DMA0 Channel Control Register (DM04Transfer Count Register (DM00KT) H'0080 0412 DMA0 Channel Control Register (DM05A) H'0080 0414 DMA0 Destination Address Register (DM05A) H'0080 0416 (Use inhibited area)	10-114	re 1 Register (Upper)	F8 TML0 Measu	H'0080 03F8
H'0080 03FC TML0 Measure 0 Register (Upper) (TML0MR0H) (Upper) H'0080 03FE TML0 Measure 0 Register (Lower) (Lower) H'0080 0400 DMA0-4 Interrupt Request Status Register (DM04ITST) DMA0-4 Interrupt Request Mask Register (DM04ITMK) H'0080 0408 DMA5-9 Interrupt Request Status Register (DM59ITST) DMA5-9 Interrupt Request Mask Register (DM59ITST) H'0080 0410 DMA0 Channel Control Register (DM00KNT) DMA0 Transfer Count Register (DM07CT) H'0080 0412 DMA0 Obscination Address Register (DM00A) DMA0 Destination Address Register (DM00A) H'0080 0416 (Use inhibited area) MA0 Destination Address Register (DM00A) H'0080 0416 DMA5 Channel Control Register (DM00A) DMA5 Transfer Count Register (DM00A)	10-114	re 1 Register (Lower)	FA TML0 Measu	H'0080 03FA
H'0080 03FE TMLO Measure 0 Register (TML0MR0L) (Lower) H'0080 0400 DMA0-4 Interrupt Request Status Register (DM04ITST) DMA0-4 Interrupt Request Mask Register (DM04ITMK) (Use inhibited area) H'0080 0408 DMA5-9 Interrupt Request Status Register (DM59ITST) DMA5-9 Interrupt Request Mask Register (DM59ITMK) (Use inhibited area) H'0080 0410 DMA0 Channel Control Register (DM0CNT) DMA0 Transfer Count Register (DM0CT) H'0080 0412 DMA0 Channel Control Register (DM00X) DMA0 Destination Address Register (DM0SA) H'0080 0414 OMA0 Destination Address Register (DM0DA) DMA5 Channel Control Register H'0080 0418 DMA5 Channel Control Register DMA5 Transfer Count Register	10-114	re 0 Register (Upper)	FC TML0 Measu	H'0080 03FC
H'0080 0400 DMA0-4 Interrupt Request Status Register (DM04ITST) DMA0-4 Interrupt Request Mask Register (DM04ITMK) H'0080 0408 DMA5-9 Interrupt Request Status Register (DM59ITST) DMA5-9 Interrupt Request Mask Register (DM59ITMK) H'0080 0410 DMA0 Channel Control Register (DM0CNT) DMA0 Transfer Count Register (DM0TCT) H'0080 0412 DMA0 Channel Control Register (DM00SA) DMA0 Transfer Count Register (DM0SA) H'0080 0414 DMA0 Destination Address Register (DM0DA) DMA0 Destination Address Register (DM0DA) H'0080 0418 DMA5 Channel Control Register DMA5 Transfer Count Register	10-114	re 0 Register (Lower)	FE TML0 Measu	H'0080 03FE
Image: Construct the second state of the second state o	9-18 9-19	DMA0–4 Interrupt Request Mask Register	00 DMA0-4 Interrupt Request Status Register	H'0080 0400
(DM59iTST) (DM59iTMK) (Use inhibited area) H'0080 0410 DMA0 Channel Control Register (DM0CNT) H'0080 0412 DMA0 Channel Control Register (DM0SA) H'0080 0414 DMA0 Source Address Register (DM0DA) H'0080 0416 (Use inhibited area) H'0080 0418 DMA5 Channel Control Register	5-15			
Image: Control Register Image: Control Register Image: Control Register H'0080 0410 Image: Control Register Image: Control Register H'0080 0412 Image: Control Register Image: Control Register H'0080 0412 Image: Control Register Image: Control Register H'0080 0414 Image: Control Register Image: Control Register H'0080 0416 Image: Control Register Image: Control Register H'0080 0418 Image: Control Register Image: Control Register	9-18 9-19			H'0080 0408
(DMOCNT) (DMOTCT) H'0080 0412 DMA0 Source Address Register (DM0SA) H'0080 0414 DMA0 Destination Address Register (DM0DA) H'0080 0416 (Use inhibited area) H'0080 0418 DMA5 Channel Control Register	3-13			
H'0080 0412 DMA0 Source Address Register (DM0SA) H'0080 0414 DMA0 Destination Address Register (DM0DA) H'0080 0416 (Use inhibited area) H'0080 0418 DMA5 Channel Control Register	9-6 9-15			H'0080 0410
H'0080 0414 DMA0 Destination Address Register (DM0DA) H'0080 0416 (Use inhibited area) H'0080 0418 DMA5 Channel Control Register	9-15	ddress Register	12 DMA0 Source A	H'0080 0412
H'0080 0416 (Use inhibited area) H'0080 0418 DMA5 Channel Control Register DMA5 Transfer Count Register	9-14	Address Register	14 DMA0 Destination	H'0080 0414
		,		H'0080 0416
	9-8			H'0080 0418
(DM5CNT) (DM5TCT) H'0080 041A DMA5 Source Address Register	9-15 9-13	ddress Register	1A DMA5 Source A	H'0080 041A
(DM5SA) H'0080 041C DMA5 Destination Address Register (DM5DA)	9-14	Address Register	1C DMA5 Destination	H'0080 041C

SFR Area Register Map (9/22)

Address	+0 address	+1 address b8 b15	See pages
H'0080 041E	(Use inhib		1 - 3
H'0080 0420	DMA1 Channel Control Register (DM1CNT)	DMA1 Transfer Count Register (DM1TCT)	9-6 9-15
H'0080 0422	DMA1 Source A	ddress Register 1SA)	9-13
H'0080 0424	``````````````````````````````````````	Address Register	9-14
H'0080 0426	· · · · · · · · · · · · · · · · · · ·	ited area)	
H'0080 0428	DMA6 Channel Control Register (DM6CNT)	DMA6 Transfer Count Register (DM6TCT)	9-9 9-15
H'0080 042A	DMA6 Source A	ddress Register 6SA)	9-13
H'0080 042C	DMA6 Destination	,	9-14
H'0080 042E	, , , , , , , , , , , , , , , , , , ,	ited area)	
H'0080 0430	DMA2 Channel Control Register (DM2CNT)	DMA2 Transfer Count Register (DM2TCT)	9-7 9-15
H'0080 0432		ddress Register	9-13
H'0080 0434	DMA2 Destination (DM2	Address Register	9-14
H'0080 0436	(Use inhib	,	
H'0080 0438	DMA7 Channel Control Register	DMA7 Transfer Count Register (DM7TCT)	9-9 9-15
H'0080 043A		ddress Register	9-13
H'0080 043C	(DM) DMA7 Destination	Address Register	9-14
H'0080 043E	(DM7DA) (Use inhibited area)		
H'0080 0440	DMA3 Channel Control Register	DMA3 Transfer Count Register	9-7
H'0080 0442		(DM3TCT)	9-15 9-13
H'0080 0444		Address Register	9-14
H'0080 0446	(DM: (Use inhib	vited area)	
H'0080 0448	DMA8 Channel Control Register	DMA8 Transfer Count Register	9-10
H'0080 044A	(DM8CNT) DMA8 Source A	(DM8TCT)	9-15 9-13
H'0080 044C		Address Register	9-14
H'0080 044E	(DMi (Use inhib	BDA) ited area)	
H'0080 0450	DMA4 Channel Control Register	DMA4 Transfer Count Register	9-8
H'0080 0452	(DM4CNT) DMA4 Source A		9-15 9-13
H'0080 0454	DMA4 Destination	4SA) Address Register	9-14
H'0080 0456	(DM4DA) (Use inhibited area)		
H'0080 0458	DMA9 Channel Control Register	DMA9 Transfer Count Register	9-10
H'0080 045A		(DM9TCT)	9-15 9-13
H'0080 045C	DMA9 Destination	9SA) Address Register	9-14
H'0080 045E	(DM9DA) (Use inhibited area)		
H'0080 0460	DMA0 Software Reque		9-12
H'0080 0462	DMA1 Software Reque		9-12
	(DM1		

SFR Area Register Map (10/22)

Address	+0 address b0 b7	+1 address b8 b15	See pages
H'0080 0464	DMA2 Software Reque (DM2	st Generation Register 2SRI)	9-12
H'0080 0466	· · · · · · · · · · · · · · · · · · ·	est Generation Register	9-12
H'0080 0468	DMA4 Software Reque	est Generation Register (SRI)	9-12
	(Use inhib	,	
H'0080 0470		est Generation Register	9-12
H'0080 0472	DMA6 Software Reque	est Generation Register (SSRI)	9-12
H'0080 0474	DMA7 Software Reque	est Generation Register 'SRI)	9-12
H'0080 0476	DMA8 Software Reque	est Generation Register 3SRI)	9-12
H'0080 0478	· · · · · · · · · · · · · · · · · · ·	est Generation Register	9-12
I	(Use inhib	,	
H'0080 0700	P0 Data Register (P0DATA)	P1 Data Register (P1DATA)	8-7
H'0080 0702	P2 Data Register (P2DATA)	P3 Data Register (P3DATA)	8-7
H'0080 0704	P4 Data Register (P4DATA)	(Use inhibited area)	8-7
H'0080 0706	P6 Data Register (P6DATA)	P7 Data Register (P7DATA)	8-7
H'0080 0708	P8 Data Register (P8DATA)	P9 Data Register (P9DATA)	8-7
H'0080 070A	P10 Data Register (P10DATA)	P11 Data Register (P11DATA)	8-7
H'0080 070C	P12 Data Register (P12DATA)	P13 Data Register (P13DATA)	8-7
H'0080 070E	(Use inhibited area)	P15 Data Register (P15DATA)	8-7
H'0080 0710	(Use inhibited area)	P17 Data Register (P17DATA)	8-7
H'0080 0712	(Use inhibited area)	(Use inhibited area)	
H'0080 0714	(Use inhibited area)	(Use inhibited area)	
H'0080 0716	P22 Data Register	(Use inhibited area)	8-7
	(P22DATA) (Use inhit	ited area)	
H'0080 0720	P0 Direction Register (P0DIR)	P1 Direction Register	8-8
H'0080 0722	P2 Direction Register	(P1DIR) P3 Direction Register	8-8
H'0080 0724	(P2DIR) P4 Direction Register	(P3DIR) (Use inhibited area)	8-8
H'0080 0726	(P4DIR) P6 Direction Register	P7 Direction Register	8-8
H'0080 0728	(P6DIR) P8 Direction Register	(P7DIR) P9 Direction Register	8-8
H'0080 072A	(P8DIR) P10 Direction Register	(P9DIR) P11 Direction Register	8-8
H'0080 072C	(P10DIR) P12 Direction Register	(P11DIR) P13 Direction Register	8-8
H'0080 072E	(P12DIR) (Use inhibited area)	(P13DIR) P15 Direction Register	8-8
H'0080 0730	(Use inhibited area)	(P15DIR) P17 Direction Register	8-8
H'0080 0732	(Use inhibited area)	(P17DIR) (Use inhibited area)	
H'0080 0734	(Use inhibited area)	(Use inhibited area)	

SFR Area Register Map (11/22)

Address	+0 address	+1 address b8 b15	See pages
H'0080 0736	P22 Direction Register (P22DIR)	(Use inhibited area)	8-8
	(Use inhib	ited area)	
H'0080 0744	(Use inhibited area)	Port Input Special Function Control Register (PICNT)	8-15 18-3
H'0080 0746	(Use inhibited area)	P7 Operation Mode Register (P7MOD)	8-9, 15-4 18-7
H'0080 0748	P8 Operation Mode Register (P8MOD)	P9 Operation Mode Register (P9MOD)	8-9 8-10
H'0080 074A	P10 Operation Mode Register (P10MOD)	P11 Operation Mode Register (P11MOD)	8-10 8-11
H'0080 074C	P12 Operation Mode Register (P12MOD)	P13 Operation Mode Register (P13MOD)	8-11 8-12
H'0080 074E	(Use inhibited area)	P15 Operation Mode Register (P15MOD)	8-12
H'0080 0750	(Use inhibited area)	P17 Operation Mode Register (P17MOD)	8-13
H'0080 0752	(Use inhibited area)	(Use inhibited area)	
H'0080 0754	(Use inhibited area)	(Use inhibited area)	
H'0080 0756	P22 Operation Mode Register (P22MOD)	(Use inhibited area)	8-13
	(Use inhib	ited area)	
H'0080 0760	Port Group 0, 1 Input Level Setting Register (PG01LEV)	Port Group 3 Input Level Setting Register	8-18
H'0080 0762	Port Group 4, 5 Input Level Setting Register (PG45LEV)	(PG3LEV) Port Group 6, 7 Input Level Setting Register (PG67LEV)	8-18
H'0080 0764	Port Group 8 Input Level Setting Register	(Use inhibited area)	8-18
H'0080 0766	(PG8LEV) (Use inhibited area)	P7 Peripheral Function Select Register	8-14
	(Use inhib	(P7SMOD) ited area)	
H'0080 077A	(Use inhibited area)	RTD Write Function Disable Register (WRRDIS)	14-3
	(Use inhib		
H'0080 077E	(Use inhibited area)	Bus Mode Control Register (BUSMODC)	15-5
	(Use inhib		
H'0080 0786	Clock Control Register (CLKCR)	(Use inhibited area)	18-5
	(Use inhib	ited area)	
H'0080 07E0	Flash Mode Register (FMOD)	Flash Status Register (FSTAT)	6-7 6-8
H'0080 07E2	Flash Control Register 1 (FCNT1)	Flash Control Register 2 (FCNT2)	6-9 6-10
H'0080 07E4	Flash Control Register 3 (FCNT3)	Flash Control Register 4 (FCNT4)	6-10 6-11 6-13
H'0080 07E6	(Use inhib	· · · · · ·	0-13
H'0080 07E8	Virtual Flash L B		6-15
H'0080 07EA	(FELB, Virtual Flash L B	Sank Register 1	6-15
	(FELB. (Use inhib	,	
H'0080 07F0	Virtual Flash S I		6-16
H'0080 07F2	(FESB) Virtual Flash S I	Bank Register 1	6-16
, F	(FESB (Use inhib	,	
I I			1

SFR Area Register Map (12/22)

Address	+0 address b0 b7	+1 address b8 b15	See pages
H'0080 0FE2	TML1 C (TML1		10-113
	(Use inhibited area)		
H'0080 0FEA	(Use inhibited area)	TML1 Control Register (TML1CR)	10-112
	(Use inhib		
H'0080 0FF0	TML1 Measur (TML1N		10-115
H'0080 0FF2	TML1 Measur (TML1	re 3 Register (Lower)	10-115
H'0080 0FF4	TML1 Measur (TML1)		10-115
H'0080 0FF6	TML1 Measur (TML1	re 2 Register (Lower)	10-115
H'0080 0FF8	TML1 Measur (TML1N	re 1 Register (Upper)	10-115
H'0080 0FFA	TML1 Measur (TML1	re 1 Register (Lower)	10-115
H'0080 0FFC	TML1 Measur (TML1N		10-115
H'0080 0FFE	TML1 Measur (TML1	re 0 Register (Lower)	10-115
	(Use inhibi	,	
H'0080 1000	CAN0 Contr (CAN0		13-15
H'0080 1002	CANO Statu (CANO)	is Register	13-18
H'0080 1004	CANO Extende (CANOE	d ID Register	13-21
H'0080 1006	CANO Configur (CANO	ation Register	13-22
H'0080 1008	CANO Timestamp (CANOT	Count Register	13-24
H'0080 100A	CAN0 Receive Error Count Register (CAN0REC)	CAN0 Transmit Error Count Register (CAN0TEC)	13-25
H'0080 100C	CANO Slot Interrupt Re (CANOS	equest Status Register	13-29
H'0080 100E	(Use inhib	ited area)	
H'0080 1010	CAN0 Slot Interrupt Re (CAN0S	equest Mask Register SLIMK)	13-30
H'0080 1012	(Use inhib	ited area)	
H'0080 1014	CAN0 Error Interrupt Request Status Register (CAN0ERIST)	CAN0 Error Interrupt Request Mask Register (CAN0ERIMK)	13-31 13-32
H'0080 1016	CAN0 Baud Rate Prescaler (CAN0BRP)	CAN0 Cause of Error Register (CAN0EF)	13-26 13-45
H'0080 1018	CANO Mode Register (CANOMOD)	CAN0 DMA Transfer Request Select Register (CAN0DMARQ)	13-47 13-48
	(Use inhibition of the second se		
H'0080 1028	CAN0 Global Mask Register Standard ID 0 (C0GMSKS0)	CAN0 Global Mask Register Standard ID 1 (C0GMSKS1)	13-49
H'0080 102A	CANO Global Mask Register Extended ID 0 (C0GMSKE0)	CANO Global Mask Register Extended ID 1 (C0GMSKE1)	13-50
H'0080 102C	CANO Global Mask Register Extended ID 2 (C0GMSKE2)	(Use inhibited area)	13-51
H'0080 102E	(Use inhib	ited area)	
H'0080 1030	CAN0 Local Mask Register A Standard ID 0 (C0LMSKAS0)	CAN0 Local Mask Register A Standard ID 1 (C0LMSKAS1)	13-49
H'0080 1032	CANO Local Mask Register A Extended ID 0 (COLMSKAE0)	CAN0 Local Mask Register A Extended ID 1 (C0LMSKAE1)	13-50
H'0080 1034	CANO Local Mask Register A Extended ID 2 (COLMSKAE2)	(Use inhibited area)	13-51
H'0080 1036	(Use inhib	ited area)	

ADDRESS SPACE 3.4 Internal RAM and SFR Areas

SFR Area Register Map (13/22)

Address	+0 address	+1 address	See
H'0080 1038	00 b7 CAN0 Local Mask Register B Standard ID 0	CAN0 Local Mask Register B Standard ID 1	<u>pages</u> 13-49
H'0080 103A	(C0LMŠKBS0) CAN0 Local Mask Register B Extended ID 0	(C0LMSKBS1) CAN0 Local Mask Register B Extended ID 1	13-50
H'0080 103C	(C0LMŠKBE0) CAN0 Local Mask Register B Extended ID 2	(C0LMŠKBE1) (Use inhibited area)	13-51
H'0080 103E	(C0LMSKBE2) (Use inhib	ited area)	
H'0080 1040		ode Control Register	13-53
H'0080 1042		SMODE) ited area)	
H'0080 1044	CAN0 Single-Shot Interrup		13-33
H'0080 1046	(CANO (Use inhib	,	
H'0080 1048	CAN0 Single-Shot Interru		13-34
	(CANO: (Use inhib	,	
H'0080 1050	CAN0 Message Slot 0 Control Register (C0MSL0CNT)	CAN0 Message Slot 1 Control Register (C0MSL1CNT)	13-54
H'0080 1052	CAN0 Message Slot 2 Control Register (C0MSL2CNT)	CAN0 Message Slot 3 Control Register (C0MSL3CNT)	13-54
H'0080 1054	CAN0 Message Slot 4 Control Register (C0MSL4CNT)	CAN0 Message Slot 5 Control Register (C0MSL5CNT)	13-54
H'0080 1056	CAN0 Message Slot 6 Control Register (C0MSL6CNT)	CAN0 Message Slot 7 Control Register (COMSL7CNT)	13-54
H'0080 1058	CAN0 Message Slot 8 Control Register (C0MSL8CNT)	CAN0 Message Slot 9 Control Register (C0MSL9CNT)	13-54
H'0080 105A	CAN0 Message Slot 10 Control Register (C0MSL10CNT)	CAN0 Message Slot 11 Control Register (C0MSL11CNT)	13-54
H'0080 105C	CAN0 Message Slot 12 Control Register (C0MSL12CNT)	CAN0 Message Slot 13 Control Register (C0MSL13CNT)	13-54
H'0080 105E	CAN0 Message Slot 14 Control Register (C0MSL14CNT)	CAN0 Message Slot 15 Control Register (C0MSL15CNT)	13-54
	(Use inhib	ited area)	
H'0080 1100	CAN0 Message Slot 0 Standard ID 0 (C0MSL0SID0)	CAN0 Message Slot 0 Standard ID 1 (C0MSL0SID1)	13-58 13-59
H'0080 1102	CAN0 Message Slot 0 Extended ID 0 (C0MSL0EID0)	CAN0 Message Slot 0 Extended ID 1 (C0MSL0EID1)	13-60 13-61
H'0080 1104	CAN0 Message Slot 0 Extended ID 2 (C0MSL0EID2)	CAN0 Message Slot 0 Data Length Register (C0MSL0DLC)	13-62 13-63
H'0080 1106	CAN0 Message Slot 0 Data 0 (C0MSL0DT0)	CAN0 Message Slot 0 Data 1 (C0MSL0DT1)	13-64 13-65
H'0080 1108	CAN0 Message Slot 0 Data 2 (C0MSL0DT2)	CAN0 Message Slot 0 Data 3 (C0MSL0DT3)	13-66 13-67
H'0080 110A	CAN0 Message Slot 0 Data 4 (C0MSL0DT4)	CAN0 Message Slot 0 Data 5 (C0MSL0DT5)	13-68 13-69
H'0080 110C	CAN0 Message Slot 0 Data 6 (C0MSL0DT6)	CAN0 Message Slot 0 Data 7 (C0MSL0DT7)	13-70 13-71
H'0080 110E	CAN0 Message S (C0MS	Slot 0 Timestamp L0TSP)	13-72
H'0080 1110	CAN0 Message Slot 1 Standard ID 0 (C0MSL1SID0)	CAN0 Message Slot 1 Standard ID 1 (C0MSL1SID1)	13-58 13-59
H'0080 1112	CAN0 Message Slot 1 Extended ID 0 (COMSL1EID0)	CAN0 Message Slot 1 Extended ID 1 (C0MSL1EID1)	13-60 13-61
H'0080 1114	CAN0 Message Slot 1 Extended ID 2 (COMSL1EID2)	CAN0 Message Slot 1 Data Length Register (C0MSL1DLC)	13-62 13-63
H'0080 1116	CAN0 Message Slot 1 Data 0 (C0MSL1DT0)	CAN0 Message Slot 1 Data 1 (C0MSL1DT1)	13-64 13-65
H'0080 1118	CAN0 Message Slot 1 Data 2 (C0MSL1DT2)	CAN0 Message Slot 1 Data 3 (C0MSL1DT3)	13-66 13-67
H'0080 111A	CAN0 Message Slot 1 Data 4 (C0MSL1DT4)	CAN0 Message Slot 1 Data 5 (C0MSL1DT5)	13-68 13-69
H'0080 111C	CAN0 Message Slot 1 Data 6 (C0MSL1DT6)	CAN0 Message Slot 1 Data 7 (C0MSL1DT7)	13-70 13-71
H'0080 111E	CAN0 Message S (C0MS	Slot 1 Timestamp	13-72

SFR Area Register Map (14/22)

Address	+0 address	+1 address	See
	b0 b7	b8 b15	pages
H'0080 1120	CAN0 Message Slot 2 Standard ID 0	CAN0 Message Slot 2 Standard ID 1	13-58
	(C0MSL2SID0)	(C0MSL2SID1)	13-59
H'0080 1122	CAN0 Message Slot 2 Extended ID 0	CAN0 Message Slot 2 Extended ID 1	13-60
	(COMSL2EID0)	(C0MSL2EID1)	13-61
H'0080 1124	CAN0 Message Slot 2 Extended ID 2	CAN0 Message Slot 2 Data Length Register	13-62
	(C0MSL2EID2)	(C0MSL2DLC)	13-63
H'0080 1126	CAN0 Message Slot 2 Data 0	CAN0 Message Slot 2 Data 1	13-64
	(C0MSL2DT0)	(C0MSL2DT1)	13-65
H'0080 1128	CAN0 Message Slot 2 Data 2	CAN0 Message Slot 2 Data 3	13-66
	(C0MSL2DT2)	(C0MSL2DT3)	13-67
H'0080 112A	CAN0 Message Slot 2 Data 4	CAN0 Message Slot 2 Data 5	13-68
	(C0MSL2DT4)	(C0MSL2DT5)	13-69
H'0080 112C	CAN0 Message Slot 2 Data 6	CAN0 Message Slot 2 Data 7	13-70
	(C0MSL2DT6)	(C0MSL2DT7)	13-71
H'0080 112E	CAN0 Message (C0MS	Slot 2 Timestamp L2TSP)	13-72
H'0080 1130	CAN0 Message Slot 3 Standard ID 0	CAN0 Message Slot 3 Standard ID 1	13-58
	(C0MSL3SID0)	(C0MSL3SID1)	13-59
H'0080 1132	CAN0 Message Slot 3 Extended ID 0	CAN0 Message Slot 3 Extended ID 1	13-60
	(C0MSL3EID0)	(C0MSL3EID1)	13-61
H'0080 1134	CAN0 Message Slot 3 Extended ID 2	CAN0 Message Slot 3 Data Length Register	13-62
	(C0MSL3EID2)	(C0MSL3DLC)	13-63
H'0080 1136	CAN0 Message Slot 3 Data 0	CAN0 Message Slot 3 Data 1	13-64
	(C0MSL3DT0)	(C0MSL3DT1)	13-65
H'0080 1138	CAN0 Message Slot 3 Data 2	CAN0 Message Slot 3 Data 3	13-66
	(COMSL3DT2)	(COMSL3DT3)	13-67
H'0080 113A	CAN0 Message Slot 3 Data 4	CAN0 Message Slot 3 Data 5	13-68
	(C0MSL3DT4)	(COMSL3DT5)	13-69
H'0080 113C	CAN0 Message Slot 3 Data 6	CANO Message Slot 3 Data 7	13-70
	(COMSL3DT6)	(COMSL3DT7)	13-71
H'0080 113E	CAN0 Message	Slot 3 Timestamp L3TSP)	13-72
H'0080 1140	CAN0 Message Slot 4 Standard ID 0	CAN0 Message Slot 4 Standard ID 1	13-58
	(C0MSL4SID0)	(C0MSL4SID1)	13-59
H'0080 1142	CAN0 Message Slot 4 Extended ID 0	CAN0 Message Slot 4 Extended ID 1	13-60
	(C0MSL4EID0)	(C0MSL4EID1)	13-61
H'0080 1144	CAN0 Message Slot 4 Extended ID 2	CAN0 Message Slot 4 Data Length Register	13-62
	(C0MSL4EID2)	(C0MSL4DLC)	13-63
H'0080 1146	CAN0 Message Slot 4 Data 0	CAN0 Message Slot 4 Data 1	13-64
	(C0MSL4DT0)	(COMSL4DT1)	13-65
H'0080 1148	CAN0 Message Slot 4 Data 2	CAN0 Message Slot 4 Data 3	13-66
	(C0MSL4DT2)	(COMSL4DT3)	13-67
H'0080 114A	CAN0 Message Slot 4 Data 4	CAN0 Message Slot 4 Data 5	13-68
	(C0MSL4DT4)	(C0MSL4DT5)	13-69
H'0080 114C	CAN0 Message Slot 4 Data 6	CAN0 Message Slot 4 Data 7	13-70
	(C0MSL4DT6)	(C0MSL4DT7)	13-71
H'0080 114E	CAN0 Message (COMS	Slot 4 Timestamp L4TSP)	13-72
H'0080 1150	CAN0 Message Slot 5 Standard ID 0	CAN0 Message Slot 5 Standard ID 1	13-58
	(C0MSL5SID0)	(C0MSL5SID1)	13-59
H'0080 1152	CAN0 Message Slot 5 Extended ID 0	CAN0 Message Slot 5 Extended ID 1	13-60
	(C0MSL5EID0)	(C0MSL5EID1)	13-61
H'0080 1154	CAN0 Message Slot 5 Extended ID 2	CAN0 Message Slot 5 Data Length Register	13-62
	(C0MSL5EID2)	(C0MSL5DLC)	13-63
H'0080 1156	CAN0 Message Slot 5 Data 0	CAN0 Message Slot 5 Data 1	13-64
	(COMSL5DT0)	(COMSL5DT1)	13-65
H'0080 1158	CAN0 Message Slot 5 Data 2	CAN0 Message Slot 5 Data 3	13-66
	(COMSL5DT2)	(COMSL5DT3)	13-67
H'0080 115A	CANO Message Slot 5 Data 4	CANO Message Slot 5 Data 5	13-68
	(COMSL5DT4)	(COMSL5DT5)	13-69
H'0080 115C	CANO Message Slot 5 Data 6	CANO Message Slot 5 Data 7	13-70
	(COMSL5DT6)	(COMSL5DT7)	13-71
H'0080 115E	CAN0 Message	Slot 5 Timestamp L5TSP)	13-72
I	(00000	/	

SFR Area Register Map (15/22)

Address	+0 address	+1 address b8 b15	See pages
H'0080 1160	CAN0 Message Slot 6 Standard ID 0	CAN0 Message Slot 6 Standard ID 1	13-58
	(C0MSL6SID0)	(C0MSL6SID1)	13-59
H'0080 1162	CAN0 Message Slot 6 Extended ID 0	CAN0 Message Slot 6 Extended ID 1	13-60
	(COMSL6EID0)	(C0MSL6EID1)	13-61
H'0080 1164	CAN0 Message Slot 6 Extended ID 2	CAN0 Message Slot 6 Data Length Register	13-62
	(C0MSL6EID2)	(C0MSL6DLC)	13-63
H'0080 1166	CAN0 Message Slot 6 Data 0	CAN0 Message Slot 6 Data 1	13-64
	(COMSL6DT0)	(C0MSL6DT1)	13-65
H'0080 1168	CAN0 Message Slot 6 Data 2	CANO Message Slot 6 Data 3	13-66
	(C0MSL6DT2)	(COMSL6DT3)	13-67
H'0080 116A	CAN0 Message Slot 6 Data 4	CANO Message Slot 6 Data 5	13-68
	(C0MSL6DT4)	(COMSL6DT5)	13-69
H'0080 116C	CAN0 Message Slot 6 Data 6	CAN0 Message Slot 6 Data 7	13-70
	(C0MSL6DT6)	(C0MSL6DT7)	13-71
H'0080 116E		Slot 6 Timestamp L6TSP)	13-72
H'0080 1170	CAN0 Message Slot 7 Standard ID 0	CAN0 Message Slot 7 Standard ID 1	13-58
	(C0MSL7SID0)	(C0MSL7SID1)	13-59
H'0080 1172	CAN0 Message Slot 7 Extended ID 0	CAN0 Message Slot 7 Extended ID 1	13-60
	(C0MSL7EID0)	(COMSL7EID1)	13-61
H'0080 1174	CAN0 Message Slot 7 Extended ID 2	CAN0 Message Slot 7 Data Length Register	13-62
	(C0MSL7EID2)	(C0MSL7DLC)	13-63
H'0080 1176	CAN0 Message Slot 7 Data 0	CAN0 Message Slot 7 Data 1	13-64
	(C0MSL7DT0)	(C0MSL7DT1)	13-65
H'0080 1178	CAN0 Message Slot 7 Data 2	CAN0 Message Slot 7 Data 3	13-66
	(C0MSL7DT2)	(C0MSL7DT3)	13-67
H'0080 117A	CAN0 Message Slot 7 Data 4	CAN0 Message Slot 7 Data 5	13-68
	(C0MSL7DT4)	(C0MSL7DT5)	13-69
H'0080 117C	CAN0 Message Slot 7 Data 6	CAN0 Message Slot 7 Data 7	13-70
	(C0MSL7DT6)	(C0MSL7DT7)	13-71
H'0080 117E	CAN0 Message	Slot 7 Timestamp L7TSP)	13-72
H'0080 1180	CAN0 Message Slot 8 Standard ID 0	CAN0 Message Slot 8 Standard ID 1	13-58
	(C0MSL8SID0)	(C0MSL8SID1)	13-59
H'0080 1182	CAN0 Message Slot 8 Extended ID 0	CAN0 Message Slot 8 Extended ID 1	13-60
	(C0MSL8EID0)	(C0MSL8EID1)	13-61
H'0080 1184	CAN0 Message Slot 8 Extended ID 2	CAN0 Message Slot 8 Data Length Register	13-62
	(C0MSL8EID2)	(C0MSL8DLC)	13-63
H'0080 1186	CAN0 Message Slot 8 Data 0	CAN0 Message Slot 8 Data 1	13-64
	(C0MSL8DT0)	(C0MSL8DT1)	13-65
H'0080 1188	CAN0 Message Slot 8 Data 2	CANO Message Slot 8 Data 3	13-66
	(C0MSL8DT2)	(COMSL8DT3)	13-67
H'0080 118A	CAN0 Message Slot 8 Data 4	CAN0 Message Slot 8 Data 5	13-68
	(C0MSL8DT4)	(C0MSL8DT5)	13-69
H'0080 118C	CAN0 Message Slot 8 Data 6	CAN0 Message Slot 8 Data 7	13-70
	(C0MSL8DT6)	(C0MSL8DT7)	13-71
H'0080 118E		Slot 8 Timestamp L8TSP)	13-72
H'0080 1190	CAN0 Message Slot 9 Standard ID 0	CAN0 Message Slot 9 Standard ID 1	13-58
	(C0MSL9SID0)	(C0MSL9SID1)	13-59
H'0080 1192	CAN0 Message Slot 9 Extended ID 0	CAN0 Message Slot 9 Extended ID 1	13-60
	(C0MSL9EID0)	(C0MSL9EID1)	13-61
H'0080 1194	CAN0 Message Slot 9 Extended ID 2	CAN0 Message Slot 9 Data Length Register	13-62
	(C0MSL9EID2)	(C0MSL9DLC)	13-63
H'0080 1196	CAN0 Message Slot 9 Data 0	CAN0 Message Slot 9 Data 1	13-64
	(C0MSL9DT0)	(C0MSL9DT1)	13-65
H'0080 1198	CAN0 Message Slot 9 Data 2	CANO Message Slot 9 Data 3	13-66
	(C0MSL9DT2)	(COMSL9DT3)	13-67
H'0080 119A	CAN0 Message Slot 9 Data 4	CANO Message Slot 9 Data 5	13-68
	(COMSL9DT4)	(COMSL9DT5)	13-69
H'0080 119C	CANO Message Slot 9 Data 6	CANO Message Slot 9 Data 7	13-70
	(COMSL9DT6)	(COMSL9DT7)	13-71
H'0080 119E	CAN0 Message	Lord Timestamp L9TSP)	13-72
	(******	,	

SFR Area Register Map (16/22)

Address	+0 address	+1 address b8 b15	See pages
H'0080 11A0	CAN0 Message Slot 10 Standard ID 0	CAN0 Message Slot 10 Standard ID 1	13-58
	(C0MSL10SID0)	(C0MSL10SID1)	13-59
H'0080 11A2	CANO Message Slot 10 Extended ID 0	CAN0 Message Slot 10 Extended ID 1	13-60
	(COMSL10EID0)	(COMSL10EID1)	13-61
H'0080 11A4	CAN0 Message Slot 10 Extended ID 2	CAN0 Message Slot 10 Data Length Register	13-62
	(C0MSL10EID2)	(C0MSL10DLC)	13-63
H'0080 11A6	CANO Message Slot 10 Data 0	CAN0 Message Slot 10 Data 1	13-64
	(COMSL10DT0)	(C0MSL10DT1)	13-65
H'0080 11A8	CAN0 Message Slot 10 Data 2	CAN0 Message Slot 10 Data 3	13-66
	(C0MSL10DT2)	(C0MSL10DT3)	13-67
H'0080 11AA	CAN0 Message Slot 10 Data 4	CAN0 Message Slot 10 Data 5	13-68
	(C0MSL10DT4)	(C0MSL10DT5)	13-69
H'0080 11AC	CAN0 Message Slot 10 Data 6	CAN0 Message Slot 10 Data 7	13-70
	(C0MSL10DT6)	(C0MSL10DT7)	13-71
H'0080 11AE		lot 10 Timestamp 10TSP)	13-72
H'0080 11B0	CAN0 Message Slot 11 Standard ID 0	CAN0 Message Slot 11 Standard ID 1	13-58
	(C0MSL11SID0)	(C0MSL11SID1)	13-59
H'0080 11B2	CAN0 Message Slot 11 Extended ID 0	CAN0 Message Slot 11 Extended ID 1	13-60
	(C0MSL11EID0)	(COMSL11EID1)	13-61
H'0080 11B4	CAN0 Message Slot 11 Extended ID 2	CAN0 Message Slot 11 Data Length Register	13-62
	(C0MSL11EID2)	(C0MSL11DLC)	13-63
H'0080 11B6	CAN0 Message Slot 11 Data 0	CAN0 Message Slot 11 Data 1	13-64
	(C0MSL11DT0)	(C0MSL11DT1)	13-65
H'0080 11B8	CAN0 Message Slot 11 Data 2	CAN0 Message Slot 11 Data 3	13-66
	(C0MSL11DT2)	(C0MSL11DT3)	13-67
H'0080 11BA	CAN0 Message Slot 11 Data 4	CAN0 Message Slot 11 Data 5	13-68
	(C0MSL11DT4)	(C0MSL11DT5)	13-69
H'0080 11BC	CAN0 Message Slot 11 Data 6	CAN0 Message Slot 11 Data 7	13-70
	(C0MSL11DT6)	(C0MSL11DT7)	13-71
H'0080 11BE		lot 11 Timestamp 11TSP)	13-72
H'0080 11C0	CAN0 Message Slot 12 Standard ID 0	CAN0 Message Slot 12 Standard ID 1	13-58
	(C0MSL12SID0)	(C0MSL12SID1)	13-59
H'0080 11C2	CAN0 Message Slot 12 Extended ID 0	CAN0 Message Slot 12 Extended ID 1	13-60
	(C0MSL12EID0)	(C0MSL12EID1)	13-61
H'0080 11C4	CAN0 Message Slot 12 Extended ID 2	CAN0 Message Slot 12 Data Length Register	13-62
	(C0MSL12EID2)	(C0MSL12DLC)	13-63
H'0080 11C6	CAN0 Message Slot 12 Data 0	CAN0 Message Slot 12 Data 1	13-64
	(C0MSL12DT0)	(C0MSL12DT1)	13-65
H'0080 11C8	CAN0 Message Slot 12 Data 2	CAN0 Message Slot 12 Data 3	13-66
	(C0MSL12DT2)	(C0MSL12DT3)	13-67
H'0080 11CA	CAN0 Message Slot 12 Data 4	CAN0 Message Slot 12 Data 5	13-68
	(C0MSL12DT4)	(C0MSL12DT5)	13-69
H'0080 11CC	CAN0 Message Slot 12 Data 6	CAN0 Message Slot 12 Data 7	13-70
	(C0MSL12DT6)	(C0MSL12DT7)	13-71
H'0080 11CE	CAN0 Message S (C0MSL	Slot 12 Timestamp 12TSP)	13-72
H'0080 11D0	CAN0 Message Slot 13 Standard ID 0	CAN0 Message Slot 13 Standard ID 1	13-58
	(C0MSL13SID0)	(C0MSL13SID1)	13-59
H'0080 11D2	CAN0 Message Slot 13 Extended ID 0	CAN0 Message Slot 13 Extended ID 1	13-60
	(C0MSL13EID0)	(C0MSL13EID1)	13-61
H'0080 11D4	CAN0 Message Slot 13 Extended ID 2	CAN0 Message Slot 13 Data Length Register	13-62
	(C0MSL13EID2)	(C0MSL13DLC)	13-63
H'0080 11D6	CAN0 Message Slot 13 Data 0	CAN0 Message Slot 13 Data 1	13-64
	(C0MSL13DT0)	(C0MSL13DT1)	13-65
H'0080 11D8	CAN0 Message Slot 13 Data 2	CAN0 Message Slot 13 Data 3	13-66
	(C0MSL13DT2)	(C0MSL13DT3)	13-67
H'0080 11DA	CAN0 Message Slot 13 Data 4	CAN0 Message Slot 13 Data 5	13-68
	(C0MSL13DT4)	(C0MSL13DT5)	13-69
H'0080 11DC	CAN0 Message Slot 13 Data 6	CAN0 Message Slot 13 Data 7	13-70
	(C0MSL13DT6)	(C0MSL13DT7)	13-71
H'0080 11DE	CAN0 Message S (C0MSL	lot 13 Timestamp 13TSP)	13-72

SFR Area Register Map (17/22)

Address	+0 address b0 b7	+1 address b8 b15	See pages		
H'0080 11E0	CAN0 Message Slot 14 Standard ID 0 (COMSL14SID0)	CAN0 Message Slot 14 Standard ID 1 (C0MSL14SID1)	13-58 13-59		
H'0080 11E2	CAN0 Message Slot 14 Extended ID 0 (COMSL14EID0)	CANO Message Slot 14 Extended ID 1 (COMSL14EID1)	13-60 13-61		
H'0080 11E4	CANO Message Slot 14 Extended ID 2 (COMSL14EID2)	CANO Message Slot 14 Data Length Register (COMSL14DLC)	13-62 13-63		
H'0080 11E6	CAN0 Message Slot 14 Data 0 (C0MSL14DT0)	CAN0 Message Slot 14 Data 1 (C0MSL14DT1)	13-64 13-65		
H'0080 11E8	CAN0 Message Slot 14 Data 2 (C0MSL14DT2)	CAN0 Message Slot 14 Data 3 (C0MSL14DT3)	13-66 13-67		
H'0080 11EA	CAN0 Message Slot 14 Data 4 (C0MSL14DT4)	CAN0 Message Slot 14 Data 5 (C0MSL14DT5)	13-68 13-69		
H'0080 11EC	CAN0 Message Slot 14 Data 6 (C0MSL14DT6)	CAN0 Message Slot 14 Data 7 (C0MSL14DT7)	13-70 13-71		
H'0080 11EE	CAN0 Message S	lot 14 Timestamp 14TSP)	13-72		
H'0080 11F0	CAN0 Message Slot 15 Standard ID 0 (COMSL15SID0)	CAN0 Message Slot 15 Standard ID 1 (C0MSL15SID1)	13-58 13-59		
H'0080 11F2	CAN0 Message Slot 15 Extended ID 0 (COMSL15EID0)	CAN0 Message Slot 15 Extended ID 1 (C0MSL15EID1)	13-60 13-61		
H'0080 11F4	CAN0 Message Slot 15 Extended ID 2 (COMSL15EID2)	CAN0 Message Slot 15 Data Length Register (C0MSL15DLC)	13-62 13-63		
H'0080 11F6	CANO Message Slot 15 Data 0 (COMSL15DT0)	CANO Message Slot 15 Data 1 (COMSL15DT1)	13-64 13-65		
H'0080 11F8	CANO Message Slot 15 Data 2 (COMSL15DT2)	CANO Message Slot 15 Data 3 (COMSL15DT3)	13-66 13-67		
H'0080 11FA	CANO Message Slot 15 Data 4 (COMSL15DT4)	CANO Message Slot 15 Data 5 (COMSL15DT5)	13-68 13-69		
H'0080 11FC	CAN0 Message Slot 15 Data 6	CAN0 Message Slot 15 Data 7	13-70 13-71		
H'0080 11FE	CAN0 Message S	(C0MSL15DT6) (C0MSL15DT7) CAN0 Message Slot 15 Timestamp			
	· · · · · · · · · · · · · · · · · · ·	15TSP) bited area)			
H'0080 1400		rol Register	13-15		
H'0080 1402	CAN1 Stat	(CAN1CNT) CAN1 Status Register			
H'0080 1404	CAN1 Extend	STAT) ed ID Register	13-21		
H'0080 1406	CAN1 Configu	EXTID) ration Register	13-22		
H'0080 1408	CAN1 Timestam	CONF) Count Register	13-24		
H'0080 140A	CAN1 Receive Error Count Register	CAN1 Transmit Error Count Register	13-25		
H'0080 140C		(CAN1TEC) equest Status Register	13-29		
H'0080 140E		SLIST)			
H'0080 1410		equest Mask Register	13-30		
H'0080 1412	(CÁN1SLÍMK) (Use inhibited area)				
H'0080 1414	CAN1 Error Interrupt Request Status Register CAN1 Error Interrupt Request Mask Register		13-31		
H'0080 1416	(CAN1ERIST) CAN1 Baud Rate Prescaler	(CAN1ERIMK) CAN1 Cause of Error Register	13-32 13-26		
H'0080 1418	CAN1BRP) CAN1 Mode Register	(CAN1EF) CAN1 DMA Transfer Request Select Register	13-45 13-47 13-48		
	(CAN1MOD) (CAN1DMARQ) (CAN1DMARQ)				
' H'0080 1428	CAN1 Global Mask Register Standard ID 0 CAN1 Global Mask Register Standard ID 1		13-49		
H'0080 142A	(C1GMŠKS0) (C1GMŠKS1) CAN1 Global Mask Register Extended ID 0 CAN1 Global Mask Register Extended ID 1		13-50		
H'0080 142C	CAN'T Global Mask Register Extended ID 0 CAN'T Global Mask Register Extended ID 1 CAN'T Global Mask Register Extended ID 2 (C1GMSKE1)		13-51		
H'0080 142E	(C1GMSKE2) (Use inhibited area)				
	(036 1111)				

ADDRESS SPACE 3.4 Internal RAM and SFR Areas

SFR Area Register Map (18/22)

Address	+0 address b0 b7	+1 address b15	See pages	
H'0080 1430	CAN1 Local Mask Register A Standard ID 0 (C1LMSKAS0)	CAN1 Local Mask Register A Standard ID 1 (C1LMSKAS1)	13-49	
H'0080 1432	CAN1 Local Mask Register A Extended ID 0 (C1LMSKAE0)	CAN1 Local Mask Register A Extended ID 1 (C1LMSKAE1)	13-50	
H'0080 1434	CAN1 Local Mask Register A Extended ID 2 (C1LMSKAE2)	(Use inhibited area)	13-51	
H'0080 1436		bited area)		
H'0080 1438	CAN1 Local Mask Register B Standard ID 0 (C1LMSKBS0)	CAN1 Local Mask Register B Standard ID 1 (C1LMSKBS1)	13-49	
H'0080 143A	CAN1 Local Mask Register B Extended ID 0 (C1LMSKBE0)	CAN1 Local Mask Register B Extended ID 1 (C1LMSKBE1)	13-50	
H'0080 143C	CAN1 Local Mask Register B Extended ID 2 (C1LMSKBE2)	(Use inhibited area)	13-51	
H'0080 143E		bited area)		
H'0080 1440	CAN1 Single-Shot M (CAN1S	lode Control Register SMODE)	13-53	
H'0080 1442		bited area)		
H'0080 1444	CAN1 Single-Shot Interru	ot Request Status Register SSIST)	13-33	
H'0080 1446		bited area)		
H'0080 1448		pt Request Mask Register SSIMK)	13-34	
	· · · · · · · · · · · · · · · · · · ·	bited area)		
H'0080 1450	CAN1 Message Slot 0 Control Register (C1MSL0CNT)	CAN1 Message Slot 1 Control Register (C1MSL1CNT)	13-54	
H'0080 1452	CAN1 Message Slot 2 Control Register (C1MSL2CNT)	CAN1 Message Slot 3 Control Register (C1MSL3CNT)	13-54	
H'0080 1454	CAN1 Message Slot 4 Control Register (C1MSL4CNT)	CAN1 Message Slot 5 Control Register (C1MSL5CNT)	13-54	
H'0080 1456	CAN1 Message Slot 6 Control Register (C1MSL6CNT)	CAN1 Message Slot 7 Control Register (C1MSL7CNT)	13-54	
H'0080 1458	CAN1 Message Slot 8 Control Register (C1MSL8CNT)	CAN1 Message Slot 9 Control Register (C1MSL9CNT)	13-54	
H'0080 145A	CAN1 Message Slot 10 Control Register (C1MSL10CNT)	CAN1 Message Slot 11 Control Register (C1MSL11CNT)	13-54	
H'0080 145C	CAN1 Message Slot 12 Control Register (C1MSL12CNT)	CAN1 Message Slot 13 Control Register (C1MSL13CNT)	13-54	
H'0080 145E	CAN1 Message Slot 14 Control Register (C1MSL14CNT)	CAN1 Message Slot 15 Control Register (C1MSL15CNT)	13-54	
I	(Use inhibited area)			
H'0080 1500	CAN1 Message Slot 0 Standard ID 0 (C1MSL0SID0)	CAN1 Message Slot 0 Standard ID 1 (C1MSL0SID1)	13-58 13-59	
H'0080 1502	CAN1 Message Slot 0 Extended ID 0 (C1MSL0EID0) (C1MSL0EID1)		13-60 13-61	
H'0080 1504	CAN1 Message Slot 0 Extended ID 2 (C1MSL0EID2) CAN1 Message Slot 0 Data Length Register (C1MSL0DLC)		13-62 13-63	
H'0080 1506	CAN1 Message Slot 0 Data 0 (C1MSL0DL0) CAN1 Message Slot 0 Data 1 (C1MSL0DT0) (C1MSL0DT1)		13-64 13-65	
H'0080 1508	CAN1 Message Slot 0 Data 2 (C1MSL0DT2) (C1MSL0DT3)		13-66 13-67	
H'0080 150A	CAN1 Message Slot 0 Data 4 (C1MSL0DT4) (C1MSL0DT5)		13-68 13-69	
H'0080 150C	CAN1 Message Slot 0 Data 6 (C1MSL0DT6) (C1MSL0DT7)		13-70 13-71	
H'0080 150E	CAN1 Message Slot 0 Timestamp (C1MSL0D17) CAN1 Message Slot 0 Timestamp			

SFR Area Register Map (19/22)

H0080 1510 CANI Message Stot 1 Standard D 0 CANI Message Stot 1 Standard D 1 13-58 H0080 1512 CANI Message Stot 1 Extended D 0 CANI Message Stot 1 Extended D 1 13-59 H0080 1514 CANI Message Stot 1 Extended D 2 CANI Message Stot 1 Extended D 1 13-50 H0080 1514 CANI Message Stot 1 Extended D 2 CANI Message Stot 1 Extended D 1 13-56 H0080 1516 CANI Message Stot 1 Data 2 CANI Message Stot 1 Data 3 13-66 H0080 1516 CANI Message Stot 1 Data 2 CANI Message Stot 1 Data 3 13-66 H0080 1516 CANI Message Stot 1 Data 4 CANI Message Stot 1 Data 5 13-68 H0080 1512 CANI Message Stot 1 Data 4 CANI Message Stot 1 Data 5 13-68 H0080 1512 CANI Message Stot 1 Data 6 CANI Message Stot 1 Data 7 13-70 H0080 1520 CANI Message Stot 2 Standard D 0 CANI Message Stot 2 Standard D 1 13-58 H0080 1522 CANI Message Stot 2 Extended D 2 CANI Message Stot 2 Standard D 1 13-58 H0080 1524 CANI Message Stot 2 Extended D 2 CANI Message Stot 2 Standard D 1 13-58 H0080 1524 CANI Message St	Address	+0 address b7	+1 address b8 b15	See pages
H0080 1512 CAN1 Message Slot 1 Extended D 1 13-60 (CIMSL1EID) 13-61 (CIMSL1EID) H0080 1514 CAN1 Message Slot 1 Data Length Register 13-62 (CIMSL1EID) 13-62 (CIMSL1EID) H0080 1516 CAN1 Message Slot 1 Data 0 CAN1 Message Slot 1 Data 1 13-63 (CIMSL1EID) H0080 1516 CAN1 Message Slot 1 Data 2 CAN1 Message Slot 1 Data 1 13-64 (CIMSL1D13) H0080 1516 CAN1 Message Slot 1 Data 2 CAN1 Message Slot 1 Data 3 13-66 (CIMSL1D13) H0080 151A CAN1 Message Slot 1 Data 4 CAN1 Message Slot 1 Data 5 13-86 (CIMSL1D13) H0080 151C CAN1 Message Slot 1 Data 6 CAN1 Message Slot 1 Data 7 13-70 (CIMSL1D7) H0080 1512 CAN1 Message Slot 2 Standard ID 0 CAN1 Message Slot 2 Standard ID 1 13-56 (CIMSL2SID0) H0080 1524 CAN1 Message Slot 2 Extended ID 2 CAN1 Message Slot 2 Standard ID 1 13-56 (CIMSL2EID1) H0080 1524 CAN1 Message Slot 2 Extended ID 2 CAN1 Message Slot 2 Standard ID 1 13-56 (CIMSL2EID1) H0080 1526 CAN1 Message Slot 2 Extended ID 2 CAN1 Message Slot 2 Standard ID 1 13-66 (CIMSL2EID2) H0080 1526 CAN1 Message Slot 2 Data 4 CAN1 Message Slot 2	H'0080 1510	CAN1 Message Slot 1 Standard ID 0	CAN1 Message Slot 1 Standard ID 1	13-58
H0080 1514 CAN1 Message Slot 1 Data Long IR Register 13-62 (CIMSLEID2) H0080 1516 CAN1 Message Slot 1 Data 0 CAN1 Message Slot 1 Data 1 13-64 (CIMSLID1) H0080 1516 CAN1 Message Slot 1 Data 0 CAN1 Message Slot 1 Data 3 13-66 (CIMSLID1) H0080 1518 CAN1 Message Slot 1 Data 2 CAN1 Message Slot 1 Data 3 13-66 (CIMSLID1) H0080 1514 CAN1 Message Slot 1 Data 4 CAN1 Message Slot 1 Data 5 13-66 (CIMSLID1) H0080 1516 CAN1 Message Slot 1 Data 6 CAN1 Message Slot 1 Data 7 13-71 (CIMSLID1) H0080 1520 CAN1 Message Slot 2 Standard ID 0 CAN1 Message Slot 2 Standard ID 1 13-56 (CIMSLID1) H0080 1522 CAN1 Message Slot 2 Extended ID 0 CAN1 Message Slot 2 Standard ID 1 13-66 (CIMSL2EID1) H0080 1522 CAN1 Message Slot 2 Extended ID 2 CAN1 Message Slot 2 Bata 1 13-66 (CIMSL2EID2) H0080 1528 CAN1 Message Slot 2 Extended ID 2 CAN1 Message Slot 2 Bata 1 13-66 (CIMSL2EID2) H0080 1528 CAN1 Message Slot 2 Data 4 CAN1 Message Slot 2 Data 1 13-66 (CIMSL2EID3) H0080 1524 CAN1 Message Slot 2 Data 6 CAN1 Message Slot 2 Data 6 13-76 (CIMSL2EID3)	H'0080 1512	CAN1 Message Slot 1 Extended ID 0	CAN1 Message Slot 1 Extended ID 1	13-60
H0080 1516 CAN1 Message Slot 1 Data 0 (CHMSLDT0) CAN1 Message Slot 1 Data 1 (CHMSLDT0) 13-45 (CHMSLDT0) H0080 1518 CAN1 Message Slot 1 Data 2 (CHMSLDT2) CAN1 Message Slot 1 Data 5 (CHMSLDT2) 13-46 (CHMSLDT2) H0080 151A CAN1 Message Slot 1 Data 4 (CHMSLDT2) CAN1 Message Slot 1 Data 5 (CHMSLDT2) 13-46 (CHMSLDT2) H0080 151C CAN1 Message Slot 1 Data 6 (CHMSLDT2) CAN1 Message Slot 2 Data 7 (CHMSLDT2) 13-72 H0080 151C CAN1 Message Slot 2 Standard ID 0 (CHMSLD2) CAN1 Message Slot 2 Standard ID 1 (CHMSLD2) 13-46 (CHMSLD2) H0080 1522 CAN1 Message Slot 2 Standard ID 0 (CHMSLD2) CAN1 Message Slot 2 Data 1 (3-62) 13-62 (CHMSLD2) H0080 1524 CAN1 Message Slot 2 Data 0 (CHMSLD2) CAN1 Message Slot 2 Data 1 (3-64) 13-64 (CHMSLD2) H0080 1526 CAN1 Message Slot 2 Data 0 (CHMSLD2) CAN1 Message Slot 2 Data 1 (3-64) 13-64 (CHMSLDT2) H0080 1526 CAN1 Message Slot 2 Data 2 (CAN1 Message Slot 2 Data 3 (13-66) 13-64 (CHMSLDT2) 13-64 (CHMSLDT3) H0080 1526 CAN1 Message Slot 2 Data 4 (CAN1 Message Slot 2 Data 5 (13-64) 13-64 (CHMSLDT3) 13-66 (CHMSLDT3) H0080 1526 CAN1 Message Slot 2 Data 6 (CAN1 Message Slot 2 Data 5 (CHMSLDT3) 13-6	H'0080 1514		CAN1 Message Slot 1 Data Length Register	
Image: constraint of the state of	H'0080 1516	CAN1 Message Slot 1 Data 0	CAN1 Message Slot 1 Data 1	13-64
Image: constraint of the state of	H'0080 1518			
HO080 151E (C1MŠL1DT6) 13-72 H0080 151E CAN1 Message Slot 1 Timestamp 13-72 H0080 1520 CAN1 Message Slot 2 Standard ID 0 CAN1 Message Slot 2 Standard ID 1 13-86 H0080 1522 CAN1 Message Slot 2 Extended ID 0 CAN1 Message Slot 2 Extended ID 1 13-60 H0080 1522 CAN1 Message Slot 2 Extended ID 2 CAN1 Message Slot 2 Extended ID 1 13-64 H0080 1526 CAN1 Message Slot 2 Extended ID 2 CAN1 Message Slot 2 Data 1 13-64 H0080 1526 CAN1 Message Slot 2 Data 0 CAN1 Message Slot 2 Data 3 13-66 H0080 1528 CAN1 Message Slot 2 Data 2 CAN1 Message Slot 2 Data 3 13-66 H0080 1528 CAN1 Message Slot 2 Data 4 CAN1 Message Slot 2 Data 5 13-86 H0080 1520 CAN1 Message Slot 2 Data 6 CAN1 Message Slot 2 Data 7 13-70 H0080 1520 CAN1 Message Slot 2 Data 6 CAN1 Message Slot 2 Data 7 13-72 H0080 1520 CAN1 Message Slot 2 Timestamp 13-72 13-72 H0080 1530 CAN1 Message Slot 3 Standard ID 0 CAN1 Message Slot 3 Standard ID 1 13-86 H0080 1532	H'0080 151A			
(C1MSL1TSP) (C1MSL2SID) H00801520 CAN1 Message Slot 2 Standard ID 0 CAN1 Message Slot 2 Standard ID 1 13-59 H00801522 CAN1 Message Slot 2 Extended ID 0 CAN1 Message Slot 2 Data Length Register 13-61 H00801524 CAN1 Message Slot 2 Extended ID 2 CAN1 Message Slot 2 Data Length Register 13-63 H00801526 CAN1 Message Slot 2 Data 0 CAN1 Message Slot 2 Data 1 13-64 H00801526 CAN1 Message Slot 2 Data 2 CAN1 Message Slot 2 Data 3 13-65 H00801528 CAN1 Message Slot 2 Data 4 CIMSL2DT1) 13-65 H0080152A CAN1 Message Slot 2 Data 4 CIMSL2DT3) 13-66 H0080152C CAN1 Message Slot 2 Data 4 CIMSL2DT7) 13-70 H0080152C CAN1 Message Slot 2 Data 4 CIMSL2DT7) 13-71 H0080152C CAN1 Message Slot 2 Data 5 13-68 CIMSL2DT6) 13-72 H0080152C CAN1 Message Slot 3 Standard ID 0 CIMSL2DT7) 13-71 13-71 H0080152 CAN1 Message Slot 3 Standard ID 0 CIMSL2TSP) 13-56 13-56 H00801532 CAN1 Mess	H'0080 151C			
H0080 1520 CAN1 Message Stot 2 Standard ID 0 CAN1 Message Stot 2 Standard ID 1 13-58 H0080 1522 CAN1 Message Stot 2 Extended ID 0 CAN1 Message Stot 2 Extended ID 1 13-61 H0080 1524 CAN1 Message Stot 2 Extended ID 2 CAN1 Message Stot 2 Data Length Register 13-62 H0080 1524 CAN1 Message Stot 2 Data 0 CAN1 Message Stot 2 Data 1 13-64 H0080 1526 CAN1 Message Stot 2 Data 0 CAN1 Message Stot 2 Data 1 13-64 H0080 1528 CAN1 Message Stot 2 Data 2 CAN1 Message Stot 2 Data 3 13-66 H0080 152A CAN1 Message Stot 2 Data 4 CAN1 Message Stot 2 Data 3 13-67 H0080 152A CAN1 Message Stot 2 Data 4 CAN1 Message Stot 2 Data 5 13-68 H0080 152C CAN1 Message Stot 2 Data 6 CAN1 Message Stot 2 Data 7 13-71 H0080 152C CAN1 Message Stot 2 Stat 5 13-68 13-72 H0080 152 CAN1 Message Stot 3 Standard ID 0 CAN1 Message Stot 3 Standard ID 1 13-68 H0080 153C CAN1 Message Stot 3 Standard ID 0 CAN1 Message Stot 3 Standard ID 1 13-64 (CIMSL2EID2) CIMSL3EID1) 13-64	H'0080 151E			13-72
H0080 1522 CAN1 Message Slot 2 Extended ID 0 (C1MSL2EID0) CAN1 Message Slot 2 Extended ID 1 (C1MSL2EID0) 13-61 (C1MSL2EID0) H0080 1524 CAN1 Message Slot 2 Extended ID 2 (C1MSL2EID2) CAN1 Message Slot 2 Data 0 (C1MSL2DT1) 13-63 (C1MSL2DT1) H0080 1526 CAN1 Message Slot 2 Data 0 (C1MSL2DT1) CAN1 Message Slot 2 Data 1 (C1MSL2DT1) 13-64 (C1MSL2DT1) H0080 1526 CAN1 Message Slot 2 Data 2 (C1MSL2DT3) CAN1 Message Slot 2 Data 3 (3-66 (C1MSL2DT3) 13-67 (13-68 (C1MSL2DT3) H0080 152A CAN1 Message Slot 2 Data 4 (C1MSL2DT3) CAN1 Message Slot 2 Data 5 (C1MSL2DT7) 13-70 (13-70 (C1MSL2DT7) H0080 152C CAN1 Message Slot 2 Data 6 (C1MSL2DT7) CAN1 Message Slot 2 Data 7 (13-70 (C1MSL2DT7) 13-72 (13-72 (C1MSL2DT7) H0080 153C CAN1 Message Slot 3 Standard ID 1 (13-68 (C1MSL3SID0) 13-68 (C1MSL3SID1) 13-68 (C1MSL3SID1) H0080 1532 CAN1 Message Slot 3 Standard ID 0 (C1MSL3SID1) CAN1 Message Slot 3 Standard ID 1 (C1MSL3DT0) 13-67 (C1MSL3DT0) H0080 1536 CAN1 Message Slot 3 Standard ID 0 (C1MSL3DT3) CAN1 Message Slot 3 Standard ID 1 (C1MSL3DT3) 13-67 H0080 1536 CAN1 Message Slot 3 Data 2 (C1MSL3DT3) CAN1 Message Slot 3 Data 3 (C1MSL3DT3) 13-67 H0080 1536	H'0080 1520	CAN1 Message Slot 2 Standard ID 0	CAN1 Message Slot 2 Standard ID 1	
(CiMSL2EID2) (CIMSL2DLC) 13-63 H'0080 1526 CAN1 Message Slot 2 Data 0 (CIMSL2DT3) CAN1 Message Slot 2 Data 3 (CIMSL2DT4) 13-64 H'0080 1528 CAN1 Message Slot 2 Data 2 (CIMSL2DT3) CAN1 Message Slot 2 Data 3 (13-67 13-63 H'0080 152A CAN1 Message Slot 2 Data 4 (CIMSL2DT5) CAN1 Message Slot 2 Data 5 (CIMSL2DT5) 13-68 H'0080 152C CAN1 Message Slot 2 Data 6 (CIMSL2DT6) CAN1 Message Slot 2 Data 5 (CIMSL2DT5) 13-70 H'0080 152C CAN1 Message Slot 2 Data 6 (CIMSL2DT6) CAN1 Message Slot 2 Data 7 (CIMSL2DT6) 13-71 H'0080 1526 CAN1 Message Slot 3 Standard ID 0 (CIMSL3SID1) 13-58 13-59 H'0080 1530 CAN1 Message Slot 3 Standard ID 0 (CIMSL3SID1) CAN1 Message Slot 3 Extended ID 2 (CIMSL3SID1) 13-61 H'0080 1536 CAN1 Message Slot 3 Extended ID 2 (CIMSL3EID2) CAN1 Message Slot 3 Standard ID 1 13-64 H'0080 1536 CAN1 Message Slot 3 Data 2 (CIMSL3DT3) CAN1 Message Slot 3 Standard ID 1 13-64 H'0080 1536 CAN1 Message Slot 3 Data 2 (CIMSL3DT3) CAN1 Message Slot 3 Standard ID 1 13-64 H'0080 1536 CAN1 Message Slot 3 Data 2 (CIMSL3DT3) CAN1 Message Slot 3 Standard	H'0080 1522	CAN1 Message Slot 2 Extended ID 0	CAN1 Message Slot 2 Extended ID 1	
(C1MŠL2DT0) (C1MŠL2DT1) 13-65 H'0080 1528 CAN1 Message Slot 2 Data 2 (C1MŠL2DT2) CAN1 Message Slot 2 Data 3 (C1MŠL2DT3) 13-67 H'0080 152A CAN1 Message Slot 2 Data 4 (C1MŠL2DT4) CAN1 Message Slot 2 Data 5 (C1MŠL2DT5) 13-68 H'0080 152C CAN1 Message Slot 2 Data 6 (C1MŠL2DT6) CAN1 Message Slot 2 Data 7 (C1MŠL2DT7) 13-71 H'0080 152C CAN1 Message Slot 3 Standard ID 0 (C1MŠL2SID0) CAN1 Message Slot 3 Standard ID 1 (C1MŠL2SID1) 13-58 H'0080 1530 CAN1 Message Slot 3 Standard ID 0 (C1MŠL3SID0) CAN1 Message Slot 3 Standard ID 1 (C1MŠL3SID1) 13-58 H'0080 1532 CAN1 Message Slot 3 Standard ID 0 (C1MŠL3EID2) CAN1 Message Slot 3 Standard ID 1 (C1MŠL3DID) 13-61 H'0080 1534 CAN1 Message Slot 3 Standard ID 0 (C1MŠL3DID) CAN1 Message Slot 3 Standard ID 1 (C1MŠL3DIT2) 13-63 H'0080 1536 CAN1 Message Slot 3 Data 2 (C1MŠL3DIT3) CAN1 Message Slot 3 Data 3 (14-64 (C1MŠL3DT2) 13-64 H'0080 1534 CAN1 Message Slot 3 Data 4 (C1MŠL3DT5) CAN1 Message Slot 3 Data 5 (C1MŠL3DT5) 13-68 H'0080 1534 CAN1 Message Slot 3 Data 6 (C1MŠL3DT6) CAN1 Message Slot 3 Data 5 (C1MŠL3DT5) 13-68 H'0080 1540	H'0080 1524			
Image: first standard Display="block">(C1MSL2DT2) (C1MSL2DT3) 13-67 H'0080 152A CAN1 Message Slot 2 Data 4 CAN1 Message Slot 2 Data 5 13-68 H'0080 152C CAN1 Message Slot 2 Data 6 CAN1 Message Slot 2 Data 7 13-70 H'0080 152C CAN1 Message Slot 2 Data 6 CAN1 Message Slot 2 Data 7 13-71 H'0080 152C CAN1 Message Slot 3 Standard D0 (C1MSL2DT7) 13-71 H'0080 1530 CAN1 Message Slot 3 Standard D0 CAN1 Message Slot 3 Standard D1 15-58 H'0080 1532 CAN1 Message Slot 3 Extended ID 0 CAN1 Message Slot 3 Extended ID 1 13-61 H'0080 1534 CAN1 Message Slot 3 Standard D0 C(1MSL3EID1) 13-61 H'0080 1534 CAN1 Message Slot 3 Standard D0 CAN1 Message Slot 3 Extended ID 1 13-63 H'0080 1536 CAN1 Message Slot 3 Standard D0 C(1MSL3DIC) 13-63 H'0080 1536 CAN1 Message Slot 3 Data 2 CAN1 Message Slot 3 Data 3 13-66 (C1MSL3DT0) C(1MSL3DT5) 13-63 13-66 H'0080 1534 CAN1 Message Slot 3 Data 4 CAN1 Message Slot 3 Data 5 13-67 H'0080	H'0080 1526			
H'0080 152A CAN1 Message Slot 2 Data 4 (C1MSL2DT4) CAN1 Message Slot 2 Data 5 (C1MSL2DT5) 13-68 (C1MSL2DT5) H'0080 152C CAN1 Message Slot 2 Data 6 (C1MSL2DT6) CAN1 Message Slot 2 Data 7 (C1MSL2DT7) 13-70 (C1MSL2DT7) H'0080 152C CAN1 Message Slot 2 Data 6 (C1MSL2DT7) CAN1 Message Slot 2 Data 7 (C1MSL2TSP) 13-72 H'0080 1530 CAN1 Message Slot 3 Standard ID 0 (C1MSL3SID0) CAN1 Message Slot 3 Standard ID 1 (S1MSL3SID1) 13-58 H'0080 1532 CAN1 Message Slot 3 Extended ID 0 (C1MSL3EID0) CAN1 Message Slot 3 Extended ID 1 (S1MSL3EID1) 13-61 H'0080 1534 CAN1 Message Slot 3 Extended ID 2 (C1MSL3EID2) CAN1 Message Slot 3 Standard ID 1 (C1MSL3DT1) 13-63 H'0080 1536 CAN1 Message Slot 3 Standard ID 0 (C1MSL3DT0) CAN1 Message Slot 3 Standard ID 1 (C1MSL3DT1) 13-64 (C1MSL3DT3) 13-66 H'0080 1538 CAN1 Message Slot 3 Data 2 (C1MSL3DT2) CAN1 Message Slot 3 Data 3 (C1MSL3DT2) 13-67 H'0080 1530 CAN1 Message Slot 3 Data 6 (C1MSL3DT2) CAN1 Message Slot 3 Data 5 (C1MSL3DT2) 13-68 H'0080 1534 CAN1 Message Slot 3 Data 6 (C1MSL3DT2) CAN1 Message Slot 3 Data 7 (C1MSL3DT2) 13-70 H'0080 1534 CAN1 Message Slot 3 Data 6 (C1MSL3DT2)	H'0080 1528	CAN1 Message Slot 2 Data 2	CAN1 Message Slot 2 Data 3	13-66
(C1MŠL2DT6) (C1MŠL2DT7) 13-71 H'0080 152E CAN1 Message Slot 2 Timestamp (C1MSL2TSP) 13-72 H'0080 1530 CAN1 Message Slot 3 Standard ID 0 (C1MSL2SID0) CAN1 Message Slot 3 Standard ID 1 (3-58) 13-58 H'0080 1532 CAN1 Message Slot 3 Extended ID 0 (C1MSL3SID0) CAN1 Message Slot 3 Extended ID 1 (C1MSL3SID1) 13-61 H'0080 1534 CAN1 Message Slot 3 Extended ID 2 (C1MSL3EID2) CAN1 Message Slot 3 Standard ID 1 (C1MSL3DIC) 13-62 H'0080 1536 CAN1 Message Slot 3 Extended ID 2 (C1MSL3DID) CAN1 Message Slot 3 Standard ID 1 (C1MSL3DIT) 13-64 H'0080 1536 CAN1 Message Slot 3 Data 2 (C1MSL3DIT2) CAN1 Message Slot 3 Data 3 (C1MSL3DIT3) 13-66 H'0080 1538 CAN1 Message Slot 3 Data 4 (C1MSL3DIT2) CAN1 Message Slot 3 Data 5 (C1MSL3DIT3) 13-69 H'0080 1530 CAN1 Message Slot 3 Data 6 (C1MSL3DIT2) CAN1 Message Slot 3 Data 5 (C1MSL3DIT) 13-70 H'0080 1530 CAN1 Message Slot 3 Data 6 (C1MSL3DIT3) CAN1 Message Slot 3 Data 7 (C1MSL3DIT) 13-70 H'0080 1540 CAN1 Message Slot 3 Data 6 (C1MSL3DIT) CAN1 Message Slot 3 Data 7 (13-70 13-70 H'0080 1540 CAN1 Message Slot 3 Data 6 (C1MSL4SID1) CAN1	H'0080 152A	CAN1 Message Slot 2 Data 4	CAN1 Message Slot 2 Data 5	
(C1MSL2TSP) H'0080 1530 (CAN1 Message Slot 3 Standard ID 0 (C1MSL3SID0) (CAN1 Message Slot 3 Standard ID 1 (C1MSL3SID1) H'0080 1532 CAN1 Message Slot 3 Extended ID 0 (C1MSL3EID0) CAN1 Message Slot 3 Extended ID 0 (C1MSL3EID1) 13-62 (C1MSL3EID1) H'0080 1534 CAN1 Message Slot 3 Extended ID 2 (C1MSL3EID2) CAN1 Message Slot 3 Standard ID 1 (C1MSL3DT1) 13-62 (C1MSL3DT1) H'0080 1536 CAN1 Message Slot 3 Standard ID 0 (C1MSL3DT1) CAN1 Message Slot 3 Standard ID 1 (C1MSL3DT1) 13-62 (C1MSL3DT1) H'0080 1536 CAN1 Message Slot 3 Data 2 (C1MSL3DT2) CAN1 Message Slot 3 Data 3 (C1MSL3DT3) 13-66 (C1MSL3DT3) H'0080 1536 CAN1 Message Slot 3 Data 4 (C1MSL3DT4) CAN1 Message Slot 3 Data 5 (C1MSL4SDT5) 13-70 (C1MSL3DT5) H'0080 1536 CAN1 Message Slot 3 Data 7 (C1MSL4DT7) 13-77 H'0080 1537 CAN1 Message Slot 3 Standard ID 1 (C1MSL4DT7) 13-70 (C1MSL4DT7) H'0080 1540 CAN1 Message Slot 3 Data 5 (C1MSL4EID2) CAN1 Message Slot 4 Standard ID 1 (C1MSL4DT7) 13-72 H'0080 1540	H'0080 152C			
H'0080 1530 CAN1 Message Slot 3 Standard ID 0 (C1MSL3SID0) CAN1 Message Slot 3 Standard ID 1 (C1MSL3SID1) 13-58 (C1MSL3SID1) H'0080 1532 CAN1 Message Slot 3 Extended ID 0 (C1MSL3EID0) CAN1 Message Slot 3 Extended ID 1 (C1MSL3EID1) 13-60 (C1MSL3EID1) H'0080 1534 CAN1 Message Slot 3 Extended ID 2 (C1MSL3EID2) CAN1 Message Slot 3 Data Length Register (C1MSL3DLC) 13-62 (C1MSL3DLC) H'0080 1536 CAN1 Message Slot 3 Standard ID 0 (C1MSL3DT0) CAN1 Message Slot 3 Data 3 (C1MSL3DT2) 13-66 (C1MSL3DT1) H'0080 1536 CAN1 Message Slot 3 Data 2 (C1MSL3DT2) CAN1 Message Slot 3 Data 3 (C1MSL3DT3) 13-66 (C1MSL3DT3) H'0080 153A CAN1 Message Slot 3 Data 4 (C1MSL3DT4) CAN1 Message Slot 3 Data 5 (C1MSL3DT5) 13-69 H'0080 153C CAN1 Message Slot 3 Data 6 (C1MSL3DT4) CAN1 Message Slot 3 Data 7 (C1MSL3DT7) 13-71 H'0080 1540 CAN1 Message Slot 4 Standard ID 0 (C1MSL4SID0) CAN1 Message Slot 4 Standard ID 1 (C1MSL4SID1) 13-58 H'0080 1542 CAN1 Message Slot 4 Standard ID 0 (C1MSL4EID1) CAN1 Message Slot 4 Standard ID 1 (C1MSL4EID1) 13-61 H'0080 1544 CAN1 Message Slot 4 Standard ID 0 (C1MSL4EID1) CAN1 Message Slot 4 Standard ID 1 (C1MSL4EID1) 13-66 H'0080 1546	H'0080 152E			13-72
H'0080 1532 CAN1 Message Slot 3 Extended ID 0 (C1MSL3EID0) CAN1 Message Slot 3 Extended ID 1 (C1MSL3EID1) 13-60 (13-61 (13-61) H'0080 1534 CAN1 Message Slot 3 Extended ID 2 (C1MSL3EID2) CAN1 Message Slot 3 Data Length Register (C1MSL3DLC) 13-62 (13-63) H'0080 1536 CAN1 Message Slot 3 Standard ID 0 (C1MSL3DT0) CAN1 Message Slot 3 Standard ID 1 (C1MSL3DT1) 13-64 (13-65) H'0080 1536 CAN1 Message Slot 3 Data 2 (C1MSL3DT2) CAN1 Message Slot 3 Data 3 (C1MSL3DT3) 13-67 (13-67) H'0080 153A CAN1 Message Slot 3 Data 4 (C1MSL3DT4) CAN1 Message Slot 3 Data 5 (13-68) 13-68 (C1MSL3DT5) H'0080 153C CAN1 Message Slot 3 Data 6 (C1MSL3DT6) CAN1 Message Slot 3 Data 6 (C1MSL3DT7) 13-70 (C1MSL3DT7) H'0080 1540 CAN1 Message Slot 4 Standard ID 0 (C1MSL4SID0) CAN1 Message Slot 4 Standard ID 1 (C1MSL4SID1) 13-58 (C1MSL4SID1) H'0080 1542 CAN1 Message Slot 4 Extended ID 0 (C1MSL4EID2) CAN1 Message Slot 4 Standard ID 1 (C1MSL4DIC) 13-61 (13-61 (C1MSL4EID2) H'0080 1544 CAN1 Message Slot 4 Extended ID 2 (C1MSL4EID2) CAN1 Message Slot 4 Data 1 (C1MSL4DT1) 13-63 (C1MSL4DT1) H'0080 1546 CAN1 Message Slot 4 Data 0 (C1MSL4DT3) CAN1 Message Slot 4 Data 1 (C1MSL4DT1) 13-64 (C1MSL4DT1) 13-64	H'0080 1530	CAN1 Message Slot 3 Standard ID 0	CAN1 Message Slot 3 Standard ID 1	
H'0080 1534 CAN1 Message Slot 3 Extended ID 2 (C1MSL3EID2) CAN1 Message Slot 3 Data Length Register (C1MSL3DLC) 13-62 13-63 H'0080 1536 CAN1 Message Slot 3 Standard ID 0 (C1MSL3DT0) CAN1 Message Slot 3 Standard ID 1 (C1MSL3DT1) 13-64 (C1MSL3DT1) 13-66 H'0080 1538 CAN1 Message Slot 3 Data 2 (C1MSL3DT2) CAN1 Message Slot 3 Data 3 (C1MSL3DT3) 13-67 H'0080 153A CAN1 Message Slot 3 Data 4 (C1MSL3DT4) CAN1 Message Slot 3 Data 5 (C1MSL3DT5) 13-68 H'0080 153C CAN1 Message Slot 3 Data 6 (C1MSL3DT4) CAN1 Message Slot 3 Data 7 (C1MSL3DT5) 13-70 H'0080 153C CAN1 Message Slot 3 Data 6 (C1MSL3DT7) CAN1 Message Slot 3 Data 7 (C1MSL3DT7) 13-71 H'0080 1540 CAN1 Message Slot 4 Standard ID 0 (C1MSL4SID0) CAN1 Message Slot 4 Standard ID 1 (C1MSL4SID0) 13-58 H'0080 1540 CAN1 Message Slot 4 Extended ID 0 (C1MSL4SID1) CAN1 Message Slot 4 Extended ID 1 (C1MSL4EID1) 13-61 H'0080 1544 CAN1 Message Slot 4 Data 0 (C1MSL4DT0) CAN1 Message Slot 4 Data 1 (C1MSL4DT1) 13-62 H'0080 1544 CAN1 Message Slot 4 Data 0 (C1MSL4DT1) CAN1 Message Slot 4 Data 3 (C1MSL4DT1) 13-63 H'0080 1546 CAN1 Message Slot 4 Data 2 (C1MSL4DT1) <td< td=""><td>H'0080 1532</td><td>CAN1 Message Slot 3 Extended ID 0</td><td>CAN1 Message Slot 3 Extended ID 1</td><td>13-60</td></td<>	H'0080 1532	CAN1 Message Slot 3 Extended ID 0	CAN1 Message Slot 3 Extended ID 1	13-60
(C1MSL3DT0) (C1MSL3DT1) 13-65 H'0080 1538 CAN1 Message Slot 3 Data 2 CAN1 Message Slot 3 Data 3 13-66 (C1MSL3DT2) (C1MSL3DT3) 13-67 H'0080 153A CAN1 Message Slot 3 Data 4 CAN1 Message Slot 3 Data 5 13-68 (C1MSL3DT4) (C1MSL3DT5) 13-68 H'0080 153C CAN1 Message Slot 3 Data 6 CAN1 Message Slot 3 Data 7 13-70 H'0080 153C CAN1 Message Slot 3 Data 6 CAN1 Message Slot 3 Data 7 13-71 H'0080 153E CAN1 Message Slot 4 Standard ID 0 CAN1 Message Slot 4 Standard ID 1 13-59 H'0080 1540 CAN1 Message Slot 4 Standard ID 0 CAN1 Message Slot 4 Standard ID 1 13-60 (C1MSL4SID0) (C1MSL4SID1) 13-61 13-61 H'0080 1542 CAN1 Message Slot 4 Extended ID 0 CAN1 Message Slot 4 Standard ID 1 13-63 H'0080 1544 CAN1 Message Slot 4 Extended ID 2 CAN1 Message Slot 4 Data 1 13-61 H'0080 1544 CAN1 Message Slot 4 Extended ID 2 CAN1 Message Slot 4 Data 1 13-63 H'0080 1546 CAN1 Message Slot 4 Data 0 CAN1 Message Slot 4 Data 1	H'0080 1534			
(C1MŠL3DT2) (C1MŠL3DT3) 13-67 H'0080 153A CAN1 Message Slot 3 Data 4 (C1MSL3DT4) CAN1 Message Slot 3 Data 5 (C1MSL3DT5) 13-68 H'0080 153C CAN1 Message Slot 3 Data 6 (C1MSL3DT6) CAN1 Message Slot 3 Data 7 (C1MSL3DT7) 13-70 H'0080 153C CAN1 Message Slot 3 Data 6 (C1MSL3DT6) CAN1 Message Slot 3 Data 7 (C1MSL3DT7) 13-70 H'0080 1540 CAN1 Message Slot 4 Standard ID 0 (C1MSL4SID0) CAN1 Message Slot 4 Standard ID 1 (C1MSL4SID1) 13-58 H'0080 1540 CAN1 Message Slot 4 Extended ID 0 (C1MSL4EID0) CAN1 Message Slot 4 Extended ID 1 (C1MSL4EID1) 13-68 H'0080 1542 CAN1 Message Slot 4 Extended ID 2 (C1MSL4EID0) CAN1 Message Slot 4 Extended ID 1 (C1MSL4EID1) 13-66 H'0080 1544 CAN1 Message Slot 4 Data 0 (C1MSL4EID2) CAN1 Message Slot 4 Data 1 (C1MSL4DT1) 13-66 H'0080 1546 CAN1 Message Slot 4 Data 2 (C1MSL4DT1) CAN1 Message Slot 4 Data 3 (3-66 13-66 H'0080 154A CAN1 Message Slot 4 Data 4 (C1MSL4DT3) CAN1 Message Slot 4 Data 3 (3-66 13-66 H'0080 154A CAN1 Message Slot 4 Data 4 (C1MSL4DT3) CAN1 Message Slot 4 Data 3 (3-66 13-69 H'0080 154A CAN1 Message Slot 4 Data 6 (C1MSL	H'0080 1536			
H'0080 153C (C1MŠL3DT4) (C1MŠL3DT5) 13-69 H'0080 153C CAN1 Message Slot 3 Data 6 (C1MSL3DT6) CAN1 Message Slot 3 Data 7 (C1MSL3DT7) 13-70 H'0080 153E CAN1 Message Slot 3 Timestamp (C1MSL3TSP) 13-72 H'0080 1540 CAN1 Message Slot 4 Standard ID 0 (C1MSL4SID0) CAN1 Message Slot 4 Standard ID 1 (C1MSL4SID1) 13-58 H'0080 1542 CAN1 Message Slot 4 Standard ID 0 (C1MSL4EID1) CAN1 Message Slot 4 Extended ID 0 (C1MSL4EID1) 13-61 H'0080 1544 CAN1 Message Slot 4 Extended ID 0 (C1MSL4EID0) CAN1 Message Slot 4 Extended ID 1 3-61 13-62 H'0080 1544 CAN1 Message Slot 4 Extended ID 2 (C1MSL4EID1) CAN1 Message Slot 4 Extended ID 2 (C1MSL4DT1) 13-62 H'0080 1544 CAN1 Message Slot 4 Data 0 (C1MSL4EID2) CAN1 Message Slot 4 Data 1 (C1MSL4DT1) 13-63 H'0080 1548 CAN1 Message Slot 4 Data 2 (C1MSL4DT1) CAN1 Message Slot 4 Data 3 (C1MSL4DT3) 13-66 H'0080 1544 CAN1 Message Slot 4 Data 4 (C1MSL4DT2) CAN1 Message Slot 4 Data 5 (C1MSL4DT3) 13-67 H'0080 1544 CAN1 Message Slot 4 Data 4 (C1MSL4DT4) CAN1 Message Slot 4 Data 5 (C1MSL4DT5) 13-68 H'0080 1544 CAN1 Message Slot 4 Data 6 (C1MS	H'0080 1538			
H'0080 153E (C1MSL3DT6) (C1MSL3DT7) 13-71 H'0080 1540 CAN1 Message Slot 3 Timestamp (C1MSL3TSP) 13-72 H'0080 1540 CAN1 Message Slot 4 Standard ID 0 (C1MSL4SID0) CAN1 Message Slot 4 Standard ID 1 (C1MSL4SID1) 13-58 H'0080 1540 CAN1 Message Slot 4 Extended ID 0 (C1MSL4SID0) CAN1 Message Slot 4 Extended ID 1 (C1MSL4EID1) 13-60 H'0080 1542 CAN1 Message Slot 4 Extended ID 2 (C1MSL4EID2) CAN1 Message Slot 4 Extended ID 2 (C1MSL4EID2) 13-61 H'0080 1546 CAN1 Message Slot 4 Data 0 (C1MSL4EID2) CAN1 Message Slot 4 Data 1 (C1MSL4DT1) 13-64 H'0080 1546 CAN1 Message Slot 4 Data 2 (C1MSL4DT0) CAN1 Message Slot 4 Data 3 (C1MSL4DT3) 13-66 H'0080 1548 CAN1 Message Slot 4 Data 4 (C1MSL4DT2) CAN1 Message Slot 4 Data 3 (C1MSL4DT3) 13-66 H'0080 154A CAN1 Message Slot 4 Data 4 (C1MSL4DT4) CAN1 Message Slot 4 Data 5 (C1MSL4DT5) 13-69 H'0080 154C CAN1 Message Slot 4 Data 6 (C1MSL4DT6) CAN1 Message Slot 4 Data 7 (C1MSL4DT6) 13-71 H'0080 154C CAN1 Message Slot 4 Data 6 (C1MSL4DT6) CAN1 Message Slot 4 Data 7 (C1MSL4DT7) 13-71 H'0080 154E CAN1 Message Slot 4 Data 6 (C1MSL4DT6)<	H'0080 153A			
(C1MSL3TSP)H'0080 1540CAN1 Message Slot 4 Standard ID 0 (C1MSL4SID0)CAN1 Message Slot 4 Standard ID 1 (C1MSL4SID1)13-58 13-59H'0080 1542CAN1 Message Slot 4 Extended ID 0 (C1MSL4EID0)CAN1 Message Slot 4 Extended ID 1 (C1MSL4EID1)13-61 13-61H'0080 1544CAN1 Message Slot 4 Extended ID 2 (C1MSL4EID2)CAN1 Message Slot 4 Extended ID 2 (C1MSL4EID2)CAN1 Message Slot 4 Data 1 (C1MSL4DC)13-62 13-63H'0080 1546CAN1 Message Slot 4 Data 0 (C1MSL4DT0)CAN1 Message Slot 4 Data 1 (C1MSL4DT1)13-64 13-65H'0080 1548CAN1 Message Slot 4 Data 2 (C1MSL4DT2)CAN1 Message Slot 4 Data 3 (C1MSL4DT3)13-66 13-66H'0080 154ACAN1 Message Slot 4 Data 4 (C1MSL4DT2)CAN1 Message Slot 4 Data 5 (C1MSL4DT3)13-67 13-67H'0080 154CCAN1 Message Slot 4 Data 6 (C1MSL4DT6)CAN1 Message Slot 4 Data 7 (C1MSL4DT7)13-70 13-71H'0080 154ECAN1 Message Slot 4 Data 6 (C1MSL4DT6)CAN1 Message Slot 4 Data 7 (13-7113-71 13-71	H'0080 153C	CAN1 Message Slot 3 Data 6 (C1MSL3DT6)	CAN1 Message Slot 3 Data 7 (C1MSL3DT7)	
Image: High state Image: Cite State	H'0080 153E	CAN1 Message Slot 3 Timestamp		
(C1MSL4EID0) (C1MSL4EID1) 13-61 H'0080 1544 CAN1 Message Slot 4 Extended ID 2 (C1MSL4EID2) CAN1 Message Slot 4 Data Length Register (C1MSL4DLC) 13-62 13-63 H'0080 1546 CAN1 Message Slot 4 Data 0 (C1MSL4DT0) CAN1 Message Slot 4 Data 1 (C1MSL4DT1) 13-64 13-65 H'0080 1548 CAN1 Message Slot 4 Data 2 (C1MSL4DT2) CAN1 Message Slot 4 Data 3 (C1MSL4DT3) 13-66 13-67 H'0080 154A CAN1 Message Slot 4 Data 4 (C1MSL4DT2) CAN1 Message Slot 4 Data 5 (C1MSL4DT3) 13-66 H'0080 154A CAN1 Message Slot 4 Data 4 (C1MSL4DT4) CAN1 Message Slot 4 Data 5 (C1MSL4DT5) 13-69 H'0080 154C CAN1 Message Slot 4 Data 6 (C1MSL4DT6) CAN1 Message Slot 4 Data 7 (C1MSL4DT7) 13-70 H'0080 154E CAN1 Message Slot 4 Timestamp 13-72	H'0080 1540			
(C1MSL4EID2) (C1MSL4DLC) 13-63 H'0080 1546 CAN1 Message Slot 4 Data 0 (C1MSL4DT0) CAN1 Message Slot 4 Data 1 (C1MSL4DT1) 13-64 H'0080 1548 CAN1 Message Slot 4 Data 2 (C1MSL4DT2) CAN1 Message Slot 4 Data 3 (C1MSL4DT3) 13-66 H'0080 154A CAN1 Message Slot 4 Data 4 (C1MSL4DT2) CAN1 Message Slot 4 Data 5 (C1MSL4DT3) 13-66 H'0080 154A CAN1 Message Slot 4 Data 4 (C1MSL4DT4) CAN1 Message Slot 4 Data 5 (C1MSL4DT5) 13-69 H'0080 154C CAN1 Message Slot 4 Data 6 (C1MSL4DT6) CAN1 Message Slot 4 Data 7 (C1MSL4DT7) 13-70 H'0080 154E CAN1 Message Slot 4 Timestamp 13-72	H'0080 1542	CAN1 Message Slot 4 Extended ID 0 (C1MSL4EID0)		
Image: Horizon and	H'0080 1544		CAN1 Message Slot 4 Data Length Register (C1MSL4DLC)	
H'0080 1548 CAN1 Message Slot 4 Data 2 (C1MSL4DT2) CAN1 Message Slot 4 Data 3 (C1MSL4DT3) 13-66 13-67 H'0080 154A CAN1 Message Slot 4 Data 4 (C1MSL4DT4) CAN1 Message Slot 4 Data 5 (C1MSL4DT5) 13-68 13-69 H'0080 154C CAN1 Message Slot 4 Data 6 (C1MSL4DT6) CAN1 Message Slot 4 Data 6 (C1MSL4DT7) 13-70 13-71 H'0080 154E CAN1 Message Slot 4 Data 6 (C1MSL4DT6) CAN1 Message Slot 4 Data 7 (C1MSL4DT7) 13-72	H'0080 1546			
H'0080 154A CAN1 Message Slot 4 Data 4 (C1MSL4DT4) CAN1 Message Slot 4 Data 5 (C1MSL4DT5) 13-68 13-69 H'0080 154C CAN1 Message Slot 4 Data 6 (C1MSL4DT6) CAN1 Message Slot 4 Data 6 (C1MSL4DT7) 13-70 13-71 H'0080 154E CAN1 Message Slot 4 Data 6 (C1MSL4DT6) CAN1 Message Slot 4 Data 7 (C1MSL4DT7) 13-70 13-71	H'0080 1548	CAN1 Message Slot 4 Data 2	CAN1 Message Slot 4 Data 3	13-66
H'0080 154C CAN1 Message Slot 4 Data 6 (C1MSL4DT6) CAN1 Message Slot 4 Data 7 (C1MSL4DT7) 13-70 13-71 H'0080 154E CAN1 Message Slot 4 Timestamp 13-72	H'0080 154A	CAN1 Message Slot 4 Data 4	CAN1 Message Slot 4 Data 5	13-68
H'0080 154E CAN1 Message Slot 4 Timestamp 13-72	H'0080 154C	CAN1 Message Slot 4 Data 6	CAN1 Message Slot 4 Data 7	13-70
	H'0080 154E	CAN1 Message	Slot 4 Timestamp	

SFR Area Register Map (20/22)

Address	+0 address	+1 address b8 b15	See pages
H'0080 1550	CAN1 Message Slot 5 Standard ID 0	CAN1 Message Slot 5 Standard ID 1	13-58
	(C1MSL5SID0)	(C1MSL5SID1)	13-59
H'0080 1552	CAN1 Message Slot 5 Extended ID 0 (C1MSL5EID0) (C1MSL5EID1)		13-60 13-61
H'0080 1554	CAN1 Message Slot 5 Extended ID 2	CAN1 Message Slot 5 Data Length Register	13-62
	(C1MSL5EID2)	(C1MSL5DLC)	13-63
H'0080 1556	CAN1 Message Slot 5 Data 0	CAN1 Message Slot 5 Data 1	13-64
	(C1MSL5DT0)	(C1MSL5DT1)	13-65
H'0080 1558	CAN1 Message Slot 5 Data 2	CAN1 Message Slot 5 Data 3	13-66
	(C1MSL5DT2)	(C1MSL5DT3)	13-67
H'0080 155A	CAN1 Message Slot 5 Data 4	CAN1 Message Slot 5 Data 5	13-68
	(C1MSL5DT4)	(C1MSL5DT5)	13-69
H'0080 155C	CAN1 Message Slot 5 Data 6	CAN1 Message Slot 5 Data 7	13-70
	(C1MSL5DT6)	(C1MSL5DT7)	13-71
H'0080 155E		Slot 5 Timestamp L5TSP)	13-72
H'0080 1560	CAN1 Message Slot 6 Standard ID 0	CAN1 Message Slot 6 Standard ID 1	13-58
	(C1MSL6SID0)	(C1MSL6SID1)	13-59
H'0080 1562	CAN1 Message Slot 6 Extended ID 0	CAN1 Message Slot 6 Extended ID 1	13-60
	(C1MSL6EID0)	(C1MSL6EID1)	13-61
H'0080 1564	CAN1 Message Slot 6 Extended ID 2	CAN1 Message Slot 6 Data Length Register	13-62
	(C1MSL6EID2)	(C1MSL6DLC)	13-63
H'0080 1566	CAN1 Message Slot 6 Data 0	CAN1 Message Slot 6 Data 1	13-64
	(C1MSL6DT0)	(C1MSL6DT1)	13-65
H'0080 1568	CAN1 Message Slot 6 Data 2	CAN1 Message Slot 6 Data 3	13-66
	(C1MSL6DT2)	(C1MSL6DT3)	13-67
H'0080 156A	CAN1 Message Slot 6 Data 4	CAN1 Message Slot 6 Data 5	13-68
	(C1MSL6DT4)	(C1MSL6DT5)	13-69
H'0080 156C	CAN1 Message Slot 6 Data 6	CAN1 Message Slot 6 Data 7	13-70
	(C1MSL6DT6)	(C1MSL6DT7)	13-71
H'0080 156E		Slot 6 Timestamp L6TSP)	13-72
H'0080 1570	CAN1 Message Slot 7 Standard ID 0	CAN1 Message Slot 7 Standard ID 1	13-58
	(C1MSL7SID0)	(C1MSL7SID1)	13-59
H'0080 1572	CAN1 Message Slot 7 Extended ID 0	CAN1 Message Slot 7 Extended ID 1	13-60
	(C1MSL7EID0)	(C1MSL7EID1)	13-61
H'0080 1574	CAN1 Message Slot 7 Extended ID 2	CAN1 Message Slot 7 Data Length Register	13-62
	(C1MSL7EID2)	(C1MSL7DLC)	13-63
H'0080 1576	CAN1 Message Slot 7 Data 0	CAN1 Message Slot 7 Data 1	13-64
	(C1MSL7DT0)	(C1MSL7DT1)	13-65
H'0080 1578	CAN1 Message Slot 7 Data 2	CAN1 Message Slot 7 Data 3	13-66
	(C1MSL7DT2)	(C1MSL7DT3)	13-67
H'0080 157A	CAN1 Message Slot 7 Data 4	CAN1 Message Slot 7 Data 5	13-68
	(C1MSL7DT4)	(C1MSL7DT5)	13-69
H'0080 157C	CAN1 Message Slot 7 Data 6	CAN1 Message Slot 7 Data 7	13-70
	(C1MSL7DT6)	(C1MSL7DT7)	13-71
H'0080 157E	CAN1 Message Slot 7 Timestamp (C1MSL7TSP)		
H'0080 1580	CAN1 Message Slot 8 Standard ID 0	CAN1 Message Slot 8 Standard ID 1	13-58
	(C1MSL8SID0)	(C1MSL8SID1)	13-59
H'0080 1582	CAN1 Message Slot 8 Extended ID 0	CAN1 Message Slot 8 Extended ID 1	13-60
	(C1MSL8EID0)	(C1MSL8EID1)	13-61
H'0080 1584	CAN1 Message Slot 8 Extended ID 2	CAN1 Message Slot 8 Data Length Register	13-62
	(C1MSL8EID2)	(C1MSL8DLC)	13-63
H'0080 1586	CAN1 Message Slot 8 Data 0	CAN1 Message Slot 8 Data 1	13-64
	(C1MSL8DT0)	(C1MSL8DT1)	13-65
H'0080 1588	CAN1 Message Slot 8 Data 2	CAN1 Message Slot 8 Data 3	13-66
	(C1MSL8DT2)	(C1MSL8DT3)	13-67
H'0080 158A	CAN1 Message Slot 8 Data 4	CAN1 Message Slot 8 Data 5	13-68
	(C1MSL8DT4)	(C1MSL8DT5)	13-69
H'0080 158C	CAN1 Message Slot 8 Data 6	CAN1 Message Slot 8 Data 7	13-70
	(C1MSL8DT6)	(C1MSL8DT7)	13-71
H'0080 158E	CAN1 Message	Slot 8 Timestamp L8TSP)	13-72

ADDRESS SPACE 3.4 Internal RAM and SFR Areas

SFR Area Register Map (21/22)

H0080 1590 CAN1 Message Stot 9 Standard D 1 (CIMSLSDD) CAN1 Message Stot 9 Standard D 1 (CIMSLSDD) 13-4 (CIMSLSDD) H0080 1592 CAN1 Message Stot 9 Extended D 0 (CIMSLSDD) CAN1 Message Stot 9 Data Length Register (CIMSLSDD) 13-4 (CIMSLSDD) H0080 1594 CAN1 Message Stot 9 Data 0 (CIMSLSDD2) CAN1 Message Stot 9 Data 1 (CIMSLSDD2) 13-4 (CIMSLSDD1) H0080 1596 CAN1 Message Stot 9 Data 0 (CIMSLSDD2) CAN1 Message Stot 9 Data 1 (CIMSLSDD1) 13-4 (CIMSLSDD1) H0080 1596 CAN1 Message Stot 9 Data 2 (CIMSLSDD1) CAN1 Message Stot 9 Data 3 (CIMSLSDD1) 13-4 (CIMSLSDD1) H0080 1596 CAN1 Message Stot 9 Data 4 (CIMSLSDD1) CAN1 Message Stot 9 Data 5 (CIMSLSDD1) 13-4 (CIMSLSDD1) H0080 1596 CAN1 Message Stot 9 Data 6 (CIMSLSDD1) CAN1 Message Stot 9 Data 5 (CIMSLSDD1) 13-4 (CIMSLSDD1) H0080 15A2 CAN1 Message Stot 10 Standard ID 0 (CIMSLSDD1) CAN1 Message Stot 10 Standard ID 1 (CIMSLSDD1) 13-4 (CIMSLSDD1) H0080 15A2 CAN1 Message Stot 10 Standard ID 2 (CIMSLSDD1) CAN1 Message Stot 10 Data 1 (CIMSLSDD1) 13-4 (CIMSLSDD1) H0080 15A2 CAN1 Message Stot 10 Data 1 (CIMSLSDD1) CAN1 Message Stot 10 Data 1 (CIMSLSDD1) 13-4 (CIMSLSDD1) H0080 15A2 CAN1 Message	Address	+0 address b0 b7	+1 address b8 b15	See pages
H0080 1592 CAN1 Message Stot 9 Extended ID 0 (CIMSL9ED0) CAN1 Message Stot 9 Data Longth Register (CIMSL9ED2) 13- (CIMSL9ED1) H0080 1594 CAN1 Message Stot 9 Data Longth Register (CIMSL9D1) 13- (CIMSL9D1) 13- (CIMSL9D1) 13- (CIMSL9D1) H0080 1596 CAN1 Message Stot 9 Data LOPUT 13- (CIMSL9D1) 13- (CIMSL9D1) 13- (CIMSL9D1) H0080 1598 CAN1 Message Stot 9 Data 2 CAN1 Message Stot 9 Data 3 13- (CIMSL9D12) H0080 159A CAN1 Message Stot 9 Data 4 CAN1 Message Stot 9 Data 5 13- (CIMSL9D12) H0080 159C CAN1 Message Stot 9 Data 5 CAN1 Message Stot 9 Data 7 13- (CIMSL9D17) H0080 154C CAN1 Message Stot 19 Standard ID 0 CAN1 Message Stot 10 Standard ID 1 13- (CIMSL9TSP) H0080 154C CAN1 Message Stot 10 Standard ID 0 CAN1 Message Stot 10 Standard ID 1 13- (CIMSL105ED0) H0080 154C CAN1 Message Stot 10 Standard ID 2 CAN1 Message Stot 10 Standard ID 1 13- (CIMSL105ED0) H0080 154A CAN1 Message Stot 10 Standard ID 2 CAN1 Message Stot 10 Data 1 13- (CIMSL105ED0) H0080 154A CAN1 Message Stot 10 Data 1 13- (CIMSL105ED0) 13- (CIMSL105ED0) 13- (CIMSL105ED0)	H'0080 1590	CAN1 Message Slot 9 Standard ID 0	CAN1 Message Slot 9 Standard ID 1	13-58 13-59
Image: constraint of the state of	H'0080 1592	CAN1 Message Slot 9 Extended ID 0	CAN1 Message Slot 9 Extended ID 1	13-60 13-61
Image: constraint of the state of	H'0080 1594			13-62 13-63
Image: constraint of the state of	H'0080 1596			13-64 13-65
Image: constraint of the state set	H'0080 1598			13-66 13-67
(CIMSL9DT6) (CIMSL9DT7) 13- (CIMSL9TSP) H0080154E CAN1 Message Slot 10 Timestamp (CIMSL9TSP) 13- (CIMSL9TSP) H008015A0 CAN1 Message Slot 10 Standard ID 1 (CIMSL105ID) 13- (CIMSL105ID) H008015A2 CAN1 Message Slot 10 Standard ID 1 (CIMSL105ID) 13- (CIMSL105ID) H008015A4 CAN1 Message Slot 10 Extended ID 2 (CIMSL100EID) CAN1 Message Slot 10 Data 1 (CIMSL10EID) 13- (CIMSL10EID) H008015A6 CAN1 Message Slot 10 Data 0 (CIMSL100EID) CAN1 Message Slot 10 Data 1 (CIMSL10DT3) 13- (CIMSL10DT3) H008015A6 CAN1 Message Slot 10 Data 2 (CIMSL10DT3) CAN1 Message Slot 10 Data 3 (CIMSL10DT6) 13- (CIMSL10DT7) H008015A6 CAN1 Message Slot 10 Data 4 (CIMSL10DT6) CAN1 Message Slot 10 Data 5 (CIMSL10DT7) 13- (CIMSL10DT7) H008015AC CAN1 Message Slot 11 Data 6 (CIMSL115DD) CAN1 Message Slot 11 Data 7 (CIMSL10DT7) 13- (CIMSL10DT7) H008015AC CAN1 Message Slot 11 Standard D0 (CIMSL115DD) CAN1 Message Slot 11 Data 7 (CIMSL10TSP) 13- (CIMSL10DT7) H008015B2 CAN1 Message Slot 11 Standard D0 (CIMSL115DD) CAN1 Message Slot 11 Standard D1 (CIMSL115DD) 13- (CIMSL110TS) H008015B4 CAN1 Message Slot 11 Data 0 (CIMSL116DD) CAN	H'0080 159A			13-68 13-69
(CriMsL9TSP) (CriMsL10SID0) (CriMsL10SID0) (CriMsL10SID0) CAN1 Message Slot 10 Standard ID 1 13-3 H0080 15A2 CAN1 Message Slot 10 Standard ID 1 13-3 H0080 15A4 CAN1 Message Slot 10 Extended ID 2 CAN1 Message Slot 10 Data 1 13-3 H0080 15A4 CAN1 Message Slot 10 Data 1 13-4 H0080 15A6 CAN1 Message Slot 10 Data 1 13-4 H0080 15A6 CAN1 Message Slot 10 Data 1 13-4 H0080 15A6 CAN1 Message Slot 10 Data 3 13-4 H0080 15A6 CAN1 Message Slot 10 Data 5 13-4 H0080 15A6 CAN1 Message Slot 10 Timestamp (C1MSL10DT0) 13-4 H0080 15A6 CAN1 Message Slot 10 Timestamp (C1MSL10TSP) H0080 15A6 CAN1 Message Slot 11 Standard ID 1 13-4 CAN1 Message Slot 11 Standard ID 0	H'0080 159C			13-70 13-71
H0080 15A0 CAN1 Message Slot 10 Standard D 1 (CIMSL10SID0) CAN1 Message Slot 10 Extended ID 1 (CIMSL10EID1) 13- (CIMSL10EID1) H0080 15A2 CAN1 Message Slot 10 Extended ID 0 (CIMSL10EID2) CAN1 Message Slot 10 Extended ID 1 (CIMSL10EID2) 13- (CIMSL10EID1) H0080 15A4 CAN1 Message Slot 10 Extended ID 2 (CIMSL10EID2) CAN1 Message Slot 10 Data Length Register (CIMSL10DIC) 13- (CIMSL10EID2) H0080 15A6 CAN1 Message Slot 10 Data 2 (CIMSL10DIC) CAN1 Message Slot 10 Data 1 13-4 (CIMSL10DIC) H0080 15A6 CAN1 Message Slot 10 Data 2 (CIMSL10DIC) CAN1 Message Slot 10 Data 2 CAN1 Message Slot 10 Data 3 13-4 (CIMSL10DIC) H0080 15AA CAN1 Message Slot 10 Data 4 (CIMSL10DT6) CAN1 Message Slot 10 Data 5 13-4 (CIMSL10DT7) 13-3 (CIMSL10DT7) H0080 15AC CAN1 Message Slot 11 Data 6 (CIMSL10DT6) CAN1 Message Slot 10 Data 7 (CIMSL10T7) 13-3 (CIMSL10DT7) H0080 15BC CAN1 Message Slot 11 Standard ID 0 (CIMSL115ID0) CAN1 Message Slot 11 Standard ID 1 13-4 (CIMSL115ID1) 13-4 (CIMSL115ID1) 13-4 (CIMSL115ID1) 13-4 (CIMSL115ID1) 13-4 (CIMSL115ID1) 13-4 (CIMSL115ID1) 13-4 (CIMSL115ID1) 13-4 (CIMSL115ID1) 13-4 (CIMSL115ID1) 13-4 (CIMSL11D11) 13-4 (CIMSL11D11) 13-4	H'0080 159E			13-72
(C1MSL10EID0) (C1MSL10EID1) 13-4 H'0080 15A4 CAN1 Message Slot 10 Data Length Register (C1MSL10EID2) CAN1 Message Slot 10 Data Longth Register (C1MSL10DIC) 13-4 H'0080 15A6 CAN1 Message Slot 10 Data 0 CAN1 Message Slot 10 Data 1 13-4 H'0080 15A8 CAN1 Message Slot 10 Data 2 CAN1 Message Slot 10 Data 3 13-4 H'0080 15A4 CAN1 Message Slot 10 Data 4 CAN1 Message Slot 10 Data 5 13-4 H'0080 15AA CAN1 Message Slot 10 Data 4 CAN1 Message Slot 10 Data 5 13-4 H'0080 15AC CAN1 Message Slot 10 Data 6 CAN1 Message Slot 10 Data 7 13-7 H'0080 15AC CAN1 Message Slot 11 Standard ID 0 CAN1 Message Slot 11 Standard ID 1 13-4 H'0080 15B0 CAN1 Message Slot 11 Standard ID 0 CAN1 Message Slot 11 Standard ID 1 13-4 H'0080 15B4 CAN1 Message Slot 11 Data 0 CAN1 Message Slot 11 Data Length Register 13-4 H'0080 15B4 CAN1 Message Slot 11 Data 0 CAN1 Message Slot 11 Data 1 13-4 H'0080 15B4 CAN1 Message Slot 11 Data 0 CAN1 Message Slot 11 Data 1 13-4 H'0080 15B4 CAN1 Message Slot 11 Data 0	H'0080 15A0	CAN1 Message Slot 10 Standard ID 0	CAN1 Message Slot 10 Standard ID 1	13-58 13-59
Image: Construct of the state of t	H'0080 15A2			13-60 13-61
Image: climits in the image is a climit of the image is climits in the image is	H'0080 15A4		CAN1 Message Slot 10 Data Length Register (C1MSL10DLC)	13-62 13-63
H'0080 15A8 CAN1 Message Slot 10 Data 2 (C1MSL10DT2) CAN1 Message Slot 10 Data 3 (C1MSL10DT3) 13-4 (C1MSL10DT3) H'0080 15AA CAN1 Message Slot 10 Data 4 (C1MSL10DT4) CAN1 Message Slot 10 Data 5 (C1MSL10DT5) 13-4 (C1MSL10DT5) H'0080 15AC CAN1 Message Slot 10 Data 6 (C1MSL10DT6) CAN1 Message Slot 10 Data 7 (C1MSL10DT7) 13-7 (C1MSL10DT7) H'0080 15AC CAN1 Message Slot 10 Data 6 (C1MSL10TSP) CAN1 Message Slot 11 Standard ID 0 (C1MSL11SID0) CAN1 Message Slot 11 Standard ID 1 (C1MSL111ED0) 13-7 (C1MSL111ED0) H'0080 15B2 CAN1 Message Slot 11 Extended ID 0 (C1MSL111ED0) CAN1 Message Slot 11 Extended ID 1 (C1MSL111ED0) 13-4 (C1MSL111ED0) H'0080 15B4 CAN1 Message Slot 11 Extended ID 2 (C1MSL111ED0) CAN1 Message Slot 11 Data 1 (C1MSL11DLC) 13-4 (C1MSL11DLC) H'0080 15B6 CAN1 Message Slot 11 Data 2 (C1MSL11DT0) CAN1 Message Slot 11 Data 1 (C1MSL11DT1) 13-4 (C1MSL11DT3) H'0080 15B6 CAN1 Message Slot 11 Data 2 (C1MSL110T4) CAN1 Message Slot 11 Data 3 (C1MSL11DT5) 13-4 (C1MSL11DT5) H'0080 15B6 CAN1 Message Slot 11 Data 4 (C1MSL11DT6) CAN1 Message Slot 11 Data 5 (C1MSL11DT6) 13-4 (C1MSL11DT7) H'0080 15C0 CAN1 Message Slot 12 Data 4 (C1MSL12EDD0) CAN1 Message Slot 12 Data 7 (C1MSL12DT6) <td>H'0080 15A6</td> <td></td> <td></td> <td>13-64 13-65</td>	H'0080 15A6			13-64 13-65
H'0080 15AA CAN1 Message Slot 10 Data 4 (C1MSL10DT4) CAN1 Message Slot 10 Data 5 (C1MSL10DT5) 13- (C1MSL10DT5) H'0080 15AC CAN1 Message Slot 10 Data 6 (C1MSL10DT6) CAN1 Message Slot 10 Data 7 (C1MSL10DT7) 13- (C1MSL10DT7) H'0080 15AE CAN1 Message Slot 10 Data 6 (C1MSL11SID1) CAN1 Message Slot 10 Timestamp (C1MSL11SID1) 13- (C1MSL11SID1) H'0080 15B0 CAN1 Message Slot 11 Standard ID 0 (C1MSL11SID0) CAN1 Message Slot 11 Standard ID 1 (C1MSL11EID0) 13- (C1MSL11EID1) H'0080 15B2 CAN1 Message Slot 11 Extended ID 0 (C1MSL11EID0) CAN1 Message Slot 11 Extended ID 1 (C1MSL11EID0) 13- (C1MSL11EID1) H'0080 15B4 CAN1 Message Slot 11 Extended ID 2 (C1MSL11EID2) CAN1 Message Slot 11 Data 1 (C1MSL11DT1) 13- (C1MSL11DT3) H'0080 15B6 CAN1 Message Slot 11 Data 0 (C1MSL11DT0) CAN1 Message Slot 11 Data 1 (C1MSL11DT3) 13- (C1MSL11DT3) 13- (C1MSL11DT3) H'0080 15B8 CAN1 Message Slot 11 Data 2 (C1MSL12DT5) CAN1 Message Slot 11 Data 5 (C1MSL11DT5) 13- (C1MSL12DT5) H'0080 15B4 CAN1 Message Slot 12 Data 6 (C1MSL12DT5) 13- (C1MSL12DT5) 13- (C1MSL12DT5) H'0080 15C2 CAN1 Message Slot 12 Data 6 (C1MSL12EID1) 13- (C1MSL12EID1) 13- (C1MSL12EID1) 13- (C1MSL12EID1)	H'0080 15A8	CAN1 Message Slot 10 Data 2	CAN1 Message Slot 10 Data 3	13-66 13-67
(C1MSL10DT6) (C1MSL10DT7) 13-7 H'0080 15AE CAN1 Message Slot 10 Timestamp 13-7 H'0080 15B0 CAN1 Message Slot 11 Standard ID 0 (C1MSL11SID1) 13-7 H'0080 15B2 CAN1 Message Slot 11 Extended ID 0 (C1MSL11SID1) 13-7 H'0080 15B4 CAN1 Message Slot 11 Extended ID 2 CAN1 Message Slot 11 Data Length Register 13-7 H'0080 15B4 CAN1 Message Slot 11 Data Longth Register 13-7 (C1MSL11EID2) 13-4 H'0080 15B4 CAN1 Message Slot 11 Data Congth Register 13-7 (C1MSL11DC) 13-4 H'0080 15B6 CAN1 Message Slot 11 Data Congth Register 13-7 (C1MSL11DT1) 13-4 H'0080 15B6 CAN1 Message Slot 11 Data 2 CAN1 Message Slot 11 Data 3 13-7 H'0080 15B8 CAN1 Message Slot 11 Data 4 CAN1 Message Slot 11 Data 5 13-7 H'0080 15BA CAN1 Message Slot 11 Data 6 CAN1 Message Slot 11 Data 7 13-7 H'0080 15BC CAN1 Message Slot 11 Data 6 CAN1 Message Slot 12 Data 7 13-7 H'0080 15C0 CAN1 Message Slot 12 Standard ID 0 CAN1 Message Slot 12 Standard ID 1 1	H'0080 15AA	CAN1 Message Slot 10 Data 4	CAN1 Message Slot 10 Data 5	13-68 13-69
H0080 15AE CAN1 Message Slot 10 Timestamp (C1MSL10TSP) 13 (C1MSL11SID1) H'0080 15B0 CAN1 Message Slot 11 Standard ID 0 (C1MSL11SID0) CAN1 Message Slot 11 Standard ID 1 (C1MSL11SID1) 13 (C1MSL11SID1) H'0080 15B2 CAN1 Message Slot 11 Extended ID 0 (C1MSL11EID0) CAN1 Message Slot 11 Extended ID 1 (C1MSL11EID1) 13 (C1MSL11EID1) H'0080 15B4 CAN1 Message Slot 11 Extended ID 2 (C1MSL11EID2) CAN1 Message Slot 11 Data Length Register (C1MSL11D1C) 13 (C1MSL11D1C) H'0080 15B6 CAN1 Message Slot 11 Data 0 (C1MSL11D1C) CAN1 Message Slot 11 Data 1 (C1MSL11D10) 13 (C1MSL11D10) H'0080 15B6 CAN1 Message Slot 11 Data 2 (C1MSL11D12) CAN1 Message Slot 11 Data 3 (C1MSL11D13) 13 (C1MSL11D13) H'0080 15B6 CAN1 Message Slot 11 Data 4 (C1MSL11D17) CAN1 Message Slot 11 Data 5 (C1MSL12D15) 13 (C1MSL11D15) H'0080 15BC CAN1 Message Slot 12 Data 4 (C1MSL12D10) CAN1 Message Slot 12 Data 5 (C1MSL12SID0) 13 (C1MSL12SID1) H'0080 15C2 CAN1 Message Slot 12 Standard ID 0 (C1MSL12SID1) CAN1 Message Slot 12 Standard ID 1 (C1MSL12D11) 13 (C1MSL12D10) H'0080 15C4 CAN1 Message Slot 12 Data C (C1MSL12D10) CAN1 Message Slot 12 Data 1 (C1MSL12D11) 13 (C1MSL12D10) H'0080 15C4 <td>H'0080 15AC</td> <td>CAN1 Message Slot 10 Data 6</td> <td>CAN1 Message Slot 10 Data 7</td> <td>13-70 13-71</td>	H'0080 15AC	CAN1 Message Slot 10 Data 6	CAN1 Message Slot 10 Data 7	13-70 13-71
H'0080 15B0 CAN1 Message Slot 11 Standard ID 0 (C1MSL11SID0) CAN1 Message Slot 11 Standard ID 1 (C1MSL11SID1) 13-4 (C1MSL11SID1) H'0080 15B2 CAN1 Message Slot 11 Extended ID 0 (C1MSL11EID0) CAN1 Message Slot 11 Extended ID 1 (C1MSL11EID1) 13-4 (C1MSL11EID1) H'0080 15B4 CAN1 Message Slot 11 Extended ID 2 (C1MSL11EID2) CAN1 Message Slot 11 Data Length Register (C1MSL11DC) 13-4 (C1MSL11DC) H'0080 15B6 CAN1 Message Slot 11 Data 0 (C1MSL11DT2) CAN1 Message Slot 11 Data 1 (C1MSL11DT3) 13-4 (C1MSL11DT3) H'0080 15B8 CAN1 Message Slot 11 Data 2 (C1MSL11DT4) CAN1 Message Slot 11 Data 3 (C1MSL11DT5) 13-4 (C1MSL11DT3) H'0080 15BA CAN1 Message Slot 11 Data 4 (C1MSL11DT4) CAN1 Message Slot 11 Data 5 (C1MSL11DT5) 13-4 (C1MSL11DT6) H'0080 15BC CAN1 Message Slot 11 Data 4 (C1MSL11DT4) CAN1 Message Slot 11 Data 7 (C1MSL11DT6) 13-4 (C1MSL11DT7) H'0080 15C0 CAN1 Message Slot 12 Standard ID 0 (C1MSL12SID0) CAN1 Message Slot 12 Standard ID 1 (C1MSL12SID1) 13-4 (C1MSL12DT0) H'0080 15C4 CAN1 Message Slot 12 Extended ID 0 (C1MSL12SID0) CAN1 Message Slot 12 Standard ID 1 (C1MSL12DT0) 13-4 (C1MSL12DT0) H'0080 15C4 CAN1 Message Slot 12 Extended ID 0 (C1MSL12DT0) CAN1 Message Slot 12 Data 1 (C1MSL12DT0)	H'0080 15AE	CAN1 Message S	Slot 10 Timestamp	13-72
H'0080 15B2 CAN1 Message Slot 11 Extended ID 0 (C1MSL11EID0) CAN1 Message Slot 11 Extended ID 1 (C1MSL11EID1) 13-6 (C1MSL11EID1) H'0080 15B4 CAN1 Message Slot 11 Extended ID 2 (C1MSL11EID2) CAN1 Message Slot 11 Data Length Register (C1MSL11DT0) 13-6 (C1MSL11DT1) H'0080 15B6 CAN1 Message Slot 11 Data 0 (C1MSL11DT0) CAN1 Message Slot 11 Data 1 (C1MSL11DT1) 13-6 (C1MSL11DT1) H'0080 15B8 CAN1 Message Slot 11 Data 2 (C1MSL11DT1) CAN1 Message Slot 11 Data 3 (C1MSL11DT2) 13-6 (C1MSL11DT3) H'0080 15B8 CAN1 Message Slot 11 Data 4 (C1MSL11DT4) CAN1 Message Slot 11 Data 5 (C1MSL11DT5) 13-6 (C1MSL11DT5) H'0080 15BC CAN1 Message Slot 11 Data 6 (C1MSL11DT6) CAN1 Message Slot 11 Data 7 (C1MSL11DT6) 13-7 (C1MSL11DT7) H'0080 15BC CAN1 Message Slot 12 Standard ID 0 (C1MSL12SID0) CAN1 Message Slot 12 Standard ID 1 (C1MSL12SID1) 13-7 (C1MSL12SID1) H'0080 15C4 CAN1 Message Slot 12 Extended ID 2 (C1MSL12EID2) CAN1 Message Slot 12 Standard ID 1 (C1MSL12EID1) 13-7 (C1MSL12DT1) H'0080 15C4 CAN1 Message Slot 12 Data 0 (C1MSL12EID2) CAN1 Message Slot 12 Data 1 (C1MSL12DT1) 13-6 (C1MSL12DT3) H'0080 15C4 CAN1 Message Slot 12 Data 0 (C1MSL12DT2) CAN1 Message Slot 12 Data 3 (C1MSL12DT3) 13-6 (C1MSL12D	H'0080 15B0	CAN1 Message Slot 11 Standard ID 0	CAN1 Message Slot 11 Standard ID 1	13-58 13-59
(C1MSL11EID2) (C1MSL11DLC) 13-6 H'0080 15B6 CAN1 Message Slot 11 Data 0 (C1MSL11DT0) CAN1 Message Slot 11 Data 1 (C1MSL11DT1) 13-6 H'0080 15B8 CAN1 Message Slot 11 Data 2 (C1MSL11DT2) CAN1 Message Slot 11 Data 3 (C1MSL11DT3) 13-6 H'0080 15BA CAN1 Message Slot 11 Data 4 (C1MSL11DT4) CAN1 Message Slot 11 Data 5 (C1MSL11DT5) 13-6 H'0080 15BA CAN1 Message Slot 11 Data 4 (C1MSL11DT4) CAN1 Message Slot 11 Data 5 (C1MSL11DT7) 13-7 H'0080 15BC CAN1 Message Slot 11 Data 6 (C1MSL11DT6) CAN1 Message Slot 11 Data 7 (C1MSL11DT7) 13-7 H'0080 15BE CAN1 Message Slot 12 Standard ID 0 (C1MSL12SID0) CAN1 Message Slot 12 Standard ID 1 (C1MSL12SID1) 13-7 H'0080 15C2 CAN1 Message Slot 12 Extended ID 0 (C1MSL12EID0) CAN1 Message Slot 12 Extended ID 1 (C1MSL12EID1) 13-7 H'0080 15C4 CAN1 Message Slot 12 Extended ID 2 (C1MSL12EID2) CAN1 Message Slot 12 Data Length Register (C1MSL12DT1) 13-6 H'0080 15C6 CAN1 Message Slot 12 Data 0 (C1MSL12DT1) CAN1 Message Slot 12 Data 1 (C1MSL12DT1) 13-6 H'0080 15C4 CAN1 Message Slot 12 Data 2 (C1MSL12DT1) CAN1 Message Slot 12 Data 3 (C1MSL12DT1) 13-6 H'0080	H'0080 15B2	CAN1 Message Slot 11 Extended ID 0	CAN1 Message Slot 11 Extended ID 1	13-60 13-61
H'0080 15B8 CAN1 Message Slot 11 Data 2 (C1MSL11DT2) CAN1 Message Slot 11 Data 3 (C1MSL11DT3) 13-6 (C1MSL11DT3) H'0080 15BA CAN1 Message Slot 11 Data 4 (C1MSL11DT4) CAN1 Message Slot 11 Data 5 (C1MSL11DT5) 13-6 (C1MSL11DT5) H'0080 15BA CAN1 Message Slot 11 Data 4 (C1MSL11DT4) CAN1 Message Slot 11 Data 5 (C1MSL11DT5) 13-6 (C1MSL11DT5) H'0080 15BC CAN1 Message Slot 11 Data 6 (C1MSL11DT6) CAN1 Message Slot 11 Timestamp (C1MSL11SP) 13-7 (C1MSL12SID0) H'0080 15C0 CAN1 Message Slot 12 Standard ID 0 (C1MSL12SID0) CAN1 Message Slot 12 Standard ID 1 (C1MSL12SID1) 13-6 (C1MSL12EID1) H'0080 15C2 CAN1 Message Slot 12 Extended ID 0 (C1MSL12EID0) CAN1 Message Slot 12 Extended ID 1 (C1MSL12EID1) 13-6 (C1MSL12EID1) H'0080 15C4 CAN1 Message Slot 12 Extended ID 2 (C1MSL12EID2) CAN1 Message Slot 12 Data Length Register (C1MSL12EID2) 13-6 (C1MSL12DT1) H'0080 15C4 CAN1 Message Slot 12 Data 0 (C1MSL12DT0) CAN1 Message Slot 12 Data 1 (C1MSL12DT1) 13-6 (C1MSL12DT3) H'0080 15C4 CAN1 Message Slot 12 Data 4 (C1MSL12DT2) CAN1 Message Slot 12 Data 3 (C1MSL12DT3) 13-6 (C1MSL12DT3) H'0080 15C4 CAN1 Message Slot 12 Data 4 (C1MSL12DT4) CAN1 Message Slot 12 Data 5 (C1MSL12DT5) 13-6 (C1MSL12DT3)	H'0080 15B4			13-62 13-63
H'0080 15BA (C1MŠL11DT2) (C1MŠL11DT3) 13-6 H'0080 15BA CAN1 Message Slot 11 Data 4 (C1MSL11DT4) CAN1 Message Slot 11 Data 5 (C1MSL11DT5) 13-6 H'0080 15BC CAN1 Message Slot 11 Data 6 (C1MSL11DT6) CAN1 Message Slot 11 Data 7 (C1MSL11DT7) 13-7 H'0080 15BE CAN1 Message Slot 12 Standard ID 0 (C1MSL12SID0) CAN1 Message Slot 12 Standard ID 1 (C1MSL12SID1) 13-7 H'0080 15C2 CAN1 Message Slot 12 Extended ID 0 (C1MSL12SID0) CAN1 Message Slot 12 Standard ID 1 (C1MSL12EID0) 13-7 H'0080 15C2 CAN1 Message Slot 12 Extended ID 0 (C1MSL12EID0) CAN1 Message Slot 12 Extended ID 1 (3-6 13-6 H'0080 15C4 CAN1 Message Slot 12 Extended ID 2 (C1MSL12EID0) CAN1 Message Slot 12 Data Length Register (C1MSL12EID2) 13-6 H'0080 15C4 CAN1 Message Slot 12 Data 0 (C1MSL12DI0) CAN1 Message Slot 12 Data 1 (C1MSL12DT0) 13-6 H'0080 15C8 CAN1 Message Slot 12 Data 2 (C1MSL12DT3) CAN1 Message Slot 12 Data 3 (C1MSL12DT4) 13-6 H'0080 15CA CAN1 Message Slot 12 Data 4 (C1MSL12DT4) CAN1 Message Slot 12 Data 5 (C1MSL12DT5) 13-6 H'0080 15CA CAN1 Message Slot 12 Data 4 (C1MSL12DT4) CAN1 Message Slot 12 Data 5 (C1MSL12DT5) 13-6	H'0080 15B6			13-64 13-65
Image: Horizon Constraint Image: Constraint <td>H'0080 15B8</td> <td></td> <td></td> <td>13-66 13-67</td>	H'0080 15B8			13-66 13-67
H'0080 15BE (C1MŠL11DT6) (C1MŠL11DT7) 13-7 H'0080 15C0 CAN1 Message Slot 12 Standard ID 0 (C1MSL12SID0) CAN1 Message Slot 12 Standard ID 1 (C1MSL12SID1) 13-7 H'0080 15C2 CAN1 Message Slot 12 Standard ID 0 (C1MSL12SID0) CAN1 Message Slot 12 Standard ID 1 (C1MSL12SID1) 13-7 H'0080 15C2 CAN1 Message Slot 12 Extended ID 0 (C1MSL12EID0) CAN1 Message Slot 12 Extended ID 1 (C1MSL12EID1) 13-6 H'0080 15C4 CAN1 Message Slot 12 Extended ID 2 (C1MSL12EID2) CAN1 Message Slot 12 Data Length Register (C1MSL12EID2) 13-6 H'0080 15C4 CAN1 Message Slot 12 Data 0 (C1MSL12DT0) CAN1 Message Slot 12 Data 1 (C1MSL12DT1) 13-6 H'0080 15C6 CAN1 Message Slot 12 Data 2 (C1MSL12DT0) CAN1 Message Slot 12 Data 3 (C1MSL12DT3) 13-6 H'0080 15C4 CAN1 Message Slot 12 Data 4 (C1MSL12DT4) CAN1 Message Slot 12 Data 5 (C1MSL12DT5) 13-6 H'0080 15CA CAN1 Message Slot 12 Data 4 (C1MSL12DT4) CAN1 Message Slot 12 Data 5 (C1MSL12DT5) 13-6 H'0080 15CC CAN1 Message Slot 12 Data 6 (C1MSL12DT6) CAN1 Message Slot 12 Data 7 (C1MSL12DT7) 13-7	H'0080 15BA			13-68 13-69
(C1MSL11TSP) H'0080 15C0 CAN1 Message Slot 12 Standard ID 0 (C1MSL12SID0) CAN1 Message Slot 12 Standard ID 1 (C1MSL12SID1) 13-5 13-5 H'0080 15C2 CAN1 Message Slot 12 Extended ID 0 (C1MSL12EID0) CAN1 Message Slot 12 Extended ID 1 (C1MSL12EID1) 13-6 13-6 H'0080 15C4 CAN1 Message Slot 12 Extended ID 2 (C1MSL12EID2) CAN1 Message Slot 12 Data Length Register (C1MSL12EID2) 13-6 (C1MSL12DLC) 13-6 13-6 H'0080 15C6 CAN1 Message Slot 12 Data 0 (C1MSL12DT0) CAN1 Message Slot 12 Data 1 (C1MSL12DT0) 13-6 (C1MSL12DT1) 13-6 13-6 H'0080 15C8 CAN1 Message Slot 12 Data 2 (C1MSL12DT2) CAN1 Message Slot 12 Data 3 (C1MSL12DT3) 13-6 (C1MSL12DT3) H'0080 15CA CAN1 Message Slot 12 Data 4 (C1MSL12DT4) CAN1 Message Slot 12 Data 5 (C1MSL12DT5) 13-6 (C1MSL12DT5) H'0080 15CC CAN1 Message Slot 12 Data 6 (C1MSL12DT6) CAN1 Message Slot 12 Data 7 (C1MSL12DT7) 13-7 (C1MSL12DT7)	H'0080 15BC	CAN1 Message Slot 11 Data 6 (C1MSL11DT6)	CAN1 Message Slot 11 Data 7 (C1MSL11DT7)	13-70 13-71
Image: Horizon Constraint of the state of the s	H'0080 15BE	CAN1 Message Slot 11 Timestamp		
(C1MSL12EID0) (C1MSL12EID1) 13-6 H'0080 15C4 CAN1 Message Slot 12 Extended ID 2 (C1MSL12EID2) CAN1 Message Slot 12 Data Length Register (C1MSL12DLC) 13-6 H'0080 15C6 CAN1 Message Slot 12 Data 0 (C1MSL12DT0) CAN1 Message Slot 12 Data 1 13-6 H'0080 15C8 CAN1 Message Slot 12 Data 2 (C1MSL12DT0) CAN1 Message Slot 12 Data 3 13-6 H'0080 15C8 CAN1 Message Slot 12 Data 2 (C1MSL12DT2) CAN1 Message Slot 12 Data 3 13-6 H'0080 15CA CAN1 Message Slot 12 Data 4 (C1MSL12DT4) CAN1 Message Slot 12 Data 5 13-6 H'0080 15CC CAN1 Message Slot 12 Data 4 (C1MSL12DT4) CAN1 Message Slot 12 Data 7 13-7 H'0080 15CC CAN1 Message Slot 12 Data 6 (C1MSL12DT6) CAN1 Message Slot 12 Data 7 13-7	H'0080 15C0			13-58 13-59
(C1MSL12EID2) (C1MSL12DLC) 13-6 H'0080 15C6 CAN1 Message Slot 12 Data 0 (C1MSL12DT0) CAN1 Message Slot 12 Data 1 (C1MSL12DT1) 13-6 H'0080 15C8 CAN1 Message Slot 12 Data 2 (C1MSL12DT2) CAN1 Message Slot 12 Data 3 (C1MSL12DT3) 13-6 H'0080 15CA CAN1 Message Slot 12 Data 4 (C1MSL12DT4) CAN1 Message Slot 12 Data 5 (C1MSL12DT5) 13-6 H'0080 15CC CAN1 Message Slot 12 Data 6 (C1MSL12DT6) CAN1 Message Slot 12 Data 7 (C1MSL12DT7) 13-7	H'0080 15C2	CAN1 Message Slot 12 Extended ID 0 (C1MSL12EID0)		13-60 13-61
H'0080 15C6 CAN1 Message Slot 12 Data 0 (C1MSL12DT0) CAN1 Message Slot 12 Data 1 (C1MSL12DT1) 13-6 (C1MSL12DT1) H'0080 15C8 CAN1 Message Slot 12 Data 2 (C1MSL12DT2) CAN1 Message Slot 12 Data 3 (C1MSL12DT3) 13-6 (C1MSL12DT3) H'0080 15CA CAN1 Message Slot 12 Data 4 (C1MSL12DT4) CAN1 Message Slot 12 Data 5 (C1MSL12DT5) 13-6 (C1MSL12DT5) H'0080 15CC CAN1 Message Slot 12 Data 6 (C1MSL12DT6) CAN1 Message Slot 12 Data 7 (C1MSL12DT7) 13-7 (C1MSL12DT7)	H'0080 15C4	CAN1 Message Slot 12 Extended ID 2	CAN1 Message Slot 12 Data Length Register	13-62 13-63
H'0080 15C8 CAN1 Message Slot 12 Data 2 (C1MSL12DT2) CAN1 Message Slot 12 Data 3 (C1MSL12DT3) 13-6 (C1MSL12DT3) H'0080 15CA CAN1 Message Slot 12 Data 4 (C1MSL12DT4) CAN1 Message Slot 12 Data 5 (C1MSL12DT5) 13-6 (C1MSL12DT5) H'0080 15CC CAN1 Message Slot 12 Data 6 (C1MSL12DT6) CAN1 Message Slot 12 Data 7 (C1MSL12DT7) 13-7 (C1MSL12DT7)	H'0080 15C6	CAN1 Message Slot 12 Data 0	CAN1 Message Slot 12 Data 1	13-64 13-65
H'0080 15CA CAN1 Message Slot 12 Data 4 (C1MSL12DT4) CAN1 Message Slot 12 Data 5 (C1MSL12DT5) 13-6 (C1MSL12DT5) H'0080 15CC CAN1 Message Slot 12 Data 6 (C1MSL12DT6) CAN1 Message Slot 12 Data 7 (C1MSL12DT7) 13-7 (C1MSL12DT7)	H'0080 15C8			13-66 13-67
H'0080 15CC CAN1 Message Slot 12 Data 6 (C1MSL12DT6) CAN1 Message Slot 12 Data 7 (C1MSL12DT7) 13-7	H'0080 15CA	CAN1 Message Slot 12 Data 4	CAN1 Message Slot 12 Data 5	13-68 13-69
	H'0080 15CC	CAN1 Message Slot 12 Data 6	CAN1 Message Slot 12 Data 7	13-70 13-71
H'0080 15CE CAN1 Message Slot 12 Timestamp 13-7 (C1MSL12TSP) 13-7	H'0080 15CE	CAN1 Message S	Slot 12 Timestamp	13-72

SFR Area Register Map (22/22)

Address	+0 address	+1 address	See
	b0 b7	b8 b15	pages
H'0080 15D0	CAN1 Message Slot 13 Standard ID 0	CAN1 Message Slot 13 Standard ID 1	13-58
	(C1MSL13SID0)	(C1MSL13SID1)	13-59
H'0080 15D2	CAN1 Message Slot 13 Extended ID 0	CAN1 Message Slot 13 Extended ID 1	13-60
	(C1MSL13EID0)	(C1MSL13EID1)	13-61
H'0080 15D4	CAN1 Message Slot 13 Extended ID 2	CAN1 Message Slot 13 Data Length Register	13-62
	(C1MSL13EID2)	(C1MSL13DLC)	13-63
H'0080 15D6	CAN1 Message Slot 13 Data 0	CAN1 Message Slot 13 Data 1	13-64
	(C1MSL13DT0)	(C1MSL13DT1)	13-65
H'0080 15D8	CAN1 Message Slot 13 Data 2	CAN1 Message Slot 13 Data 3	13-66
	(C1MSL13DT2)	(C1MSL13DT3)	13-67
H'0080 15DA	CAN1 Message Slot 13 Data 4	CAN1 Message Slot 13 Data 5	13-68
	(C1MSL13DT4)	(C1MSL13DT5)	13-69
H'0080 15DC	CAN1 Message Slot 13 Data 6	CAN1 Message Slot 13 Data 7	13-70
	(C1MSL13DT6)	(C1MSL13DT7)	13-71
H'0080 15DE		Slot 13 Timestamp _13TSP)	13-72
H'0080 15E0	CAN1 Message Slot 14 Standard ID 0	CAN1 Message Slot 14 Standard ID 1	13-58
	(C1MSL14SID0)	(C1MSL14SID1)	13-59
H'0080 15E2	CAN1 Message Slot 14 Extended ID 0	CAN1 Message Slot 14 Extended ID 1	13-60
	(C1MSL14EID0)	(C1MSL14EID1)	13-61
H'0080 15E4	CAN1 Message Slot 14 Extended ID 2	CAN1 Message Slot 14 Data Length Register	13-62
	(C1MSL14EID2)	(C1MSL14DLC)	13-63
H'0080 15E6	CAN1 Message Slot 14 Data 0	CAN1 Message Slot 14 Data 1	13-64
	(C1MSL14DT0)	(C1MSL14DT1)	13-65
H'0080 15E8	CAN1 Message Slot 14 Data 2	CAN1 Message Slot 14 Data 3	13-66
	(C1MSL14DT2)	(C1MSL14DT3)	13-67
H'0080 15EA	CAN1 Message Slot 14 Data 4	CAN1 Message Slot 14 Data 5	13-68
	(C1MSL14DT4)	(C1MSL14DT5)	13-69
H'0080 15EC	CAN1 Message Slot 14 Data 6	CAN1 Message Slot 14 Data 7	13-70
	(C1MSL14DT6)	(C1MSL14DT7)	13-71
H'0080 15EE		Slot 14 Timestamp _14TSP)	13-72
H'0080 15F0	CAN1 Message Slot 15 Standard ID 0	CAN1 Message Slot 15 Standard ID 1	13-58
	(C1MSL15SID0)	(C1MSL15SID1)	13-59
H'0080 15F2	CAN1 Message Slot 15 Extended ID 0	CAN1 Message Slot 15 Extended ID 1	13-60
	(C1MSL15EID0)	(C1MSL15EID1)	13-61
H'0080 15F4	CAN1 Message Slot 15 Extended ID 2	CAN1 Message Slot 15 Data Length Register	13-62
	(C1MSL15EID2)	(C1MSL15DLC)	13-63
H'0080 15F6	CAN1 Message Slot 15 Data 0	CAN1 Message Slot 15 Data 1	13-64
	(C1MSL15DT0)	(C1MSL15DT1)	13-65
H'0080 15F8	CAN1 Message Slot 15 Data 2	CAN1 Message Slot 15 Data 3	13-66
	(C1MSL15DT2)	(C1MSL15DT3)	13-67
H'0080 15FA	CAN1 Message Slot 15 Data 4	CAN1 Message Slot 15 Data 5	13-68
	(C1MSL15DT4)	(C1MSL15DT5)	13-69
H'0080 15FC	CAN1 Message Slot 15 Data 6	CAN1 Message Slot 15 Data 7	13-70
	(C1MSL15DT6)	(C1MSL15DT7)	13-71
H'0080 15FE	CAN1 Message Slot 15 Timestamp (C1MSL15TSP)		
I	(Use inhibited area)		
H'0080 3FFE	(Use inhit	bited area)	

3.5 EIT Vector Entry

The EIT vector entry is located at the beginning of the internal ROM/external extension areas. The branch instruction for jumping to the start address of each EIT event processing handler is written here. Note that it is the branch instruction and not the jump address itself that is written here. For details, see Chapter 4, "EIT."

H0000 0004 RI (Reset Interrupt) H0000 0002	H'0000 0000	0 3.	31
H0000 0008 H0000 0000 H0000 0010 H0000 0014 H0000 0010 H0000 0020 H0000 0020 H0000 0020 H0000 0020 H0000 0020 H0000 0030 H0000 0030 H0000 0034 H0000 0034 H0000 0034 H0000 0036 H0000 0036 H0000 0036 H0000 0040 H0000 0040 TRAP0 H0000 0040 TRAP0 H0000 0040 TRAP1 H0000 0040 TRAP3 H0000 0050 TRAP4 H0000 0050 TRAP4 H0000 0050 TRAP4 H0000 0050 TRAP4 H0000 0050 TRAP5 H0000 0050 TRAP4 H0000 0050 TRAP4 H0000 0050 TRAP5 H0000 0050 TRAP4 H0000 0050 TRAP5 H0000 0050 TRAP4 H0000 0050 TRAP4 H0000 0050 TRAP4 H0000 0050 TRAP4 H0000 0050 TRAP4 H0000 0050 TRAP3 H0000 0050 TRAP4 H0000 0050 TRAP4 H0000 0050 TRAP3 H0000 0050 TRAP11 H0000 0070 TRAP11 H0000 0070 TRAP12 H0000 0074 TRAP13 H0000 0078 TRAP14 H0000 0076 TRAP15	H'0000 0004	RI (Reset Interrunt)	7
H0000 0010 - H0000 0014 - H0000 0016 - H0000 0020 - H0000 0024 - H0000 0025 - H0000 0026 - H0000 0026 - H0000 0026 - H0000 0030 - H0000 0040 TRAP0 H0000 0041 TRAP1 H0000 0050 TRAP3 H0000 0050 TRAP4 H0000 0050 TRAP6 H0000 0050 TRAP6 H0000 0050 TRAP8 H0000 0050 TRAP10 H0000 0050 TRAP11 H0000 0050 TRAP12 H0000 0070 TRAP13	H'0000 0008		
H0000 0014 SBI (System Break Interrupt) H0000 0010 - H0000 0020 - H0000 0030 - H0000 0040 TRAP0 H0000 0041 TRAP1 H0000 0042 TRAP3 H0000 0050 TRAP4 H0000 0050 TRAP4 H0000 0050 TRAP5 H0000 0050 TRAP4 H0000 0050 TRAP1 H0000 0050 TRAP1 H0000 0050 TRAP1 H0000 0062 TRAP1 H0000 0064 TRAP1 H0000 0070	H'0000 000C		
H0000 0018 SBI (System Break Interrupt) H0000 0010 - H0000 0020 - H0000 0030 - H0000 0031 - H0000 0032 - H0000 0033 - H0000 0034 TRAP0 H0000 0040 TRAP1 H0000 0041 TRAP3 H0000 0052 TRAP3 H0000 0054 TRAP4 H0000 0055 TRAP5 H0000 0056 TRAP5 H0000 0056 TRAP6 H0000 0057 TRAP10 H0000 0064 TRAP10 H0000 0065 TRAP11 H0000 0070 TRAP12 H0000 0074 TRAP13 H0000 0075 TRAP14 H0000 0076 TRAP15 <td>H'0000 0010</td> <td></td> <td></td>	H'0000 0010		
H0000 0018 H0000 0020 H0000 0024 H0000 0024 H0000 0026 H0000 0026 H0000 0030 H0000 0030 H0000 0034 H0000 0038 H0000 0036 H0000 0040 H0000 0040 H0000 0040 H0000 0044 TRAP0 H0000 0044 TRAP1 H0000 0048 TRAP2 H0000 0048 TRAP2 H0000 0046 TRAP3 H0000 0050 TRAP4 H0000 0050 TRAP4 H0000 0050 TRAP4 H0000 0050 TRAP5 H0000 0050 TRAP5 H0000 0050 TRAP5 H0000 0050 TRAP5 H0000 0050 TRAP5 H0000 0050 TRAP1 H0000 0050 TRAP1 H0000 0064 TRAP10 H0000 0064 TRAP10 H0000 0066 TRAP11 H0000 0076 TRAP13 H0000 0076 TRAP13 H0000 0078 TRAP14 H0000 0078 TRAP14 H0000 0076 TRAP15	H'0000 0014		
H'0000 0020	H'0000 0018	Sbi (System break interrupt)	
H'0000 0024	H'0000 001C		
RIE (Reserved Instruction Exception) H'0000 0026 H'0000 0030 H'0000 0034 H'0000 0034 H'0000 0038 H'0000 0036 H'0000 0036 H'0000 0037 H'0000 0038 H'0000 0040 TRAP0 H'0000 0044 H'0000 0045 TRAP1 H'0000 0050 TRAP3 H'0000 0050 TRAP4 H'0000 0054 TRAP5 H'0000 0055 TRAP6 H'0000 0060 TRAP8 H'0000 0064 TRAP9 H'0000 0065 TRAP1 H'0000 0066 TRAP10 H'0000 0067 TRAP11 H'0000 0070 TRAP12 H'0000 0074 TRAP13 H'0000 0078 TRAP14	H'0000 0020		
H'0000 0028	H'0000 0024	RIF (Reserved Instruction Exception)	
H'0000 0030	H'0000 0028		
H'0000 0034 AE (Address Exception) H'0000 003C H'0000 0040 H'0000 0044 TRAP0 H'0000 0044 H'0000 0044 TRAP1 H'0000 0046 TRAP2 H'0000 0050 TRAP3 H'0000 0050 TRAP4 H'0000 0054 TRAP5 H'0000 0055 TRAP6 H'0000 0050 TRAP8 H'0000 0064 TRAP8 H'0000 0065 TRAP10 H'0000 0066 TRAP11 H'0000 0070 TRAP12 H'0000 0074 TRAP13 H'0000 0075	H'0000 002C		
AE (Address Exception)	H'0000 0030		
H'0000 0038H'0000 003CH'0000 0040TRAP0H'0000 0044TRAP1H'0000 0048TRAP2H'0000 004CTRAP3H'0000 0050TRAP4H'0000 0054TRAP5H'0000 0055TRAP6H'0000 0060TRAP8H'0000 0064TRAP9H'0000 0065TRAP10H'0000 0066TRAP11H'0000 0070TRAP13H'0000 0075TRAP14H'0000 0076TRAP15	H'0000 0034	AE (Address Exception)	
H'0000 0040TRAP0H'0000 0044TRAP1H'0000 0048TRAP2H'0000 004CTRAP3H'0000 0050TRAP4H'0000 0054TRAP5H'0000 0058TRAP6H'0000 005CTRAP7H'0000 0060TRAP8H'0000 0064TRAP9H'0000 0065TRAP10H'0000 0066TRAP11H'0000 0070TRAP12H'0000 0074TRAP13H'0000 0075TRAP14H'0000 0076TRAP14	H'0000 0038		
H'0000 0044 TRAP1 H'0000 0048 TRAP2 H'0000 004C TRAP3 H'0000 0050 TRAP4 H'0000 0054 TRAP5 H'0000 0055 TRAP6 H'0000 0050 TRAP7 H'0000 0060 TRAP8 H'0000 0064 TRAP9 H'0000 0068 TRAP10 H'0000 0060 TRAP11 H'0000 0070 TRAP12 H'0000 0074 TRAP13 H'0000 0075 TRAP14 H'0000 0070 TRAP15	H'0000 003C		
H'0000 0048TRAP2H'0000 004CTRAP3H'0000 0050TRAP4H'0000 0054TRAP5H'0000 0058TRAP6H'0000 005CTRAP7H'0000 0060TRAP8H'0000 0064TRAP9H'0000 0068TRAP10H'0000 006CTRAP11H'0000 0070TRAP12H'0000 0074TRAP13H'0000 0078TRAP14H'0000 007CTRAP15	H'0000 0040	TRAP0	
H'0000 004CTRAP3H'0000 0050TRAP4H'0000 0054TRAP5H'0000 0058TRAP6H'0000 005CTRAP7H'0000 0060TRAP8H'0000 0064TRAP9H'0000 0065TRAP10H'0000 0066TRAP11H'0000 0070TRAP12H'0000 0074TRAP13H'0000 0075TRAP14H'0000 0070TRAP15	H'0000 0044	TRAP1	
H'0000 0050TRAP4H'0000 0054TRAP5H'0000 0058TRAP6H'0000 005CTRAP7H'0000 0060TRAP8H'0000 0064TRAP9H'0000 0068TRAP10H'0000 006CTRAP11H'0000 0070TRAP12H'0000 0074TRAP13H'0000 0078TRAP14H'0000 007CTRAP15	H'0000 0048	TRAP2	
H'0000 0054TRAP5H'0000 0058TRAP6H'0000 005CTRAP7H'0000 0060TRAP8H'0000 0064TRAP9H'0000 0068TRAP10H'0000 006CTRAP11H'0000 0070TRAP12H'0000 0074TRAP13H'0000 0075TRAP14H'0000 0070TRAP15	H'0000 004C	TRAP3	
H'0000 0058 TRAP6 H'0000 005C TRAP7 H'0000 0060 TRAP8 H'0000 0064 TRAP9 H'0000 0068 TRAP10 H'0000 006C TRAP11 H'0000 0070 TRAP12 H'0000 0074 TRAP13 H'0000 0075 TRAP14 H'0000 0076 TRAP15	H'0000 0050	TRAP4	
H'0000 005CTRAP7H'0000 0060TRAP8H'0000 0064TRAP9H'0000 0068TRAP10H'0000 006CTRAP11H'0000 0070TRAP12H'0000 0074TRAP13H'0000 0078TRAP14H'0000 007CTRAP15	H'0000 0054	TRAP5	
H'0000 0060TRAP8H'0000 0064TRAP9H'0000 0068TRAP10H'0000 006CTRAP11H'0000 0070TRAP12H'0000 0074TRAP13H'0000 0078TRAP14H'0000 007CTRAP15	H'0000 0058	TRAP6	
H'0000 0064TRAP9H'0000 0068TRAP10H'0000 006CTRAP11H'0000 0070TRAP12H'0000 0074TRAP13H'0000 0078TRAP14H'0000 007CTRAP15	H'0000 005C	TRAP7	
H'0000 0068 TRAP10 H'0000 006C TRAP11 H'0000 0070 TRAP12 H'0000 0074 TRAP13 H'0000 0078 TRAP14 H'0000 007C TRAP15	H'0000 0060	TRAP8	
H'0000 006CTRAP11H'0000 0070TRAP12H'0000 0074TRAP13H'0000 0078TRAP14H'0000 007CTRAP15	H'0000 0064	TRAP9	
H'0000 0070 TRAP12 H'0000 0074 TRAP13 H'0000 0078 TRAP14 H'0000 007C TRAP15	H'0000 0068	TRAP10	
H'0000 0074 TRAP13 H'0000 0078 TRAP14 H'0000 007C TRAP15	H'0000 006C	TRAP11	
H'0000 0078 TRAP14 H'0000 007C TRAP15	H'0000 0070	TRAP12	
H'0000 007C TRAP15	H'0000 0074	TRAP13	
	H'0000 0078	TRAP14	
H'0000 0080 EI (External Interrupt) (Note 1)	H'0000 007C	TRAP15	
	H'0000 0080	EI (External Interrupt) (Note 1)	
\downarrow \downarrow			\downarrow

3.6 ICU Vector Table

The ICU vector table is used by the internal interrupt controller of the microcomputer. This table has the addresses shown below, at which the start addresses of interrupt handlers for the interrupt requests from respective internal peripheral I/Os are set. For details, see Chapter 5, "Interrupt Controller."

ICU Vector Table Memory Map (1/2)

Address	+0 address	b7	+1 address b8	b15
H'0000 0094	М	JT Input Interrupt 4	Handler Start Address (A0–A15)	
H'0000 0096		T Input Interrupt 4	Handler Start Address (A16–A31)	
H'0000 0098	М	JT Input Interrupt 3	Handler Start Address (A0–A15)	
H'0000 009A	 M.	JT Input Interrupt 3	Handler Start Address (A16–A31)	
H'0000 009C	М	JT Input Interrupt 2	Handler Start Address (A0–A15)	
H'0000 009E	 M.	JT Input Interrupt 2	Handler Start Address (A16–A31)	
H'0000 00A0	М	JT Input Interrupt 1	Handler Start Address (A0–A15)	
H'0000 00A2	 M.	JT Input Interrupt 1	Handler Start Address (A16–A31)	
H'0000 00A4				
H'0000 00A6				
H'0000 00A8	MJ	T Output Interrupt 7	Handler Start Address (A0–A15)	
H'0000 00AA	MJ	T Output Interrupt 7	Handler Start Address (A16–A31)	
H'0000 00AC	MJ	T Output Interrupt 6	Handler Start Address (A0-A15)	
H'0000 00AE	MJ	T Output Interrupt 6	Handler Start Address (A16–A31)	
H'0000 00B0	MJ	T Output Interrupt 5	Handler Start Address (A0–A15)	
H'0000 00B2	MJ	T Output Interrupt 5	Handler Start Address (A16–A31)	
H'0000 00B4	MJ	T Output Interrupt 4	Handler Start Address (A0–A15)	
H'0000 00B6	MJ	T Output Interrupt 4	Handler Start Address (A16–A31)	
H'0000 00B8	MJ	T Output Interrupt 3	Handler Start Address (A0–A15)	
H'0000 00BA	MJ	T Output Interrupt 3	Handler Start Address (A16–A31)	
H'0000 00BC	MJ	T Output Interrupt 2	Handler Start Address (A0–A15)	
H'0000 00BE	MJ	T Output Interrupt 2	Handler Start Address (A16–A31)	
H'0000 00C0	MJ	T Output Interrupt 1	Handler Start Address (A0–A15)	
H'0000 00C2	MJ	T Output Interrupt 1	Handler Start Address (A16–A31)	
H'0000 00C4	MJ	T Output Interrupt 0	Handler Start Address (A0–A15)	
H'0000 00C6	MJ	T Output Interrupt 0	Handler Start Address (A16–A31)	
H'0000 00C8		DMA0-4 Interrupt H	Handler Start Address (A0–A15)	
H'0000 00CA	[[DMA0–4 Interrupt ⊢	landler Start Address (A16–A31)	
H'0000 00CC	SIC	D1 Receive Interrupt	Handler Start Address (A0–A15)	
H'0000 00CE	SIC	1 Receive Interrupt	Handler Start Address (A16–A31)	
H'0000 00D0	sic	01 Transmit Interrupt	t Handler Start Address (A0–A15)	
H'0000 00D2	SIO	1 Transmit Interrupt	Handler Start Address (A16–A31)	
H'0000 00D4	SIG	0 Receive Interrupt	Handler Start Address (A0–A15)	
H'0000 00D6	SIC	00 Receive Interrupt	Handler Start Address (A16–A31)	

ICU Vector Table Memory Map (2/2)

Address	+0 address +1 address b0 b7 b8 b15
H'0000 00D8	SIO0 Transmit Interrupt Handler Start Address (A0–A15)
H'0000 00DA	SIO0 Transmit Interrupt Handler Start Address (A16–A31)
H'0000 00DC	A-D0 Conversion Interrupt Handler Start Address (A0–A15)
H'0000 00DE	A-D0 Conversion Interrupt Handler Start Address (A16–A31)
H'0000 00E0	
H'0000 00E2	
H'0000 00E4	
H'0000 00E6	
H'0000 00E8	DMA5–9 Interrupt Handler Start Address (A0–A15)
H'0000 00EA	DMA5–9 Interrupt Handler Start Address (A16–A31)
H'0000 00EC	SIO2, 3 Transmit/receive Interrupt Handler Start Address (A0–A15)
H'0000 00EE	SIO2, 3 Transmit/receive Interrupt Handler Start Address (A16–A31)
H'0000 00F0	RTD Interrupt Handler Start Address (A0–A15)
H'0000 00F2	RTD Interrupt Handler Start Address (A16–A31)
H'0000 00F4	
H'0000 00F6	
H'0000 00F8	
H'0000 00FA	
H'0000 00FC	
H'0000 00FE	
H'0000 0100	
H'0000 0102	
H'0000 0104	
H'0000 0106	
H'0000 0108	
H'0000 010A	
H'0000 010C	CAN0 Transmit/receive & Error Interrupt Handler Start Address (A0–A15)
H'0000 010E	CAN0 Transmit/receive & Error Interrupt Handler Start Address (A16–A31)
H'0000 0110	CAN1 Transmit/receive & Error Interrupt Handler Start Address (A0–A15)
H'0000 0112	CAN1 Transmit/receive & Error Interrupt Handler Start Address (A16–A31)

3.7 Notes about Address Space

Virtual flash emulation function

The microcomputer has the function to map up to two 8-kbyte memory blocks of the internal RAM into areas of the internal flash memory (L banks) that are divided in 8-kbyte units, as well as to map up to two 4-kbyte memory blocks of the internal RAM into areas of the internal flash memory (S banks) that are divided in 4-kbyte units. This function is referred to as the virtual flash emulation function. For details about this function, refer to Section 6.6, "Virtual Flash Emulation Function."

CHAPTER 4

EIT

- 4.1 Outline of EIT
- 4.2 EIT Events
- 4.3 EIT Processing Procedure
- 4.4 EIT Processing Mechanism
- 4.5 Acceptance of EIT Events
- 4.6 Saving and Restoring the PC and PSW
- 4.7 EIT Vector Entry
- 4.8 Exception Processing
- 4.9 Interrupt Processing
- 4.10 Trap Processing
- 4.11 EIT Priority Levels
- 4.12 Example of EIT Processing
- 4.13 Precautions on EIT

4.1 Outline of EIT

If some event occurs when the CPU is executing an ordinary program, it may become necessary to suspend the program being executed and execute another program. Events like this one are referred to by a generic name as EIT (Exception, Interrupt and Trap).

(1) Exception

This is an event related to the context being executed. It is generated by an error or violation during instruction execution. This type of event includes Address Exception (AE) and Reserved Instruction Exception (RIE).

(2) Interrupt

This is an event generated irrespective of the context being executed. It is generated by a hardware-derived signal from an external source. This type of event includes Reset Interrupt (RI), System Break Interrupt (SBI) and External Interrupt (EI).

(3) Trap

This refers to a software interrupt generated by executing a TRAP instruction. This type of event is intentionally generated in a program as in the OS's system call by the programmer.

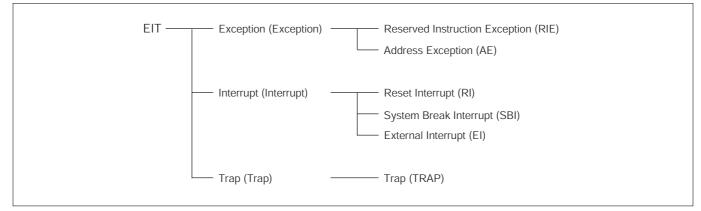


Figure 4.1.1 Classification of EITs

4.2 EIT Events

4.2.1 Exception

(1) Reserved Instruction Exception (RIE)

Reserved Instruction Exception (RIE) occurs when execution of a reserved instruction (unimplemented instruction) is detected.

(2) Address Exception (AE)

Address Exception (AE) occurs when an attempt is made to access a misaligned address in Load or Store instructions.

4.2.2 Interrupt

(1) Reset Interrupt (RI)

Reset Interrupt (RI) is always accepted by entering the RESET# signal. The reset interrupt is assigned the highest priority.

(2) System Break Interrupt (SBI)

System Break Interrupt (SBI) is an emergency interrupt which is used when power outage is detected or a fault condition is notified by an external watchdog timer. This interrupt can only be used in cases when after interrupt processing, control will not return to the program that was being executed when the interrupt occurred.

(3) External Interrupt (EI)

External Interrupt (EI) is requested from internal peripheral I/Os managed by the interrupt controller. The internal interrupt controller manages these interrupts by assigning each one of eight priority levels including an interrupt-disabled state.

4.2.3 Trap

Traps are software interrupts which are generated by executing the TRAP instruction. Sixteen distinct vector addresses are provided corresponding to TRAP instruction operands 0–15.

4.3 EIT Processing Procedure

EIT processing consists of two parts, one in which they are handled automatically by hardware, and one in which they are handled by user-created programs (EIT handlers). The procedure for processing EITs when accepted, except for a reset interrupt, is shown below.

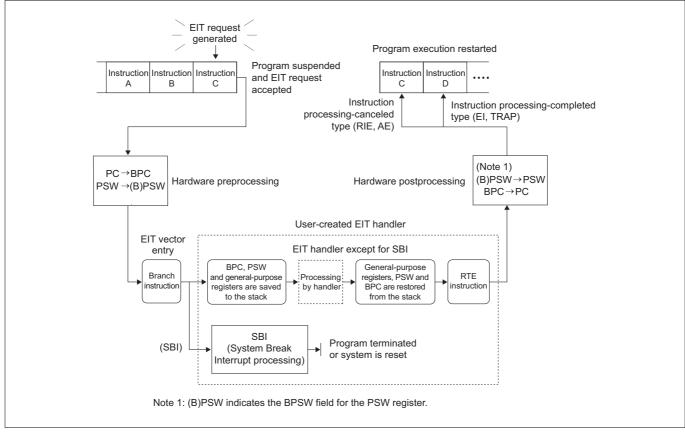


Figure 4.3.1 Outline of the EIT Processing Procedure

When an EIT is accepted, the CPU branches to the EIT vector after hardware preprocessing (as will be described later). The EIT vector has an entry address assigned for each EIT. This is where the BRA (branch) instruction for the EIT handler (not the jump address itself) is written.

In the hardware preprocessing, the content of the PC and PSW registers is transferred to the backup register (BPC register and BPSW field in the PSW register).

Other necessary operations must be performed in the user-created EIT handler. These include saving the BPC register and PSW register (including the BPSW field) and the general-purpose registers to be used in the EIT handler to the stack. In addition, the accumulator must be saved to the stack as necessary. Remember that all these registers must be saved to the stack in a program by the user.

When processing by the EIT handler is completed, restore the saved registers from the stack and finally execute the RTE instruction. Control is thereby returned from the EIT processing to the program that was being executed when the EIT occurred. (This does not apply to the System Break Interrupt, however.)

In the hardware postprocessing, the content of the backup register (BPC register and BPSW field in the PSW register) is returned to the PC and PSW registers. Note that the values stored in the BPC and the PSW register's BPSW field after executing the RTE instruction are undefined.

4.4 EIT Processing Mechanism

The EIT processing mechanism consists of the M32R CPU core and the interrupt controller for internal peripheral I/ Os. It also has the backup registers for the PC and PSW (the BPC register and the BPSW field in the PSW register). The EIT processing mechanism is shown below.

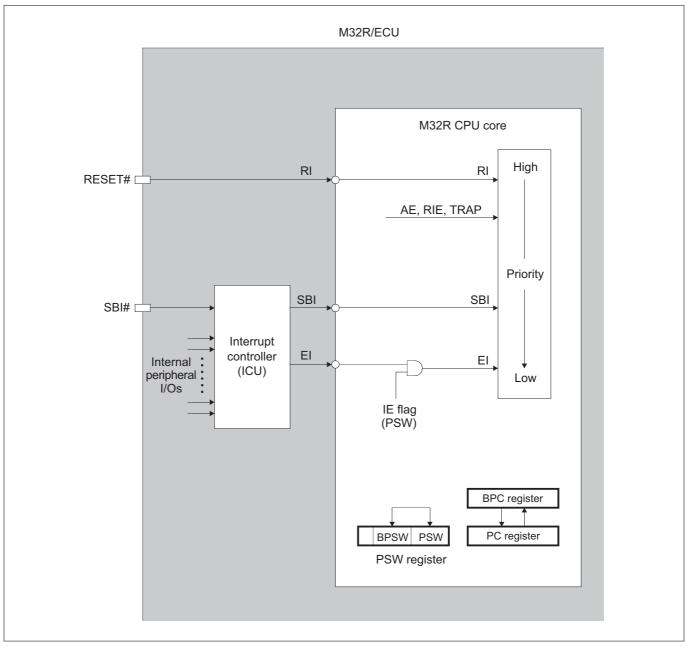


Figure 4.4.1 EIT Processing Mechanism

4.5 Acceptance of EIT Events

When an EIT event occurs, the CPU suspends the program it has hitherto been executing and branches to EIT processing by the relevant handler. Conditions under which each EIT event occurs and the timing at which they are accepted are shown below.

Table 4.5.1 Acceptance of EIT Events

EIT Event	Type of Processing	Acceptance Timing	Values Set in BPC Register
Reserved Instruction Exception (RIE)	Instruction processing- canceled type	During instruction execution	PC value of the instruction that generated RIE
Address Exception (AE)	Instruction processing- canceled type	During instruction execution	PC value of the instruction that generated AE
Reset Interrupt (RI)	Instruction processing- aborted type	Each machine cycle	Undefined value
System Break Interrupt (SBI)	Instruction processing- completed type	Break in instructions (word boundary only)	PC value of the next instruction
External Interrupt (EI)	Instruction processing- completed type	Break in instructions (word boundary only)	PC value of the next instruction
Trap (TRAP)	Instruction processing- completed type	Break in instructions	PC value of TRAP instruction + 4

4.6 Saving and Restoring the PC and PSW

The following describes operation of the microcomputer at the time when it accepts an EIT and when it executes the RTE instruction.

(1) Hardware preprocessing when an EIT is accepted

- [1] Save the PSW register's SM, IE and C bits in its backup field.

 - $\mathsf{BC} \quad \leftarrow \quad \mathsf{C}$

[2] Update the PSW register's SM, IE and C bits

- SM ← Remains unchanged (RIE, AE, TRAP) or cleared to "0" (SBI, EI, RI)
- IE \leftarrow Cleared to "0"
- $C \qquad \leftarrow \quad Cleared \text{ to "0"}$

[3] Save the PC register

 $\mathsf{BPC} \quad \leftarrow \quad \mathsf{PC}$

[4] Set the vector address in the PC register

Branches to the EIT vector and executes the branch (BRA) instruction written in it, thereby transferring control to the user-created EIT handler.

(2) Hardware postprocessing when the RTE instruction is executed

[A] Restore the PSW register's SM, IE and C bits from its backup field.

- $SM \leftarrow BSM$ IE $\leftarrow BIE$
- $C \leftarrow BC$

[B] Restore the PC register from the BPC register.

 $\mathsf{PC} \quad \leftarrow \quad \mathsf{BPC}$

Note: • The values stored in the BPC and the PSW register's BSM, BIE and BC bits after executing the RTE instruction are undefined.

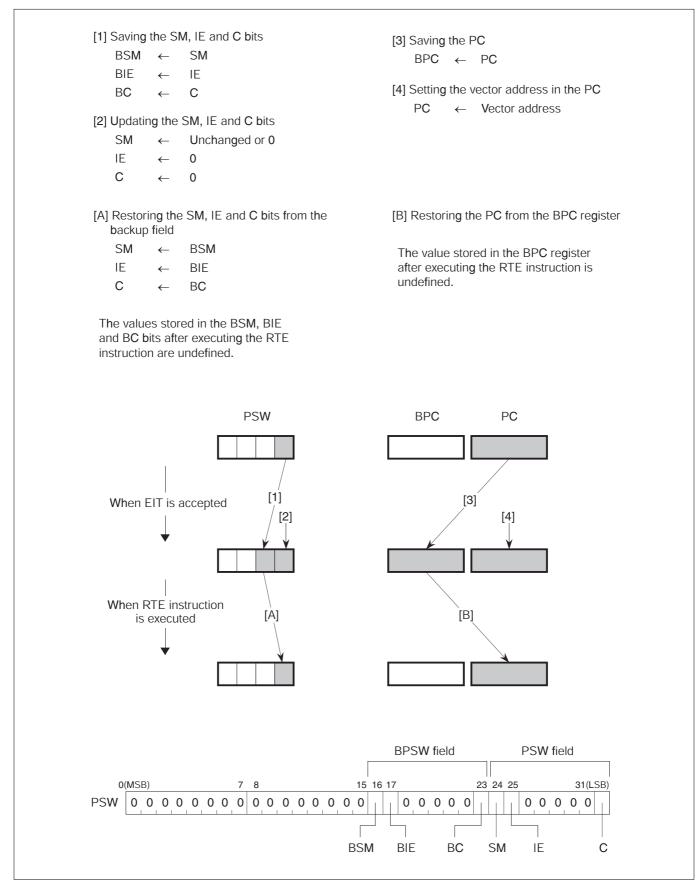


Figure 4.6.1 Saving and Restoring the PC and PSW

4.7 EIT Vector Entry

The EIT vector entry is located in the user space beginning with the address H'0000 0000. The table below lists the EIT vector entry.

Name	Abbreviation	Vector Address	SM	IE	BPC
Reset Interrupt	RI	H'0000 0000 (Note 1	I) 0	0	Undefined
System Break	SBI	H'0000 0010	0	0	PC of the next instruction
Interrupt					
Reserved Instruction	RIE	H'0000 0020	Unchanged	0	PC of the instruction that generated RIE
Exception					
Address Exception	AE	H'0000 0030	Unchanged	0	PC of the instruction that generated AE
Trap	TRAP0	H'0000 0040	Unchanged	0	PC of TRAP instruction + 4
	TRAP1	H'0000 0044	Unchanged	0	PC of TRAP instruction + 4
	TRAP2	H'0000 0048	Unchanged	0	PC of TRAP instruction + 4
	TRAP3	H'0000 004C	Unchanged	0	PC of TRAP instruction + 4
	TRAP4	H'0000 0050	Unchanged	0	PC of TRAP instruction + 4
	TRAP5	H'0000 0054	Unchanged	0	PC of TRAP instruction + 4
	TRAP6	H'0000 0058	Unchanged	0	PC of TRAP instruction + 4
	TRAP7	H'0000 005C	Unchanged	0	PC of TRAP instruction + 4
	TRAP8	H'0000 0060	Unchanged	0	PC of TRAP instruction + 4
	TRAP9	H'0000 0064	Unchanged	0	PC of TRAP instruction + 4
	TRAP10	H'0000 0068	Unchanged	0	PC of TRAP instruction + 4
	TRAP11	H'0000 006C	Unchanged	0	PC of TRAP instruction + 4
	TRAP12	H'0000 0070	Unchanged	0	PC of TRAP instruction + 4
	TRAP13	H'0000 0074	Unchanged	0	PC of TRAP instruction + 4
	TRAP14	H'0000 0078	Unchanged	0	PC of TRAP instruction + 4
	TRAP15	H'0000 007C	Unchanged	0	PC of TRAP instruction + 4
External Interrupt	EI	H'0000 0080 (Note 2	2) 0	0	PC of the next instruction

Table 4.7.1 EIT Vector Entry

Note 1: During boot mode, the CPU starts executing the boot program after exiting the reset state. For details, see Section 6.5, "Programming the Internal Flash Memory."

Note 2: During flash E/W enable mode, this vector address is moved to the beginning of the internal RAM (address H'0080 4000). For details, see Section 6.5, "Programming the Internal Flash Memory."

4.8 Exception Processing

4.8.1 Reserved Instruction Exception (RIE)

[OccurrenceConditions]

Reserved Instruction Exception (RIE) occurs when a reserved instruction (unimplemented instruction) is detected. Instruction check is performed on the op-code part of the instruction.

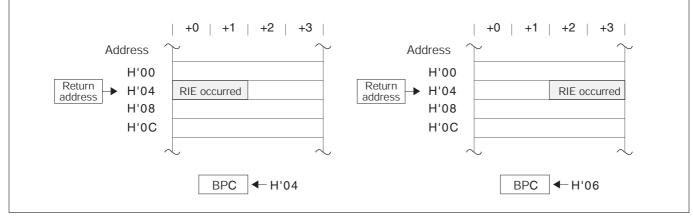
When a reserved instruction exception occurs, the instruction that generated it is not executed. If an external interrupt is requested at the same time a reserved instruction exception is detected, it is the reserved instruction exception that is accepted.

[EIT Processing]

(1) Saving SM, IE and C bits

The PSW register's SM, IE and C bits are saved to the respective backup bits: BSM, BIE and BC.

(2) Updating SM, IE and C bits


The PSW register's SM, IE and C bits are updated as shown below.

 $\begin{array}{rcl} \mathsf{SM} & \leftarrow & \mathsf{Unchanged} \\ \mathsf{IE} & \leftarrow & \mathsf{0} \\ \mathsf{C} & \leftarrow & \mathsf{0} \end{array}$

(3) Saving the PC

The PC value of the instruction that generated the reserved instruction exception is set in the BPC register. For example, if the instruction that generated the reserved instruction exception is at address 4, the value 4 is set in the BPC register. Similarly, if the instruction that generated the reserved instruction exception is at address 6, the value 6 is set in the BPC register. In this case, the value of the BPC register bit 30 indicates whether the instruction that generated the reserved instruction resides on a word boundary (BPC[30] = 0) or not on a word boundary (BPC[30] = 1).

However, in either case of the above, the address to which the RTE instruction returns after the EIT handler has terminated is address 4. (This is because the 2 low-order address bits are cleared to '00' when returned to the PC.)

(4) Branching to the EIT vector entry

The CPU branches to the address H'0000 0020 in the user space. This is the last operation performed in hardware preprocessing.

(5) Jumping from the EIT vector entry to the user-created handler

The CPU executes the BRA instruction written by the user at the address H'0000 0020 of the EIT vector entry to jump to the start address of the user-created handler. At the beginning of the user-created EIT handler, first save the BPC and PSW registers and the necessary general-purpose registers to the stack. Also, save the accumulator as necessary.

(6) Returning from the EIT handler

At the end of the EIT handler, restore the saved registers from the stack and execute the RTE instruction. When the RTE instruction is executed, hardware postprocessing is automatically performed. At this time, the CPU restarts from a word-boundary instruction including the instruction that generated a RIE (see Figure 4.8.1). Except when using reserved instruction exceptions intentionally, occurrence of a reserved instruction exception suggests that the system has some fatal fault already existing in it. In such a case, therefore, do not return from the reserved instruction exception handler to the program that was being executed when the exception occurred.

4.8.2 Address Exception (AE)

[Occurrence Conditions]

Address Exception (AE) occurs when an attempt is made to access a misaligned address in Load or Store instructions. The following lists the combination of instructions and accessed addresses that may cause address exceptions to occur.

- Two low-order address bits accessed in the LDH, LDUH or STH instruction are '01' or '11'
- Two low-order address bits accessed in the LD, ST, LOCK or UNLOCK instruction are '01,' '10' or '11'

When an address exception occurs, memory access by the instruction that generated the exception is not performed. If an external interrupt is requested at the same time an address exception is detected, it is the address exception that is accepted.

[EIT Processing]

(1) Saving SM, IE and C bits

The PSW register's SM, IE and C bits are saved to the respective backup bits: BSM, BIE and BC.

BSM	\leftarrow	SM
BIE	\leftarrow	ΙE
BC	\leftarrow	С

(2) Updating SM, IE and C bits

The PSW register's SM, IE and C bits are updated as shown below.

Unchanged
0
0

(3) Saving the PC

The PC value of the instruction that generated the address exception is set in the BPC register. For example, if the instruction that generated the address exception is at address 4, the value 4 is set in the BPC register. Similarly, if the instruction that generated the address exception is at address 6, the value 6 is set in the BPC register. In this case, the value of the BPC register bit 30 indicates whether the instruction that generated the reserved instruction exception resides on a word boundary (BPC[30] = 0) or not on a word boundary (BPC[30] = 1).

However, in either case of the above, the address to which the RTE instruction returns after the EIT handler has terminated is address 4. (This is because the 2 low-order address bits are cleared to '00' when returned to the PC.)

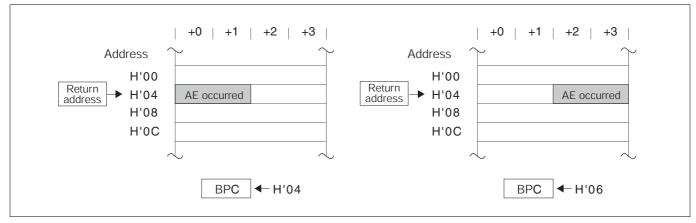


Figure 4.8.2 Example of a Return Address for Address Exception (AE)

(4) Branching to the EIT vector entry

The CPU branches to the address H'0000 0030 in the user space. This is the last operation performed in hardware preprocessing.

(5) Jumping from the EIT vector entry to the user-created handler

The CPU executes the BRA instruction written by the user at the address H'0000 0030 of the EIT vector entry to jump to the start address of the user-created handler. At the beginning of the user-created EIT handler, first save the BPC and PSW registers and the necessary general-purpose registers to the stack. Also, save the accumulator as necessary.

(6) Returning from the EIT handler

At the end of the EIT handler, restore the saved registers from the stack and execute the RTE instruction. When the RTE instruction is executed, hardware postprocessing is automatically performed. At this time, the CPU restarts from a word-boundary instruction including the instruction that generated an AE (see Figure 4.8.2). Except when using address exceptions intentionally, occurrence of an address exception suggests that the system has some fatal fault already existing in it. In such a case, therefore, do not return from the address exception handler to the program that was being executed when the exception occurred.

4.9 Interrupt Processing

4.9.1 Reset Interrupt (RI)

[OccurrenceConditions]

A reset interrupt is accepted in machine cycle by pulling the RESET# input signal low. The reset interrupt is assigned the highest priority among all EITs.

[EIT Processing]

(1) Initializing SM, IE and C bits

The PSW register's SM, IE and C bits are initialized as shown below.

For the reset interrupt, the values of BSM, BIE and BC bits are undefined.

(2) Branching to the EIT vector entry

The CPU branches to the address H'0000 0000 in the user space. However, when operating in boot mode, the CPU jumps to the boot program. For details, see Section 6.5, "Programming the Internal Flash Memory."

(3) Jumping from the EIT vector entry to the user program

The CPU executes the instruction written by the user at the address H'0000 0000 of the EIT vector entry. In the reset vector entry, be sure to initialize the PSW and SPI registers before jumping to the start address of the user program.

4.9.2 System Break Interrupt (SBI)

System Break Interrupt (SBI) is an emergency interrupt which is used when power outage is detected or a fault condition is notified by an external watchdog timer. The system break interrupt cannot be masked by the PSW register IE bit.

Therefore, the system break interrupt can only be used when the system has some fatal event already existing in it when the interrupt is detected. Also, this interrupt must be used on condition that after processing by the SBI handler, control will not return to the program that was being executed when the system break interrupt occurred.

[Occurrence Conditions]

A system break interrupt is accepted by a falling edge on SBI# input pin. (The system break interrupt cannot be masked by the PSW register IE bit.)

In no case will a system break interrupt be activated immediately after executing a 16-bit instruction that starts from a word boundary. (For 16-bit branch instructions, however, the interrupt is accepted immediately after branching.) Note also that because of the instruction processing-completed type, a system break interrupt is accepted after the instruction is completed.

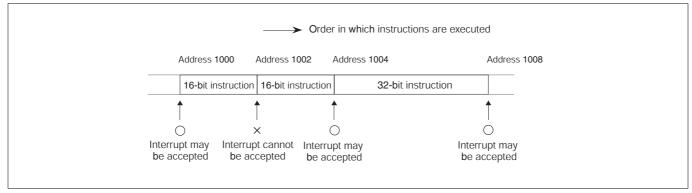


Figure 4.9.1 Timing at Which System Break Interrupt (SBI) is Accepted

[EIT Processing]

(1) Saving SM, IE and C bits

The PSW register's SM, IE and C bits are saved to the respective backup bits: BSM, BIE and BC.

 $\begin{array}{rrrr} \mathsf{BSM} \ \leftarrow & \mathsf{SM} \\ \mathsf{BIE} & \leftarrow & \mathsf{IE} \\ \mathsf{BC} & \leftarrow & \mathsf{C} \end{array}$

(2) Updating SM, IE and C bits

The PSW register's SM, IE and C bits are updated as shown below.

(3) Saving the PC

The content of the PC register (always on word boundary) is saved to the BPC register. If the interrupt was detected in a branch instruction, then the next instruction is one that exists at the jump address.

(4) Branching to the EIT vector entry

The CPU branches to the address H'0000 0010 in the user space. This is the last operation performed in hardware preprocessing.

(5) Jumping from the EIT vector entry to the user-created handler

The CPU executes the BRA instruction written by the user at the address H'0000 0010 of the EIT vector entry to jump to the start address of the user-created handler.

The system break interrupt can only be used when the system has some fatal event already existing in it when the interrupt is detected. Also, this interrupt must be used on condition that after processing by the SBI handler, control will not return to the program that was being executed when the system break interrupt occurred.

4.9.3 External Interrupt (EI)

An external interrupt is generated upon an interrupt request which is output by the microcomputer's internal interrupt controller. The interrupt controller manages interrupt requests by assigning each one of seven priority levels. For details, see Chapter 5, "Interrupt Controller." For details about the interrupt request sources, see each section in which the relevant internal peripheral I/O is described.

[OccurrenceConditions]

External interrupts are managed by the microcomputer's internal interrupt controller based on interrupt requests from each internal peripheral I/O, and are sent to the CPU via the interrupt controller. The CPU checks these interrupt requests at a break in instructions residing on word boundaries, and when an interrupt request is detected and the PSW register IE flag = "1", accepts it as an external interrupt.

In no case will an external interrupt be activated immediately after executing a 16-bit instruction that starts from a word boundary. (For 16-bit branch instructions, however, the interrupt is accepted immediately after branching.)

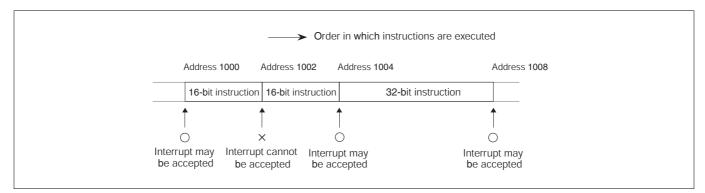


Figure 4.9.2 Timing at Which External Interrupt (EI) is Accepted

[EIT Processing]

(1) Saving SM, IE and C bits

The PSW register's SM, IE and C bits are saved to the respective backup bits: BSM, BIE and BC.

(2) Updating SM, IE and C bits

The PSW register's SM, IE and C bits are updated as shown below.

(3) Saving the PC

The content of the PC register (always on word boundary) is saved to the BPC register.

(4) Branching to the EIT vector entry

The CPU branches to the address H'0000 0080 in the user space. However, when operating in flash E/W enable mode, the CPU goes to the beginning of the internal RAM (address H'0080 4000). (For details, see Section 6.5, "Programming the Internal Flash Memory.") This is the last operation performed in hardware preprocessing.

(5) Jumping from the EIT vector entry to the user-created handler

The CPU executes the BRA instruction written by the user at the address H'0000 0080 of the EIT vector entry to jump to the start address of the user-created handler. At the beginning of the user-created EIT handler, first save the BPC and PSW registers and the necessary general-purpose registers to the stack. Also, save the accumulator as necessary.

(6) Returning from the EIT handler

At the end of the EIT handler, restore the saved registers from the stack and execute the RTE instruction. When the RTE instruction is executed, hardware postprocessing is automatically performed.

4.10 Trap Processing

4.10.1 Trap

[OccurrenceConditions]

Traps are software interrupts which are generated by executing the TRAP instruction. Sixteen traps are generated, each corresponding to one of TRAP instruction operands 0–15. Accordingly, sixteen vector entries are provided.

[EIT Processing]

(1) Saving SM, IE and C bits

The PSW register's SM, IE and C bits are saved to the respective backup bits: BSM, BIE and BC.

(2) Updating SM, IE and C bits

The PSW register's SM, IE and C bits are updated as shown below.

 $\begin{array}{rcl} \mathsf{SM} & \leftarrow & \mathsf{Unchanged} \\ \mathsf{IE} & \leftarrow & \mathsf{0} \\ \mathsf{C} & \leftarrow & \mathsf{0} \end{array}$

(3) Saving the PC

When the trap instruction is executed, the PC value of TRAP instruction + 4 is set in the BPC register. For example, if the TRAP instruction is located at address 4, the value H'08 is set in the BPC register. Similarly, if the TRAP instruction is located at address 6, the value H'0A is set in the BPC register. The value of the BPC register bit 30 indicates whether the trap instruction resides on a word boundary (BPC[30] = 0) or not on a word boundary (BPC[30] = 1).

However, in either case of the above, the address to which the RTE instruction returns after the EIT handler has terminated is address 8. (This is because the 2 low-order address bits are cleared to '00' when returned to the PC.)

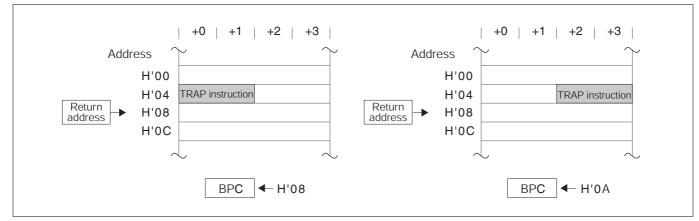


Figure 4.10.1 Example of a Return Address for Trap (TRAP)

(4) Branching to the EIT vector entry

The CPU branches to the addresses H'0000 0040–H'0000 007C in the user space. This is the last operation performed in hardware preprocessing.

(5) Jumping from the EIT vector entry to the user-created handler

The CPU executes the BRA instruction written by the user at the addresses H'0000 0040–H'0000 007C of the EIT vector entry to jump to the start address of the user-created handler. At the beginning of the user-created EIT handler, first save the BPC and PSW registers and the necessary general-purpose registers to the stack. Also, save the accumulator as necessary.

(6) Returning from the EIT handler

At the end of the EIT handler, restore the saved registers from the stack and execute the RTE instruction. When the RTE instruction is executed, hardware postprocessing is automatically performed.

4.11 EIT Priority Levels

The table below lists the priority levels of EIT events. When two or more EITs occur simultaneously, the event with the highest priority is accepted first.

Priority	EIT Event	Type of Processing	Values Set in BPC Register
1 (Highest)	Reset Interrupt (RI)	Instruction processing-aborted type	Undefined
2	Address Exception (AE)	Instruction processing-canceled type	PC of the instruction that
		Instruction Instruction processing-canceled type	generated AE
	Reserved Instruction		PC of the instruction that
	Exception (RIE)		generated RIE
	Trap (TRAP)	Instruction processing-completed type TRAP instruct	TRAP instruction + 4
3	System Break Interrupt	Instruction processing-completed type	PC of the next instruction
	(SBI)		
4	External Interrupt (EI)	Instruction processing-completed type	PC of the next instruction

Table 4.11.1 Priority of EIT Events and How Returned from EIT

Note that for External Interrupt (EI), the priority levels of interrupt requests from each peripheral I/O are set by the microcomputer's internal interrupt controller. For details, see Chapter 5, "Interrupt Controller."

4.12 Example of EIT Processing

(1) When RIE, AE, SBI, EI or TRAP occurs singly

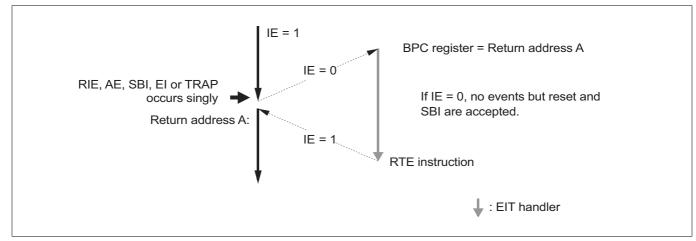


Figure 4.12.1 Processing of Events When RIE, AE, SBI, EI or TRAP Occurs Singly

(2) When RIE, AE or TRAP and El occur simultaneously

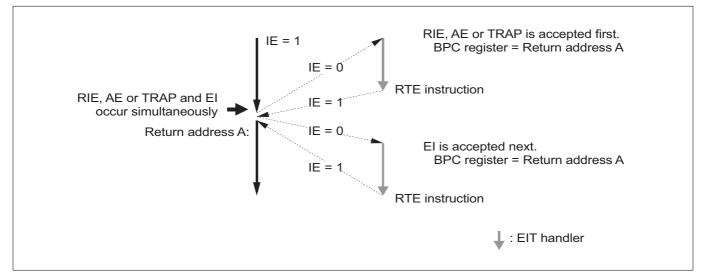


Figure 4.12.2 Processing of Events When RIE, AE or TRAP and El Occur Simultaneously

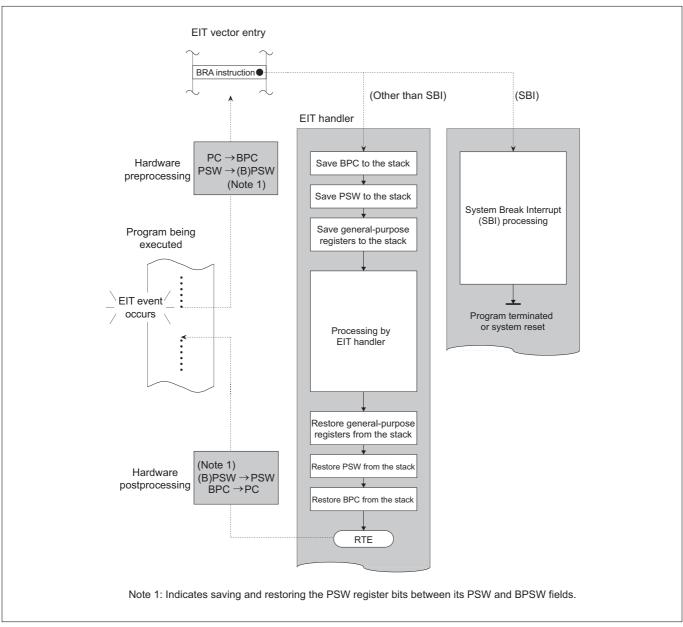


Figure 4.12.3 Example of EIT Processing

4.13 Precautions on EIT

The Address Exception (AE) requires caution because if one of the instructions that use "register indirect + register update" addressing mode (following three) generates an address exception when it is executed, the values of the registers to be automatically updated (Rsrc and Rsrc2) become undefined.

Except that the values of Rsrc and Rsrc2 become undefined, these instructions behave the same way as when used in other addressing modes.

Applicable instructions

- LD Rdest, @Rsrc+
- ST Rsrc1, @-Rsrc2
- ST Rsrc1, @+Rsrc2

If the above case applies, consider the fact that the register values become undefined when you design the processing to be performed after executing said instructions. (If an address exception occurs, it means that the system has some fatal fault already existing in it. Therefore, address exceptions must be used on condition that control will not be returned from the address exception handler to the program that was being executed when the exception occurred.)

CHAPTER 5

INTERRUPT CONTROLLER (ICU)

- 5.1 Outline of the Interrupt Controller
- 5.2 ICU Related Registers
- 5.3 Interrupt Request Sources in Internal Peripheral I/O
- 5.4 ICU Vector Table
- 5.5 Description of Interrupt Operation
- 5.6 Description of System Break Interrupt (SBI) Operation

5.1 Outline of the Interrupt Controller

The Interrupt Controller (ICU) manages maskable interrupts from internal peripheral I/Os and a system break interrupt (SBI). The maskable interrupts from internal peripheral I/Os are sent to the M32R CPU as external interrupts (EI).

The maskable interrupts from internal peripheral I/Os are managed by assigning them one of eight priority levels including an interrupt-disabled state. If two or more interrupt requests with the same priority level occur at the same time, their priorities are resolved by predetermined hardware priority. The source of an interrupt request generated in internal peripheral I/Os is identified by reading the relevant interrupt status register provided for internal peripheral I/Os.

On the other hand, the system break interrupt (SBI) is recognized when a falling edge occurs on the SBI# signal input pin. This interrupt is used for emergency purposes such as when power outage is detected or a fault condition is notified by an external watchdog timer, so that it is always accepted irrespective of the PSW register IE bit status. After processing of an SBI, shut down or reset the system without returning to the program that was being executed when the interrupt occurred.

Specifications of the Interrupt Controller are outlined below.

Table 5.1.1 Outline of the Interrupt Controller (ICU)

Item	Specification
Interrupt request source	Maskable interrupt requests from internal peripheral I/Os: 23 sources (Note 1)
	System break interrupt request: 1 source (input from SBI# pin)
Priority management	8 priority levels including an interrupt-disabled state
	(However, interrupts with the same priority level have their priorities resolved by fixed
	hardware priority.)

Note 1: This is the number of interrupt requests divided into groups. There are actually a total of 123 interrupt request sources when counted individually.

INTERRUPT CONTROLLER (ICU)

5.1 Outline of the Interrupt Controller

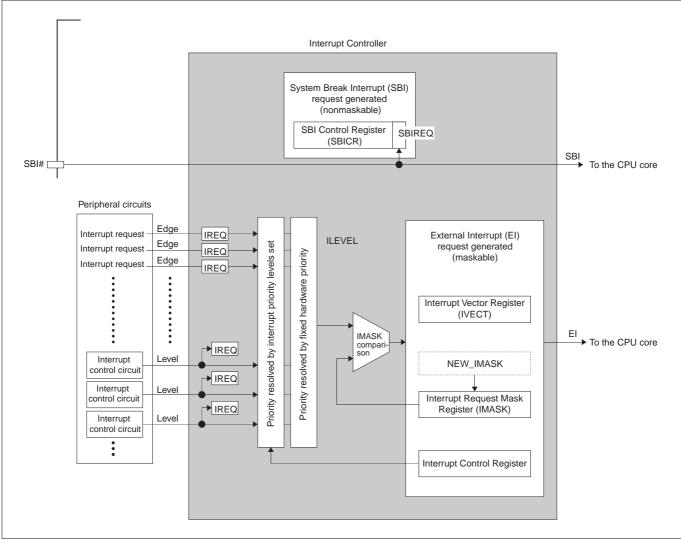


Figure 5.1.1 Block Diagram of the Interrupt Controller

5.2 ICU Related Registers

The diagram below shows a register map associated with the Interrupt Controller (ICU).

ICU Related Register Map

Address	+0 address b0 b7	+1 address b15	See pages							
H'0080 0000	Interrupt Ve (IVE	ctor Register ECT)	5-5							
H'0080 0002		pited area)								
H'0080 0004	Interrupt Request Mask Register (IMASK)	(Use inhibited area)	5-6							
H'0080 0006	SBI Control Register (SBICR)	(Use inhibited area)	5-7							
	(Use inhit	(Use inhibited area)								
H'0080 0060	CAN0 Transmit/Receive & Error Interrupt Control Register (Use inhibited area) (ICAN0CR)									
H'0080 0062	(Use inhit	bited area)								
H'0080 0064	(Use inhibited area)									
H'0080 0066	(Use inhibited area)	RTD Interrupt Control Register (IRTDCR)	5-8							
H'0080 0068	SIO2,3 Transmit/Receive Interrupt Control Register (ISIO23CR)	DMA5–9 Interrupt Control Register (IDMA59CR)	5-8							
H'0080 006A	(Use inhit	bited area)								
H'0080 006C	A-D0 Conversion Interrupt Control Register (IAD0CCR)	SIO0 Transmit Interrupt Control Register (ISIO0TXCR)	5-8							
H'0080 006E	SIO0 Receive Interrupt Control Register (ISIO0RXCR)	SIO1 Transmit Interrupt Control Register (ISIO1TXCR)	5-8							
H'0080 0070	SIO1 Receive Interrupt Control Register (ISIO1RXCR)	DMA0–4 Interrupt Control Register (IDMA04CR)	5-8							
H'0080 0072	MJT Output Interrupt Control Register 0 (IMJTOCR0)	MJT Output Interrupt Control Register 1 (IMJTOCR1)	5-8							
H'0080 0074	MJT Output Interrupt Control Register 2 (IMJTOCR2)	MJT Output Interrupt Control Register 3 (IMJTOCR3)	5-8							
H'0080 0076	MJT Output Interrupt Control Register 4 (IMJTOCR4)	MJT Output Interrupt Control Register 5 (IMJTOCR5)	5-8							
H'0080 0078	MJT Output Interrupt Control Register 6 (IMJTOCR6)	MJT Output Interrupt Control Register 7 (IMJTOCR7)	5-8							
H'0080 007A	(Use inhibited area)	MJT Input Interrupt Control Register 1 (IMJTICR1)	5-8							
H'0080 007C	MJT Input Interrupt Control Register 2 (IMJTICR2)	MJT Input Interrupt Control Register 3 (IMJTICR3)	5-8							
H'0080 007E	MJT Input Interrupt Control Register 4 (IMJTICR4)	CAN1 Transmit/Receive & Error Interrupt Control Register (ICAN1CR)	5-8							

5.2.1 Interrupt Vector Register

Interru	pt Vec	tor Re	gist	er (I\	/EC	T)																<a< th=""><th>ddre</th><th>ess</th><th>s: H'</th><th>900</th><th>30 00</th><th><00</th></a<>	ddre	ess	s: H'	900	30 00	<00
b0	1	2		3	4		5		6		7		8		9		10		11		12		13		14		b15	
											ľ	/EC	Т															1
?	?	?		?	?		?		?		?		?		?		?		?		?		?		?		?	
	Dit	lama												n oti.							<u< td=""><td>lpon</td><td>ı exit</td><td>ting</td><td>rese</td><td>et: U</td><td>Indefi</td><td></td></u<>	lpon	ı exit	ting	rese	et: U	Indefi	
D	BIT	Vame											Fu	ncti	on												R	W
0-15	IVE	СТ											Wh	nen	an in	nteri	rupt i	requ	lest	is a	ccep	oted	, the	16	-low-	ord	er R	Ν
	16 I	ow-ord	er bi	ts of I	CU v	/ecto	r tal	ble a	addı	ress			bits	s of	the I	CU	vect	or ta	able	ado	dress	s for	the	acc	epte	d		
													inte	errup	ot rea	que	st so	urce	e are	stc	ored	in th	nis re	gis	ter.			

Note: • This register must always be accessed in halfwords (2 bytes). (This is a read-only register.)

The Interrupt Vector Register (IVECT) is used when an interrupt request is accepted to store the 16-low-order bits of the ICU vector table address for the accepted interrupt request source.

Before this function can work, the ICU vector table (addresses H'0000 0094 through H'0000 0113) must have set in it the start addresses of interrupt handlers for each internal peripheral I/O. When an interrupt request is accepted, the 16-low-order bits of the ICU vector table address for the accepted interrupt request source are stored in the IVECT register. In the EIT handler, read the content of this IVECT register using the LDH instruction to get the ICU vector table address.

When the IVECT register is read, operations (1) to (4) below are automatically performed in hardware.

- (1) The interrupt priority level (ILEVEL) of the accepted interrupt request source is set in the IMASK register as a new IMASK value. (Interrupts with lower priority levels than that of the accepted interrupt request source are masked.)
- (2) The interrupt request bit for the accepted interrupt request source is cleared (not cleared for level-recognized interrupt request sources).
- (3) The interrupt request (EI) to the CPU core is deasserted.
- (4) The ICU's internal sequencer is activated to start internal processing (interrupt priority resolution).
 - Notes: Do not read the Interrupt Vector Register (IVECT) in the EIT handler unless interrupts are disabled (PSW register IE bit = "0"). In the EIT handler, furthermore, read the Interrupt Request Mask Register (IMASK) first before reading the IVECT register.
 - To reenable interrupts (by setting the IE bit to "1") after reading the Interrupt Vector Register (IVECT), perform a dummy access to the internal memory, etc. before reenabling interrupts. (The ICU vector table readout in the EI handler processing example in Figure 5.5.2 Typical Handler Operation for Interrupts from Internal Peripheral I/O is an access to the internal ROM and, therefore, does not require adding a dummy access.)

5.2.2 Interrupt Request Mask Register

Interrupt Request Mask Register (IMASK)

b0	1	2	3	4	5	6	b7
						IMASK	
0	0	0	0	0	1	1	1

<Address: H'0080 0004>

<Upon exiting reset: H'07>

b	Bit Name	Function	R	W	
0–4	No function assigned. Fix to "0"		0	0	
5–7	IMASK	000: Disable maskable interrupts	R	W	
	Interrupt request mask bit	001: Accept interrupts with priority level 0			
		010: Accept interrupts with priority levels 0-1			
		011: Accept interrupts with priority levels 0-2			
		100: Accept interrupts with priority levels 0-3			
		101: Accept interrupts with priority levels 0-4			
		110: Accept interrupts with priority levels 0-5			
		111: Accept interrupts with priority levels 0-6			

The Interrupt Request Mask Register (IMASK) is used to finally determine whether or not to accept an interrupt request after comparing its priority with the priority levels (Interrupt Control Register ILEVEL bits) that have been set for each interrupt request source.

When the Interrupt Vector Register (IVECT) described above is read, the interrupt priority level of the accepted interrupt request source is set in this IMASK register as a new mask value.

When any value is written to the IMASK register, operations (1) to (2) below are automatically performed in hardware.

- (1) The interrupt request (EI) to the CPU core is deasserted.
- (2) The ICU's internal sequencer is activated to start internal processing (interrupt priority resolution).
 - Notes: Do not write to the Interrupt Request Mask Register (IMASK) in the EIT handler unless interrupts are disabled (PSW register IE bit = "0").
 - To reenable interrupts (by setting the IE bit to "1") after writing to the Interrupt Request Mask Register (IMASK), perform a dummy access to the internal memory, etc. before reenabling interrupts.

5.2.3 SBI (System Break Interrupt) Control Register

SBI (System Break Interrupt) Control Register (SBICR)

<Address: H'0080 0006>

b0	1	2	3	4		5	6	b7
								SBIREQ
0	0	0	0	0	1	0	0	0

			<upon exiting="" h'00="" reset:=""></upon>
b	Bit Name	Function	R W
0–6	No function assigned. Fix to "0"		0 0
7	SBIREQ	0: SBI not requested	R (Note 1)
	SBI request bit	1: SBI requested	

Note 1: This bit can only be cleared (see below)

The System Break Interrupt (SBI) is an interrupt request generated by a falling edge on the SBI# signal input pin. When a falling edge on the SBI# signal input pin is detected and this bit is set to "1", a system break interrupt (SBI) request is generated to the CPU.

This bit cannot be set to "1" in software, it can only be cleared.

To clear this bit to "0", follow the procedure described below.

1. Write "1" to the SBI request bit.

2. Write "0" to the SBI request bit.

Note: • Unless this bit is set to "1", do not perform the above clearing operation.

5.2.4 Interrupt Control Registers

CAN0 Transmit/Receive & Error Interrupt Control Register (ICAN0CR) RTD Interrupt Control Register (IRTDCR) SIO2,3 Transmit/Receive Interrupt Control Register (ISIO23CR) DMA5-9 Interrupt Control Register (IDMA59CR) A-D0 Conversion Interrupt Control Register (IAD0CCR) SIO0 Transmit Interrupt Control Register (ISIO0TXCR) SIO0 Receive Interrupt Control Register (ISIO0RXCR) SIO1 Transmit Interrupt Control Register (ISIO1TXCR) SIO1 Receive Interrupt Control Register (ISIO1RXCR) DMA0-4 Interrupt Control Register (IDMA04CR) MJT Output Interrupt Control Register 0 (IMJTOCR0) MJT Output Interrupt Control Register 1 (IMJTOCR1) MJT Output Interrupt Control Register 2 (IMJTOCR2) MJT Output Interrupt Control Register 3 (IMJTOCR3) MJT Output Interrupt Control Register 4 (IMJTOCR4) MJT Output Interrupt Control Register 5 (IMJTOCR5) MJT Output Interrupt Control Register 6 (IMJTOCR6) MJT Output Interrupt Control Register 7 (IMJTOCR7) MJT Input Interrupt Control Register 1 (IMJTICR1) MJT Input Interrupt Control Register 2 (IMJTICR2) MJT Input Interrupt Control Register 3 (IMJTICR3) MJT Input Interrupt Control Register 4 (IMJTICR4) CAN1 Transmit/Receive & Error Interrupt Control Register (ICAN1CR)

<Address: H'0080 0060> <Address: H'0080 0067> <Address: H'0080 0068> <Address: H'0080 0069> <Address: H'0080 006C> <Address: H'0080 006D> <Address: H'0080 006E> <Address: H'0080 006F> <Address: H'0080 0070> <Address: H'0080 0071> <Address: H'0080 0072> <Address: H'0080 0073> <Address: H'0080 0074> <Address: H'0080 0075> <Address: H'0080 0076> <Address: H'0080 0077> <Address: H'0080 0078> <Address: H'0080 0079> <Address: H'0080 007B> <Address: H'0080 007C> <Address: H'0080 007D> <Address: H'0080 007E> <Address: H'0080 007F> b0

2

1

3

(b8	9	10	11	12	13	14	b15)			
			IREQ			ILEVEL				
0	0	0	0	0	1	1	1			
								<upon exiting="" r<="" th=""><th>eset: H</th><th>'07></th></upon>	eset: H	'07>
b	Bit N	ame						Function	R	W
0–2 (8–10)	No fu	Inction	assigne	d. Fix to	"0"				0	0
3	IREQ							<edge recognized="" type=""></edge>	R	W
(11)	Interi	rupt rec	quest bit					At read		
								0: Interrupt not requested		
								1: Interrupt requested		
								At write		
								0: Clear interrupt request		
								1: Generate interrupt request		
								<level-recognized type=""></level-recognized>	R	0
								At read		
								0: Interrupt not requested		
								1: Interrupt requested		
4	No fu	Inction	assigne	d. Fix to	"0"				0	0
(12) 5–7	ILEV	FI						000: Interrupt priority level 0	R	W
(13–15)			ority leve	hite				001: Interrupt priority level 1	IX.	vv
(10 10)	men	upt pri		1 0113				010: Interrupt priority level 2		
								011: Interrupt priority level 3		
								100: Interrupt priority level 4		
								101: Interrupt priority level 5		
								110: Interrupt priority level 6		
								111: Interrupt priority level 7 (interrupt disabled)		

b7

6

5

4

(1) IREQ (Interrupt Request) bit (Bit 3 or 11)

When an interrupt request from some internal peripheral I/O occurs, the corresponding IREQ (Interrupt Request) bit is set to "1".

This bit can be set and cleared in software for only edge-recognized interrupt request sources (and not for level-recognized interrupt request sources). Also, when this bit is set by an edge-recognized interrupt request generated, it is automatically cleared to "0" by reading the Interrupt Vector Register (IVECT) (not cleared in the case of level-recognized interrupt request).

If the IREQ bit is cleared in software at the same time it is set by an interrupt request generated, clearing in software has priority. Also, if the IREQ bit is cleared by reading the Interrupt Vector Register (IVECT) at the same time it is set by an interrupt request generated, clearing by a read of the IVECT register has priority.

Note: • External Interrupt (EI) to the CPU core is not deasserted by clearing the IREQ bit. External Interrupt (EI) to the CPU core can only be deasserted by the following operation:

- (1) Reset
- (2) IVECT register read
- (3) Write to the IMASK register

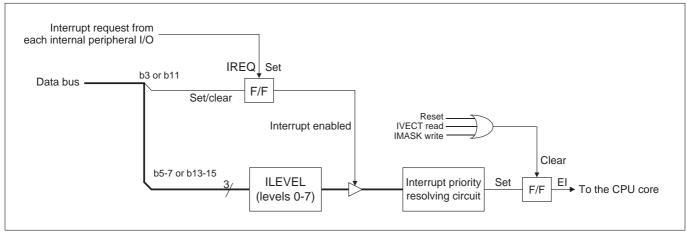


Figure 5.2.1 Configuration of the Interrupt Control Register (Edge-recognized Type)

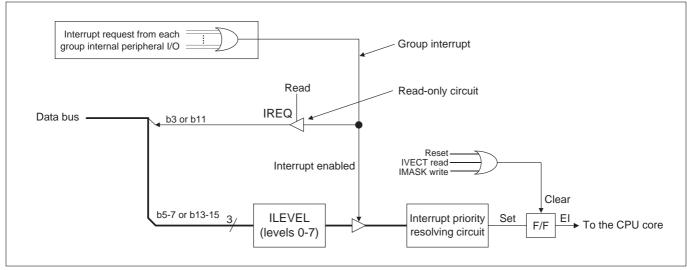


Figure 5.2.2 Configuration of the Interrupt Control Register (Level-recognized Type)

(2) ILEVEL (Interrupt Priority Level) (Bits 5-7 or bits 13-15)

These bits set the priority levels of interrupt requests from each internal peripheral I/O. Set these bits to '111' to disable or any value '000' through '110' to enable the interrupt from some internal peripheral I/O. When an interrupt occurs, the Interrupt Controller resolves priority between this interrupt and other interrupt sources based on ILEVEL settings and finally compares priority with the IMASK value to determine whether to forward an EI request to the CPU or keep the interrupt request pending.

The table below shows the relationship between ILEVEL settings and the IMASK values at which interrupts are accepted.

· · · · · · · · · · · · · · · · · · ·					
ILEVEL values set	IMASK values at which interrupts are accepted				
0 (ILEVEL = "000")	Accepted when IMASK is 1–7				
1 (ILEVEL = "001")	Accepted when IMASK is 2–7				
2 (ILEVEL = "010")	Accepted when IMASK is 3–7				
3 (ILEVEL = "011")	Accepted when IMASK is 4–7				
4 (ILEVEL = "100")	Accepted when IMASK is 5–7				
5 (ILEVEL = "101")	Accepted when IMASK is 6–7				
6 (ILEVEL = "110")	Accepted when IMASK is 7				
7 (ILEVEL = "111")	Not accepted (interrupts disabled)				

Table 5.2.1 ILEVEL Settings and Accepted IMASK Values

5.3 Interrupt Request Sources in Internal Peripheral I/O

The Interrupt Controller receives as inputs the interrupt requests from MJT (multijunction timer), DMAC, serial I/O, A-D converter, RTD and CAN. For details about these interrupts, see each section in which the relevant internal peripheral I/O is described.

Table 5.3.1	Interrupt Request Sources in Internal Peripheral I/O
-------------	--

Interrupt Request Sources	Contents	Number of Input Sources	ICU Type of Input Source (Note 1)
A-D0 conversion interrupt request	A-D0 converter's scan mode one-shot operation,	1	Edge-recognized
	single mode or comparate mode completed		
SIO0 transmit interrupt request	SIO0 transmission-completed or transmit buffer empty interru	pt 1	Edge-recognized
SIO0 receive interrupt request	SIO0 reception-completed or receive error interrupt	1	Edge-recognized
SIO1 transmit interrupt request	SIO1 transmission-completed or transmit buffer empty interru	pt 1	Edge-recognized
SIO1 receive interrupt request	SIO1 reception-completed or receive error interrupt	1	Edge-recognized
SIO2,3 transmit/receive interrupt	SIO2,3 reception-completed or receive error interrupt,	4	Level-recognized
request	transmission-completed or transmit buffer empty interrupt		
RTD interrupt request	RTD interrupt generation command	1	Edge-recognized
DMA transfer interrupt request 0	DMA0–4 transfer completed	5	Level-recognized
DMA transfer interrupt request 1	DMA5–9 transfer completed	5	Level-recognized
CAN0 transmit/receive & error	CAN0 transmission or reception completed, CAN0 errorpassive,	35	Level-recognized
interrupt request	CAN0 error bus-off, CAN0 bus error, CAN0 single shot		
CAN1 transmit/receive & error	CAN1 transmission or reception completed, CAN1 error passive	, 35	Level-recognized
interrupt request	CAN1 error bus-off, CAN1 bus error, CAN1 single shot		
MJT output interrupt request 7	MJT output interrupt rgroup 7 (TMS0, TMS1 output)	2	Level-recognized
MJT output interrupt request 6	MJT output interrupt rgroup 6 (TOP8, TOP9 output)	2	Level-recognized
MJT output interrupt request 5	MJT output interrupt rgroup 5 (TOP10 output)	1	Edge-recognized
MJT output interrupt request 4	MJT output interrupt rgroup 4 (TIO4–TIO7 outputs)	4	Level-recognized
MJT output interrupt request 3	MJT output interrupt rgroup 3 (TIO8, TIO9 outputs)	2	Level-recognized
MJT output interrupt request 2	MJT output interrupt rgroup 2 (TOP0–TOP5 outputs)	6	Level-recognized
MJT output interrupt request 1	MJT output interrupt rgroup 1 (TOP6,TOP7 outputs)	2	Level-recognized
MJT output interrupt request 0	MJT output interrupt rgroup 0 (TIO0–TIO3 outputs)	4	Level-recognized
MJT input interrupt request 4	MJT input interrupt group 4 (TIN3 input)	1	Level-recognized
MJT input interrupt request 3	MJT input interrupt group 3 (TIN20–TIN23 inputs)	4	Level-recognized
MJT input interrupt request 2	MJT input interrupt group 2 (TIN16–TIN19 inputs)	4	Level-recognized
MJT input interrupt request 1	MJT input interrupt group 1 (TIN0 input)	1	Level-recognized

Note 1: ICU type of input source

• Edge-recognized: Interrupt requests are generated on a falling edge of the interrupt signal supplied to the ICU.

• Level-recognized: Interrupt requests are generated when the interrupt signal supplied to the ICU is held low. For this type of interrupt, the ICU's Interrupt Control Register IRQ bit cannot be set or cleared in software.

5.4 ICU Vector Table

The ICU vector table is used to set the start addresses of interrupt handlers for each internal peripheral I/O. The 23-source interrupt requests are assigned the following vector table addresses.

Table 5.4.1	ICU Ve	ctor Table	Addresses
-------------	--------	------------	-----------

Interrupt Request Source	ICU Vector Table A	ddresses
MJT input interrupt request 4 (TIN3 input)	H'0000 0094 –	H'0000 0097
MJT input interrupt request 3 (TIN20–23 input)	H'0000 0098 –	H'0000 009B
MJT input interrupt request 2 (TIN16–19 input)	H'0000 009C -	H'0000 009F
MJT input interrupt request 1 (TIN0 input)	H'0000 00A0 –	H'0000 00A3
MJT output interrupt request 7 (TMS0,1 output)	H'0000 00A8 –	H'0000 00AB
MJT output interrupt request 6 (TOP8,9 output)	H'0000 00AC –	H'0000 00AF
MJT output interrupt request 5 (TOP10 output)	H'0000 00B0 -	H'0000 00B3
MJT output interrupt request 4 (TIO4–7 output)	H'0000 00B4 –	H'0000 00B7
MJT output interrupt request 3 (TIO8,9 output)	H'0000 00B8 -	H'0000 00BB
MJT output interrupt request 2 (TOP0–5 output)	H'0000 00BC -	H'0000 00BF
MJT output interrupt request 1 (TOP6,7 output)	H'0000 00C0 -	H'0000 00C3
MJT output interrupt request 0 (TIO0–3 output)	H'0000 00C4 -	H'0000 00C7
DMA0-4 interrupt request	H'0000 00C8 -	H'0000 00CB
SIO1 receive interrupt request	H'0000 00CC -	H'0000 00CF
SIO1 transmit interrupt request	H'0000 00D0 -	H'0000 00D3
SIO0 receive interrupt request	H'0000 00D4 –	H'0000 00D7
SIO0 transmit interrupt request	H'0000 00D8 -	H'0000 00DB
A-D0 conversion interrupt request	H'0000 00DC –	H'0000 00DF
DMA5–9 interrupt request	H'0000 00E8 -	H'0000 00EB
SIO2,3 transmit/receive interrupt request	H'0000 00EC -	H'0000 00EF
RTD interrupt request	H'0000 00F0 –	H'0000 00F3
CAN0 transmit/receive & error interrupt request	H'0000 010C -	H'0000 010F
CAN1 transmit/receive & error interrupt request	H'0000 0110 –	H'0000 0113

5.5 Description of Interrupt Operation

5.5.1 Acceptance of Internal Peripheral I/O Interrupts

An interrupt request from any internal peripheral I/O is checked to see whether or not to accept by comparing its ILEVEL value set in the Interrupt Control Register and the IMASK value of the Interrupt Request Mask Register. If its priority is higher than the IMASK value, the interrupt request is accepted. However, if two or more interrupt requests occur simultaneously, the Interrupt Controller resolves priority between these interrupt requests following the procedure described below.

- 1) The ILEVEL values set in the Interrupt Control Registers for the respective internal peripheral I/Os are compared with each other.
- 2) If the ILEVEL values are the same, priorities are resolved according to the predetermined hardware priority.
- 3) The ILEVEL and IMASK values are compared.

If two or more interrupt requests occur simultaneously, the Interrupt Controller first compares their priority levels set in each Interrupt Control Register's ILEVEL bit to select an interrupt request that has the highest priority. If the interrupt requests have the same ILEVEL value, their priorities are resolved according to the hardware fixed priority. The interrupt request thus selected has its ILEVEL value compared with the IMASK value and if its priority is higher than the IMASK value, the Interrupt Controller sends an EI request to the CPU.

Interrupt requests may be masked by setting the Interrupt Request Mask Register and the Interrupt Control Register's ILEVEL bit (disabled at level 7) provided for each internal peripheral I/O and the PSW register IE bit.

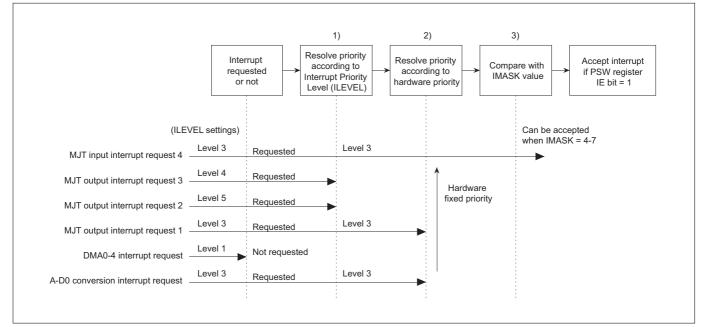


Figure 5.5.1 Example of Priority Resolution when Accepting Interrupt Requests

INTERRUPT CONTROLLER (ICU) 5.5 Description of Interrupt Operation

Table 5.5.1 Hardware Fixed Priority Levels

Priority	Interrupt Request Source	ICU Vector Table Address	ICU Type of Input Source
High	MJT input interrupt request 4 (TIN3 input)	H'0000 0094 – H'0000 0097	Level-recognized
l I	MJT input interrupt request 3 (TIN20–23 input)	H'0000 0098 – H'0000 009B	Level-recognized
	MJT input interrupt request 2 (TIN16–19 input)	H'0000 009C - H'0000 009F	Level-recognized
	MJT input interrupt request 1 (TIN0 input)	H'0000 00A0 – H'0000 00A3	Level-recognized
	MJT output interrupt request 7 (TMS0,1 output)	H'0000 00A8 – H'0000 00AB	Level-recognized
	MJT output interrupt request 6 (TOP8,9 output)	H'0000 00AC – H'0000 00AF	Level-recognized
	MJT output interrupt request 5 (TOP10 output)	H'0000 00B0 - H'0000 00B3	Edge-recognized
	MJT output interrupt request 4 (TIO4–7 output)	H'0000 00B4 – H'0000 00B7	Level-recognized
	MJT output interrupt request 3 (TIO8,9 output)	H'0000 00B8 – H'0000 00BB	Level-recognized
	MJT output interrupt request 2 (TOP0-5 output)	H'0000 00BC – H'0000 00BF	Level-recognized
	MJT output interrupt request 1 (TOP6,7 output)	H'0000 00C0 - H'0000 00C3	Level-recognized
	MJT output interrupt request 0 (TIO0-3 output)	H'0000 00C4 - H'0000 00C7	Level-recognized
	DMA0-4 interrupt request	H'0000 00C8 - H'0000 00CB	Level-recognized
	SIO1 receive interrupt request	H'0000 00CC - H'0000 00CF	Edge-recognized
	SIO1 transmit interrupt request	H'0000 00D0 - H'0000 00D3	Edge-recognized
	SIO0 receive interrupt request	H'0000 00D4 – H'0000 00D7	Edge-recognized
	SIO0 transmit interrupt request	H'0000 00D8 - H'0000 00DB	Edge-recognized
	A-D0 conversion interrupt request	H'0000 00DC - H'0000 00DF	Edge-recognized
	DMA5–9 interrupt request	H'0000 00E8 - H'0000 00EB	Level-recognized
	SIO2,3 transmit/receive interrupt request	H'0000 00EC - H'0000 00EF	Level-recognized
	RTD interrupt request	H'0000 00F0 – H'0000 00F3	Edge-recognized
	CAN0 transmit/receive & error interrupt	H'0000 010C - H'0000 010F	Level-recognized
	request		
♥	CAN1 transmit/receive & error interrupt	H'0000 0110 - H'0000 0113	Level-recognized
Low	request		

Table 5.5.2 ILEVEL Settings and Accepted IMASK Values

ILEVEL values set	IMASK values at which interrupts are accepted	
0 (ILEVEL = "000")	Accepted when IMASK is 1–7	
1 (ILEVEL = "001")	Accepted when IMASK is 2–7	
2 (ILEVEL = "010")	Accepted when IMASK is 3–7	
3 (ILEVEL = "011")	Accepted when IMASK is 4–7	
4 (ILEVEL = "100")	Accepted when IMASK is 5–7	
5 (ILEVEL = "101")	Accepted when IMASK is 6–7	
6 (ILEVEL = "110")	Accepted when IMASK is 7	
7 (ILEVEL = "111")	Not accepted (interrupts disabled)	

5.5.2 Processing by Internal Peripheral I/O Interrupt Handlers

(1) Branching to the interrupt handler

Upon accepting an interrupt request, the CPU branches to the EIT vector entry after performing the hardware preprocessing as described in Section 4.3, "EIT Processing Procedure." The EIT vector entry for External Interrupt (EI) is located at the address H'0000 0080. This address is where the instruction (not the jump address itself) for branching to the beginning of the interrupt handler routine for external interrupt requests is written.

(2) Processing in the External Interrupt (EI) handler

A typical operation of the External Interrupt (EI) handler (for interrupts from internal peripheral I/O) is shown in Figure 5.5.2.

[1] Saving each register to the stack

Save the BPC, PSW and general-purpose registers to the stack. Also, save the accumulator as necessary.

[2] Reading the Interrupt Request Mask Register (IMASK) and saving to the stack

Read the Interrupt Request Mask Register and save its content to the stack.

[3] Reading the Interrupt Vector Register (IVECT)

Read the Interrupt Vector Register. This register holds the 16 low-order address bits of the ICU vector table for the accepted interrupt request source that was stored in it when accepting an interrupt request. When the Interrupt Vector Register is read, the following processing is automatically performed in hardware:

- The interrupt priority level of the accepted interrupt request (ILEVEL) is set in the IMASK register as a new IMASK value. (Interrupts with lower priority levels than that of the accepted interrupt request source are masked.)
- The accepted interrupt request source is cleared (not cleared for level-recognized interrupt request sources).
- The interrupt request (EI) to the CPU core is dropped.
- The ICU's internal sequencer is activated to start internal processing (interrupt priority resolution).

[4] Reading and overwriting the Interrupt Request Mask Register (IMASK)

Read the Interrupt Request Mask Register and overwrite it with the read value. This write to the IMASK register causes the following processing to be automatically performed in hardware:

- The interrupt request (EI) to the CPU core is dropped.
- The ICU's internal sequencer is activated to start internal processing (interrupt priority resolution). Note: • Processing in [4] here is unnecessary when multiple interrupts are to be enabled in [6] below.

[5] Reading the ICU vector table

Read the ICU vector table for the accepted interrupt request source. The relevant ICU vector table address can be obtained by zero-extending the content of the Interrupt Vector Register that was read in [3] (i.e., the 16 low-order address bits of the ICU vector table for the accepted interrupt request source). The ICU vector table must have set in it the start address of the interrupt handler for the interrupt request source concerned.)

[6] Enabling multiple interrupts

To enable another higher priority interrupt while processing the accepted interrupt (i.e., enabling multiple interrupts), set the PSW register IE bit to "1".

[7] Branching to the internal peripheral I/O interrupt handler

Branch to the start address of the interrupt handler that was read out in [5].

[8] Processing in the internal peripheral I/O interrupt handler

[9] Disabling interrupts

Clear the PSW register IE bit to "0" to disable interrupts.

INTERRUPT CONTROLLER (ICU) 5.5 Description of Interrupt Operation

[10] Restoring the Interrupt Request Mask Register (IMASK)

Restore the Interrupt Request Mask Register that was saved to the stack in [2].

[11] Restoring registers from the stack

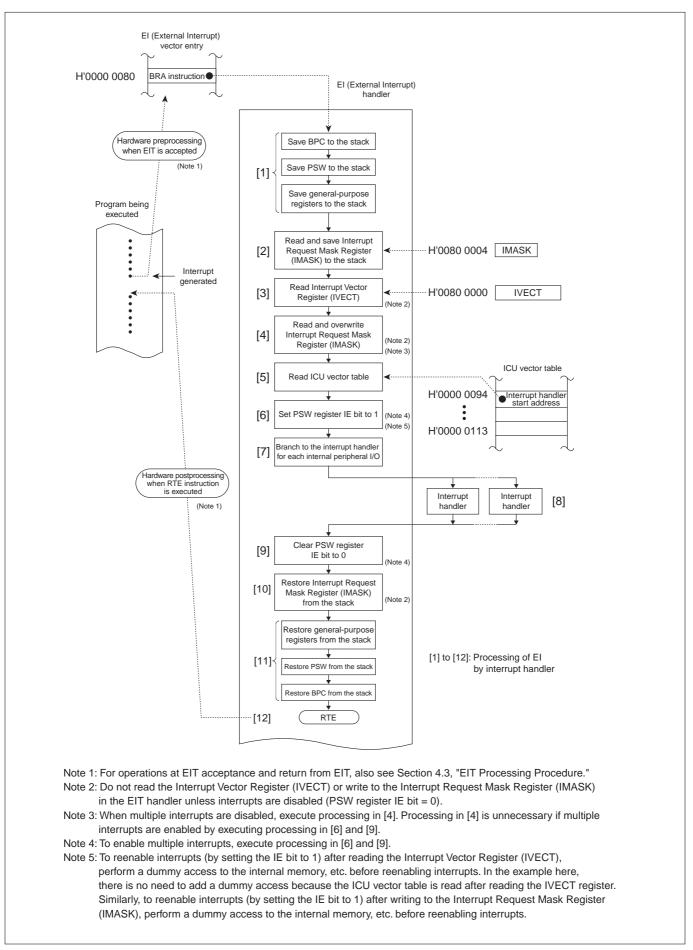
Restore the registers that were saved to the stack in [1].

[12] Completion of external interrupt processing

Execute the RTE instruction to complete the external interrupt processing. The program returns to the state in which it was before the currently processed interrupt request was accepted.

(3) Identifying the source of the interrupt request generated

If any internal peripheral I/O has two or more interrupt request sources, check the Interrupt Request Status Register provided for each internal peripheral I/O to identify the source of the interrupt request generated.


(4) Enabling multiple interrupts

To enable multiple interrupts in the interrupt handler, set the PSW register IE (Interrupt Enable) bit to enable interrupt requests to be accepted. However, before writing "1" to the IE bit, be sure to save each register (BPC, PSW, general-purpose registers and IMASK) to the stack.

Note: • Before enabling multiple interrupts, read the Interrupt Vector Register (IVECT) and then the ICU vector table, as shown in Figure 5.5.2, "Typical Handler Operation for Interrupts from Internal Peripheral I/O."

INTERRUPT CONTROLLER (ICU)

5.5 Description of Interrupt Operation

Figure 5.5.2 Typical Handler Operation for Interrupts from Internal Peripheral I/O

5.6 Description of System Break Interrupt (SBI) Operation

5.6.1 Acceptance of SBI

System Break Interrupt (SBI) is an emergency interrupt which is used when power outage is detected or a fault condition is notified by an external watchdog timer. The system break interrupt is accepted anytime upon detection of a falling edge on the SBI# signal input pin no matter how the PSW register IE bit is set, and cannot be masked.

5.6.2 SBI Processing by Handler

When the system break interrupt generated has been serviced, shut down or reset the system without returning to the program that was being executed when the interrupt occurred.

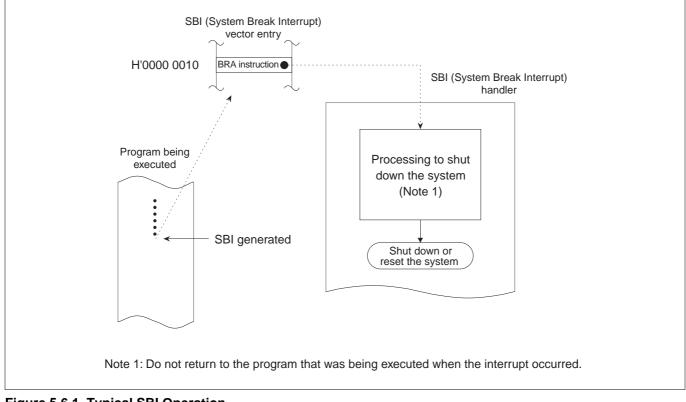


Figure 5.6.1 Typical SBI Operation

CHAPTER 6

INTERNAL MEMORY

- 6.1 Outline of the Internal Memory
- 6.2 Internal RAM
- 6.3 Internal Flash Memory
- 6.4 Registers Associated with the Internal Flash Memory
- 6.5 Programming the Internal Flash Memory
- 6.6 Virtual Flash Emulation Function
- 6.7 Connecting to A Serial Programmer (CSIO Mode)
- 6.8 Internal Flash Memory Protect Function
- 6.9 Precautions To Be Taken when Rewriting the Internal Flash Memory

6.1 Outline of the Internal Memory

The 32176 internally contains the following types of memory:

- 24-Kbyte RAM
- 512-Kbytes, 384-Kbytes or 256-Kbytes flash memory

6.2 Internal RAM

Specifications of the internal RAM are shown below.

Table 6.2.1	Specifications	of the	Internal	RAM
-------------	----------------	--------	----------	-----

Item	Specification
Size	24 Kbytes
Location address	H'0080 4000 to H'0080 9FFF
Wait insertion	Operates with zero wait states
Internal bus connection	Connected by 32-bit bus
Dual port	By using the Real-Time Debugger (RTD), data can be read (monitored) or written to any area of
	the internal RAM via serial communication from external devices independently of the CPU. (See
	Chapter 14, "Real-Time Debugger.")

Notes: • Immediately after power-on reset (for the power-on case in which VDDE also goes up from GND), the value of the RAM is undefined.

• If the RAM is reset during RAM backup (power for only VDDE is on), the RAM retains the value it had immediately before being reset.

6.3 Internal Flash Memory

Specifications of the internal flash memory are shown below.

Item	Specification								
Size	M32176F4: 512 Kbytes								
	M32176F3: 384 Kbytes	VI32176F3: 384 Kbytes							
	M32176F2: 256 Kbytes	M32176F2: 256 Kbytes							
Location address	M32176F4: H'0000 0000 to H'0007 FFFF								
	M32176F3: H'0000 0000 to H'0005 FFFF								
	M32176F2: H'0000 0000 to H'00	003 FFFF							
Wait insertion	Operates with zero wait state								
Durability	Standard product	: 100 times							
	10000 (10k) times rewritable	: 4-Kbyte block (Note 2)	: 10,000 (10k) times						
	-product (Note 1)	: Other blocks	: 1,000 (1k) times						
Internal bus connection	Connected by 32-bit bus								
Other	Virtual flash emulation function is	incorporated. (See Section 6.	6, "Virtual Flash Emulation Function.")						

Table 6.3.1 Specifications of the Internal Flash Memory

Note 1: The 10000 (10k) times rewritable product is offered as an optional item. For details about it, please contact your nearest office of Renesas or its distributor.

Note 2: Block 1: H'0000 2000 to H'0000 2FFF

Block 2: H'0000 3000 to H'0000 3FFF

H'0000 0000 H'0000 1FFF	8KB	Block 0	1
H'0000 2000 H'0000 2FFF	4KB	Block 1	
H'0000 3000 H'0000 3FFF	4KB	Block 2	
H'0000 4000 H'0000 5FFF	8KB	Block 3	Unequal blocks
H'0000 6000 H'0000 7FF	8KB	Block 4	
H'0000 8000 H'0000 FFFF	32KB	Block 5	
H'0001 0000			*
	64KB	Block 6	
H'0001 FFFF			
H'0002 0000			
H'0002 FFFF	64KB	Block 7	
H'0003 0000			
	64KB	Block 8	
H'0003 FFFF			
H'0004 0000			Equal blocks
	64KB	Block 9	
H'0004 FFFF			
H'0005 0000		l ↑	
	64KB	Block 10	
H'0005 FFFF			
H'0006 0000			
	64KB	Block 11	
H'0006 FFFF		<u>_</u>	
H'0007 0000	64KB	Block 12	
H'0007 FFFF			

Figure 6.3.1 Block Configuration of the M32176F4's Internal Flash Memory

6.3 Internal Flash Memory

H'0000 0000 H'0000 1FFF	8KB	Block 0
H'0000 2000 H'0000 2FFF	4KB	Block 1
H'0000 3000 H'0000 3FFF	4KB	Block 2
H'0000 4000 H'0000 5FFF	8KB	Block 3 Unequal blocks
H'0000 6000 H'0000 7FFF	8KB	Block 4
H'0000 8000 H'0000 FFFF	32KB	Block 5
H'0001 0000 H'0001 FFFF	64KB	Block 6
H'0002 0000	64KB	Block 7
H'0002 FFFF		
H'0003 0000	64KB	Block 8
H'0003 FFFF		Equal blocks
H'0004 0000	64KB	Block 9
H'0004 FFFF		
H'0005 0000	64KB	Block 10
H'0005 FFFF		

Figure 6.3.2 Block Configuration of the M32176F3's Internal Flash Memory

H'0000 0000 H'0000 1FFF	8KB	Block 0	Î
H'0000 2000 H'0000 2FFF	4KB	Block 1	
H'0000 3000 H'0000 3FFF	4KB	Block 2	
H'0000 4000 H'0000 5FFF	8KB	Block 3 Ur	nequal blocks
H'0000 6000 H'0000 7FFF	8KB	Block 4	
H'0000 8000 H'0000 FFFF	32KB	Block 5	
H'0001 0000			
	64KB	Block 6	
H'0001 FFFF			
H'0002 0000		E E	l qual blocks
	64KB	Block 7	`
H'0002 FFFF			
H'0003 0000			
	64KB	Block 8	

Figure 6.3.3 Block Configuration of the M32176F2's Internal Flash Memory

6

6.4 Registers Associated with the Internal Flash Memory

A register map associated with the internal flash memory is shown below.

Internal Flash Memory Related Register Map

Address	+0 address b0 b7	+1 address b15	See pages					
H'0080 07E0	Flash Mode Register (FMOD)	Flash Status Register (FSTAT)	6-7 6-8					
H'0080 07E2	Flash Control Register 1 (FCNT1)	Flash Control Register 2 (FCNT2)	6-9 6-10					
H'0080 07E4	Flash Control Register 3 (FCNT3)	Flash Control Register 4 (FCNT4)	6-11 6-13					
H'0080 07E6	(Use inhit	(Use inhibited area)						
H'0080 07E8		Virtual Flash L Bank Register 0 (FELBANK0)						
H'0080 07EA	Virtual Flash L Bank Register 1 (FELBANK1)							
	(Use inhibited area)							
H'0080 07F0		Bank Register 0 BANK0)	6-16					
H'0080 07F2		Bank Register 1 BANK1)	6-16					

6.4.1 Flash Mode Register

Flash Mode Register (FMOD)									<address: 07<="" h'0080="" th=""><th>E0></th></address:>	E0>	
b0	1	2	3	4		5		6	b7		
			FAENS						FPMOD		
0	0	0	1	0		0		0	?]	
										<upon exiting="" h<="" reset:="" td=""><td>ľ'1?></td></upon>	ľ'1?>
b	Bit Name				Function R V				W		
0–2	No function	n assigned	. Fix to "0"							0	0
3	FAENS						0: Flash access disabled			bled R	_
	Flash access enable status bit					1: Flash access enabled			led		
4–6	No function assigned. Fix to "0"					0	0				
7	FPMOD 0: FP pin = "low"				R	_					
	External FP pin status bit 1: FP pin = "					= "high"					

(1) FAENS (Flash Access Enable Status) bit (Bit 3)

The FAENS bit shows whether access to the flash memory is enabled or disabled. When the flash memory is reset by the FRESET bit in Flash Control Register 4 (FCNT4) or accessed for programming/erasure, this bit is cleared to "0", resulting in the flash memory being disabled against access. When the flash memory becomes ready for access, this bit is set to "1".

(2) FPMOD (External FP Pin Status) bit (Bit 7)

The FPMOD is a status bit which indicates the FP (Flash Protect) pin status. The internal flash memory is enabled for programming or erase operation only when FPMOD = "1", and is protected against programming or erase operation when FPMOD = "0".

6.4.2 Flash Status Register

Flash Status Register (FSTAT) <address: 0<="" h'0080="" th=""></address:>)7E	1>	
b8	9	10	11	12	13	14	b15			
FBUSY	·	ERASE	WRERR		FESQ1	FESQ2				
1	0	0	0	0	0	0	0			
								<upon exiting="" reset:<="" td=""><td>H'8</td><td>80></td></upon>	H'8	80>
b	Bit Name					Function		I	R	W
8	FBUSY					0: Being pr	ogrammed	or erased	R	_
	Flash busy	bit				1: Ready s	tate			
9	No functior	n assigned.	Fix to "0".					(0	0
10	ERASE					0: Erase no	ormally ope	rating or teminated	२	_
	Erase statu	us confirma	tion bit			1: Erase er	ror occurre	d		
11	WRERR					0: Program	ming norm	ally operating or terminated	२	_
	Write statu	s confirmat	ion bit			1: Program	ming error	occurred		
12	No functior	n assigned.	Fix to "0".					(0	0
13	FESQ1								?	_
	Reserved bit									
14	FESQ2								?	_
	Reserved b	oit								
15	No functior	n assigned.	Fix to "0".						0	0

Flash Status Register (FSTAT) consists of the following status bits that indicate the operation condition of the flash memory.

(1) FBUSY (Flash Busy) bit (Bit 8)

The FBUSY bit is used to determine whether the operation on the flash memory is finished when it is being programmed or erased. When FBUSY = "0", it means that the programming or erase operation is being executed; when FBUSY = "1", the operation is finished.

(2) ERASE (Erase Status Confirmation) bit (Bit 10)

The ERASE bit is used to determine after execution of processing whether the erase operation performed on the flash memory resulted in an error. When ERASE = "0", it means that the erase operation terminated normally; when ERASE = "1", the erase operation terminated in an error. Also, this bit is set to "1" when invalid command is issued.

(3) WRERR (Write Status Confirmation) bit (Bit 11)

The WRERR bit is used to determine after completion of processing whether the programming operation performed on the flash memory resulted in an error. When WRERR = "0", it means that the programming operation terminated normally; when WRERR = "1", the programming operation terminated in an error. Also, this bit is set to "1" when invalid command is issued.

Note: • Except when programming/erase processing on the flash memory is forcibly terminated, do not manipulate the FRESET bit in Flash Control Register 4 (FCNT4) while the FBUSY bit = "0" (programming/erasure in progress).

6.4.3 Flash Control Registers

Fla	sh C	ontrol Reg	<address: 071<="" h'0080="" th=""><th>E2></th></address:>	E2>						
	b0	1	2	3	4	5	6	b7		
				FENTRY				FEMMOD		
	0	0	0	0	0	0	0	0		
									<upon exiting="" h<="" reset:="" td=""><td>'00></td></upon>	'00>
b		Bit Name				Function		R	W	
0–2		No functio	n assigned	. Fix to "0".					0	0
3		FENTRY					0: Normal	read	R	W
	Flash E/W enable mode entry bit					1: Program				
4–6		No functio	n assigned	. Fix to "0".					0	0
7	FEMMOD			0: Normal	mode	R	W			
	Virtual flash emulation mode bit						1: Virtual f	lash emulation mod	de	

Flash Control Register 1 (FCNT1) consists of the following two bits to control the internal flash memory.

(1) FENTRY (Flash E/W Enable Mode Entry) bit (Bit 3)

The FENTRY bit controls entry to flash E/W enable mode. Flash E/W enable mode can only be entered when FENTRY = "1".

To set the FENTRY bit to "1", write "0" and then "1" to the FENTRY bit in succession while the FP pin = "high". To clear the FENTRY bit, check to see that the Flash Status Register (FSTAT) FBUSY bit = "1" (ready) and then write "0" to the FENTRY bit.

Note that the following operations cannot be performed while programming or erasing the internal flash memory (FSTAT FBUSY bit = "0"). If one of these operations is attempted, the FENTRY bit is cleared to "0" in hardware.

- 1) Writing "0" to the FENTRY bit
- 2) Entering a low-level signal to the FP pin
- 3) Entering a low-level signal to the RESET# pin

When running a program resident in the internal flash memory while the FENTRY bit = "0", the EI vector entry is located at the address H'0000 0080 of the internal flash memory. When running the flash write/erase program in the RAM while the FENTRY bit = "1", the EI vector entry is located at the address H'0080 4000 of the RAM, allowing the flash programming/erase operation to be controlled using interrupts.

FENTRY	El Vector Entry	Address
0	Internal flash memory area	H'0000 0080
1	Internal RAM area	H'0080 4000

(2) FEMMOD (Virtual Flash Emulation Mode) bit (Bit 7)

The FEMMOD bit controls entry to virtual flash emulation mode. Virtual flash emulation mode is entered by setting the FEMMOD bit to "1" while the FENTRY bit = "0". (For details, see Section 6.6, "Virtual Flash Emulation Function.")

Flash Control Register 2 (FCNT2)

b8	9	10	11	12	13	14	b15
			FLOCKS				FPROT
0	۱ 0	0	0	0	0	0	0

<Address: H'0080 07E3>

			<upon exiting="" h'<="" reset:="" th=""><th>'00></th></upon>	'00>
b	Bit Name	Function	R	W
8–10	No function assigned. Fix to "0".		0	0
11	FLOCKS	0: Memory area read mode	R(1	Note 1)
	Lock bit read mode select bit	1: Register read mode		
12–14	No function assigned. Fix to "0".		0	0
15	FPROT	0: Protection by lock bit effective	R(1	Note 1)
	Lock bit protect control bit	1: Protection by lock bit invalidated		

Note 1: It can be accessed for write only during the Flash E/W entry mode (FENTRY bit = "1").

(1) FLOCKS (Lock Bit Read Mode Select) bit (Bit 11)

The FLOCKS bit is used to select a method for reading out the lock bit status. When the FLOCKS bit = "0", the internal flash memory is placed in memory area read mode, so that it is possible to inspect the lock bit status by issuing command data H'7171 to any address of the flash memory and then reading the last even address of the target block. When the FLOCKS bit = "1", the internal flash memory is placed in register read mode, so that it is possible to inspect the lock bit status by first issuing command data H'7171 and H'D0D0 to any address of the target block in succession and then, when the FBUSY bit is set to "1", by reading the FLOCKST bit in Flash Control Register 4.

The FLOCKS bit can only be accessed for write when the FENTRY bit = "1".

If one of the following operations is attempted, the FLOCKS bit is cleared to "0".

- 1) Writing "0" to the FLOCKS bit
- 2) Entering a low-level signal to the FP pin
- 3) Clearing the FENTRY bit to "0"
- 4) Entering a low-level signal to the RESET# pin

(2) FPROT (Lock Bit Protect Control) bit (Bit 15)

The FPROT bit controls invalidation of the internal flash memory protection by a lock bit (protection against programming/erase operation). Protection of the internal flash memory is invalidated by setting the FPROT bit to "1", so that any blocks protected by a lock bit can now be programmed or erased.

To set the FPROT bit to "1", write "0" and then "1" to the FPROT bit in succession while the FENTRY bit = "1". To clear the FPROT bit to "0", write "0" to the FPROT bit.

If one of the following operations is attempted, the FPROT bit is cleared to "0".

- 1) Writing "0" to the FPROT bit
- 2) Entering a low-level signal to the FP pin
- 3) Clearing the FENTRY bit to "0"
- 4) Entering a low-level signal to the RESET# pin

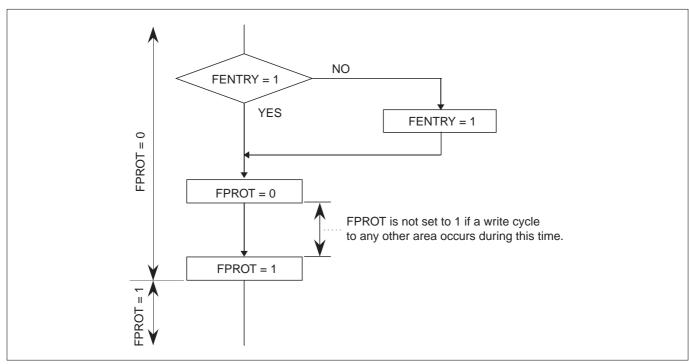


Figure 6.4.1 Protection Unlocking Flow

Flash Control Register 3 (FCNT3)

b0	1	2	3	4	5	6	b7
			FBSYCK				FPBSYCK
0	0	0	1	0	0	0	1

<Address: H'0080 07E4>

<Upon exiting reset: H'11>

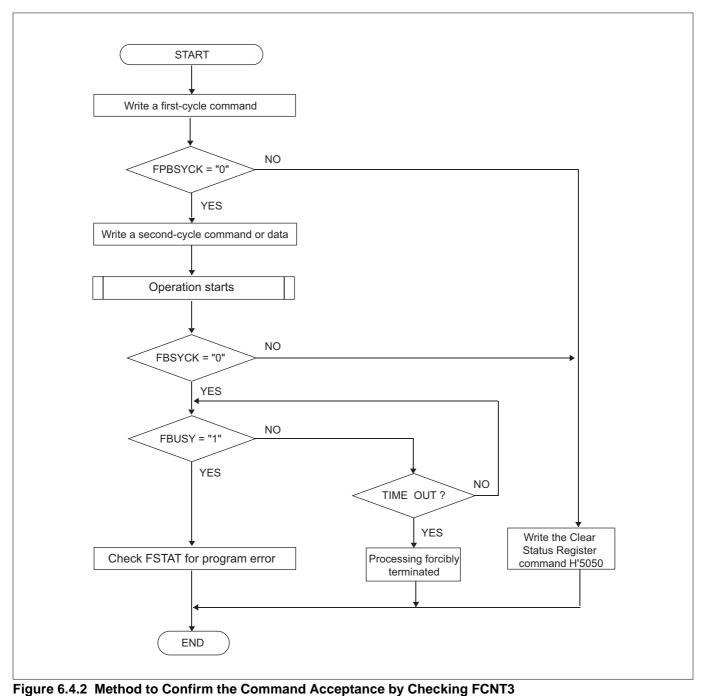
		· · ·	-	
b	Bit Name	Function	R	W
0–2	No function assigned. Fix to "0".		0	0
3	FBSYCK	0: Command accepted normally	R	_
	Busy check bit	1: Command not accepted normally		
4–6	No function assigned. Fix to "0".		0	0
7	FPBSYCK	0: Command accepted normally	R	_
	Prebusy check bit	1: Command not accepted normally		

Flash Control Register 3 (FCNT3) is used when developing an internal flash memory write/erase program to check whether commands have been accepted normally. This register does not need to be used for a program that has been verified to be able to operate properly.

(1) FBSYCK (Busy Check) bit (Bit 3)

The FBSYCK bit is used to check whether a 2-cycle command (confirmation command H'D0D0 or a command that requires write data) issued to the flash memory during flash E/W enable mode has been accepted normally. If the FBSYCK bit is found to be "0" after issuing a command in the second cycle (confirmation command H'D0D0 or write data), it means that the command in the second cycle has been accepted normally. Conversely, if the FBSYCK bit is found to be "1", it means that the command in the second cycle has not been accepted normally.

In addition to the above, the FBSYCK bit is set to "1" in the following cases:


- 1) When a command in the first cycle of 2-cycle commands has been accepted
- 2) When the FRESET bit = "1"
- 3) When input on RESET# pin is pulled low

(2) FPBSYCK (Prebusy Check) bit (Bit 7)

The FPBSYCK bit is used to check whether a 2-cycle command (confirmation command H'D0D0 or a command that requires write data) issued to the flash memory during flash E/W enable mode has been accepted normally. If the FPBSYCK bit is found to be "0" after issuing a command in the first cycle, it means that the command in the first cycle has been accepted normally. Conversely, if the FPBSYCK bit is found to be "1", it means that the command in the first cycle has not been accepted normally.

In addition to the above, the FPBSYCK bit is set to "1" in the following cases:

- 1) When in a ready state (FBUSY = high after a command in the second cycle has been accepted)
- 2) When the Clear Status Register command is issued
- 3) When the FRESET bit = "1"
- 4) When input on RESET# pin is pulled low

Flash Control Register 4 (FCNT4)

b8	9	10	11	12	13	14	b15
			FLOCKST				FRESET
0	0	0	0	0	0	0	0

<Address: H'0080 07E5>

Ŭ			
			<upon exiting="" h'00="" reset:=""></upon>
b	Bit Name	Function	R W
8–10	No function assigned. Fix to "0".		0 0
11	FLOCKST	0: Protected	R –
	Lock bit status bit	1: Unprotected	
12–14	No function assigned. Fix to "0".		0 0
15	FRESET	0: No operation	R W
	Flash reset bit	1: Reset	

(1) FLOCKST (Lock Bit Status) bit (Bit 11)

The FLOCKST bit is used to read the lock bit status. If the FLOCKST bit = "0", it means that the relevant memory block is protected. If the FLOCKST bit = "1", it means that the relevant memory block is not protected. Confirmation of the lock bit status by the FLOCKST bit is possible when the FLOCKS bit = "1". In this case, the lock bit status can be checked by first issuing command data H'7171 and H'D0D0 to any address of the target block in succession and then, when the FBUSY bit is set to "1", by reading the FLOCKST bit.

(2) FRESET (Flash Reset) bit (Bit 15)

The FRESET bit controls forcible termination of the internal flash memory programming/erase operation, initialization (to H'80) of each status bit in the Flash Status Register (FSTAT), and initialization of the FPBSYCK bit in Flash Control Register 3 (FCNT3).

Setting the FRESET bit to "1" forcibly terminates programming/erase operation and initializes each status bit in the FSTAT (to H'80) and the FPBSYCK bit in FCNT3. Make sure FRESET is held high (= "1") for at least 10 μ s during a flash reset.

After a flash reset, the internal flash memory is disabled against access until the FAENS bit is set to "1". The FRESET bit is effective only when the FENTRY bit = "1". Unless the FENTRY bit = "1", settings made to the FRESET bit are ignored. Make sure the FRESET bit = "0" while programming or erasing the flash memory.

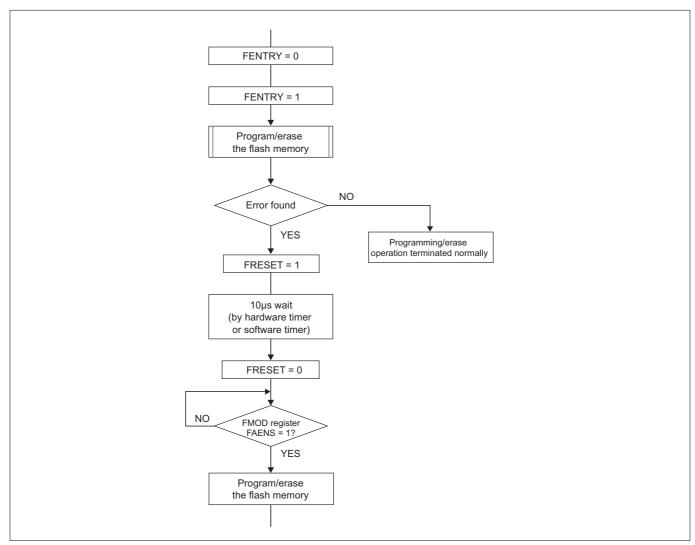


Figure 6.4.3 Example of FRESET Bit 1 (Initializing Flash Status Register 2)

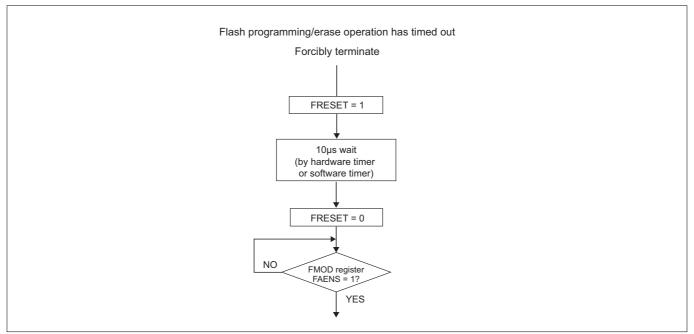


Figure 6.4.4 Example of FRESET Bit 2 (Forcibly Terminating Programming/Erasing Operation)

6.4.4 Virtual Flash L Bank Registers

Virtual Flash L Bank Register 0 (FELBANK0) Virtual Flash L Bank Register 1 (FELBANK1)

b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15 MOD ENL 0 LBANKAD 0 0 0 0 0 | 0 0 Ω 0 0 0 n

<upon< th=""><th>exiting</th><th>reset:</th><th>H'0000></th></upon<>	exiting	reset:	H'0000>
	o		

<Address: H'0080 07E8>

<Address: H'0080 07EA>

Bit Name	Function	R	W
MODENL	0: Disable virtual flash emulation function	R	W
Virtual flash emulation L enable bit	1: Enable virtual flash emulation function		
No function assigned. Fix to "0".		0	0
LBANKAD	Start address A12–A18 of the relevant L bank	R	W
L bank address bit			
No function assigned. Fix to "0".		0	0
	MODENL Virtual flash emulation L enable bit No function assigned. Fix to "0". LBANKAD L bank address bit	MODENL0: Disable virtual flash emulation functionVirtual flash emulation L enable bit1: Enable virtual flash emulation functionNo function assigned. Fix to "0".EBANKADL bank address bitStart address A12–A18 of the relevant L bank	MODENL 0: Disable virtual flash emulation function R Virtual flash emulation L enable bit 1: Enable virtual flash emulation function 0 No function assigned. Fix to "0". 0 LBANKAD Start address A12–A18 of the relevant L bank R L bank address bit 1

Note: • These registers must always be accessed in halfwords.

(1) MODENL (Virtual Flash Emulation L Enable) bit (Bit 0)

The MODENL bit can be set to "1" after entering virtual flash emulation mode (by setting the FEMMOD bit to "1" while the FENTRY bit = "0"). This causes the virtual flash emulation function to be enabled for the L bank area selected by the LBANKAD bits.

(2) LBANKAD (L Bank Address) bits (Bits 8–14)

The LBANKAD bits are provided for selecting one of the L banks that are separated every 8 KB. Use these LBANKAD bits to set the seven bits A12–A18 of the 32-bit start address of the desired L bank.

Note: • For details, see Section 6.6, "Virtual Flash Emulation Function."

6.4.5 Virtual Flash S Bank Registers

Virtua	al Fla	ish S	Bank	Reg	ister C) (FES	BANK	(0)								<address: 07f0="" h'0080=""></address:>
Virtua	al Fla	ish S	Bank	Reg	ister 1	(FES	BANK	(1)								<address: 07f2="" h'0080=""></address:>
b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15	_
MOD ENS											SBAN	IKAD				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

<Upon exiting reset: H'0000>

		· •		
b	Bit Name	Function	R	W
0	MODENS	0: Disable virtual flash emulation function	R	W
	Virtual flash emulation S enable bit	1: Enable virtual flash emulation function		
1–7	No function assigned. Fix to "0".		0	0
8–15	SBANKAD	Start address A12–A19 of the relevant S bank	R	W
	S bank address bit			

Note: • These registers must always be accessed in halfwords.

(1) MODENS (Virtual Flash Emulation S Enable) bit (Bit 0)

The MODENS bit can be set to "1" after entering virtual flash emulation mode (by setting the FEMMOD bit to "1" while the FENTRY bit = "0"). This causes the virtual flash emulation function to be enabled for the S bank area selected by the SBANKAD bits.

(2) SBANKAD (S Bank Address) bits (Bits 8–15)

The SBANKAD bits are provided for selecting one of the S banks that are separated every 4 KB. Use these SBANKAD bits to set the eight bits A12–A19 of the 32-bit start address of the desired S bank.

Note: • For details, see Section 6.6, "Virtual Flash Emulation Function."

6.5 Programming the Internal Flash Memory

6.5.1 Outline of Internal Flash Memory Programming

To program or erase the internal flash memory, there are following two methods to choose depending on the situation:

- (1) When the flash write/erase program does not exist in the internal flash memory
- (2) When the flash write/erase program already exists in the internal flash memory

For (1), set the FP pin = "high", MOD0 = "high" and MOD1 = "low" to enter boot mode. In this case, the CPU starts running the boot program immediately after reset.

The boot program transfers the flash write/erase program into the internal RAM. After the transfer, jump to a location in the RAM and use the RAM-resident program to set the Flash Control Register 1 (FCNT1) FENTRY bit to "1" to make the internal flash memory ready for programming/erase operation (i.e., placed in boot mode + flash E/W enable mode).

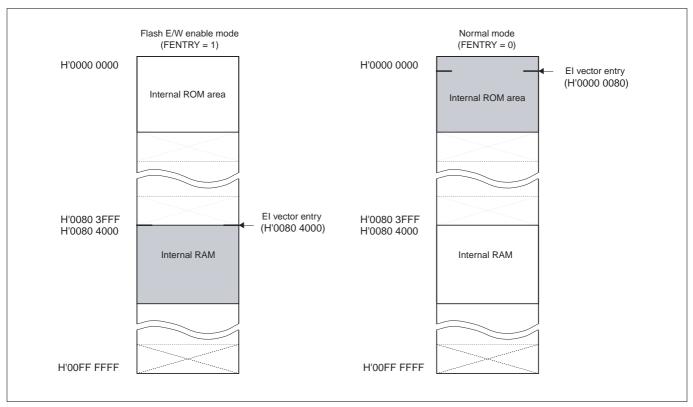
When the above is done, use the flash write/erase program that has been transferred into the internal RAM to program or erase the internal flash memory.

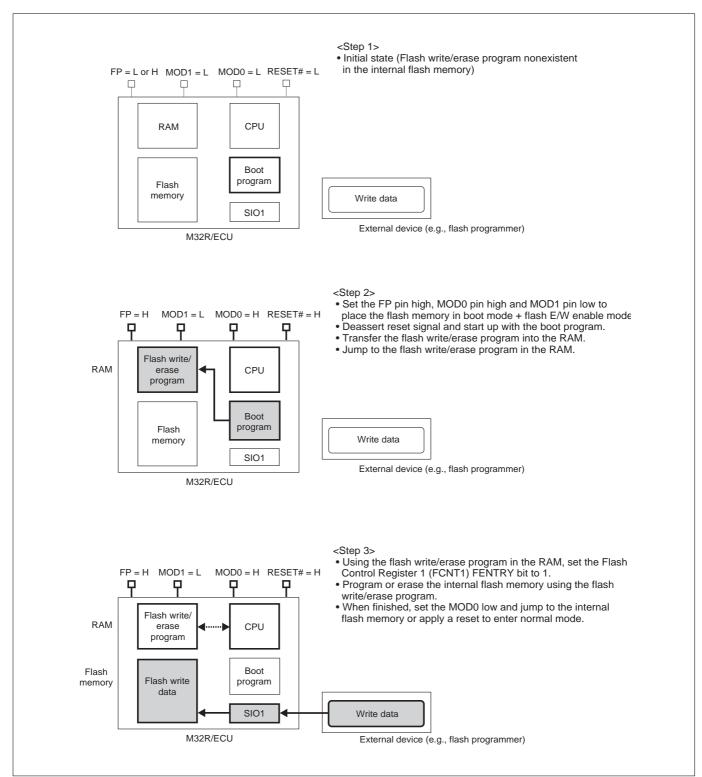
For (2), set the FP pin = "high", MOD0 = "low" and MOD1 = "low" to enter single-chip mode. Transfer the flash write/erase program from the internal flash memory in which it has been prepared into the internal RAM. After the transfer, jump to the RAM and use the program transferred into the RAM to set the Flash Control Register 1 (FCNT1) FENTRY bit to "1" to make the internal flash memory ready for programming/erase operation (i.e., placed in single-chip mode + flash E/W enable mode).

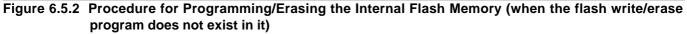
When the above is done, use the flash write/erase program that has been transferred into the internal RAM to program or erase the internal flash memory. Or flash E/W enable mode can be entered from external extension mode by setting the FP pin = "high", MOD0 = "low" and MOD1 = "high".

During flash E/W enable mode (FP pin = 1, FENTRY = 1), the EIT vector entry for External Interrupt (EI) is relocated to the start address (H'0080 4000) of the internal RAM. During normal mode, it is located in the flash area (H'0000 0080).

To use an external interrupt (EI) in flash E/W enable mode, write at the beginning of the internal RAM an instruction for branching to the external interrupt (EI) handler that has been transferred into the internal RAM. Furthermore, because the IVECT register which is read out in the external interrupt (EI) handler has stored in it the flash memory address of the ICU vector table, make sure the ICU vector table to be used during flash E/W enable mode is prepared in the internal RAM so that the value of the IVECT register will be converted into the internal RAM address of the ICU vector table (for example, by adding an offset) before performing branch processing.




Figure 6.5.1 El Vector Entry during Flash E/W Enable Mode


h

(1) When the flash write/erase program does not exist in the internal flash memory

In this case, the boot program is used to program or erase the internal flash memory. To transfer the write data, use serial I/O1 in clock-synchronized serial mode.

To program or erase the internal flash memory using a flash programmer, follow the procedure described below.

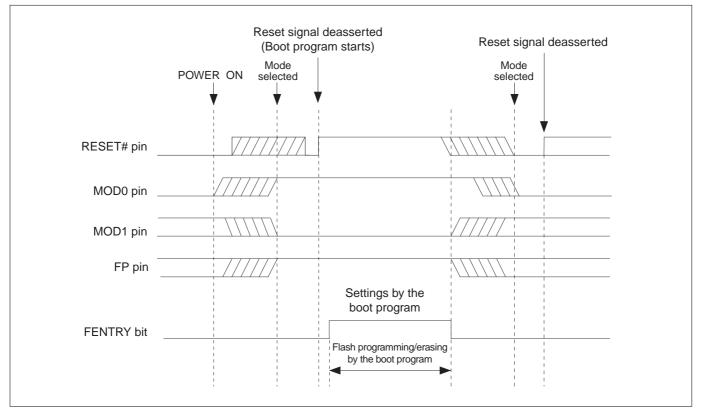


Figure 6.5.3 Internal Flash Memory Write/Erase Timing (when the flash write/erase program does not exist in it)

(2) When the flash write/erase program already exists in the internal flash memory

In this case, the flash write/erase program prepared in the internal flash memory is used to program or erase the internal flash memory.

For programming/erase operation here, use the internal peripheral circuits in the manner suitable for the programming system. (All resources of the internal peripheral circuits such as the data bus, serial I/O and ports can be used.)

The following shows an example for programming or erasing the internal flash memory by using serial I/O0 in single-chip mode.

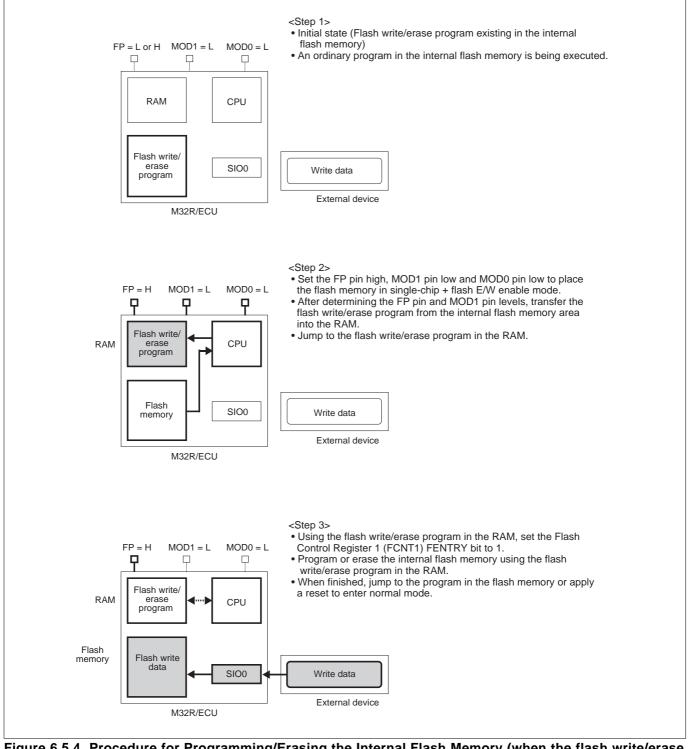


Figure 6.5.4 Procedure for Programming/Erasing the Internal Flash Memory (when the flash write/erase program already exists in it)

INTERNAL MEMORY 6.5 Programming the Internal Flash Memory

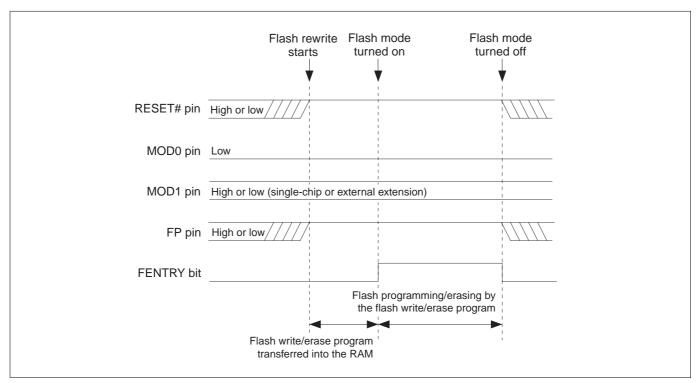


Figure 6.5.5 Internal Flash Memory Write/Erase Timing (when the flash write/erase program already exists in it)

6.5.2 Controlling Operation Modes during Flash Programming

The microcomputer's operation mode is set by MOD0, MOD1 and Flash Control Register 1 (FCNT1) FENTRY bit. The table below lists operation modes that may be used when programming or erasing the internal flash memory.

FP	MOD0	MOD1	FENTRY (Note 1)	Operation Mode	Reset Vector Entry	EI Vector Entry
0	0	0	0	Single-chip mode	Start address of internal	Flash area
1	0	0	0		flash memory	(H'0000 0080)
					(H'0000 0000)	
0	1	0	0	Processor mode	Start address of external	External area
					area	
					(H'0000 0000)	(H'0000 0080)
0	0	1	0	External extension	Start address of internal	Flash area
1	0	1	0	mode	flash memory	(H'0000 0080)
					(H'0000 0000)	
1	0	0	1	Single-chip mode	Start address of internal	Beginning of internal RAM
				+ flash E/W enable	flash memory	(H'0080 4000)
					(H'0000 0000)	
1	1	0	0	Boot mode	Boot program startup	Flash area
					address	(H'0000 0080)
1	1	0	1	Boot mode + flash	Boot program startup	Beginning of internal RAM
				E/W enable	address	(H'0080 4000)
1	0	1	1	External extension	Start address of internal	Beginning of internal RAM
				mode + flash E/W	flash memory	(H'0080 4000)
				enable	(H'0000 0000)	
_	1	1	_	Use inhibited	-	-

 Table 6.5.1 Operation Modes Set during Flash Programming/Erase

Note 1: Indicates the Flash Control Register 1 (FCNT1) FENTRY bit status (– denotes "Don't care"). However, if FP = "0", writing "1" to FENTRY only results in it cleared to "0".

Note 2: Always make sure the MOD2 pin is connected low (= 0) to ground (GND).

(1) Flash E/W enable mode

Flash E/W enable mode is a mode in which the internal flash memory can be programmed or erased. In flash E/W enable mode, no programs can be executed in the internal flash memory. Therefore, the necessary program must be transferred into the internal RAM before entering flash E/W enable mode, so that it can be executed in the RAM.

(2) Entering flash E/W enable mode

Flash E/W enable mode can only be entered when operating in single-chip, external extension or boot mode. Furthermore, it is only when the FP pin = "high" and the Flash Control Register 1 (FCNT1) FENTRY bit = "1" that flash E/W enable mode can be entered. Flash E/W enable mode cannot be entered when operating in processor mode or the FP pin = "low".

(3) Detecting the MOD0 and MOD1 pin levels

The MOD0 and MOD1 pin levels ("high" or "low") can be known by checking the P8 Data Register (Port Data Register, H'0080 0708) MOD0DT and MOD1DT bits.

P8 Data Register (P8DATA)

.

b0	1	2	3	4	5	6	b7
MOD0DT	MOD1DT	P82DT	P83DT	P84DT	P85DT	P86DT	P87DT
?	?	?	?	?	?	?	?

b	Bit Name	Function	R	W
0	MOD0DT	0: MOD0 pin = "low"	R	_
	MOD0 data bit	1: MOD0 pin = "high"		
1	MOD1DT	0: MOD1 pin = "low"	R	_
	MOD1 data bit	1: MOD1 pin = "high"		
2	P82DT	At read	R	W
	Port P82 data bit	Depends on how the Port Direction Register is set		
3	P83DT	 If direction bit = "0" (input mode) 		
	Port P83 data bit	0: Port input pin = "low"		
4	P84DT	1: Port input pin = "high"		
	Port P84 data bit	• If direction bit = "1" (output mode) (Note 1)		
5	P85DT	0: Port output latch = "0" / Port pin level = "low"		
	Port P85 data bit	1: Port output latch = "1" / Port pin level = "high"		
6	P86DT	At write		
	Port P86 data bit	Write to the port output latch		
7	P87DT			
	Port P87 data bit			

Note 1: To select the port data to read, use the Port Input Special Function Control Register's port input data select bit (PISEL).

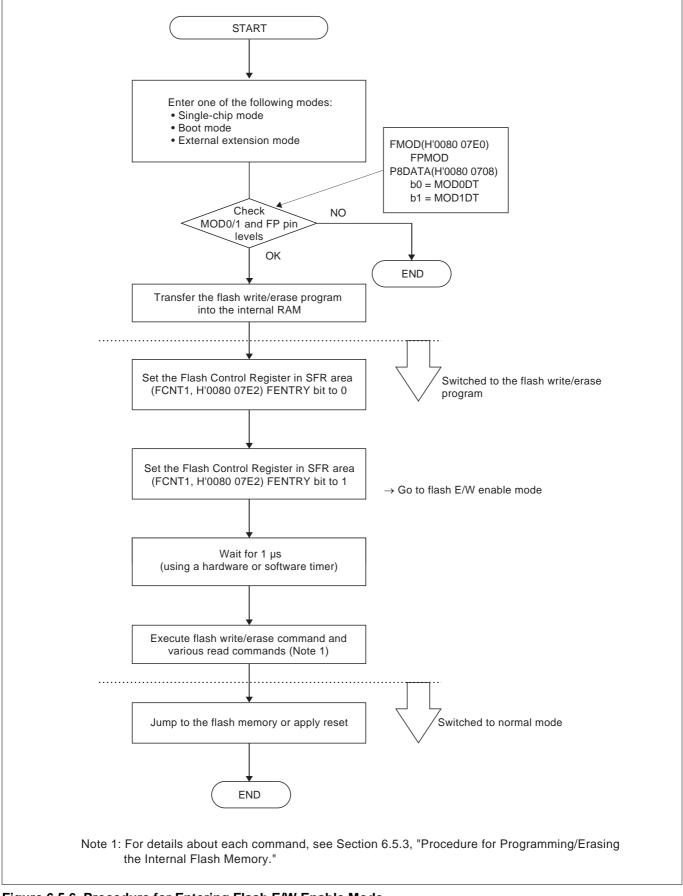


Figure 6.5.6 Procedure for Entering Flash E/W Enable Mode

6.5.3 Procedure for Programming/Erasing the Internal Flash Memory

To program or erase the internal flash memory, set up chip mode to enter flash E/W enable mode and execute the flash write/erase program in the internal RAM into which it has been transferred from the internal flash memory. In flash E/W enable mode, because the internal flash memory cannot be accessed for read as in normal mode, no programs present in it can be executed. Therefore, the flash write/erase program must be made available in the internal RAM before entering flash E/W enable mode. (Once flash E/W enable mode is entered into, only flash command and no other commands can be used to access the internal flash memory.) To access the internal flash memory in flash E/W enable mode, issue commands for the internal flash memory address to be operated on. The table below lists the commands that can be issued in flash E/W enable mode.

Note: • During flash E/W enable mode, the internal flash memory cannot be accessed for read or write wordwise.

Table 6.5.2 Commands in Flash E/W Enable Mode

Command Name	Issued Command Data	
Read Array command	H'FFFF	
Halfword Program command	H'4040	
Lock Bit Program command	H'7777	
Block Erase command	H'2020	
Clear Status Register command	H'5050	
Read Lock Bit Status command	H'7171	
Verify command (Note 1)	H'D0D0	

Note 1: • This command must be issued immediately after the Lock Bit Program, Block Erase or Read Lock Bit Status command. If the Lock Bit Program, Block Erase or Read Lock Bit Status command is followed by other than the Verify (H'D0D0) command, the Lock Bit Program, Block Erase or Read Lock Bit Status command is not executed normally and terminated in error.

(1) Read Array command

Writing the Read Array command (H'FFFF) to any address of the internal flash memory places it in read mode. Then read the desired flash memory address, and the content of that address will be read out. Before exiting flash E/W enable mode, always be sure to execute the Read Array command.

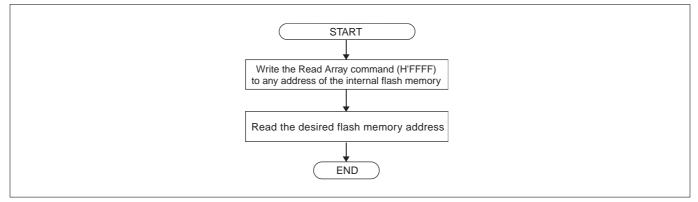


Figure 6.5.7 Read Array

(2) Halfword Program command

The internal flash memory is programmed a halfword at a time, each halfword consisting of 2 bytes. To program the flash memory, write the Program command (H'4040) to any address of the internal flash memory and then the program data to the address to be programmed.

The protected flash memory blocks cannot be accessed for write by the Halfword Program command. Halfword programming is automatically performed by the internal control circuit, and whether the Halfword Program command has finished can be known by checking the Flash Status Register FBUSY bit. (See Section 6.4.2, "Flash Status Registers.") While the FBUSY bit = "0", the next programming cannot be performed.

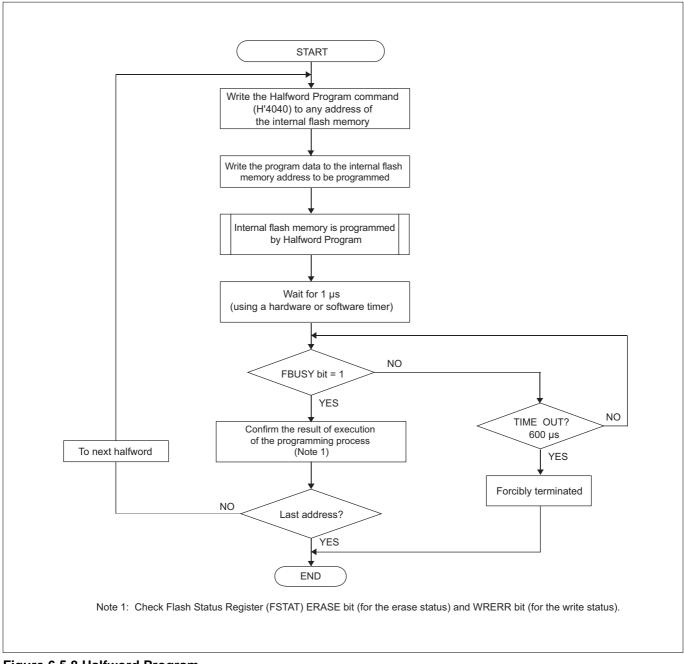


Figure 6.5.8 Halfword Program

(3) Lock Bit Program command

The internal flash memory can be protected against programming/erase operation one block at a time. The Lock Bit Program command is provided for protecting the flash memory blocks.

Write the Lock Bit Program command (H'7777) to any address of the internal flash memory. Next, write the Verify command (H'D0D0) to the last even address of the flash memory block to be protected, and this memory block is thereby protected against programming/erase operation. To remove protection, use the Flash Control Register 2 (FCNT2) FPROT bit to invalidate protection by a lock bit (see Section 6.4.3, "Flash Control Registers") and erase the flash memory block whose protection is to be removed. (The content of that memory block is also erased.)

Lock bit programming is automatically performed by the internal control circuit, and whether the Lock Bit Program command has finished can be known by checking the Flash Status Register (FSTAT) FBUSY bit. (See Section 6.4.2, "Flash Status Registers.") While the FBUSY bit = "0", the next programming cannot be performed.

The table below lists the target flash memory blocks and their addresses to be specified when writing the Verify command data.

Target Block	Specified Address
0	H'0000 1FFE
1	H'0000 2FFE
2	H'0000 3FFE
3	H'0000 5FFE
4	H'0000 7FFE
5	H'0000 FFFE
6	H'0001 FFFE
7	H'0002 FFFE
8	H'0003 FFFE
9	H'0004 FFFE
10	H'0005 FFFE
11	H'0006 FFFE
12	H'0007 FFFE

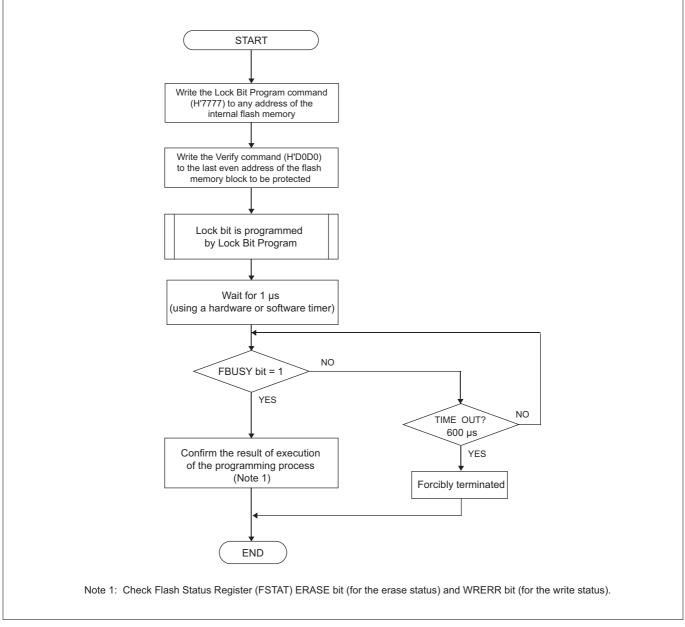
Table 6.5.3 M32176F4 Target Blocks and Specified Addresses

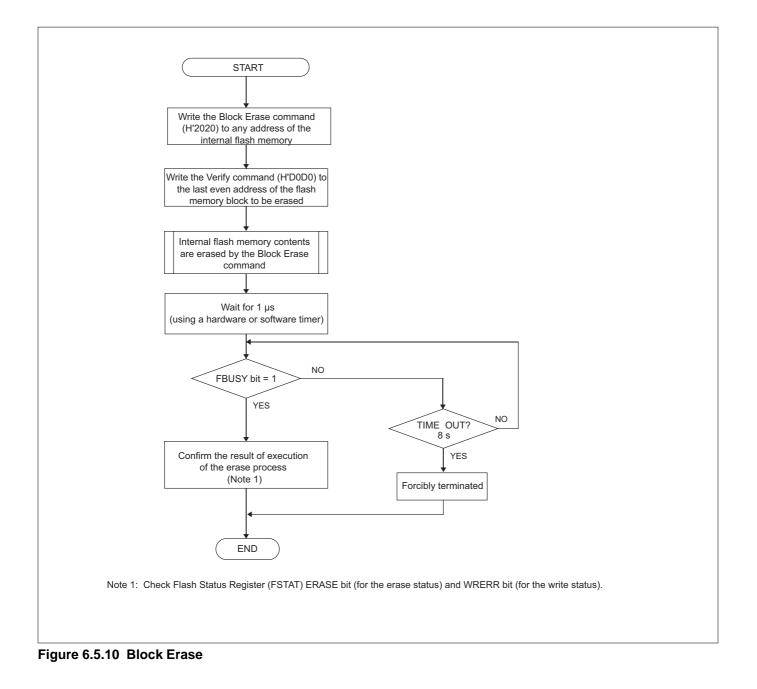
Table 6.5.4 M32176F3 Target Blocks and Specified Addresses

Target Block Specified Address 0 H'0000 1FFE 1 H'0000 2FFE 2 H'0000 3FFE 3 H'0000 5FFE 4 H'0000 7FFE 5 H'0000 FFFE 6 H'0001 FFFE 7 H'0002 FFFE 8 H'0003 FFFE 9 H'0004 FFFE 10 H'0005 FFFE	V	•
1 H'0000 2FFE 2 H'0000 3FFE 3 H'0000 5FFE 4 H'0000 7FFE 5 H'0000 FFFE 6 H'0001 FFFE 7 H'0002 FFFE 8 H'0003 FFFE 9 H'0004 FFFE	Target Block	Specified Address
2 H'0000 3FFE 3 H'0000 5FFE 4 H'0000 7FFE 5 H'0000 FFFE 6 H'0001 FFFE 7 H'0002 FFFE 8 H'0003 FFFE 9 H'0004 FFFE	0	H'0000 1FFE
3 H'0000 5FFE 4 H'0000 7FFE 5 H'0000 FFFE 6 H'0001 FFFE 7 H'0002 FFFE 8 H'0003 FFFE 9 H'0004 FFFE	1	H'0000 2FFE
4 H'0000 7FFE 5 H'0000 FFFE 6 H'0001 FFFE 7 H'0002 FFFE 8 H'0003 FFFE 9 H'0004 FFFE	2	H'0000 3FFE
5 H'0000 FFFE 6 H'0001 FFFE 7 H'0002 FFFE 8 H'0003 FFFE 9 H'0004 FFFE	3	H'0000 5FFE
6 H'0001 FFFE 7 H'0002 FFFE 8 H'0003 FFFE 9 H'0004 FFFE	4	H'0000 7FFE
7 H'0002 FFFE 8 H'0003 FFFE 9 H'0004 FFFE	5	H'0000 FFFE
8 H'0003 FFFE 9 H'0004 FFFE	6	H'0001 FFFE
9 H'0004 FFFE	7	H'0002 FFFE
	8	H'0003 FFFE
10 H'0005 FFFE	9	H'0004 FFFE
	10	H'0005 FFFE

Table 6.5.5 M32176F2 Target Blocks and Specified Addresses

Target Block	Specified Address
0	H'0000 1FFE
1	H'0000 2FFE
2	H'0000 3FFE
3	H'0000 5FFE
4	H'0000 7FFE
5	H'0000 FFFE
6	H'0001 FFFE
7	H'0002 FFFE
8	H'0003 FFFE




Figure 6.5.9 Lock Bit Program

(4) Block Erase command

The Block Erase command erases the content of the internal flash memory one block at a time. To perform this operation, write the command data (H'2020) to any address of the internal flash memory. Next, write the Verify command (H'D0D0) to the last even address of the flash memory block to be erased (see Tables 6.5.3, 6.5.4 and 6.5.5, "M32176 Target Blocks and Specified Addresses").

The protected flash memory blocks cannot be erased by the Block Erase command.

Block erase operation is automatically performed by the internal control circuit, and whether the Block Erase command has finished can be known by checking the Flash Status Register (FSTAT) FBUSY bit. (See Section 6.4.2, "Flash Status Registers.") While the FBUSY bit = "0", the next block erase operation cannot be performed.

(7) Clear Status Register command

h

The Clear Status Register command clears the Flash Status Register (FSTAT) ERASE (erase status), and WRERR (write status) bits to "0". Write the command data (H'5050) to any address of the internal flash memory, and Flash Status Register is thereby initialized. Also, issue the Clear Status Register command, and Flash Status Register 3 (FCNT3) is initialized.

If an error occurs when programming or erasing the flash memory and the Flash Status Register (FSTAT) ERASE (erase status) or WRERR (write status) bit is set to "1", the next programming or erase operation cannot be executed unless each status bit is cleared to "0".

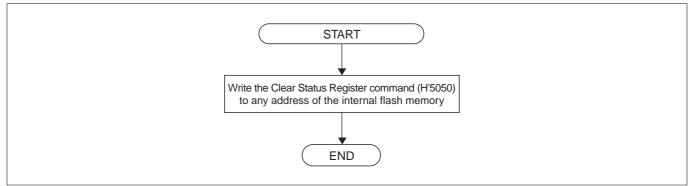


Figure 6.5.11 Clear Status Register

(8) Read Lock Bit Status command

The Read Lock Bit Status command is provided for checking whether a flash memory block is protected against programming/erase operation. The method for reading lock bit can be chosen from the following depends on the setting for Flash Control Register 2 (FCNT2) FLOCKS (Lock bit read mode select) bit.

1) Memory area read mode (FLOCKS bit = 0)

Write the command data (H'7171) to any address of the internal flash memory. Next, read the last even address of the flash memory block to be checked (see Tables 6.5.3, 6.5.4 and 6.5.5, "M32176 Target Blocks and Specified Addresses"), and the read data shows whether the target block is protected. If the FLBST (lock bit) in the read data is "0", it means that the target memory block is protected. If the FLBST (lock bit) is "1", it means that the target memory block is not protected.

Lock Bit Status Register (FLBST)

b0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
? ?	?	?	?	?	?	?	?	FLBST ?	?	?	?	?	?	, ?

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
0–8	No function assigned.		?	0
9	FLBST	0: Protected	R	-
	Lock bit	1: Not protected		
10–15	No function assigned.		?	0

The Lock Bit Status Register is a read-only register, which is included for each memory block independently of one another. To read this register, Flash Control Register 2 (FCNT2) FLOCKS bit must be set to "0".

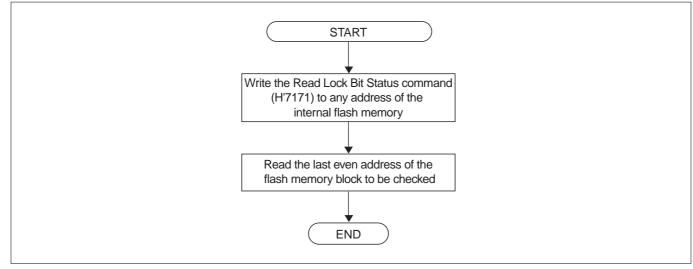
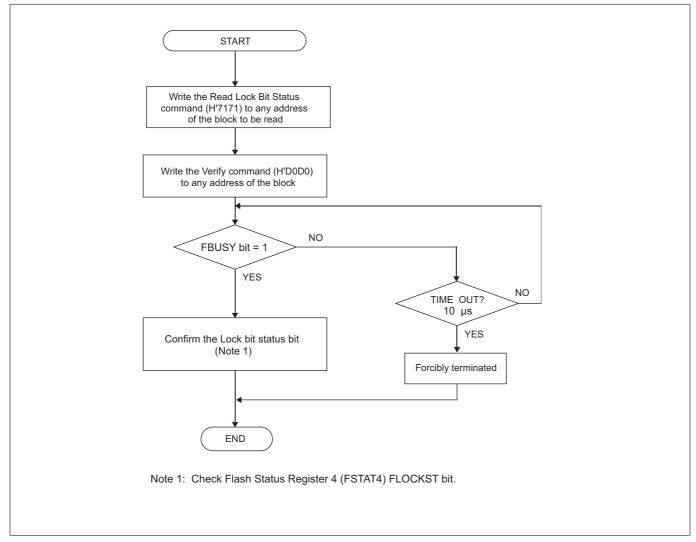



Figure 6.5.12 Read Lock Bit Status (Memory Area Read Mode)

2) Register read mode (FLOCKS bit = 1)

Write the command data (H'7171) to any address of the target block. Next, write the verify command data (H'D0D0), and the Flash Control Register 4 (FCNT4) FLOCKST (Lock Bit Status) bit shows whether the target block is protected.

Figure 6.5.13 Read Lock Bit Status (Register Read Mode)

The following describes how to write to the lock bit.

- a) To clear the lock bit to "0" (flash protected)
 Issue the Lock Bit Program command (H'7777) to the memory block to be protected.
- b) To set the lock bit to "1" (flash unprotected)

After setting the FPROT bit in Flash Control Register 2 to 1 (protection by lock bit disabled), use the Block Erase command (H'2020) to erase the memory block to be unprotected. The lock bit cannot be set to "1" directly by writing to it.

c) Lock bit status when reset

Because the lock bit is a nonvolatile bit, it remains unaffected when the microcomputer is reset or powered off.

6.5.4 Flash Programming Time (Reference)

The following shows the time needed to program internal flash memory for reference.

(1) M32176F4

- [1] Time required for transfer by SIO (for a transfer data size of 512 KB) $1/57,600 \text{ bps} \times 1 \text{ (frame)} \times 11 \text{ (number of bits transferred)} \times 512 \text{ KB} = \text{approx. } 100.1 \text{ [s]}$
- [2] Time required for programming the flash memory 512 KB / 2-byte \times 25 µs = approx. 6.6 [s]
- [3] Time required for erasing the entire area $0.3 \text{ s} \times 5 \text{ (blocks)} + 0.5 \text{ s} \times 1 \text{ (block)} + 0.8 \text{ s} \times 7 \text{ (blocks)} = 7.6 \text{ [s]}$
- [4] Total flash programming time (entire 512 KB area)

When communicating at 57,600 bps via UART, the flash programming time can be ignored because it is very short compared to the serial communication time. Therefore, the total flash programming time can be calculated using the equation below.

[1] + [3] = approx. 108 [s]

If the transfer time can be ignored by speeding up the serial communication or by other means, the fastest programming time possible can be calculated using the equation below.

[2] + [3] = approx. 15 [s]

(1) M32176F3

- 1) Time required for transfer by SIO (for a transfer data size of 384 KB) 1/57,600 bps × 1 (frame) × 11 (number of bits transferred) × 384 KB = approx. 75.1 [s]
- 2) Time required for programming the flash memory 384 KB / 2-byte \times 25 µs = approx. 4.9 [s]
- 3) Time required for erasing the entire area

 $0.3 \text{ s} \times 5 \text{ (blocks)} + 0.5 \text{ s} \times 1 \text{ (block)} + 0.8 \text{ s} \times 5 \text{ (blocks)} = 6 \text{ [s]}$

4) Total flash programming time (entire 384 KB area)

When communicating at 57,600 bps via UART, the flash programming time can be ignored because it is very short compared to the serial communication time. Therefore, the total flash programming time can be calculated using the equation below.

[1] + [3] = approx. 82 [s]

If the transfer time can be ignored by speeding up the serial communication or by other means, the fastest programming time possible can be calculated using the equation below.

[2] + [3] = approx. 11 [s]

(3) M32176F2

1) Time required for transfer by SIO (for a transfer data size of 256 KB)

1/57,600 bps \times 1 (frame) \times 11 (number of bits transferred) \times 256 KB = approx. 50.1 [s]

2) Time required for programming the flash memory

256 KB / 2-byte \times 25 µs = approx. 3.3 [s]

3) Time required for erasing the entire area

 $0.3 \text{ s} \times 5 \text{ (blocks)} + 0.5 \text{ s} \times 1 \text{ (block)} + 0.8 \text{ s} \times 3 \text{ (blocks)} = 4.4 \text{ [s]}$

4) Total flash programming time (entire 256 KB area)

When communicating at 57,600 bps via UART, the flash programming time can be ignored because it is very short compared to the serial communication time. Therefore, the total flash programming time can be calculated using the equation below.

[1] + [3] = approx. 55 [s]

If the transfer time can be ignored by speeding up the serial communication or by other means, the fastest programming time possible can be calculated using the equation below.

[2] + [3] = approx. 8 [s]

6.6 Virtual Flash Emulation Function

The microcomputer has the function to map 8-Kbyte memory blocks of the internal RAM (max. 2 blocks) into areas (L banks) of the internal flash memory that are divided in 8-Kbyte units and to map 4-Kbyte memory blocks of the internal RAM (max. 2 blocks) into areas (S banks) of the internal flash memory that are divided in 4-Kbyte units. This functions is referred to as the Virtual Flash Emulation Function.

This function allows the data located in 4-Kbyte or 8-Kbyte blocks of the internal RAM to be changed with the contents of internal flash memory at the addresses specified by the Virtual Flash Bank Register. That way, the relevant RAM data can read out by reading the content of internal flash memory.

For applications that require modifying the contents of internal flash memory (e.g., data table) during operation, this function enables dynamic data modification by modifying the relevant RAM data.

The RAM blocks allocated for virtual flash emulation can be accessed for read and write the same way as in usual RAM. This function, when used in combination with the microcomputer's internal Real-Time Debugger (RTD), allows the data table, etc. created in the internal flash memory to be referenced or rewritten from the outside, thereby facilitating data table tuning from an external device.

Note: • Before programming/erasing the internal flash memory, always be sure to exit this virtual flash emulation mode.

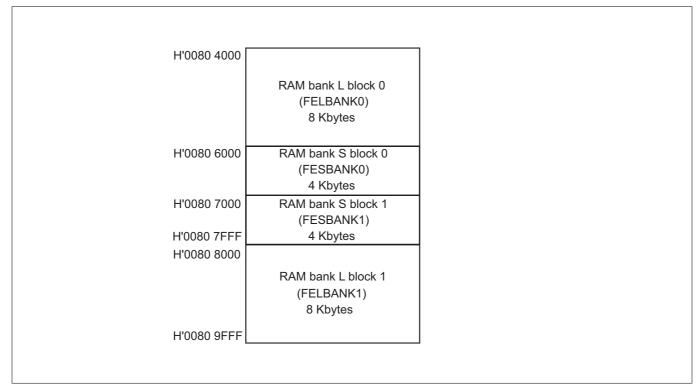


Figure 6.6.1 Internal RAM Bank Configuration of the M32176

6.6.1 Virtual Flash Emulation Area

The following shows the internal flash memory areas in which the Virtual Flash Emulation Function is applicable.

Using the Virtual Flash L Bank Register (FELBANK0, FELBANK1), select one among all L banks of internal flash memory that are divided in 8-Kbyte units (by setting the seven start address bits A12–A18 of the desired L bank in the Virtual Flash L Bank Register LBANKAD bits). Then set the Virtual Flash L Bank Register's flash emulation L enable bit (MODENL) to "1", and the selected L bank area will be replaced with 8-Kbyte blocks of the internal RAM, up to two blocks in all.

Using the Virtual Flash S Bank Register (FESBANK0, FESBANK1), select one among all S banks of internal flash memory that are divided in 4-Kbyte units (by setting the eight start address bits A12–A19 of the desired S bank in the Virtual Flash S Bank Register SBANKAD bits). Then set the Virtual Flash S Bank Register's flash emulation S enable bit (MODENS) to "1", and the selected S bank area will be replaced with 4-Kbyte blocks of the internal RAM, up to two blocks in all.

Two 8-Kbyte units L banks and two 4-Kbyte units S banks, total of four banks (maximum), can be selected.

Notes: • If the same bank area is set in two or more Virtual Flash Bank Registers and each register's flash emulation enable bit is enabled, the bank is assigned the corresponding internal RAM area (8-Kbyte or 4-Kbyte) according to the priority given below.

FELBANK0 > FESBANK0 > FESBANK1 > FELBANK1

- During virtual flash emulation mode, RAM can be accessed for read and write from the internal RAM area and the virtual flash set area.
- Before reading any virtual flash area after setting the Flash Control Register 1 virtual flash emulation mode bit to "1", be sure that there must be an interval of at least three clocks (CPU clocks).
- Before reading any virtual flash area after setting the Virtual Flash Bank Register (L bank and S bank registers) virtual flash emulation enable bit and bank address bits, be sure that there must be an interval of at least three clocks (CPU clocks).

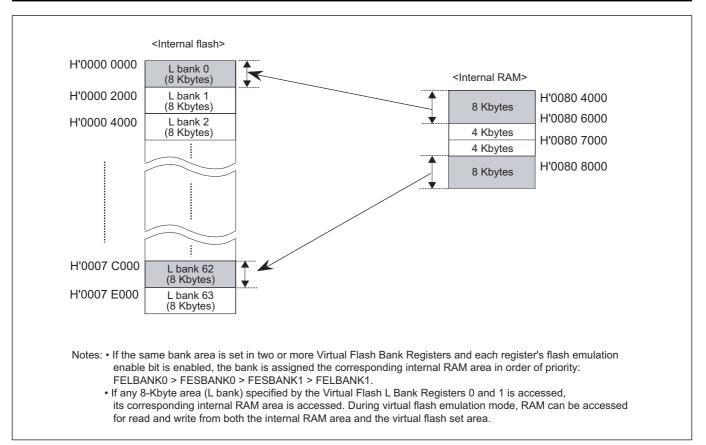


Figure 6.6.2 M32176F4 Virtual Flash Emulation Area divided in 8-Kbyte units

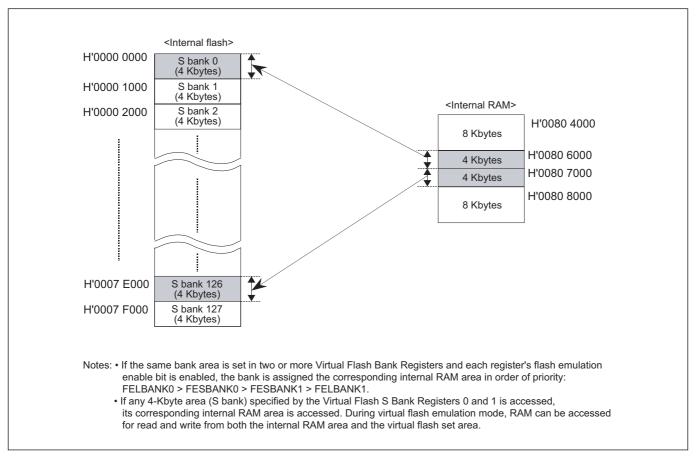


Figure 6.6.3 M32176F4 Virtual Flash Emulation Area divided in 4-Kbyte units

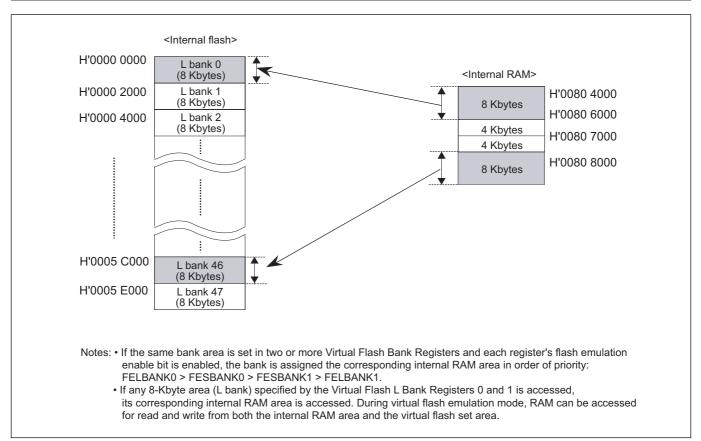
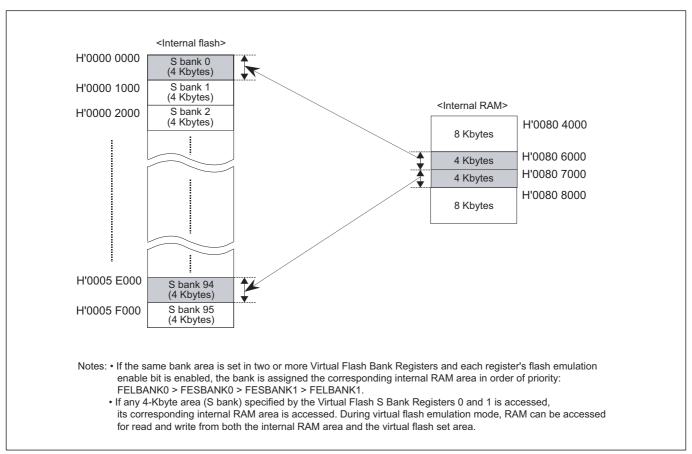



Figure 6.6.4 M32176F3 Virtual Flash Emulation Area divided in 8-Kbyte units

Figure 6.6.5 M32176F3 Virtual Flash Emulation Area divided in 4-Kbyte units

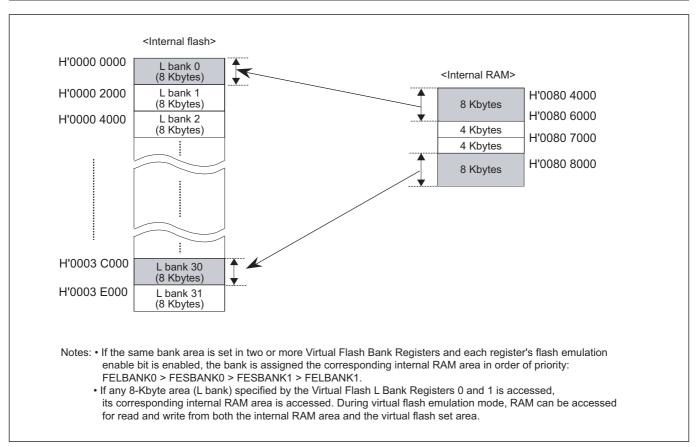
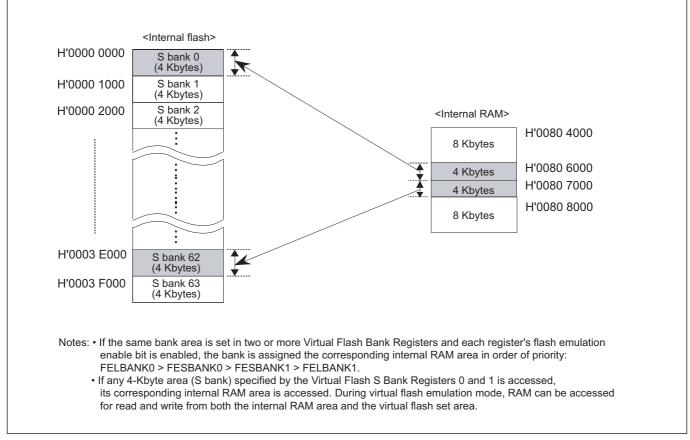



Figure 6.6.6 M32176F2 Virtual Flash Emulation Area divided in 8-Kbyte units

Figure 6.6.7 M32176F2 Virtual Flash Emulation Area divided in 4-Kbyte units

L bank	Start address of bank in flash memory	Values set in L bank address (LBANKAD) bit
L bank 0	H'000 <u>0 0</u> 000 (Note 1)	H'00
L bank 1	H'000 <u>0 2</u> 000 (Note 1)	H'02
L bank 2	H'000 <u>0 4</u> 000 (Note 1)	H'04
L bank 62	H'000 <u>7 C</u> 000 (Note 1)	H'7C
L bank 63	H'000 <u>7 E</u> 000 (Note 1)	H'7E

Note 1: Set the seven start address bits A12-A18 of each L bank of internal flash memory that is divided in 8-Kbyte units in the Virtual Flash L Bank Register's L bank address (LBANKAD) bits.

S bank	Start address of bank in flash memory	Values set in S bank address (SBANKAD) bit
S bank 0	H'000 <u>0</u> 0000 (Note 1)	H'00
S bank 1	H'000 <u>0 1</u> 000 (Note 1)	H'01
S bank 2	H'000 <u>0 2</u> 000 (Note 1)	H'02
č		
S bank 126	H'000 <u>7 E</u> 000 (Note 1)	H'7E
S bank 127	H'000 <u>7 F</u> 000 (Note 1)	H'7F

Note 1: Set the eight start address bits A12-A19 of each S bank of internal flash memory that is divided in 4-Kbyte units in the Virtual Flash S Bank Register's S bank address (SBANKAD) bits.

Figure 6.6.9 Values Set in the M32176F4's Virtual Flash Bank Register when divided in 4-Kbyte units

	1	
L bank	Start address of bank in flash memory	Values set in L bank address (LBANKAD) bit
L bank 0	H'000 <u>0</u> 000 (Note 1)	H'00
L bank 1	H'000 <u>0 2</u> 000 (Note 1)	H'02
L bank 2	H'000 <u>0 4</u> 000 (Note 1)	H'04
\sim		
L bank 46	H'000 <u>5 C</u> 000 (Note 1)	H'5C
L bank 47	H'000 <u>5 E</u> 000 (Note 1)	H'5E

Note 1: Set the seven start address bits A12-A18 of each L bank of internal flash memory that is divided in 8-Kbyte units in the Virtual Flash L Bank Register's L bank address (LBANKAD) bits.

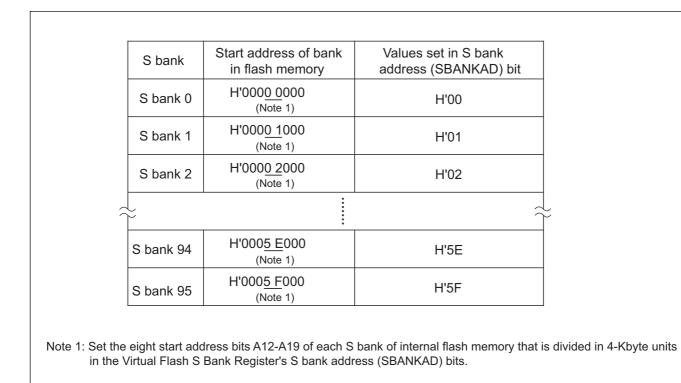


Figure 6.6.11 Values Set in the M32176F3's Virtual Flash Bank Register when divided in 4-Kbyte units

L bank	Start address of bank in flash memory	Values set in L bank address (LBANKAD) bit
L bank 0	H'000 <u>0</u> 0000 (Note 1)	H'00
L bank 1	H'000 <u>0 2</u> 000 (Note 1)	H'02
L bank 2	H'000 <u>0 4</u> 000 (Note 1)	H'04
)))		
L bank 30	H'000 <u>3 C</u> 000 (Note 1)	H'3C
L bank 31	H'000 <u>3 E</u> 000 (Note 1)	H'3E

Note 1: Set the seven start address bits A12-A18 of each L bank of internal flash memory that is divided in 8-Kbyte units in the Virtual Flash L Bank Register's L bank address (LBANKAD) bits.

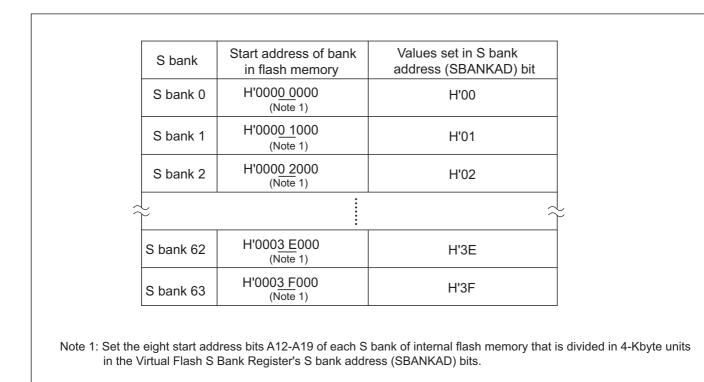


Figure 6.6.13 Values Set in the M32176F2's Virtual Flash Bank Register when divided in 4-Kbyte units

6.6.2 Entering Virtual Flash Emulation Mode

To enter virtual flash emulation mode, set the Flash Control Register 1 (FCNT1) FEMMOD bit by writing "1". After entering virtual flash emulation mode, set the Virtual Flash Bank Register MODEN bit to "1" to enable the Virtual Flash Emulation Function.

Even during virtual flash emulation mode, the internal RAM area (H'0080 4000 through H'0080 9FFF) can be accessed the same way as in usual internal RAM.

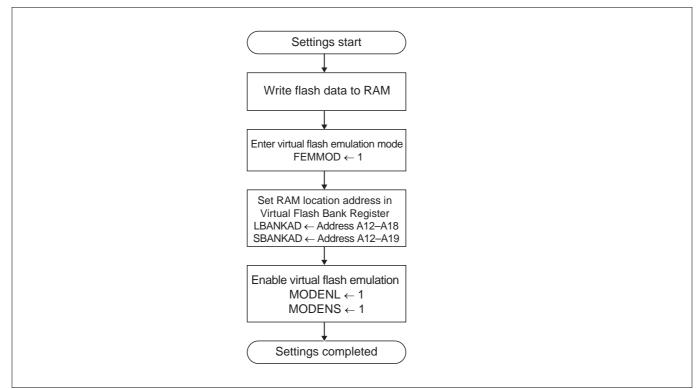


Figure 6.6.14 Virtual Flash Emulation Mode Sequence

6.6.3 Application Example of Virtual Flash Emulation Mode

By using two RAM areas that have been set in the same flash area by the Virtual Flash Emulation Function, the data in the flash memory can be replaced successively.

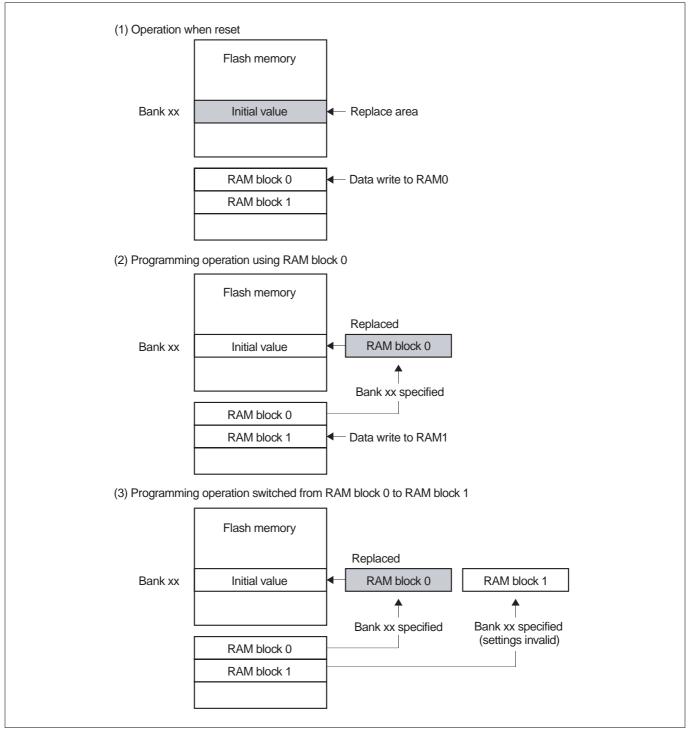


Figure 6.6.15 Application Example of Virtual Flash Emulation Mode (1/2)

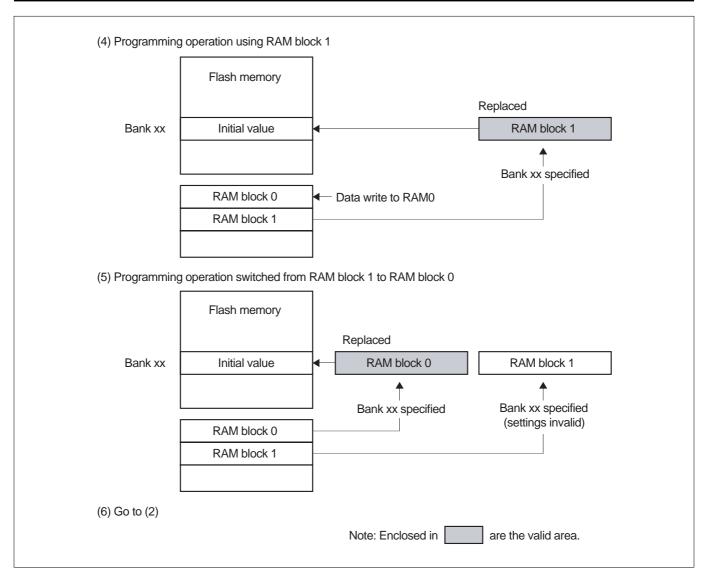
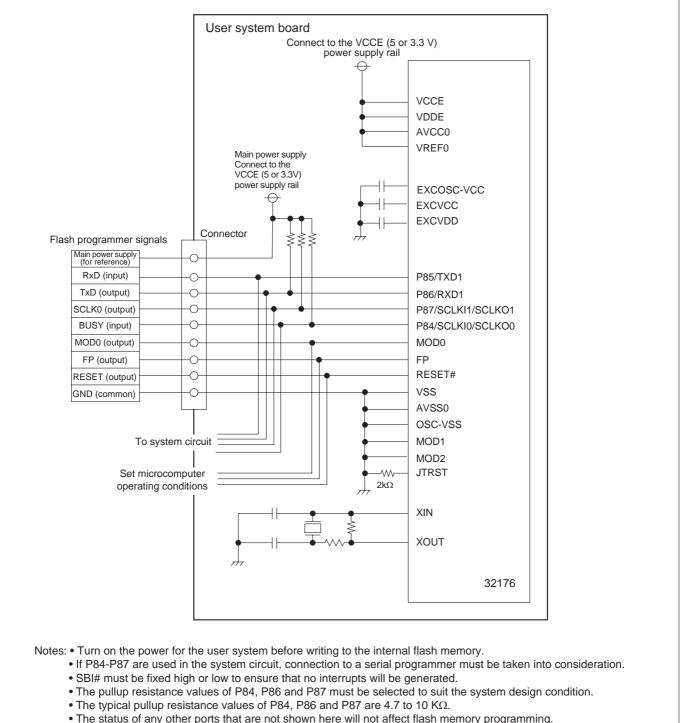


Figure 6.6.17 Application Example of Virtual Flash Emulation Mode (2/2)

6.7 Connecting to A Serial Programmer (CSIO Mode)


For the internal flash memory to be rewritten in boot mode + flash E/W enable mode by using a general-purpose serial programmer, several pins on the microcomputer must be processed to make them suitable for the serial programmer, as shown below.

Pin Name	Pin No.	Function	Remark
SCLKI1	71	Transfer clock input	Pull high
RXD1	70	Serial data input (received data)	Pull high
TXD1	69	Serial data output (transmit data)	
P84	68	Transmit/receive enable output	Pull high
FP	94	Flash memory protect	Pull high
MOD0	92	Operation mode 0	Connect to the main power supply
MOD1	93	Operation mode 1	Connect to ground
MOD2	123	Operation mode 2	Connect to ground
RESET#	91	Reset	After setting MOD0/MOD1, ground and back to main power supply
XIN	4	Clock input	
XOUT	5	Clock output	
SBI#	77	SBI interrupt input	Pull high or low
VREF0	42	Reference voltage input for A-D converter	Connect to the main power supply
AVCC0	43	Analog power supply	Connect to the main power supply
AVSS0	60	Analog ground	Connect to ground
VDD	108	RAM backup power supply	Connect to the main power supply
VCCE	20, 65, 95, 132	Main power supply	5 V +/- 10% or 3.3 V +/- 10%
EXCVCC	61, 137	Connects external capacitance for the internal power supply	Need to be grounded to earth via capacitor
EXCVDD	73	Connects external capacitance for the RAM power supply	Need to be grounded to earth via capacitor
EXCOSC- VCC	6	Connects external capacitance for the oscillator power supply	Need to be grounded to earth via capacitor
VSS	3, 21, 62, 72, 96, 138	Ground	0V
JTRST	111	JTAG reset input	Pull low

 Table 6.7.1 Processing Microcomputer Pins before Using a Serial Programmer

Notes • Pin processing is not required for those that are not listed above.

The diagram below shows an example of a user system configuration which has had a serial programmer connected. After the user system is powered on, the serial programmer writes to the internal flash memory in clocksynchronized serial mode. No communication problems associated with the oscillator frequency may occur. If the system uses any pins that are to be connected to a serial programmer, care must be taken to prevent adverse effects on the system when a serial programmer is connected. Note that the serial programmer uses the addresses H'0000 0084 through H'0000 0093 as an area in which to check the ID for flash memory protection. If the internal flash memory needs to be protected, set any ID in this area.

Make sure the mode setting pin/power supply voltages do not fluctuate to prevent unintended changes of modes while rewriting the internal flash memory.

Figure 6.7.1 Pin Connection Diagram

6.8 Internal Flash Memory Protect Function

The internal flash memory has the following four types of protect functions to prevent it from being inadvertently rewritten or illegally copied, programmed or erased.

(1) Flash memory protect ID

When using a tool to program/erase the internal flash memory such as a general-purpose programmer or emulator, the ID entered by a tool and the ID stored in the internal flash memory are collated. Unless the correct ID is entered, no programming/erase operations can be performed. (For some tools, tool execution is enabled after erasing the entire flash memory area, and the internal flash memory becomes accessible for write.)

(2) Protection by FP pin

The internal flash memory is protected in hardware against programming/erase operation by pulling the FP (Flash Protect) pin low. Furthermore, because the FP pin level can be known by reading the Flash Mode Register (FMOD)'s FPMOD (external FP pin status) bit in the flash write/erase program, the internal flash memory can also be protected in software. For systems that do not require protection by setting external pins, the FP pin may be fixed high to simplify the operation to program/erase the internal flash memory.

(3) Protection by FENTRY bit

Flash E/W enable mode cannot be entered into unless the Flash Control Register 1 (FCNT1)'s FENTRY (flash mode entry) bit is set to "1". To set the FENTRY bit to "1", write "0" and then "1" in succession while the FP pin is high.

(4) Protection by a lock bit

Any block of internal flash memory can be protected by setting the lock bit provided for it to "0". That memory block is disabled against programming/erase operation.

6.9 Precautions To Be Taken when Rewriting the Internal Flash Memory

The following describes precautions to be taken when programming/erasing the internal flash memory.

- When the internal flash memory is programmed or erased, a high voltage is generated internally. Because mode transitions during programming/erase operation may cause the chip to break down, make sure the mode setting pin/power supply voltages do not fluctuate to prevent unintended changes of modes.
- If the system uses any pins that are to be used by a general-purpose programming/erase tool, care must be taken to prevent adverse effects on the system when the tool is connected.
- If the internal flash memory needs to be protected while using a general-purpose programming/erase tool, set any ID in the flash memory protect ID verification area (H'0000 0084 to H'0000 0093).
- If the internal flash memory does not need to be protected while using a general-purpose programming/erase tool, fill the entire flash memory protect ID verification area (H'0000 0084 to H'0000 0093) with H'FF.
- If the Flash Status Register (FSTAT)'s each error status is to be cleared (initialized to H'80) by resetting the Flash Control Register 4 (FCNT4) FRESET bit, check to see that the Flash Status Register (FSTAT) FBUSY bit = "1" (ready) before clearing the error status.
- Before resetting the Flash Control Register 1 (FCNT1) FENTRY bit from "1" to "0", check to see that the Flash Status Register (FSTAT) FBUSY bit = "1" (ready).
- Do not clear the FENTRY bit if the Flash Control Register 1 (FCNT1) FENTRY bit = "1" and the Flash Status Register (FSTAT) FBUSY bit = "0" (being programmed or erased).
- When programming/erasing via JTAG, the flash memory can be programmed or erased regardless of the pin state because the FP pin is controlled internally within the chip.

CHAPTER 7

RESET

- 7.1 Outline of Reset
- 7.2 Reset Operation
- 7.3 Internal State Immediately after Exiting Reset
- 7.4 Things to Be Considered after Exiting Reset

7.1 Outline of Reset

The microcomputer is reset by applying a low-level signal to the RESET# input pin. The microcomputer is gotten out of a reset state by releasing the RESET# input back high, upon which the reset vector entry address is set in the Program Counter (PC) and the CPU starts executing from the reset vector entry.

7.2 Reset Operation

When a low-level signal in width of more than 200 ns (a duration needed for noise cancellation) is applied to the RESET# pin, the microcomputer enters a reset state. At this time, the internal circuits (including the CPU) are reset. (For details about the pin state when reset, see Table 1.4.1, "Pin Assignments")

When the RESET# input is returned high, the internal circuits get out of a reset state 512-513 BCLK periods after that.

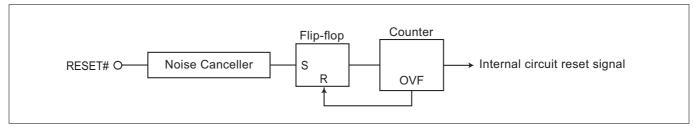


Figure 7.2.1 Reset Circuit

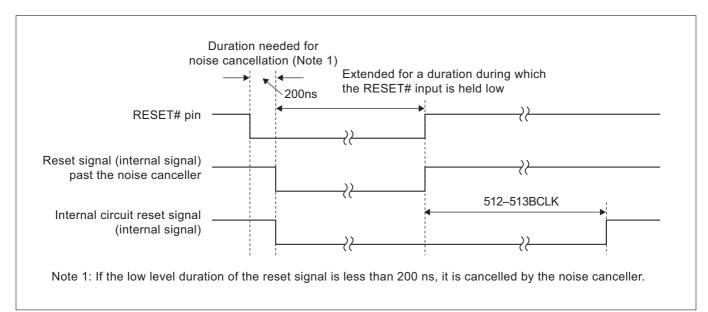


Figure 7.2.2 Reset Sequence

7.2.1 Reset at Power-on

When powering on the microcomputer, hold the RESET# signal input pin low until the rated power supply voltage is reached and the microcomputer's internal x4 clock generator becomes oscillating stably.

7.2.2 Reset during Operation

To reset the microcomputer during operation, hold the RESET# signal input pin low for more than 200 ns.

7.2.3 Reset Vector Relocation during Flash Programming

When the microcomputer is reset after entering boot mode, the reset vector entry address is moved to the boot program startup address. The boot program starts running after the reset state is deasserted. For details, see Section 6.5, "Programming the Internal Flash Memory."

7.3 Internal State Immediately after Exiting Reset

The table below lists the internal state of the microcomputer immediately after it has gotten out of a reset state. For details about the initial register state of each internal peripheral I/O, see each section in this manual in which the relevant internal peripheral I/O is described.

Register	r	State after Reset		
PSW	(CR0)	B'0000 0000 0000 0000 ??00 000? 0000 0000 (BSM, BIE, BC bits = undefined)		
CBR	(CR1)	H'0000 0000 (C bits = 0)		
SPI	(CR2)	Undefined		
SPU	(CR3)	Undefined		
BPC	(CR6)	Undefined		
PC		H'0000 0000 (Executed beginning with the address H'0000 0000) (Note 1)		
R0-R15	5	Undefined		
ACC (ad	ccumulator)	Undefined		
RAM		Undefined when reset at power-on. (However, if the RAM is gotten out of reset after		
returning from backup mode, it retains the content it had before being rese		returning from backup mode, it retains the content it had before being reset.)		

Table 7.3.1 Internal State Immediately after Exiting Reset

Note 1: When in boot mode, the CPU executes the boot program.

7.4 Things to Be Considered after Exiting Reset

• Input/output ports

After exiting the reset state, the microcomputer's input/output ports are disabled against input in order to prevent current from flowing through the port. To use any ports in input mode, set the Port Input Special Function Control Register (PICNT) PIEN0 bit to enable them for input. For details, see Section 8.3, "Input/Output Port Related Registers."

CHAPTER 8

INPUT/OUTPUT PORTS AND PIN FUNCTIONS

- 8.1 Outline of Input/Output Ports
- 8.2 Selecting Pin Functions
- 8.3 Input/Output Port Related Registers
- 8.4 Port Input Level Switching Function
- 8.5 Port Peripheral Circuits
- 8.6 Precautions on Input/Output Ports

8.1 Outline of Input/Output Ports

The 32176 has a total of 96 input/output ports from P0-P13, P15, P17 and P22 (except P5, which is reserved for future use). These input/output ports can be used as input or output ports by setting the respective direction registers.

Each input/output port is a dual-function or triple-function pin, sharing the pin with other internal peripheral I/O or external extension bus signal line. Pin functions are selected depending on the current operation mode or by setting the input/output port operation mode registers. (If any internal peripheral I/O has still another function, it is also necessary to set the register provided for that peripheral I/O.)

The microcomputer also has a port input function enable bit that can be used to prevent current from flowing into the input ports. This helps to simplify the software and hardware processing to be performed immediately after reset or during flash programming. Note that before any ports can be used in input mode, this port input function enable bit must be set accordingly.

The input/output ports are outlined below.

Item	Specification				
Number of ports	Total 96 ports				
	P0	:	P00–P07	(8 ports)	
	P1	:	P10–P17	(8 ports)	
	P2	:	P20–P27	(8 ports)	
	P3	:	P30–P37	(8 ports)	
	P4	:	P41–P47	(7 ports)	
	P6	:	P61–P63	(3 ports)	
	P7	:	P70–P77	(8 ports)	
	P8	:	P82–P87	(6 ports)	
	P9	:	P93–P97	(5 ports)	
	P10	:	P100–P107	(8 ports)	
	P11	:	P110–P117	(8 ports)	
	P12	:	P124–P127	(4 ports)	
	P13	:	P130–P137	(8 ports)	
	P15	:	P150, P153	(2 ports)	
	P17	:	P174, P175	(2 ports)	
	P22	:	P220, P221,	P225 (3 ports)	
Port function	The input/output ports can individually be set for input or output mode using the direction control register				
	provided for each input/output port. (However, P221 is a CAN input-only port.)				
Pin function	Shared with peripheral I/O or external extension signals to serve dual-functions (or shared with two or				
	more peripheral I/O functions to serve triple-functions)				
Pin function	P0–P4, P225: Depends on the CPU operation mode (that is set by MOD0 and MOD1 pins).				
selection P6–P22: As set by each input/output port's operation mode register.			's operation mode register.		
	(However, peripheral I/O pin functions are selected by peripheral I/O registers.)				

Note: • P5, P14, P16, P18-P21 are nonexist.

8.2 Selecting Pin Functions

Each input/output port serves dual functions sharing the pin with other internal peripheral I/O or external extension bus signal line (or triple functions sharing the pin with two or more peripheral I/O functions). Pin functions are selected depending on the current operation mode or by setting the input/output port operation mode registers.

P0-P4 and P225, when the CPU is set to operate in external extension mode or processor mode, all are switched to serve as signal pins for external access. The CPU operation mode is determined depending on how the MOD0 and MOD1 pins are set (see the table below).

MOD0	MOD1	Operation Mode	P0–P4 and P225 Pin Function	
VSS	VSS	Single-chip mode	Input/output port pin	
VSS	VCCE	External extension mode	External extension signal pin	
VCCE	VSS	Processor mode		
VCCE	VCCE	Reserved (use inhibited)	-	

Table 8.2.1 CPU Operation Modes and P0–P4 and P225 Pin Functions

Note: • VCCE and VSS are connected to main power supply and GND, respectively.

Each input/output port has their functions switched between input/output port pins and internal peripheral I/O pins by setting the respective port operation mode registers. If any internal peripheral I/O has two or more pin functions, use the register provided for that peripheral I/O to select the desired pin function.

Note that FP and MOD1 pin settings during internal flash memory programming do not affect the pin functions.

INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8.2 Selecting Pin Functions

		0	1	2	3	4	5	6	7	
	P0	DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7	
U operation	P1	DB8	DB9	DB10	DB11	DB12	DB13	DB14	DB15	
de settings (Note 1)	P2	A23	A24	A25	A26	A27	A28	A29	A30	
	P3	A15	A16	A17	A18	A19	A20	A21	A22	
	P4		BLW#/ BLE#	BHW#/ BHE#	RD#	CS0#	CS1#	A13	A14	
(Reserved)	P5									
	P6		(P61)	(P62)	(P63)	SBI#				
	P7	BCLK/	WAIT#	HREQ#	HACK#	(Note 3) RTDTXD/	RTDRXD/	RTDACK/	RTDCLK/	
	50	WR# MOD0	MOD1			TXD3(Note 2 SCLKI0/			CRX1(Note 2) SCLKI1/	
	P8	(Note 3)	(Note 3)	TXD0	RXD0	SCLK00	TXD1	RXD1	SCLK01	
	P9				TO16	TO17	TO18	TO19	TO20	
	P10	TO8	ТО9	TO10	TO11	TO12	TO13	TO14	TO15	
	P11	TO0	TO1	TO2	ТОЗ	TO4	TO5	TO6	Т07	
	P12					TCLK0	TCLK1	TCLK2	TCLK3	
	P13	TIN16	TIN17	TIN18	TIN19	TIN20	TIN21	TIN22	TIN23	
nput/output ort operation node setting	P14									
	P15	TIN0			TIN3					
	P16									
	P17					TXD2	RXD2			
	P18									
	P19									
	P20		·				·			
	P21	L	L	•	L	±		L	·	
	P22	CTX0	CRX0	·		 	A12	i		
				1	L	<u>.</u>	(Note 1)	l	Lİ	
in function ch								, -		
are triple-fu	nction p	ins. Their	desired o	utput funct	ion must	be selecte	d using the	e port peri	pheral funct	tion select reo be read from

Figure 8.2.1 Input/Output Ports and Pin Function Assignments

8

8.3 Input/Output Port Related Registers

The input/output port related registers included in the microcomputer consists of the port data register, port direction register and port operation mode register.

Note that P5 is reserved for future use. The tables below show an input/output port related register map.

Address	+0 address b7	+1 address b15	See pages
H'0080 0700	P0 Data Register (P0DATĂ)	P1 Data Register (P1DATA)	8-7
H'0080 0702	P2 Data Register (P2DATA)	P3 Data Register (P3DATA)	8-7
H'0080 0704	P4 Data Register (P4DATA)	(Use inhibited area)	8-7
H'0080 0706	P6 Data Register (P6DATA)	P7 Data Register (P7DATA)	8-7
H'0080 0708	P8 Data Register (P8DATA)	P9 Data Register (P9DATA)	8-7
H'0080 070A	P10 Data Register (P10DATA)	P11 Data Register (P11DATA)	8-7
H'0080 070C	P12 Data Register (P12DATA)	P13 Data Register (P13DATA)	8-7
H'0080 070E	(Use inhibited area)	P15 Data Register (P15DATA)	8-7
H'0080 0710	(Use inhibited area)	P17 Data Register (P17DATA)	8-7
H'0080 0712	(Use inhibited area)	(Use inhibited area)	
H'0080 0714	(Use inhibited area)	(Use inhibited area)	
H'0080 0716	P22 Data Register (P22DATA)	(Use inhibited area)	8-7
	(Use inhit	ited area)	
H'0080 0720	P0 Direction Register (P0DIR)	P1 Direction Register (P1DIR)	8-8
H'0080 0722	P2 Direction Register (P2DIR)	P3 Direction Register (P3DIR)	8-8
H'0080 0724	P4 Direction Register (P4DIR)	(Use inhibited area)	8-8
H'0080 0726	P6 Direction Register (P6DIR)	P7 Direction Register (P7DIR)	8-8
H'0080 0728	P8 Direction Register (P8DIR)	P9 Direction Register (P9DIR)	8-8
H'0080 072A	P10 Direction Register (P10DIR)	P11 Direction Register (P11DIR)	8-8
H'0080 072C	P12 Direction Register (P12DIR)	P13 Direction Register (P13DIR)	8-8
H'0080 072E	(Use inhibited area)	P15 Direction Register (P15DIR)	8-8
H'0080 0730	(Use inhibited area)	P17 Direction Register (P17DIR)	8-8
H'0080 0732	(Use inhibited area)	(Use inhibited area)	
H'0080 0734	(Use inhibited area)	(Use inhibited area)	
H'0080 0736	P22 Direction Register (P22DIR)	(Use inhibited area)	8-8

Input/Output Port Related Register Map (1/2)

Input/Output Port Related Register Map (2/2)

			1
Address	+0 address b7	+1 address b8 b15	See pages
H'0080 0744	(Use inhibited area)	Port Input Special Function Control Register (PICNT)	8-15
H'0080 0746	(Use inhibited area)	P7 Operation Mode Register (P7MOD)	8-9
H'0080 0748	P8 Operation Mode Register (P8MOD)	P9 Operation Mode Register (P9MOD)	8-9 8-10
H'0080 074A	P10 Operation Mode Register (P10MOD)	P11 Operation Mode Register (P11MOD)	8-10 8-11
H'0080 074C	P12 Operation Mode Register (P12MOD)	P13 Operation Mode Register (P13MOD)	8-11 8-12
H'0080 074E	(Use inhibited area)	P15 Operation Mode Register (P15MOD)	8-12
H'0080 0750	(Use inhibited area)	P17 Operation Mode Register (P17MOD)	8-13
H'0080 0752	(Use inhibited area)	(Use inhibited area)	
H'0080 0754	(Use inhibited area)	(Use inhibited area)	
H'0080 0756	P22 Operation Mode Register (P22MOD)	(Use inhibited area)	8-13
I	(Use inhit	pited area)	
H'0080 0760	Port Group 0,1 Input Level Setting Register (PG01LEV)	Port Group 3 Input Level Setting Register (PG3LEV)	8-18
H'0080 0762	Port Group 4,5 Input Level Setting Register (PG45LEV)	Port Group 6,7 Input Level Setting Register (PG67LEV)	8-18
H'0080 0764	Port Group 8 Input Level Setting Register (PG8LEV)	(Use inhibited area)	8-18
H'0080 0766	(Use inhibited area)	P7 Peripheral Function Select Register (P7SMOD)	8-14

8.3.1 Port Data Registers

P0 Data Register (P0DATA)
P1 Data Register (P1DATA)
P2 Data Register (P2DATA)
P3 Data Register (P3DATA)
P4 Data Register (P4DATA)
P6 Data Register (P6DATA)
P7 Data Register (P7DATA)
P8 Data Register (P8DATA)
P9 Data Register (P9DATA)
P10 Data Register (P10DATA)
P11 Data Register (P11DATA)
P12 Data Register (P12DATA)
P13 Data Register (P13DATA)
P15 Data Register (P15DATA)
P17 Data Register (P17DATA)
P22 Data Register (P22DATA)

<Address: H'0080 0700> <Address: H'0080 0701> <Address: H'0080 0702> <Address: H'0080 0703> <Address: H'0080 0704> <Address: H'0080 0706> <Address: H'0080 0707> <Address: H'0080 0708> <Address: H'0080 0709> <Address: H'0080 070A> <Address: H'0080 070B> <Address: H'0080 070C> <Address: H'0080 070D> <Address: H'0080 070F> <Address: H'0080 0711> <Address: H'0080 0716>

	b0	1	2	3	4	5	6	b7
	(b8	9	10	11	12	13	14	b15)
ſ	Pn0DT	Pn1DT	Pn2DT	Pn3DT	Pn4DT	Pn5DT	Pn6DT	Pn7DT
	?	?	?	?	?	?	?	?

n = 0–13, 15, 17, 22 (not including P5)

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
0(b8)	Pn0DT (Port Pn0 data bit)	<at read=""></at>	R	W
1(b9)	Pn1DT (Port Pn1 data bit)	Depends on how the Port Direction Register is set		
2(b10)	Pn2DT (Port Pn2 data bit)	If direction bit = "0" (input mode)		
3(b11)	Pn3DT (Port Pn3 data bit)	0: Port input pin = "low"		
4(b12)	Pn4DT (Port Pn4 data bit)	1: Port input pin = "high"		
5(b13)	Pn5DT (Port Pn5 data bit)	If direction bit = "1" (output mode) (Note 1)		
6(b14)	Pn6DT (Port Pn6 data bit)	0: Port output latch = "0" / Port pin level = "low"		
7(b15)	Pn7DT (Port Pn7 data bit)	1: Port output latch = "1" / Port pin level = "high"		
		<at write=""></at>		
		Write to the port output latch		

Note 1: To select the port data to read, use the Port Input Special Function Control Register's port input data select bit (PISEL).

Notes: • Following bits are not provided (read as "0", writing has no effect):

P40, P60, P65–P67, P90–P92, P120–P123, P151, P152, P154–P157, P170–P173, P176, P177, P222–P224, P226, P227 • The SBI# pin level can be read out by reading the P64DT bit. Writing to the P64DT bit has no effect.

• The MOD0 and MOD1 pin levels can be read out by reading the P80DT and P81DT bits, respectively. Writing to the P80DT and P81DT bits has no effect.

• P221 is an input-only port. Writing to the P221DT bit has no effect.

8.3.2 Port Direction Registers

P0 Direction Register (P0DIR)
P1 Direction Register (P1DIR)
P2 Direction Register (P2DIR)
P3 Direction Register (P3DIR)
P4 Direction Register (P4DIR)
P6 Direction Register (P6DIR)
P7 Direction Register (P7DIR)
P8 Direction Register (P8DIR)
P9 Direction Register (P9DIR)
P10 Direction Register (P10DIR)
P11 Direction Register (P11DIR)
P12 Direction Register (P12DIR)
P13 Direction Register (P13DIR)
P15 Direction Register (P15DIR)
P17 Direction Register (P17DIR)
P22 Direction Register (P22DIR)

<Address: H'0080 0720> <Address: H'0080 0721> <Address: H'0080 0722> <Address: H'0080 0723> <Address: H'0080 0724> <Address: H'0080 0726> <Address: H'0080 0727> <Address: H'0080 0728> <Address: H'0080 0729> <Address: H'0080 072A> <Address: H'0080 072B> <Address: H'0080 072C> <Address: H'0080 072D> <Address: H'0080 072F> <Address: H'0080 0731> <Address: H'0080 0736>

b0	1	2	3	4	5	6	b7
(b8	9	10	11	12	13	14	b15)
Pn0DIR	Pn1DIR	Pn2DIR	Pn3DIR	Pn4DIR	Pn5DIR	Pn6DIR	Pn7DIR
0	0	0	0	0	0	0	0

n = 0-13, 15, 17, 22 (not including P5)

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
0(b8)	Pn0DR (Port Pn0 direction bit)	0: Input mode	R	W
1(b9)	Pn1DR (Port Pn1 direction bit)	1: Output mode		
2(b10)	Pn2DR (Port Pn2 direction bit)			
3(b11)	Pn3DR (Port Pn3 direction bit)			
4(b12)	Pn4DR (Port Pn4 direction bit)			
5(b13)	Pn5DR (Port Pn5 direction bit)			
6(b14)	Pn6DR (Port Pn6 direction bit)			
7(b15)	Pn7DR (Port Pn7 direction bit)			

Notes: • Following bits are not provided (read as 0, writing has no effect): P40, P60, P64–P67, P80, P81, P90–P92, P120–P123, P151, P152, P154–P157, P170–P173, P176, P177, P221, P222--P224, P226, P227

• All ports are set for input mode upon exiting the reset state.

8.3.3 Port Operation Mode Registers

P7 Operation Mode Register (P7MOD)

<Address: H'0080 0747>

b8	9	10	11	12	13	14	b15
P70MOD	P71MOD	P72MOD	P73MOD	P74MOD	P75MOD	P76MOD	P77MOD
0	0	0	0	0	0	0	0

<Upon exiting reset: H'00>

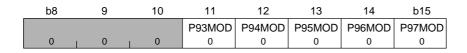
b	Bit Name	Function	R	W
	P70MOD	0: P70	R	W
	Port P70 operation mode bit	1: BCLK/WR#		
9	P71MOD	0: P71	R	W
	Port P71 operation mode bit	1: WAIT#		
10	P72MOD	0: P72	R	W
	Port P72 operation mode bit	1:HREQ#		
11	P73MOD	0: P73	R	W
	Port P73 operation mode bit	1: HACK#		
12	P74MOD	0: P74	R	W
	Port P74 operation mode bit	1: RTDTXD/TXD3 (Note 1)		
13	P75MOD	0: P75	R	W
	Port P75 operation mode bit	1: RTDRXD/RXD3 (Note 1)		
14	P76MOD	0: P76	R	W
	Port P76 operation mode bit	1: RTDACK/CTX1 (Note 1)		
15	P77MOD	0: P77	R	W
	Port P77 operation mode bit	1: RTDCLK/CRX1 (Note 1)		

Note 1: These functions are selected using the P7 Peripheral Function Select Register.

P8 Operation Mode Register (P8MOD)

<Address: H'0080 0748>

_	b0	1	2	3	4	5	6	b7
			P82MOD	P83MOD	P84MOD	P85MOD	P86MOD	P87MOD
	0	0	0	0	0	0	0	0


<Upon exiting reset: H'00>

			poir oxiang rooot. It	007
b	Bit Name	Function	R	W
0,1	No function assigned. Fix to "0".		0	0
2	P82MOD	0: P82	R	W
	Port P82 operation mode bit	1: TXD0		
3	P83MOD	0: P83	R	W
	Port P83 operation mode bit	1: RXD0		
4	P84MOD	0: P84	R	W
	Port P84 operation mode bit	1: SCLKI0/SCLKO0		
5	P85MOD	0: P85	R	W
	Port P85 operation mode bit	1: TXD1		
6	P86MOD	0: P86	R	W
	Port P86 operation mode bit	1: RXD1		
7	P87MOD	0: P87	R	W
	Port P87 operation mode bit	1: SCLKI1/SCLKO1		
-				

Note: • Ports P80 and P81 are nonexistent.

P9 Operation Mode Register (P9MOD)

<Address: H'0080 0749>

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
8–10	No function assigned. Fix to "0".		0	0
11	P93MOD	0: P93	R	W
	Port P93 operation mode bit	1: TO16		
12	P94MOD	0: P94	R	W
	Port P94 operation mode bit	1: TO17		
13	P95MOD	0: P95	R	W
	Port P95 operation mode bit	1: TO18		
14	P96MOD	0: P96	R	W
	Port P96 operation mode bit	1: TO19		
15	P97MOD	0: P97	R	W
	Port P97 operation mode bit	1: TO20		
		1.1020		

Note: • Ports P90-P92 are nonexistent.

P10 Operation Mode Register (P10MOD)

<Address: H'0080 074A>

b0	1	2	3	4	5	6	b7
P100MOD	P101MOD	P102MOD	P103MOD	P104MOD	P105MOD	P106MOD	P107MOD
0	0	0	0	0	0	0	0

<upon exiting="" h'00<="" reset:="" th=""><th>0></th></upon>	0>
---	----

			1 0	
b	Bit Name	Function	R	W
0	P100MOD	0: P100	R	W
	Port P100 operation mode bit	1: TO8		
1	P101MOD	0: P101	R	W
	Port P101 operation mode bit	1: TO9		
2	P102MOD	0: P102	R	W
	Port P102 operation mode bit	1: TO10		
3	P103MOD	0: P103	R	W
	Port P103 operation mode bit	1: TO11		
4	P104MOD	0: P104	R	W
	Port P104 operation mode bit	1: TO12		
5	P105MOD	0: P105	R	W
	Port P105 operation mode bit	1: TO13		
6	P106MOD	0: P106	R	W
	Port P106 operation mode bit	1: TO14		
7	P107MOD	0: P107	R	W
	Port P107 operation mode bit	1: TO15		

P11 Operation Mode Register (P11MOD)

<Address: H'0080 074B>

b8	9	10	11	12	13	14	b15
P110MOD	P111MOD	P112MOD	P113MOD	P114MOD	P115MOD	P116MOD	P117MOD
0	0	0	0	0	0	0	0

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
8	P110MOD	0: P110	R	W
	Port P110 operation mode bit	1: TO0		
9	P111MOD	0: P111	R	W
	Port P111 operation mode bit	1: TO1		
10	P112MOD	0: P112	R	W
	Port P112 operation mode bit	1: TO2		
11	P113MOD	0: P113	R	W
	Port P113 operation mode bit	1: TO3		
12	P114MOD	0: P114	R	W
	Port P114 operation mode bit	1: TO4		
13	P115MOD	0: P115	R	W
	Port P115 operation mode bit	1: TO5		
14	P116MOD	0: P116	R	W
	Port P116 operation mode bit	1: TO6		
15	P117MOD	0: P117	R	W
	Port P117 operation mode bit	1: TO7		

P12 Operation Mode Register (P12MOD)

<Address: H'0080 074C>

b0	1	2	3	4	5	6	b7
				P124MOD	P125MOD	P126MOD	P127MOD
0	0	0	0	0	0	0	0

			<upon exiting="" h<="" reset:="" th=""><th>'00></th></upon>	'00>
b	Bit Name	Function	R	W
0–3	No function assigned. Fix to "0".		0	0
4	P124MOD	0: P124	R	W
	Port P124 operation mode bit	1: TCLK0		
5	P125MOD	0: P125	R	W
	Port P125 operation mode bit	1: TCLK1		
6	P126MOD	0: P126	R	W
	Port P126 operation mode bit	1: TCLK2		
7	P127MOD	0: P127	R	W
	Port P127 operation mode bit	1: TCLK3		

Note: • Ports P120-P123 are nonexistent.

P13 Operation Mode Register (P13MOD)

<Address: H'0080 074D>

b8	9	10	11	12	13	14	b15
P130MOD	P131MOD	P132MOD	P133MOD	P134MOD	P135MOD	P136MOD	P137MOD
0	0	0	0	0	0	0	0

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
8	P130MOD	0: P130	R	W
	Port P130 operation mode bit	1: TIN16		
9	P131MOD	0: P131	R	W
	Port P131 operation mode bit	1: TIN17		
10	P132MOD	0: P132	R	W
	Port P132 operation mode bit	1: TIN18		
11	P133MOD	0: P133	R	W
	Port P133 operation mode bit	1: TIN19		
12	P134MOD	0: P134	R	W
	Port P134 operation mode bit	1: TIN20		
13	P135MOD	0: P135	R	W
	Port P135 operation mode bit	1: TIN21		
14	P136MOD	0: P136	R	W
	Port P136 operation mode bit	1: TIN22		
15	P137MOD	0: P137	R	W
	Port P137 operation mode bit	1: TIN23		

P15 Operation Mode Register (P15MOD)

<Address: H'0080 074F>

b8	9	10	11	12	13	14	b15
P150MOD			P153MOD				
0	0	0	0	0	0	0	0

		<upon exiting="" h'00="" reset:=""></upon>
Bit Name	Function	R W
P150MOD	0: P150	R W
Port P150 operation mode bit	1: TIN0	
No function assigned. Fix to "0".		0 0
P153MOD	0: P153	R W
Port P153 operation mode bit	1: TIN3	
No function assigned. Fix to "0".		0 0
	P150MOD Port P150 operation mode bit No function assigned. Fix to "0". P153MOD Port P153 operation mode bit	P150MOD0: P150Port P150 operation mode bit1: TIN0No function assigned. Fix to "0".0: P153P153MOD0: P153Port P153 operation mode bit1: TIN3

Note : • Ports P151, P152 and P154-P157 are nonexistent.

P17 Operation Mode Register (P17MOD)

b8	9	10	11	12	13	14	b15
				P174MOD	P175MOD		
0	0	0	0	0	0	0	0

<Upon exiting reset: H'00>

<Address: H'0080 0751>

b	Bit Name	Function	R	W
8–11	No function assigned. Fix to "0".		0	0
12	P174MOD	0: P174	R	W
	Port P174 operation mode bit	1: TXD2		
13	P175MOD	0: P175	R	W
	Port P175 operation mode bit	1: RXD2		
14, 15	No function assigned. Fix to "0".		0	0

Notes: • Ports P170–P173, P176 and P177 are nonexistent.

P22 Operation Mode Register (P22MOD)

<Address: H'0080 0756>

b0	1	2	3	4	5	6	b7
P220MOD							
0	0	0	0	1 0	0	0	0

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
0	P220MOD	0: P220	R	W
	Port P220 operation mode bit	1: CTX0		
1-7	No function assigned. Fix to "0".		0	0

Note 1: Port P221 is a CAN input-only pin.

Note 2: The pin function for P225 changes depending on the MOD0 and MOD1pin settings.

Note 3: Ports P222–P224, P226 and P227 are nonexistent.

8.3.4 Port Peripheral Function Select Register

P7 Peripheral Function Select Register (P7SMOD)

<Address: H'0080 0767>

b8	9	10	11	12	13	14	b15
				P74SMOD	P75SMOD	P76SMOD	P77SMOD
0	0	0	0	0	0	0	0

<Upon exiting reset: H'00>

b	Bit Name	Function		R	W
8–11	No function assigned. Fix to "0".			0	0
12	P74SMOD	0:RTDTXD		R	W
	Port P74 peripheral function select bit	1: TXD3			
13	P75SMOD	0:RTDRXD		R	W
	Port P75 peripheral function select bit	1: RXD3			
12 P74SMOD 0: RTDTXD Port P74 peripheral function select bit 1: TXD3 13 P75SMOD 0: RTDRXD	l	R	W		
	Port P76 peripheral function select bit	1: CTX1			
15	P77SMOD	0: RTDCLK		R	W
	Port P77 peripheral function select bit	1: CRX1			

The P7 Peripheral Function Select Register is used to select a peripheral function when the corresponding bit in the P7 Operation Mode Register = "1".

To use this register, first rewrite it when the P7 Operation Mode Register = "0", and then set the P7 Operation Mode Register to "1" to enable peripheral functions.

8.3.5 Port Input Special Function Control Register

Port Input Special Function Control Register (PICNT)

,

<Address: H'0080 0745>

b8	9	10	11	12	13	14	b15
			XSTAT			PISEL	PIEN0
0	0	0	0	0	0	0	0

			<upon exiting="" h<="" reset:="" th=""><th>ľ'00></th></upon>	ľ'00>
b	Bit Name	Function	R	W
8–10	No function assigned. Fix to "0".		0	0
11	XSTAT	0: XIN oscillating	R(Note 1)
	XIN oscillation status bit	1: XIN inactive		
12, 13	No function assigned. Fix to "0".		0	0
14	PISEL	0: Content of port output latch	R	W
	Port input data select bit	1: Port pin level		
15	PIENO	0: Disable input	R	W
	Port input enable bit	1: Enable input		

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

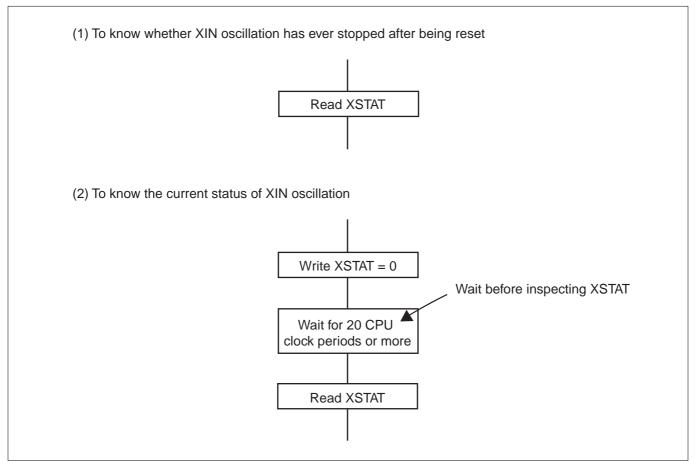
(1) XSTAT (XIN oscillation status) bit (Bit 11)

1) Conditions under which XSTAT is set to "1"

XSTAT is set to "1" upon detecting that XIN oscillation has stopped. When XIN remains at the same level for a predetermined time (3 BCLK periods up to 4 BCLK periods), XIN oscillation is assumed to have stopped. When operating normally, XIN changes state (high or low) once every BCLK period.

2) Conditions under which XSTAT is cleared to "0"

XSTAT is cleared to "0" by a system reset or by writing "0". If XSTAT is cleared at the same time it is set in (1) above, the former has priority. Writing "1" to XSTAT is ignored.


3) Method for using XSTAT to detect XIN oscillation stoppage

Because the M32R/ECU internally contains a PLL, the internal clock remains active even when XIN oscillation has stopped.

By reading XSTAT without clearing it never once after reset, it is possible to know whether XIN has ever stopped since the reset signal was deasserted. Similarly, by reading XSTAT after clearing it by writing "0", it is possible to know the current oscillating status of XIN. (However, there must be an interval of at least 10 BCLK periods (20 CPU clock periods) between read and write.)

INPUT/OUTPUT PORTS AND PIN FUNCTIONS

8.3 Input/Output Port Related Registers

Figure 8.3.1 Procedure for Setting XSTAT

(2) PISEL (Port input data select) bit (Bit 14)

When the Port Direction Register is set for output, this bit selects the target data to be read from the Port Data Register. At this time, this bit is unaffected by the Port Operation Mode Register.

Direction Register	PISEL Settings	Target Data to Be Read	
0 (input)	0/1	Port pin level	
1 (output)	0	Port output latch	
	1	Port pin level	

(3) PIEN0 (Port input enable) bit (Bit 15)

This bit is used to prevent current from flowing into the port input pins.

Because the input/output ports are disabled against input after reset, if any ports need to be used in input mode they must be enabled for input by setting this bit to "1".

When disabled against input, the input/output ports are in a state equivalent to a situation where the pin has a low-level input applied. Consequently, if a peripheral input function is selected for any port while disabled against input by using the Port Operation Mode Register, the port may operate unexpectedly due to the low-level input on it.

The following shows the procedure for selecting a peripheral input function.

- (1) Enable the port for input when its pin level is valid (high or low)
- (2) Select a function using the port operation mode bit

During boot mode, the pins shared with serial I/O functions are enabled for input and can therefore be protected against current flowing in from the pins other than serial I/O functions during flash programming by clearing PIEN0.

The table below lists the pins that can be controlled by the PIEN0 bit in each operation mode.

Mode Name	Controllable Pins	Uncontrolled Pins
	P00–P07, P10–P17, P20–P27	P221, FP, SBI#, MOD0, MOD1, MOD2, RESET#
	P30–P37, P41–P47, P61–P63	
Single-chip	P70–P77, P82–P87, P93–P97	
	P100–P107, P110–P117, P124–P127	
	P130–P137, 150, P153, P174, P175	
	P220, P225	
	P61–P63, P70–P77, P82–P87	P00–P07, P10–P17
External extension	P93–P97, P100–P107, P110–P117	P20–P27, P30–P37
Microprocessor	P124–P127, P130–P137	P41–P47, P221, P225
	P150, P153, P174, P175, P220	FP, SBI#, MOD0, MOD1, MOD2, RESET#
	P00–P07, P10–P17, P20–P27	P82–P87, P174, P175
Boot	P30–P37, P41–P47, P61–P63	P221, FP, SBI#, MOD0, MOD1, MOD2, RESET#
(single-chip)	P67, P70–P77, P93–P97	
	P100–P107, P110–P117, P124–P127	
	P130–P137, P150, P153, P220, P225	

Table 8.3.2 Pins Controllable by PIEN0 Bit

8.4 Port Input Level Switching Function

The port input level switching function allows the port threshold to be switched to one of three voltage levels (with or without Schmitt as selected) in units of the following port group. This can be set to the following registers in units of group.

Group 0: P00-P07, P10-P17, P20-P27, P30-P37, P41-P47, P70-P73, P225 Group 1: P82–P87, P174–P177 Group 3: P93-P97, P110-P117 Group 4: P124–P127 Group 5: P61–P63, SBI# Group 6: P74-P77, P100-P107 Group 7: P220, P221 Group 8: P130-P137, P150-P153

Port Group 0,1 Input Level Setting Register (PG01LEV)

	b0	1	2	3	4	5	6	b7
	WF0SEL	PT0SEL	VT0SEL0	VT0SEL1	WF1SEL	PT1SEL	VT1SEL0	VT1SEL1
L	0	0	0	1	0	0	0	1

Port Group 3 Input Level Setting Register (PG3LEV)

b8	9	10	11	12	13	14	b15
				WF3SEL	PT3SEL	VT3SEL0	VT3SEL1
0	0	0	0	0	0	0	1

Port Group 4,5 Input Level Setting Register (PG45LEV)

b0	1	2	3	4	5	6	b7
WF4SEL	PT4SEL	VT4SEL0	VT4SEL1	WF5SEL	PT5SEL	VT5SEL0	VT5SEL1
0	0	0	1	0	0	0	1

Port Group 6,7 Input Level Setting Register (PG67LEV)

b8	9	10	11	12	13	14	b15
WF6SEL	PT6SEL	VT26EL0	VT26EL1	WF7SEL	PT7SEL	VT7SEL0	VT7SEL1
0	0	0	1	0	0	0	1

Port Group 8 Input Level Setting Register (PG8LEV)

b0	1	2	3	4	5	6	b7
WF8SEL	PT8SEL	VT8SEL0	VT8SEL1				
0	0	0	1	0	0	0	0

Note: • The PG8LEV register bits 4-7 have no functions assigned.

<Address: H'0080 0764>

<Address: H'0080 0761>

<Address: H'0080 0762>

<Address: H'0080 0763>

<Address: H'0080 0760>

INPUT/OUTPUT PORTS AND PIN FUNCTIONS

8.4 Port Input Level Switching Function

<Upon exiting reset: B'0001>

b	Bit Name	Function	R	W
0(4)	WFnSEL	0: Select standard input for each pin	R	W
8(12)	Group n dual-function input select bit	1: Select threshold switching function		
1(5)	PTnSEL	0: Select CMOS input	R	W
9(13)	Group n port input select bit	1: Select Schmitt input		
2–3	VTnSEL	<when (cmos="" input="" ptnsel="0" selected)=""></when>	R	W
(6–7)	Group n input threshold select bit	00: Select 0.35 VCCE		
10–11		01: Select 0.5 VCCE		
(14–15)		10: Select 0.7 VCCE		
		11: Settings inhibited		
		<when (schmitt="" input="" ptnsel="1" selected)=""></when>		
		00: VT+ = 0.5 VCCE		
		VT- = 0.35 VCCE		
		01: Settings inhibited		
		10: VT+ = 0.7 VCCE		
		VT- = 0.35 VCCE		
		11: VT+ = 0.7 VCCE		
		VT- = 0.5VCCE		

Figure 8.4.1 Port Level Switching Function

8.5 Port Peripheral Circuits

Figures 8.5.1 through 8.5.5 show the peripheral circuit diagrams of the input/output ports described in the preceding pages.

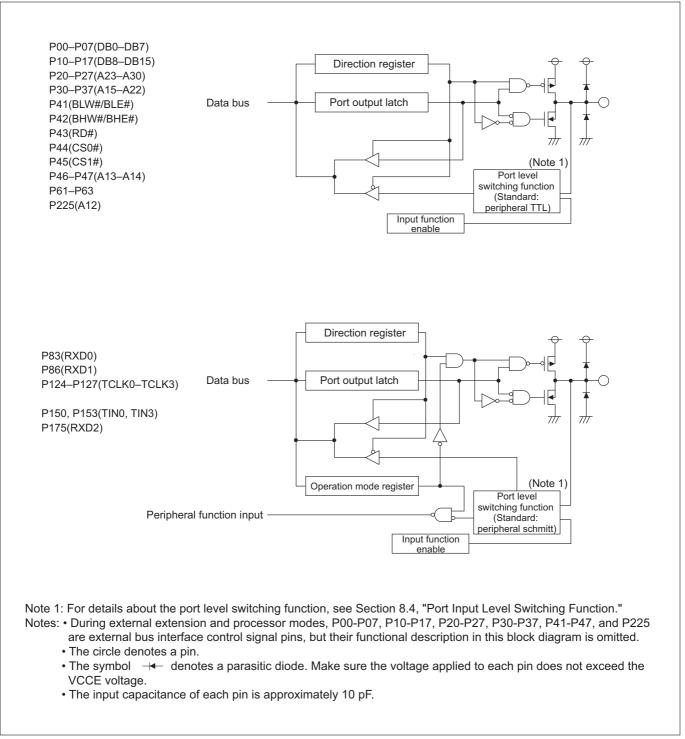


Figure 8.5.1 Port Peripheral Circuit Diagram (1)

INPUT/OUTPUT PORTS AND PIN FUNCTIONS

8.5 Port Peripheral Circuits

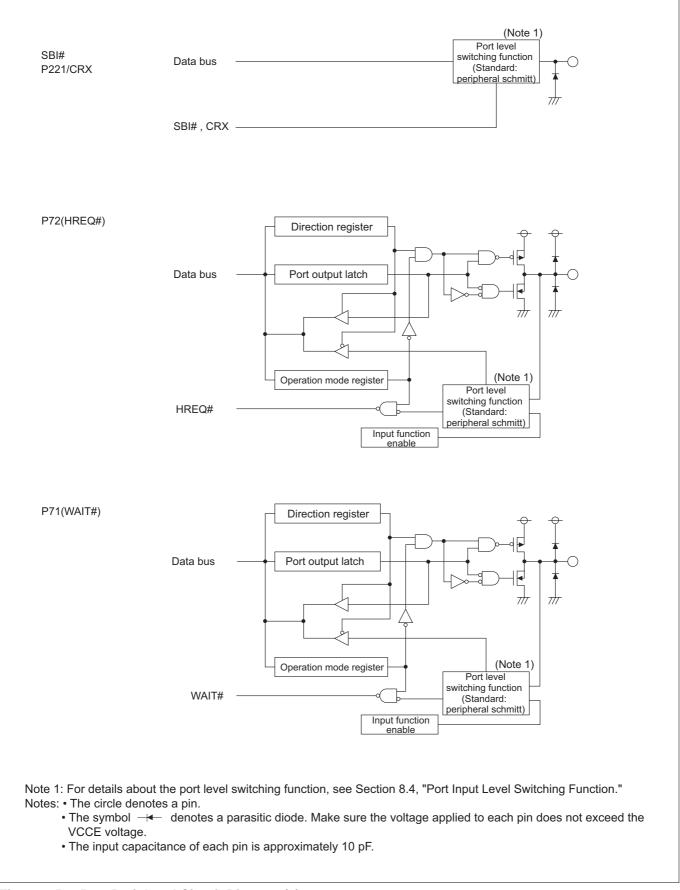


Figure 8.5.2 Port Peripheral Circuit Diagram (2)

8

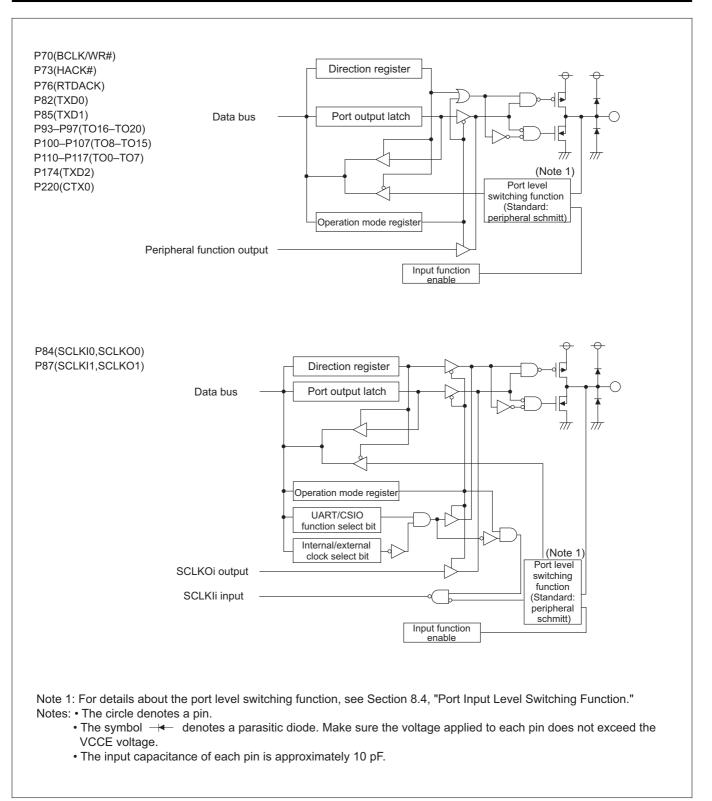


Figure 8.5.3 Port Peripheral Circuit Diagram (3)

INPUT/OUTPUT PORTS AND PIN FUNCTIONS

8.5 Port Peripheral Circuits

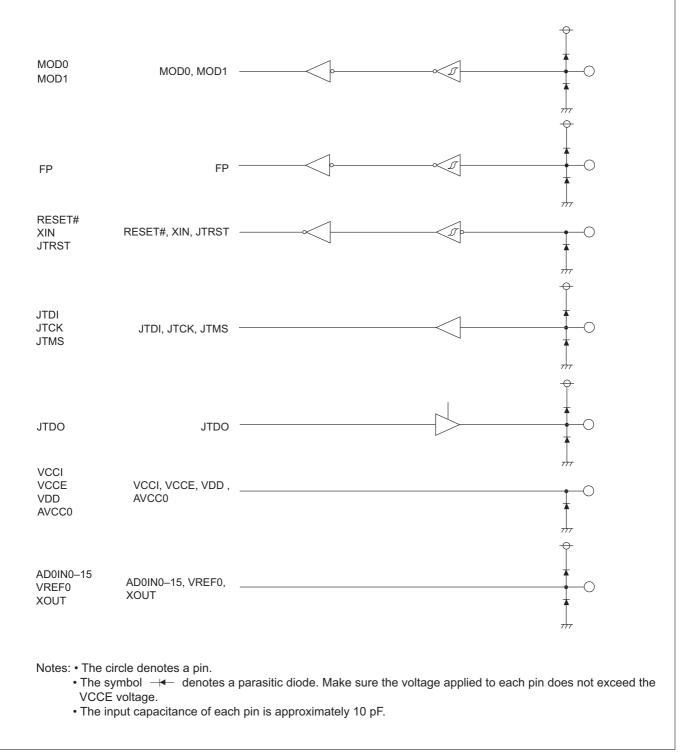


Figure 8.5.4 Port Peripheral Circuit Diagram (4)

INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8.5 Port Peripheral Circuits

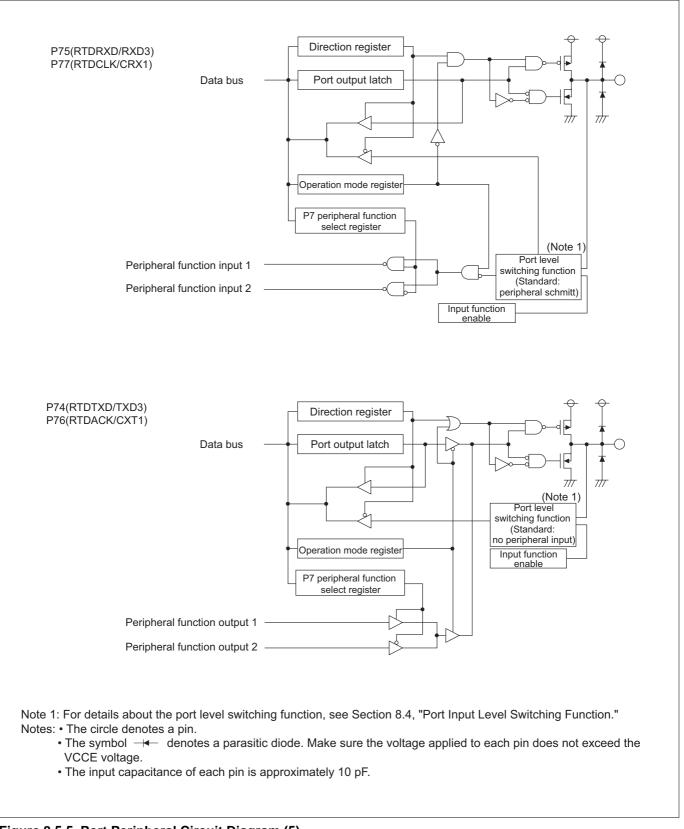


Figure 8.5.5 Port Peripheral Circuit Diagram (5)

8.6 Precautions on Input/Output Ports

When using input/output ports in output mode

Because the value of the Port Data Register is undefined when exiting the reset state, the Port Data Register must have its initial value set in it before the Port Direction Register can be set for output. Conversely, if the Port Direction Register is set for output before setting data in the Port Data Register, the Port Data Register outputs an undefined value until any data is written into it.

About the port input disable function

Because the input/output ports are disabled against input after reset, they must be enabled for input by setting the Port Input Enable (PIEN0) bit to "1" before their input functions can be used.

When disabled against input, the input/output ports are in a state equivalent to a situation where the pin has a low-level input applied. Consequently, if a peripheral input function is selected for any port while disabled against input by using the Port Operation Mode Register, the port may operate unexpectedly due to the low-level input on it.

This page is blank for reasons of layout.

CHAPTER 9

DMAC

- 9.1 Outline of the DMAC
- 9.2 DMAC Related Registers
- 9.3 Functional Description of the DMAC
- 9.4 Precautions about the DMAC

9.1 Outline of the DMAC

The microcomputer internally contains a 10-channel DMAC (Direct Memory Access Controller). It allows data to be transferred at high speed between internal peripheral I/Os, between internal RAM and internal peripheral I/O, or between internal RAMs, as initiated by a software trigger or requested from an internal peripheral I/O.

Item	Description
Number of channels	10 channels
Transfer request source	s • Software trigger
	• Request from internal peripheral I/Os: A-D converter, multijunction timer, serial I/O (reception
	completed, transmit buffer empty) or CAN
	DMA channels can be cascaded (Note 1)
Maximum number of	256 times
times transferred	
Transferable address	 64 Kbytes (address space from H'0080 0000 to H'0080 FFFF)
space	• Transfers between internal peripheral I/Os, between internal RAM and internal peripheral I/O, and
	between internal RAMs are supported.
Transfer data size	16 or 8 bits
Transfer method	Single transfer DMA (control of the internal bus is relinquished for each transfer performed), dual-
	address transfer
Transfer mode	Single transfer mode
Direction of transfer	One of three modes can be selected for the source and destination:
	Address fixed
	Address incremental
	Ring buffered
Channel priority	DMA0 > DMA1 > DMA2 > DMA3 > DMA4 > DMA5 > DMA6 > DMA7 > DMA8 > DMA9
	(Priority is fixed)
Maximum transfer rate	13.3 Mbytes per second (when internal peripheral clock BCLK = 20 MHz)
Interrupt request	Group interrupt request can be generated when each transfer count register underflows.
Transfer area	64 Kbytes from H'0080 0000 to H'0080 FFFF
Note 1: The DMA channe	els can be cascaded in the manner described below.
· Ctort DMA trong	ter an DMA4 upon completion of one DMA transfer on DMA0

Table 9.1.1 Outline of the DMAC

Start DMA transfer on DMA1 upon completion of one DMA transfer on DMA0

• Start DMA transfer on DMA2 upon completion of one DMA transfer on DMA1

Start DMA transfer on DMA0 upon completion of one DMA transfer on DMA2

• Start DMA transfer on DMA4 upon completion of one DMA transfer on DMA3

Start DMA transfer on DMA6 upon completion of one DMA transfer on DMA5

Start DMA transfer on DMA7 upon completion of one DMA transfer on DMA6

Start DMA transfer on DMA5 upon completion of one DMA transfer on DMA7

• Start DMA transfer on DMA9 upon completion of one DMA transfer on DMA8

• Start DMA transfer on DMA5 upon completion of all DMA transfers on DMA0 (upon underflow of the transfer count register)

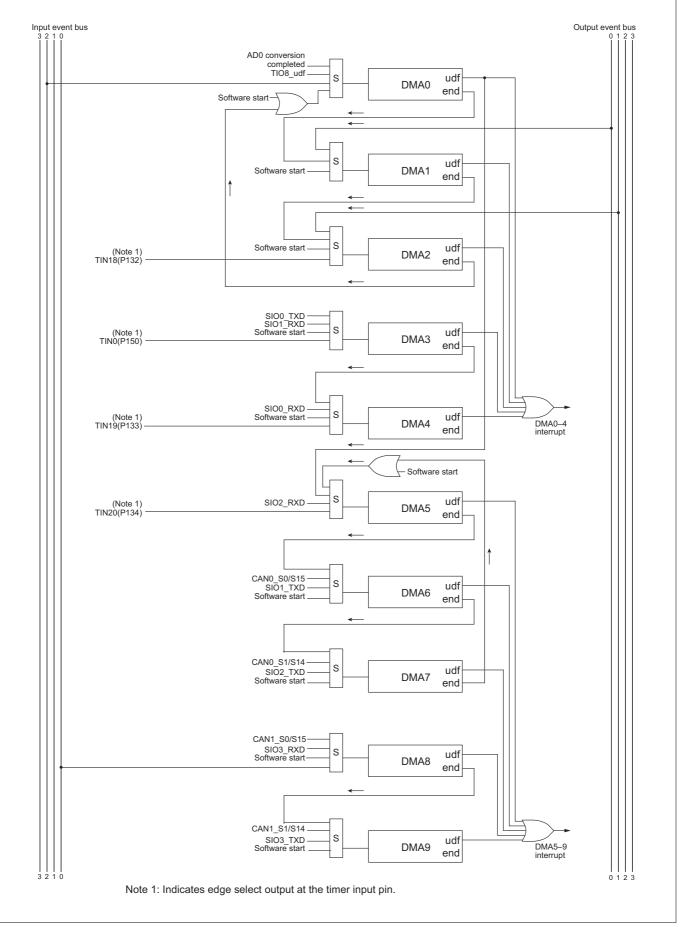


Figure 9.1.1 Block Diagram of the DMAC

9.2 DMAC Related Registers

The diagram below shows a memory map of the DMAC related registers.

DMAC Related Register Map (1/2)

Address	+0 address	+1 address b8 b15	See pages
H'0080 0400	DMA0–4 Interrupt Request Status Register (DM04ITST)	DMA0–4 Interrupt Request Mask Register (DM04ITMK)	9-18 9-19
	(Use inhib	ited area)	
H'0080 0408	DMA5–9 Interrupt Request Status Register (DM59ITST)	DMA5–9 Interrupt Request Mask Register (DM59ITMK)	9-18 9-19
	(Use inhib	ited area)	
H'0080 0410	DMA0 Channel Control Register (DM0CNT)	DMA0 Transfer Count Register (DM0TCT)	9-6 9-15
H'0080 0412	DMA0 Source A (DM0	ddress Register	9-13
H'0080 0414	DMA0 Destination	Address Register	9-14
H'0080 0416	(DM((Use inhib	,	
H'0080 0418	DMA5 Channel Control Register (DM5CNT)	DMA5 Transfer Count Register (DM5TCT)	9-8 9-15
H'0080 041A	DMA5 Source A	ddress Register	9-13
H'0080 041C	DM4) DMA5 Destination (DM4)	Address Register	9-14
H'0080 041E	(Use inhib	,	
H'0080 0420	DMA1 Channel Control Register (DM1CNT)	DMA1 Transfer Count Register (DM1TCT)	9-6 9-15
H'0080 0422	DMA1 Source A (DM ²	ddress Register	9-13
H'0080 0424	DMA1 Destination (DM	Address Register	9-14
H'0080 0426	(Use inhib	,	
H'0080 0428	DMA6 Channel Control Register (DM6CNT)	DMA6 Transfer Count Register (DM6TCT)	9-9 9-15
H'0080 042A	DMA6 Source A (DM6	ddress Register	9-13
H'0080 042C	DMA6 Destination (DM6	Address Register	9-14
H'0080 042E	(Use inhib	,	
H'0080 0430	DMA2 Channel Control Register (DM2CNT)	DMA2 Transfer Count Register (DM2TCT)	9-7 9-15
H'0080 0432	DMA2 Source A (DM2	ddress Register	9-13
H'0080 0434	DMA2 Destination (DM2	Address Register	9-14
H'0080 0436	(Use inhib	,	
H'0080 0438	DMA7 Channel Control Register (DM7CNT)	DMA7 Transfer Count Register (DM7TCT)	9-9 9-15
H'0080 043A	DMA7 Source A	ddress Register	9-13
H'0080 043C	DMA) DMA7 Destination (DM7)	Address Register	9-14
H'0080 043E	(Use inhib		

DMAC Related Register Map (2/2)

Address	+0 address	+1 address b8 b15	See pages
H'0080 0440	DMA3 Channel Control Register (DM3CNT)	DMA3 Transfer Count Register (DM3TCT)	9-7 9-15
H'0080 0442		Address Register 13SA)	9-13
H'0080 0444	DMA3 Destination	n Address Register I3DA)	9-14
H'0080 0446		bited area)	
H'0080 0448	DMA8 Channel Control Register (DM8CNT)	DMA8 Transfer Count Register (DM8TCT)	9-10 9-15
H'0080 044A	DMA8 Source /	Address Register I8SA)	9-13
H'0080 044C	DMA8 Destination	n Address Register (8DA)	9-14
H'0080 044E		bited area)	
H'0080 0450	DMA4 Channel Control Register (DM4CNT)	DMA4 Transfer Count Register (DM4TCT)	9-8 9-15
H'0080 0452	DMA4 Source /	Address Register I4SA)	9-13
H'0080 0454	DMA4 Destination (DM	n Address Register I4DA)	9-14
H'0080 0456	(Use inhi	bited area)	
H'0080 0458	DMA9 Channel Control Register (DM9CNT)	DMA9 Transfer Count Register (DM9TCT)	9-10 9-15
H'0080 045A		Address Register 19SA)	9-13
H'0080 045C		n Address Register I9DA)	9-14
H'0080 045E	(Use inhi	bited area)	
H'0080 0460	DMA0 Software Requ (DM	est Generation Register 0SRI)	9-12
H'0080 0462		est Generation Register 1SRI)	9-12
H'0080 0464	DMA2 Software Requ (DM	est Generation Register 2SRI)	9-12
H'0080 0466	DMA3 Software Requ (DM	est Generation Register 3SRI)	9-12
H'0080 0468		est Generation Register 4SRI)	9-12
	(Use inhi	bited area)	
H'0080 0470	DMA5 Software Requ (DM	est Generation Register 5SRI)	9-12
H'0080 0472	DMA6 Software Requ (DM	est Generation Register 6SRI)	9-12
H'0080 0474		est Generation Register 7SRI)	9-12
H'0080 0476		est Generation Register 8SRI)	9-12
H'0080 0478	DMA9 Software Requ (DM	est Generation Register 9SRI)	9-12

9.2.1 DMA Channel Control Registers

DMA0 Channel Control Register (DM0CNT)

b0	1	2	3	4	5	6	b7
MDSEL0	TREQF0	REC	SL0	TENL0	TSZSL0	SADSL0	DADSL0
0	0	0	0	0	0	0	0

<upon< th=""><th>exiting</th><th>reset:</th><th>H'00></th></upon<>	exiting	reset:	H'00>
---	---------	--------	-------

<Address: H'0080 0410>

b	Bit Name	Function	R	W
0	MDSEL0	0: Normal mode	R	W
	DMA0 transfer mode select bit	1: Ring buffer mode		
1	TREQF0	0: Transfer not requested	R(I	Note 1
	DMA0 transfer request flag bit	1: Transfer requested		
2, 3	REQSL0	00: Software start or one DMA2 transfer completed	R	W
	DMA0 request source select bit	01: A-D0 conversion completed		
		10: MJT (TIO8_udf)		
		11: MJT (input event bus 2)		
4	TENLO	0: Disable transfer	R	W
	DMA0 transfer enable bit	1: Enable transfer		
5	TSZSL0	0: 16 bits	R	W
	DMA0 transfer size select bit	1: 8 bits		
6	SADSL0	0: Fixed	R	W
	DMA0 source address direction select bit	1: Increment		
7	DADSL0	0: Fixed	R	W
	DMA0 destination address direction select bit	1: Increment		

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

DMA1 Channel Control Register (DM1CNT)

<Address: H'0080 0420>

b0	1	2	3	4	5	6	b7
MDSEL1	TREQF1	RE	QSL1	TENL1	TSZSL1	SADSL1	DADSL1
0	0	0	0	0	0	0	0

			<upon exiting="" h<="" reset:="" th=""><th>l'00></th></upon>	l'00>
b	Bit Name	Function	R	W
0	MDSEL1	0: Normal mode	R	W
	DMA1 transfer mode select bit	1: Ring buffer mode		
1	TREQF1	0: Transfer not requested	R(I	Note 1
	DMA1 transfer request flag bit	1: Transfer requested		
2, 3	REQSL1	00: Software start	R	W
	DMA1 request source select bit	01: MJT (output event bus 0)		
		10: Settings inhibited		
		11: One DMA0 transfer completed		
4	TENL1	0: Disable transfer	R	W
	DMA1 transfer enable bit	1: Enable transfer		
5	TSZSL1	0: 16 bits	R	W
	DMA1 transfer size select bit	1: 8 bits		
6	SADSL1	0: Fixed	R	W
	DMA1 source address direction select bit	1: Increment		
7	DADSL1	0: Fixed	R	W
	DMA1 destination address direction select bit	1: Increment		

DMA2 Channel Control Register (DM2CNT)

b0	1	2	3	4	5	6	b7
MDSEL2	TREQF2	REQ	SL2	TENL2	TSZSL2	SADSL2	DADSL2
0	0	0	0	0	0	0	0

<Address: H'0080 0430>

		<upon< th=""><th colspan="3"><upon exiting="" h<="" reset:="" th=""></upon></th></upon<>	<upon exiting="" h<="" reset:="" th=""></upon>		
b	Bit Name	Function	R	W	
0	MDSEL2	0: Normal mode	R	W	
	DMA2 transfer mode select bit	1: Ring buffer mode			
1	TREQF2	0: Transfer not requested	R(I	Note 1)	
	DMA2 transfer request flag bit	1: Transfer requested			
2, 3	REQSL2	00: Software start	R	W	
	DMA2 request source select bit	01: MJT (output event bus 1)			
		10: MJT (TIN18 edge select output)			
		11: One DMA1 transfer completed			
4	TENL2	0: Disable transfer	R	W	
	DMA2 transfer enable bit	1: Enable transfer			
5	TSZSL2	0: 16 bits	R	W	
	DMA2 transfer size select bit	1: 8 bits			
6	SADSL2	0: Fixed	R	W	
	DMA2 source address direction select bit	1: Increment			
7	DADSL2	0: Fixed	R	W	
	DMA2 destination address direction select bit	1: Increment			

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

DMA3 Channel Control Register (DM3CNT)

2 4 5 6 b7 b0 1 3 MDSEL3 TREQF3 REQSL3 TENL3 TSZSL3 SADSL3 DADSL3 0 0 0 0 0 0 0 0

<Upon exiting reset: H'00> b **Bit Name** Function R W 0 MDSEL3 0: Normal mode R W DMA3 transfer mode select bit 1: Ring buffer mode TREQF3 1 0: Transfer not requested R(Note 1) DMA3 transfer request flag bit 1: Transfer requested 2.3 W REQSL3 00: Software start R DMA3 request source select bit 01: Serial I/O-0 (transmit buffer empty) 10: Serial I/O-1 (reception completed) 11: MJT (TIN0 edge select output) 4 TENL3 0: Disable transfer W R DMA3 transfer enable bit 1: Enable transfer 5 TSZSL3 0: 16 bits R W DMA3 transfer size select bit 1: 8 bits 6 SADSL3 0: Fixed W R DMA3 source address direction select bit 1: Increment 7 DADSL3 0: Fixed R W DMA3 destination address direction select bit 1: Increment

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

<Address: H'0080 0440>

DMA4 Channel Control Register (DM4CNT)

b0	1	2	3	4	5	6	b7
MDSEL4	TREQF4	REC	QSL4	TENL4	TSZSL4	SADSL4	DADSL4
0	0	0	0	0	0	0	0

<Address: H'0080 0450>

		<upon exi<="" th=""><th colspan="4">iting reset: H'00></th></upon>	iting reset: H'00>			
b	Bit Name	Function	R	W		
0	MDSEL4	0: Normal mode	R	W		
	DMA4 transfer mode select bit	1: Ring buffer mode				
1	TREQF4	0: Transfer not requested	R(I	Note 1		
	DMA4 transfer request flag bit	1: Transfer requested				
2, 3	REQSL4	00: Software start	R	W		
	DMA4 request source select bit	01: One DMA3 transfer completed				
		10: Serial I/O-0 (reception completed)				
		11: MJT (TIN19 edge select output)				
4	TENL4	0: Disable transfer	R	W		
	DMA4 transfer enable bit	1: Enable transfer				
5	TSZSL4	0: 16 bits	R	W		
	DMA4 transfer size select bit	1: 8 bits				
6	SADSL4	0: Fixed	R	W		
	DMA4 source address direction select bit	1: Increment				
7	DADSL4	0: Fixed	R	W		
	DMA4 destination address direction select bit	1: Increment				

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

DMA5 Channel Control Register (DM5CNT)

<Address: H'0080 0418>

b0	1	2	3	4	5	6	b7
MDSEL5	TREQF5	REC	QSL5	TENL5	TSZSL5	SADSL5	DADSL5
0	0	0	0	0	0	0	0

b	Bit Name	Function	R	W
0	MDSEL5	0: Normal mode	R	W
	DMA5 transfer mode select bit	1: Ring buffer mode		
1	TREQF5	0: Transfer not requested	R(I	Note 1
	DMA5 transfer request flag bit	1: Transfer requested		
2, 3	REQSL5	00: Software start or one DMA7 transfer completed	R	W
_, _	DMA5 request source select bit	01: All DMA0 transfers completed		
		10: Serial I/O-2 (reception completed)		
		11: MJT (TIN20 edge select output)		
4	TENL5	0: Disable transfer	R	W
	DMA5 transfer enable bit	1: Enable transfer		
5	TSZSL5	0: 16 bits	R	W
	DMA5 transfer size select bit	1: 8 bits		
6	SADSL5	0: Fixed	R	W
	DMA5 source address direction select bit	1: Increment		
7	DADSL5	0: Fixed	R	W
	DMA5 destination address direction select bit	1: Increment		

DMA6 Channel Control Register (DM6CNT)

b0	1	2	3	4	5	6	b7
MDSEL6	TREQF6	REC	SL6	TENL6	TSZSL6	SADSL6	DADSL6
0	0	0	0	0	0	0	0

<Address: H'0080 0428>

		<upon exi<="" th=""><th>ting reset: H</th><th>l'00></th></upon>	ting reset: H	l'00>	
b	Bit Name	Function	R	W	
0	MDSEL6	0: Normal mode	R	W	
	DMA6 transfer mode select bit	1: Ring buffer mode			
1	TREQF6	0: Transfer not requested	R(I	Note 1	
	DMA6 transfer request flag bit	1: Transfer requested			
2, 3	REQSL6	00: Software start	R	W	
	DMA6 request source select bit	01: Serial I/O-1 (transmit buffer empty)			
		10: CAN (CAN0_S0/S15)			
		11: One DMA5 transfer completed			
4	TENL6	0: Disable transfer	R	W	
	DMA6 transfer enable bit	1: Enable transfer			
5	TSZSL6	0: 16 bits	R	W	
	DMA6 transfer size select bit	1: 8 bits			
6	SADSL6	0: Fixed	R	W	
	DMA6 source address direction select bit	1: Increment			
7	DADSL6	DSL6 0: Fixed			
	DMA6 destination address direction select bit	1: Increment			

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

DMA7 Channel Control Register (DM7CNT)

<Address: H'0080 0438>

b0	1	2	3	4	5	6	b7
MDSEL7	TREQF7	REC	SL7	TENL7	TSZSL7	SADSL7	DADSL7
0	0	0	0	0	0	0	0

		<upon exi<="" th=""><th>ting reset: H</th><th>'00></th></upon>	ting reset: H	'00>
b	Bit Name	Function	R	W
0	MDSEL7	0: Normal mode	R	W
	DMA7 transfer mode select bit	1: Ring buffer mode		
1	TREQF7	0: Transfer not requested	R(I	Note 1
	DMA7 transfer request flag bit	1: Transfer requested		
2, 3	REQSL7	00: Software start	R	W
	DMA7 request source select bit	01: Serial I/O-2 (transmit buffer empty)		
		10: CAN (CAN0_S1/S14)		
		11: One DMA6 transfer completed		
4	TENL7	0: Disable transfer	R	W
	DMA7 transfer enable bit	1: Enable transfer		
5	TSZSL7	0: 16 bits	R	W
	DMA7 transfer size select bit	1: 8 bits		
6	SADSL7	0: Fixed	R	W
	DMA7 source address direction select bit	1: Increment		
7	DADSL7	0: Fixed	R	W
	DMA7 destination address direction select bit	1: Increment		

DMA8 Channel Control Register (DM8CNT)

b0	1	2 3		4	5	6	b7
MDSEL8	TREQF8	REQSL8		TENL8	TSZSL8	SADSL8	DADSL8
0	0	0	0	0	0	0	0

<Address: H'0080 0448>

		<upon e<="" th=""><th>xiting reset: H</th><th>'00></th></upon>	xiting reset: H	'00>
b	Bit Name	Function	R	W
0	MDSEL8	0: Normal mode	R	W
	DMA8 transfer mode select bit	1: Ring buffer mode		
1	TREQF8	0: Transfer not requested	R(l	Note 1)
	DMA8 transfer request flag bit	1: Transfer requested		
2, 3	REQSL8	00: Software start	R	W
	DMA8 request source select bit	01: MJT (input event bus 0)		
		10: Serial I/O-3 (reception completed)		
		11: CAN (CAN1_S0/S15)		
4	TENL8	0: Disable transfer	R	W
	DMA8 transfer enable bit	1: Enable transfer		
5	TSZSL8	0: 16 bits	R	W
	DMA8 transfer size select bit	1: 8 bits		
6	SADSL8	0: Fixed	R	W
	DMA8 source address direction select bit	1: Increment		
7	DADSL8	0: Fixed	R	W
	DMA8 destination address direction select bit	1: Increment		

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

DMA9 Channel Control Register (DM9CNT)

<Address: H'0080 0458>

b0	1	2 3		4	5	6	b7
MDSEL9	TREQF9	REQSL9		TENL9	TSZSL9	SADSL9	DADSL9
0	0	0	0	0	0	0	0

		<upon exi<="" th=""><th>ting reset: H</th><th>'00></th></upon>	ting reset: H	'00>
b	Bit Name	Function	R	W
0	MDSEL9	0: Normal mode	R	W
	DMA9 transfer mode select bit	1: Ring buffer mode		
1	TREQF9	0: Transfer not requested	R(I	Note 1)
	DMA9 transfer request flag bit	1: Transfer requested		
2, 3	REQSL9	00: Software start	R	W
	DMA9 request source select bit	01: Serial I/O-3 (transmit buffer empty)		
		10: CAN (CAN1_S1/S14)		
		11: One DMA8 transfer completed		
4	TENL9	0: Disable transfer	R	W
	DMA9 transfer enable bit	1: Enable transfer		
5	TSZSL9	0: 16 bits	R	W
	DMA9 transfer size select bit	1: 8 bits		
6	SADSL9	0: Fixed	R	W
	DMA9 source address direction select bit	1: Increment		
7	DADSL9	0: Fixed	R	W
	DMA9 destination address direction select bit	1: Increment		

The DMA Channel Control Register consists of the bits to select DMA transfer mode on each channel, set the DMA transfer request flag, select the cause or source of DMA request and enable DMA transfer, as well as those to set the transfer size and the source/destination address directions.

(1) MDSELn (DMAn Transfer Mode Select) bit (Bit 0)

When performing DMA transfer in single transfer mode, this bit selects normal mode or ring buffer mode. Setting this bit to "0" selects normal mode and setting it to "1" selects ring buffer mode.

In ring buffer mode, transfer begins from the transfer start address and after performing transfers 32 times, control is returned back to the transfer start address, from which transfer operation is repeated. In this case, the Transfer Count Register counts in free-run mode, during which time transfer operation is continued until the transfer enable bit is reset to "0" (to disable transfer). In ring buffer mode, no interrupt is generated at completion of DMA transfer.

(2) TREQFn (DMAn Transfer Request Flag) bit (Bit 1)

This flag is set to "1" when a DMA transfer request occurs, and is cleared to "0" when the transfer for that transfer request is completed. Reading this flag helps to know DMA transfer requests on each channel. Writing "0" to this bit clears the generated DMA transfer request. Writing "1" has no effect; the bit retains the value it had before the write.

If a new DMA transfer request occurs on a channel for which the DMA transfer request flag has already been set to "1", the next DMA transfer request is not accepted until the transfer being performed on that channel is completed.

(3) REQSLn (DMAn Request Source Select) bits (Bits 2–3)

These bits select the cause or source of DMA request on each DMA channel.

(4) TENLn (DMAn Transfer Enable) bit (Bit 4)

Setting this bit to "1" enables transfer, and the channel is made ready for DMA transfer. When all transfers on that channel are completed (i.e., the Transfer Counter Register underflows), the bit is cleared to "0". Setting this bit to "0" disables transfer. However, if a transfer request has already been accepted, transfers on that channel are not disabled until after the requested transfer is completed.

(5) TSZSLn (DMAn Transfer Size Select) bit (Bit 5)

This bit selects the number of bits to be transferred in one DMA transfer operation (the unit of one transfer). The unit of one transfer is 16 bits when TSZSL = "0" or 8 bits when TSZSL = "1".

(6) SADSLn (DMAn Source Address Direction Select) bit (Bit 6)

This bit selects the direction in which the source address changes. This mode can be selected from two choices: Address fixed or Address incremental.

(7) DADSLn (DMAn Destination Address Direction Select) bit (Bit 7)

This bit selects the direction in which the destination address changes. This mode can be selected from two choices: Address fixed or Address incremental.

DMA0 Software Request Generation Register (DM0SRI) DMA1 Software Request Generation Register (DM1SRI) DMA2 Software Request Generation Register (DM2SRI) DMA3 Software Request Generation Register (DM3SRI) DMA4 Software Request Generation Register (DM4SRI) DMA5 Software Request Generation Register (DM5SRI) DMA6 Software Request Generation Register (DM6SRI) DMA7 Software Request Generation Register (DM7SRI) DMA8 Software Request Generation Register (DM8SRI) DMA8 Software Request Generation Register (DM8SRI) DMA9 Software Request Generation Register (DM8SRI) <Address: H'0080 0460> <Address: H'0080 0462> <Address: H'0080 0464> <Address: H'0080 0466> <Address: H'0080 0468> <Address: H'0080 0470> <Address: H'0080 0472> <Address: H'0080 0474> <Address: H'0080 0476> <Address: H'0080 0478>

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
	DM0SRI-DM9SRI														
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

		<upon exiting="" reset:="" th="" u<=""><th>ndefir</th><th>ned></th></upon>	ndefir	ned>
b	Bit Name	Function	R	W
0–15	DM0SRI-DM9SRI	DMA transfer request is generated by writing any	?	W
	DMA software request generation	data to these bits.		

Note: • This register may be accessed in either bytes or halfwords.

The DMA Software Request Generation Register is used to generate DMA transfer requests in software. A DMA transfer request can be generated by writing any data to this register when "Software start" has been selected for the cause of DMA request.

(1) DM0SRI–DM9SRI (DMA Software Request Generation)

A software DMA transfer request is generated by writing any data to this register in halfword (16 bits) or in byte (8 bits) beginning with an even or odd address when "Software start" is selected as the cause of DMA request (by setting the DMA Channel Control Register bits 2–3 to '00').

9.2.3 DMA Source Address Registers

DMA0	Source	Address	Register	(DM0SA)
DMA1	Source	Address	Register	(DM1SA)
DMA2	Source	Address	Register	(DM2SA)
DMA3	Source	Address	Register	(DM3SA)
DMA4	Source	Address	Register	(DM4SA)
DMA5	Source	Address	Register	(DM5SA)
DMA6	Source	Address	Register	(DM6SA)
DMA7	Source	Address	Register	(DM7SA)
DMA8	Source	Address	Register	(DM8SA)
DMA9	Source	Address	Register	(DM9SA)

<Address: H'0080 0412> <Address: H'0080 0422> <Address: H'0080 0432> <Address: H'0080 0432> <Address: H'0080 0442> <Address: H'0080 0452> <Address: H'0080 0454> <Address: H'0080 043A> <Address: H'0080 044A> <Address: H'0080 045A>

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
						DN	10SA-I	DM9SA	۱						
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
0–15	DM0SA–DMA9SA	Source address bits A16-A31	R	W
	DMA source address	(A0-A15 are fixed to H'0080)		

Note: • This register must always be accessed in halfwords.

The DMA Source Address Register is used to set the source address of DMA transfer in such a way that bit 0 and bit 15 correspond to A16 and A31, respectively. Because this register is comprised of a current register, the values read from this register are always the current value.

When DMA transfer finishes (i.e., the Transfer Count Register underflows), the value in this register if "Address fixed" is selected, is the same source address that was set in it before the DMA transfer began; if "Address incremental" is selected, the value in this register is the last transfer address + 1 (for 8-bit transfer) or the last transfer address + 2 (for 16-bit transfer).

The DMA Source Address Register must always be accessed in halfwords (16 bits) beginning with an even address. If accessed in bytes, the value in this register is undefined.

(1) DM0SA–DM9SA (Source Address A16–A31)

Set this register to specify the source address of DMA transfer in the internal I/O or RAM space from the address H'0080 0000 to the address H'0080 FFFF.

The 16 high-order source address bits (A0–A15) are always fixed to H'0080. Use this register to set the 16 low-order source address bits (with bit 0 corresponding to the source address A16, and bit 15 corresponding to the source address A31).

9.2.4 DMA Destination Address Registers

DMA0 Destination Address Register (DM0DA)	<address: 0414="" h'0080=""></address:>
DMA1 Destination Address Register (DM1DA)	<address: 0424="" h'0080=""></address:>
DMA2 Destination Address Register (DM2DA)	<address: 0434="" h'0080=""></address:>
DMA3 Destination Address Register (DM3DA)	<address: 0444="" h'0080=""></address:>
DMA4 Destination Address Register (DM4DA)	<address: 0454="" h'0080=""></address:>
DMA5 Destination Address Register (DM5DA)	<address: 041c="" h'0080=""></address:>
DMA6 Destination Address Register (DM6DA)	<address: 042c="" h'0080=""></address:>
DMA7 Destination Address Register (DM7DA)	<address: 043c="" h'0080=""></address:>
DMA8 Destination Address Register (DM8DA)	<address: 044c="" h'0080=""></address:>
DMA9 Destination Address Register (DM9DA)	<address: 045c="" h'0080=""></address:>

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
						DN	10DA-	DM9D/	4						
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
0–15	DM0DA-DM9DA	Destination address bits A16–A31	R	W
	DMA destination address	(A0-A15 are fixed to H'0080)		

Note: • This register must always be accessed in halfwords

The DMA Destination Address Register is used to set the destination address of DMA transfer in such a way that bit 0 and bit 15 correspond to A16 and A31, respectively. Because this register is comprised of a current register, the values read from this register are always the current value.

When DMA transfer finishes (i.e., the Transfer Count Register underflows), the value in this register if "Address fixed" is selected, is the same source address that was set in it before the DMA transfer began; if "Address incremental" is selected, the value in this register is the last transfer address + 1 (for 8-bit transfer) or the last transfer address + 2 (for 16-bit transfer).

The DMA Destination Address Register must always be accessed in halfwords (16 bits) beginning with an even address. If accessed in bytes, the value in this register is undefined.

(1) DM0DA–DM9DA (Destination Address bits A16–A31)

Set this register to specify the destination address of DMA transfer in the internal I/O or RAM space from the address H'0080 0000 to the address H'0080 FFFF.

The 16 high-order destination address bits (A0–A15) are always fixed to H'0080. Use this register to set the 16 low-order destination address bits (with bit 0 corresponding to the destination address A16, and bit 15 corresponding to the destination address A31).

9.2.5 DMA Transfer Count Registers

DMA0 Tr	ansfer Co	unt Regis	ster (DM0 ⁻	ТСТ)				<address: 0411="" h'0080=""></address:>
DMA1 Tr	ansfer Co	unt Regis	ster (DM1 ⁻	ТСТ)				<address: 0421="" h'0080=""></address:>
DMA2 Tr	ansfer Co	unt Regis	ster (DM2	ТСТ)				<address: 0431="" h'0080=""></address:>
DMA3 Tr	ansfer Co	unt Regis	ster (DM3	TCT)				<address: 0441="" h'0080=""></address:>
DMA4 Tr	ansfer Co	unt Regis	ster (DM4 ⁻	TCT)				<address: 0451="" h'0080=""></address:>
DMA5 Tr	ansfer Co	unt Regis	ster (DM5	TCT)				<address: 0419="" h'0080=""></address:>
DMA6 Tr	ansfer Co	unt Regis	ster (DM6	TCT)				<address: 0429="" h'0080=""></address:>
DMA7 Tr	ansfer Co	unt Regis	ster (DM7	TCT)				<address: 0439="" h'0080=""></address:>
DMA8 Tr	ansfer Co	unt Regis	ster (DM8 ⁻	TCT)				<address: 0449="" h'0080=""></address:>
DMA9 Tr	ansfer Co	unt Regis	ster (DM9	ТСТ)				<address: 0459="" h'0080=""></address:>
	_							
b8	9	10	11	12	13	14	b15	
		[ОМОТСТ-С	ОМ9ТСТ				
?	2	?	?	2	?	?	?	
•						•		

		<upon exiting="" reset:="" th="" und<=""><th colspan="3"><pre>kiting reset: Undefined></pre></th></upon>	<pre>kiting reset: Undefined></pre>		
b	Bit Name	Function	R	W	
8–15	DM0TCT-DM9TCT	DMA transfer count	R	W	
	DMA transfer count	(Has no effect during ring buffer mode)			

The DMA Transfer Count Register is used to set the number of times data is transferred on each channel. However, the value in this register has no effect during ring buffer mode.

The transfer count is the (value set in the transfer count register + 1). Because the DMA Transfer Count Register is comprised of a current register, the values read from this register are always the current value. (However, if the register is read in a cycle immediately after transfer, the value obtained is one that was stored in the count register before the transfer began.) When transfer finishes, this count register underflows and the value read from it is H'FF.

When transfer is enabled, this register is protected in hardware and cannot be accessed for write.

During ring buffer mode, the register counts down in free-run mode and continues counting until transfer is disabled. No interrupt is generated at underflow.

If any cascaded channel exists, each time one DMA transfer (byte or halfword) is completed or when all transfers on a channel are completed (i.e., the transfer count register underflows), transfer on the cascaded channel starts.

9.2.6 DMA Interrupt Related Registers

The DMA interrupt related registers are used to control the interrupt request signals sent from the DMAC to the Interrupt Controller.

(1) Interrupt request status bit

This status bit is used to determine whether there is an interrupt request. When an interrupt request occurs, this bit is set in hardware (cannot be set in software). The status bit is cleared by writing "0". Writing "1" has no effect; the bit retains the status it had before the write. Because this status bit is unaffected by the interrupt request mask bit, it can be used to inspect the operating status of peripheral functions.

In interrupt handling, make sure that within the grouped interrupt request status, only the status bit for the interrupt request that has been serviced is cleared. If the status bit for any interrupt request that has not been serviced is cleared, the pending interrupt request is cleared simultaneously with its status bit.

(2) Interrupt request mask bit

This bit is used to disable unnecessary interrupt requests within the grouped interrupt request. Set this bit to "0" to enable interrupt requests or "1" to disable interrupt requests.

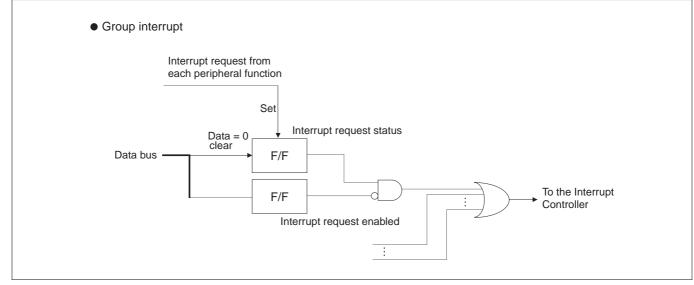


Figure 9.2.1 Interrupt Request Status and Mask Registers

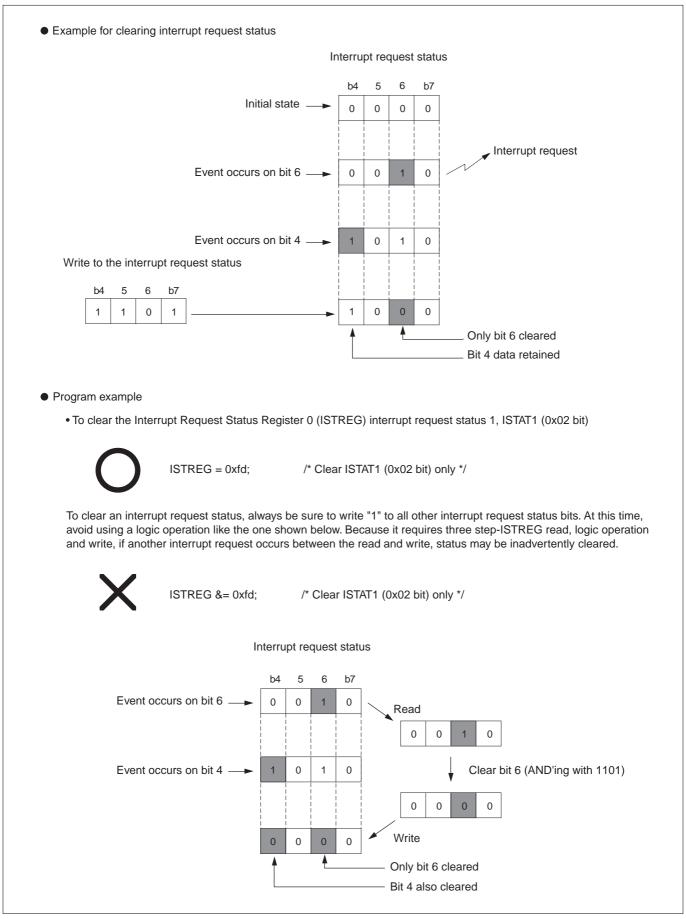


Figure 9.2.2 Example for Clearing Interrupt Request Status

DMA0-4 Interrupt Request Status Register (DM04ITST)

b0	1	2	3	4	5	6	b7
			DMITST4	DMITST3	DMITST2	DMITST1	DMITST0
0	0	0	0	0	0	0	0

			<upon exiting="" h'00="" reset:=""></upon>
b	Bit Name	Function	R W
0–2	No function assigned. Fix to "0".		0 0
3	DMITST4 (DMA4 interrupt request status bit)	0: Interrupt not requested	R(Note
4	DMITST3 (DMA3 interrupt request status bit)	1: Interrupt requested	
5	DMITST2 (DMA2 interrupt request status bit)	_	
6	DMITST1 (DMA1 interrupt request status bit)	_	
7	DMITST0 (DMA0 interrupt request status bit)	_	

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

DMA5-9 Interrupt Request Status Register (DM59ITST)

<Address: H'0080 0408>

b0	1	2	3	4	5	6	b7
			DMITST9	DMITST8	DMITST7	DMITST6	DMITST5
0	0	0	0	0	0	0	0

			<upon exiting="" h'<="" reset:="" th=""><th><00></th></upon>	<00>
b	Bit Name	Function	R	W
0–2	No function assigned. Fix to "0".		0	0
3	DMITST9 (DMA9 interrupt request status bit)	0: Interrupt not requested	R(N	Note 1)
4	DMITST8 (DMA8 interrupt request status bit)	1: Interrupt requested		
5	DMITST7 (DMA7 interrupt request status bit)			
6	DMITST6 (DMA6 interrupt request status bit)	_		
7	DMITST5 (DMA5 interrupt request status bit)			

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

The Interrupt Request Status Register helps to know the status of interrupt requests on each channel. If the DMAn interrupt request status bit (n = 0-9) is set to "1", it means that a DMA interrupt request on the corresponding channel has been generated.

(1) DMITSTn (DMAn Interrupt Request Status) bit (n = 0–9)

[Setting the DMAn interrupt request status bit]

This bit is set in hardware, and cannot be set in software.

[Clearing the DMAn interrupt request status bit]

This bit is cleared by writing "0" in software.

Note: • The DMAn interrupt request status bit cannot be cleared by writing "0" to the DMA Interrupt Control Register's "interrupt request bit" included in the Interrupt Controller.

When writing to the DMA Interrupt Request Status Register, make sure only the bits to be cleared are set to "0" and all other bits are set to "1". Those bits that have been set to "1" are unaffected by writing in software and retain the value they had before the write.

<Address: H'0080 0400>

<Address: H'0080 0401>

DMA0-4 Interrupt Request Mask Register (DM04ITMK)

b8	9	10	11	12	13	14	b15
			DMITMK4	DMITMK3	DMITMK2	DMITMK1	DMITMK0
0	0	0	0	0	0	0	0

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
8–10	No function assigned. Fix to "0".		0	0
11	DMITMK4 (DMA4 interrupt request mask bit)	0: Enable interrupt request	R	W
12	DMITMK3 (DMA3 interrupt request mask bit)	1: Mask (disable) interrupt request		
13	DMITMK2 (DMA2 interrupt request mask bit)			
14	DMITMK1 (DMA1 interrupt request mask bit)			
15	DMITMK0 (DMA0 interrupt request mask bit)			

DMA5-9 Interrupt Request Mask Register (DM59ITMK)

<Address: H'0080 0409>

b8	9	10	11	12	13	14	b15
			DMITMK9	DMITMK8	DMITMK7	DMITMK6	DMITMK5
0	0	0	0	0	0	0	0

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
8–10	No function assigned. Fix to "0".		0	0
11	DMITMK9 (DMA9 interrupt request mask bit)	0: Enable interrupt request	R	W
12	DMITMK8 (DMA8 interrupt request mask bit)	1: Mask (disable) interrupt request		
13	DMITMK7 (DMA7 interrupt request mask bit)			
14	DMITMK6 (DMA6 interrupt request mask bit)			
15	DMITMK5 (DMA5 interrupt request mask bit)			

The DMA Interrupt Request Mask Register is used to mask interrupt requests on each DMA channel.

(1) DMITMKn (DMAn Interrupt Request Mask) bit (n = 0–9)

Setting the DMAn interrupt request mask bit to "1" masks the interrupt requests on DMAn channel. However, if an interrupt request occurs, the DMAn interrupt request status bit is always set to "1" irrespective of the contents of this mask register.

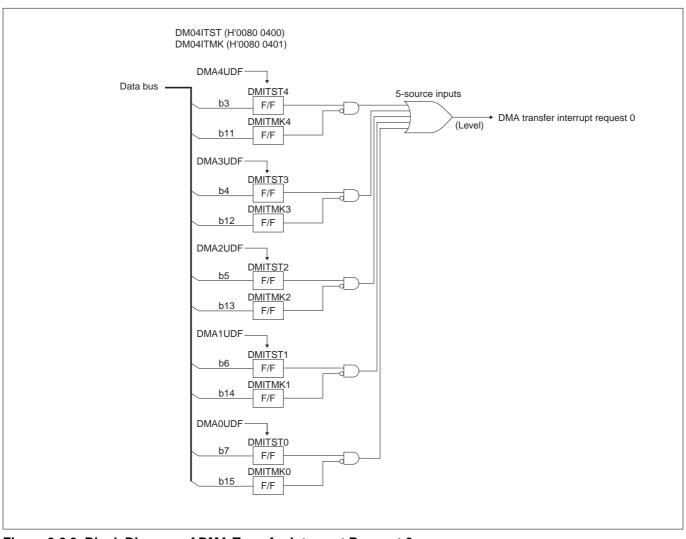


Figure 9.2.3 Block Diagram of DMA Transfer Interrupt Request 0



Figure 9.2.4 Block Diagram of DMA Transfer Interrupt Request 1

9.3 Functional Description of the DMAC

9.3.1 DMA Transfer Request Sources

For each DMA channel (channels 0–9), DMA transfer can be requested from two or more sources. There are various causes or sources of DMA transfer request, so that DMA transfer can be started by a request from some internal peripheral I/O, started in software by a program, or can be started upon completion of one transfer or all transfers on another DMA channel (cascade mode).

The causes or sources of DMA transfer requests are selected using the request source select bits REQSLn on each channel (DMAn Channel Control Register bits 2 and 3). The tables below list the causes or sources of DMA transfer requests on each channel.

	•	•
REQSL0	DMA Transfer Request Source	DMA Transfer Request Generation Timing
0 0	Software start or one DMA2	When any data is written to the DMA0 Software Request Generation Register
	transfer completed	(software start) or when one DMA2 transfer is completed (cascade mode)
0 1	A-D0 conversion completed	When A-D0 conversion is completed
1 0	MJT (TIO8_udf)	When MJT TIO8 underflows
1 1	MJT (input event bus 2)	When MJT input event bus 2 signal is generated

Table 9.3.1 DMA Transfer Request Sources and Generation Timings on DMA0

Table 9.3.2 DMA Transfer Request Sources and Generation Timings on DMA1

RE	QSL1	DMA Transfer Request Source	DMA Transfer Request Generation Timing
0	0	Software start	When any data is written to the DMA1 Software Request Generation Register
0	1	MJT (output event bus 0)	When MJT output event bus 0 signal is generated
1	0	Settings inhibited	_
1	1	One DMA0 transfer completed	When one DMA0 transfer is completed (cascade mode)

Table 9.3.3 DMA Transfer Request Sources and Generation Timings on DMA2

R	EQSL2	DMA Transfer Request Source	DMA Transfer Request Generation Timing
0	0	Software start	When any data is written to the DMA2 Software Request Generation Register
0	1	MJT (output event bus 1)	When MJT output event bus 1 signal is generated
1	0	MJT (TIN18 edge select output)	When MJT TIN18 input signal is generated (edge select output)
1	1	One DMA1 transfer completed	When one DMA1 transfer is completed (cascade mode)

R	EQSL3	DMA Transfer Request Source	DMA Transfer Request Generation Timing	
0	0	Software start	When any data is written to the DMA3 Software Request Generation Register	
0	1	Serial I/O0 (transmit buffer empty)	When serial I/O0 transmit buffer is empty	
1	0	Serial I/O1 (reception completed)	When serial I/O1 reception is completed	
1	1	MJT (TIN0 edge select output)	When MJT TIN0 input signal is generated (edge select output)	

Table 9.3.4 DMA Transfer Request Sources and Generation Timings on DMA3

Table 9.3.5 DMA Transfer Request Sources and Generation Timings on DMA4

RE	EQSL4	DMA Transfer Request Source	DMA Transfer Request Generation Timing
0	0	Software start	When any data is written to the DMA4 Software Request Generation Register
0	1	One DMA3 transfer completed	When one DMA3 transfer is completed (cascade mode)
1	0	Serial I/O0 (reception completed)	When serial I/O0 reception is completed
1	1	MJT (TIN19 edge select output)	When MJT TIN19 input signal is generated (edge select output)

Table 9.3.6 DMA Transfer Request Sources and Generation Timings on DMA5

RE	EQSL5	DMA Transfer Request Source	DMA Transfer Request Generation Timing
0	0	Software start or one DMA7	When any data is written to the DMA5 Software Request Generation Register
		transfer completed	(software start) or when one DMA7 transfer is completed (cascade mode)
0	1	All DMA0 transfers completed	When all DMA0 transfers are completed (cascade mode)
1	0	Serial I/O2 (reception completed)	When serial I/O2 reception is completed
1	1	MJT (TIN20 edge select output)	When MJT TIN20 input signal is generated (edge select output)

Table 9.3.7 DMA Transfer Request Sources and Generation Timings on DMA6

RE	EQSL6	DMA Transfer Request Source	DMA Transfer Request Generation Timing
0	0	Software start	When any data is written to the DMA6 Software Request Generation Register
0	1	Serial I/O1 (transmit buffer empty)	When serial I/O1 transmit buffer is empty
1	0	CAN (CAN0_S0/S15)	CAN0: when slot 0 transmission failed or slot 15 transmission/reception completed
1	1	One DMA5 transfer completed	When one DMA5 transfer is completed (cascade mode)

R	EQSL7	DMA Transfer Request Source	DMA Transfer Request Generation Timing
0	0	Software start	When any data is written to the DMA7 Software Request Generation Register
0	1	Serial I/O2 (transmit buffer empty)	When serial I/O2 transmit buffer is empty
1	0	CAN (CAN0_S1/S14)	CAN0: when slot 1 transmission failed or slot 14 transmission/reception completed
1	1	One DMA6 transfer completed	When one DMA6 transfer is completed (cascade mode)

Table 9.3.8 DMA Transfer Request Sources and Generation Timings on DMA7

Table 9.3.9 DMA Transfer Request Sources and Generation Timings on DMA8

RE	QSL8	DMA Transfer Request Source	DMA Transfer Request Generation Timing
0	0	Software start	When any data is written to the DMA8 Software Request Generation Register
0	1	MJT (input event bus 0)	When MJT input event bus 0 signal is generated
1	0	Serial I/O3 (reception completed)	When serial I/O3 reception is completed
1	1	CAN (CAN1_S0/S15)	CAN1: when slot 0 transmission failed or slot 15 transmission/reception completed

Table 9.3.10 DMA Transfer Request Sources and Generation Timings on DMA9

R	EQSL9	DMA Transfer Request Source	DMA Transfer Request Generation Timing
0	0	Software start	When any data is written to the DMA9 Software Request Generation Register
0	1	Serial I/O3 (transmit buffer empty)	When serial I/O3 transmit buffer is empty
1	0	CAN (CAN1_S1/S14)	CAN1: when slot 1 transmission failed or slot 14 transmission/reception completed
1	1	One DMA8 transfer completed	When one DMA8 transfer is completed (cascade mode)

9.3.2 DMA Transfer Processing Procedure

Shown below is an example of how to control DMA transfer in cases when performing transfer on DMA channel 0.

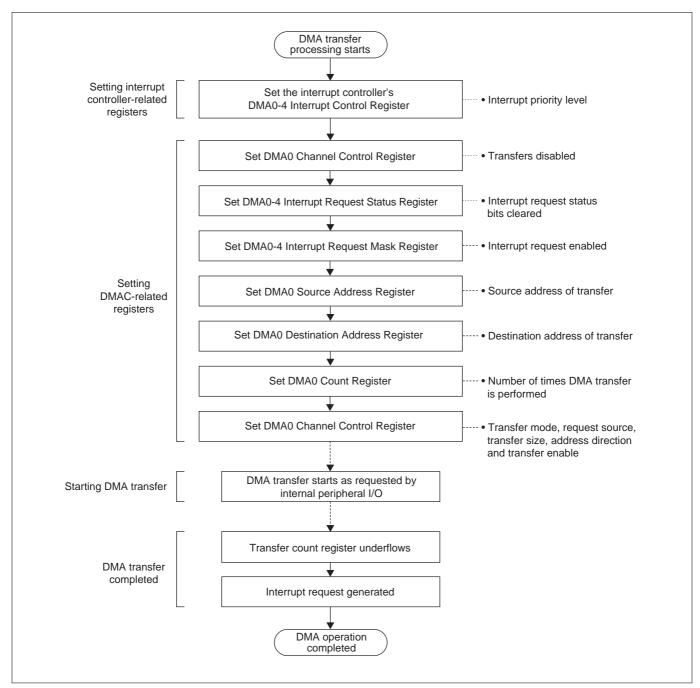


Figure 9.3.1 Example of a DMA Transfer Processing Procedure

9.3.3 Starting DMA

Use the REQSL (DMA request source select) bit to set the cause or source of DMA transfer request. To enable DMA, set the TENL (DMA transfer enable) bit to "1". DMA transfer begins when the specified cause or source of DMA transfer request becomes effective after setting the TENL (DMA transfer enable) bit to "1".

Note: • If the transfer request source selected by the REQSL (DMA transfer request source select) bit is MJT (TIN input signal), the time required for DMA transfer to begin after detecting the rising or falling or both edges of the TIN input signal is three cycles (150 ns when the internal peripheral clock = 20 MHz) at the shortest. Or, depending on the preceding or following bus usage condition, up to six cycles (300 ns when the internal peripheral clock = 20 MHz) may be required. (However, this applies when the external bus, HOLD and the LOCK instruction all are unused.) To ensure that changes of the TIN input signal state will be detected correctly, make sure the TIN input signal is held active for a duration of more than 7tc (BCLK)/2. (For details, see Section 21.8, "AC Characteristics (when VCCE = 5 V)," and Section 21.9, "AC Characteristics (when VCCE = 3.3 V).")

9.3.4 DMA Channel Priority

Channel 0 has the highest priority. The priority of this and other channels is shown below.

Channel 0 > Channel 1 > Channel 2 > Channel 3 > Channel 4 > Channel 5 > Channel 6 > Channel 7 > Channel 8 > Channel 9

This order of priority is fixed. Channel priority is resolved every transfer cycle (i.e., every three DMA buy cycles), and the channel with the highest priority among those that are requesting a DMA transfer is selected.

9.3.5 Gaining and Releasing Control of the Internal Bus

For any channel, control of the internal bus is gained and released in "single transfer DMA" mode. In single transfer DMA, the DMAC gains control of the internal bus (in one peripheral clock cycle) when DMA transfer request is accepted and after executing one DMA transfer (in one read and one write peripheral clock cycle), returns bus control to the CPU. The diagram below shows the operation in single transfer DMA.

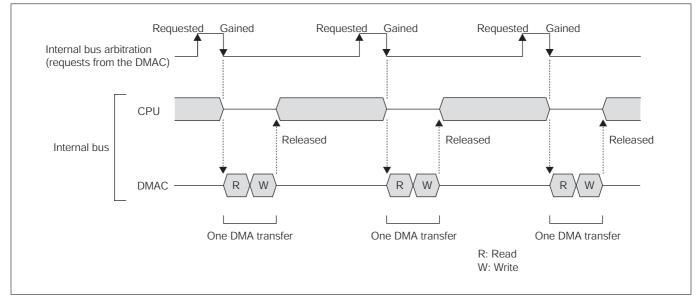


Figure 9.3.2 Gaining and Releasing Control of the Internal Bus

9.3.6 Transfer Units

Use the TSZSL (DMA transfer size select) bit to set for each channel the number of bits (8 or 16 bits) to be transferred in one DMA transfer.

9.3.7 Transfer Counts

Use the DMA Transfer Count Register to set transfer counts for each channel. Transfer can be performed up to 256 times. The value of the DMA Transfer Count Register is decremented by one every time one transfer unit is transferred. In ring buffer mode, the DMA Transfer Count Register operates in free-run mode, with the value set in it ignored.

9.3.8 Address Space

The address space in which data can be transferred by DMA is 64 Kbytes of internal peripheral I/O or RAM space (H'0080 0000 through H'0080 FFFF) for both source and destination. To set the source and destination addresses on each DMA channel, use the DMA Source Address Register and DMA Destination Address Register.

9.3.9 Transfer Operation

(1) Dual-address transfer

Irrespective of the size of transfer unit, data is transferred in two bus cycles, one for source read access and one for destination write access. (The transfer data is taken into the DMAC's internal temporary register before being transferred.)

(2) Bus protocol and bus timing

Because the bus interface is shared with the CPU, DMA transfer is performed with the same bus protocol and the same bus timing as when peripheral modules are accessed by the CPU.

(3) Transfer rate

Transfer is performed using a total of three peripheral clock cycles, one cycle to gain control of the bus and one read and one write cycle to perform one transfer. Therefore, the maximum transfer rate is calculated by the equation below:

Maximum transfer rate [bytes per second] = 2 bytes $\times \frac{1}{1/f(BCLK) \times 3}$ cycles

(4) Address count direction and address changes

The direction in which the source and destination addresses are counted as transfer proceeds ("Address fixed" or "Address incremental") is set for each channel using the SADSL (source address direction select) and DADSL (destination address direction select) bits.

When the transfer size is 16 bits, the address is incremented by two for each DMA transfer performed; when the transfer size is 8 bits, the address is incremented by one.

Table 9.3.11 Address Count Direction and Address Cha	inges
--	-------

Address Count Direction	Transfer Unit	Address Change for One DMA
Address fixed	8 bits	0
	16 bits	0
Address incremental	8 bits	+1
	16 bits	+2

(5) Transfer count value

The transfer count value is decremented one at a time, irrespective of the size of transfer unit (8 or 16 bits).

(6) Transfer byte positions

When the transfer unit is 8 bits, the LSB of the address register is effective for both source and destination. (Therefore, in addition to data transfers between even addresses or between odd addresses, data may be transferred from even address to odd address or vice versa.) When the transfer unit is 16 bits, the LSB of the address register (= bit 15) is ignored, and data are always transferred in two bytes aligned to the 16-bit bus.

The diagram below shows the valid byte positions in DMA transfer.

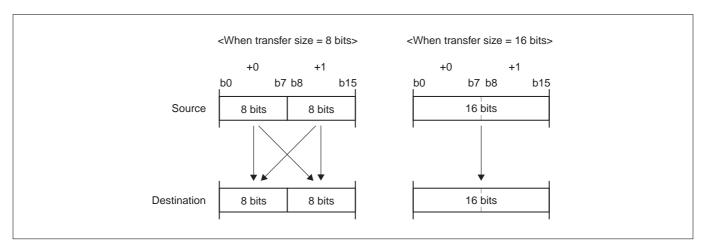


Figure 9.3.3 Transfer Byte Positions

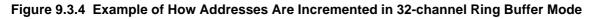
(7) Ring buffer mode

When ring buffer mode is selected, transfer begins from the transfer start address and after performing transfers 32 times, control returns to the transfer start address, from which transfer operation is repeated. In this case, however, the five low-order bits of the ring buffer start address must always be B'00000 (if transfer size = 16 bits, the six low-order bits must be B'000000).

The following describes how addresses are incremented in ring buffer mode.

[1] When the transfer size is 8 bits

The 27 high-order bits of the transfer start address are fixed, and the five low-order bits are incremented by one at a time. When as transfer proceeds the five low-order bits reach B'11111, they are recycled to B'00000 by the next increment operation, thus returning to the start address again.


[2] When the transfer size is 16 bits

The 26 high-order bits of the transfer start address are fixed, and the six low-order bits are incremented by two at a time. When as transfer proceeds the six low-order bits reach B'111110, they are recycled to B'000000 by the next increment operation, thus returning to the start address again.

If the source address has been set to be incremented, it is the source address that recycles to the start address; if the destination address has been set to be incremented, it is the destination address that recycles to the start address. If both source and destination addresses have been set to be incremented, both addresses recycle to the start address. However, the start address on either side must have their five low-order bits initially set to B'000000 (if transfer size = 16 bits, the six low-order bits must be B'000000).

During ring buffer mode, the transfer count register is ignored. Once DMA operation starts, the counter operates in free-run mode, and the transfer continues until the transfer enable bit is cleared to "0" (to disable transfer).

<when th="" trans<=""><th>fer size = 8 bits></th><th><when th="" transfe<=""><th>er size = 16 bits></th></when></th></when>	fer size = 8 bits>	<when th="" transfe<=""><th>er size = 16 bits></th></when>	er size = 16 bits>
Transfer count	Transfer address	Transfer count	Transfer address
1	H'0080 1000	1	H'0080 1000
2	H'0080 1001	2	H'0080 1002
3	H'0080 1002	3	H'0080 1004
			I
31	H'0080 101E	31	H'0080 103C
32	H'0080 101F	32	H'0080 103E
\downarrow	\downarrow	\downarrow	\downarrow
1	H'0080 1000	1	H'0080 1000
2	H'0080 1001	2	H'0080 1002
1			1

9.3.10 End of DMA and Interrupt

In normal mode, DMA transfer is terminated by an underflow of the transfer count register. When transfer finishes, the transfer enable bit is cleared to "0" and transfers are thereby disabled. Also, an interrupt request is generated at completion of transfer. However, if interrupt requests on any channel have been masked by the DMA Interrupt Request Mask Register, no interrupt requests are generated on that channel.

During ring buffer mode, the transfer count register operates in free-run mode, and transfer continues until the transfer enable bit is cleared to "0" (to disable transfer). In this case, therefore, no interrupt requests are generated at completion of DMA transfer. Nor are these DMA transfer-completed interrupt requests are generated even when transfer in ring buffer mode is terminated by clearing the transfer enable bit.

9.3.11 Each Register Status after Completion of DMA Transfer

When DMA transfer is completed, the status of the source and destination address registers becomes as follows:

(1) Address fixed

• The values set in the address registers before DMA transfer started remain intact (fixed).

(2) Address incremental

- For 8-bit transfer, the values of the address registers are the last transfer address + 1.
- For 16-bit transfer, the values of the address registers are the last transfer address + 2.

The transfer count register at completion of DMA transfer is in an underflow state (H'FF). Therefore, before another DMA transfer can be performed, the transfer count register must be set newly again, except when trying to perform transfers 256 times (H'FF).

9.4 Precautions about the DMAC

About writing to the DMAC related registers

Because DMA transfer involves exchanging data via the internal bus, the DMAC related registers basically can only be accessed for write immediately after reset or when transfer is disabled (transfer enable bit = "0"). When transfer is enabled, do not write to the DMAC related registers, except the DMA transfer enable bit, the transfer request flag and the DMA Transfer Count Register that is protected in hardware. This is a precaution necessary to ensure stable DMA operation.

The table below lists the registers that can or cannot be accessed for write.

Status	Transfer enable bit	Transfer request flag	Other DMAC related registers
Transfer enabled	Can be accessed	Can be accessed	Cannot be accessed
Transfer disabled	Can be accessed	Can be accessed	Can be accessed

Table 9.4.1 DMAC Related Registers That Can or Cannot Be Accessed for Write

Even for registers that can exceptionally be written to while transfer is enabled, the following conditions must be observed:

(1) DMA Channel Control Register 0 transfer enable bit and transfer request flag

For all other bits in this register, be sure to write the same data that those bits had before the write. Note, however, that only writing "0" is effective for the transfer request flag.

(2) DMA Transfer Count Register

When transfer is enabled, this register is protected in hardware, so that any data rewritten to it is ignored.

(3) Rewriting the DMA source and DMA destination addresses on different channels by DMA transfer

Although this operation means accessing the DMAC related registers while DMA is enabled, there is no problem. Note, however, that no data can be transferred by DMA to the DMAC related registers on the currently active channel itself.

• Manipulating the DMAC related registers by DMA transfer

When manipulating the DMAC related registers by means of DMA transfer (e.g., reloading the DMAC related registers with the initial values by DMA transfer), do not write to the DMAC related registers on the currently active channel through that channel. (If this precaution is neglected, device operation cannot be guaranteed.) It is only the DMAC related registers on other channels that can be rewritten by means of DMA transfer. (For example, the DMAN Source Address and DMAN Destination Address Registers on channel 1 can be rewritten by DMA transfer through channel 0.)

About the DMA Interrupt Request Status Register

When clearing the DMA Interrupt Request Status Register, be sure to write "1" to all bits, except those to be cleared. Writing "1" to any bits in this register has no effect, so that they retain the data they had before the write.

About the stable operation of DMA transfer

To ensure the stable operation of DMA transfer, never rewrite the DMAC related registers, except the channel control register's transfer enable bit, unless transfer is disabled. One exception is that even when transfer is enabled, the DMA Source Address and DMA Destination Address Registers can be rewritten by DMA transfer from one channel to another.

This page is blank for reasons of layout.

CHAPTER 10

MULTIJUNCTION TIMERS

- 10.1 Outline of Multijunction Timers
- 10.2 Common Units of Multijunction Timers
- 10.3 TOP (Output-Related 16-Bit Timer)
- 10.4 TIO (Input/Output-Related 16-Bit Timer)
- 10.5 TMS (Input-Related 16-Bit Timer)
- 10.6 TML (Input-Related 32-Bit Timer)

10.1 Outline of Multijunction Timers

The multijunction timers (abbreviated MJT) have input event and output event buses. Therefore, in addition to being used as a single unit, the timers can be internally connected to each other. This capability allows for highly flexible timer configuration, making it possible to meet various application needs. It is because the timers are connected to the internal event buses at multiple points that they are called the "multijunction" timers. The 32176 has four types of MJT as listed in the table below, providing a total of 37-channel timers.

Name	Туре	No. of Channels	Description
TOP	Output-related	11	One of three output modes can be selected by software.
(Timer	16-bit timer		<with correction="" function=""></with>
OutPut)	(down-counter)		Single-shot output mode
			 Delayed single-shot output mode
			<without correction="" function=""></without>
			Continuous output mode
TIO	Input/output-related	10	One of three input modes or four output modes can be selected
(Timer	16-bit timer		by software.
Input	(down-counter)		<input modes=""/>
OutPut)			Measure clear input mode
			Measure free-run input mode
			 Noise processing input mode
			<output correction="" function="" modes="" without=""></output>
			PWM output mode
			Single-shot output mode
			 Delayed single-shot output mode
			Continuous output mode
TMS	Input-related	8	16-bit input measure timer
(Timer	16-bit timer		
Measure	(up-counter)		
Small)			
TML	Input-related	8	32-bit input measure timer
(Timer	32-bit timer		
Measure	(up-counter)		
Large)			

Table 10.1.1 Outline of MJT

MULTIJUNCTION TIMERS

10.1 Outline of Multijunction Timers

	· · · · · · · · · · · · · · · · · · ·				
Signal Na	me MJT Interrupt Request Source	Source of Interrupt Request	No. of ICU Input Sources		
IRQ12	TIN3 input	MJT input interrupt 4	1		
IRQ11	TIN20–TIN23 input	MJT input interrupt 3	4		
IRQ10	TIN16–TIN19 input	MJT input interrupt 2	4		
IRQ9	TIN0 input	MJT input interrupt 1	1		
IRQ7	TMS0, TMS1 output	MJT output interrupt 7	2		
IRQ6	TOP8, TOP9 output	MJT output interrupt 6	2		
IRQ5	TOP10 output	MJT output interrupt 5	1		
IRQ4	TIO4–7 output	MJT output interrupt 4	4		
IRQ3	TIO8, TIO9 output	MJT output interrupt 3	2		
IRQ2	TOP0–5 output	MJT output interrupt 2	6		
IRQ1	TOP6, TOP7 output	MJT output interrupt 1	2		
IRQ0	TIO0–3 output	MJT output interrupt 0	4		

Table 10.1.2 Interrupt Generation Functions of MJT

Table 10.1.3 DMA Transfer Request Generation by MJT

Signal Name	DMA Transfer Request Source	DMAC Input Channel
DRQ0	TIO8 underflow	Channel 0
DRQ1	Input event bus 2	Channel 0
DRQ2	Output event bus 0	Channel 1
DRQ4	Output event bus 1	Channel 2
DRQ5	TIN18 input	Channel 2
DRQ6	TIN19 input	Channel 4
DRQ7	TIN0 input	Channel 3
DRQ12	TIN20 input	Channel 5
DRQ13	Input event bus 0	Channel 8

Table 10.1.4 A-D Conversion Start Request by MJT

Signal Name	A-D Conversion Start Request Source	A-D Converter
AD0TRG	Input event bus 2,	Can be input to A-D0 conversion start trigger
	input event bus 3,	
	output event bus 3, TIN23	

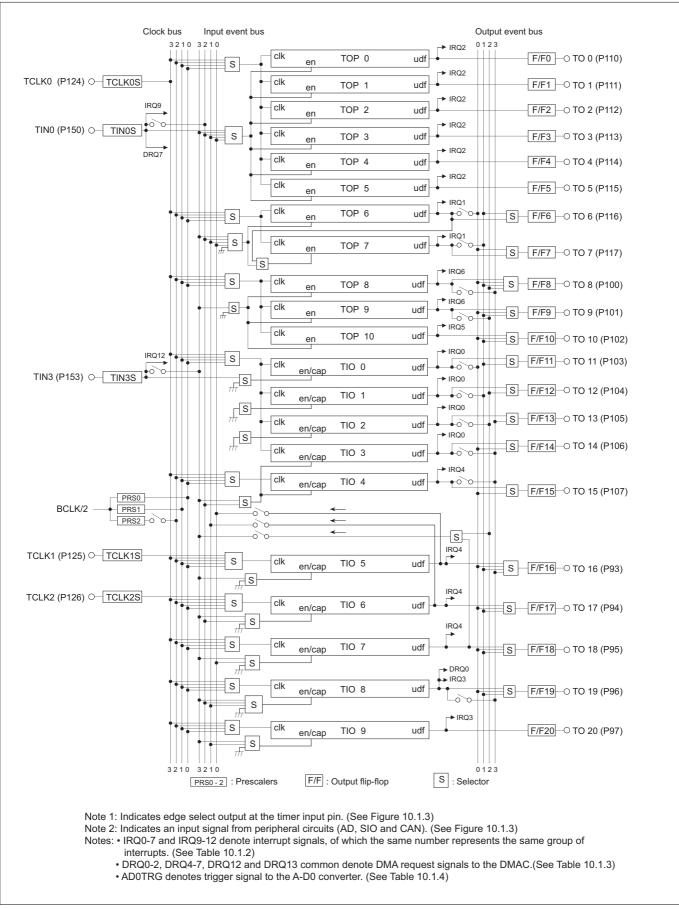


Figure 10.1.1 Block Diagram of MJT (1/3)

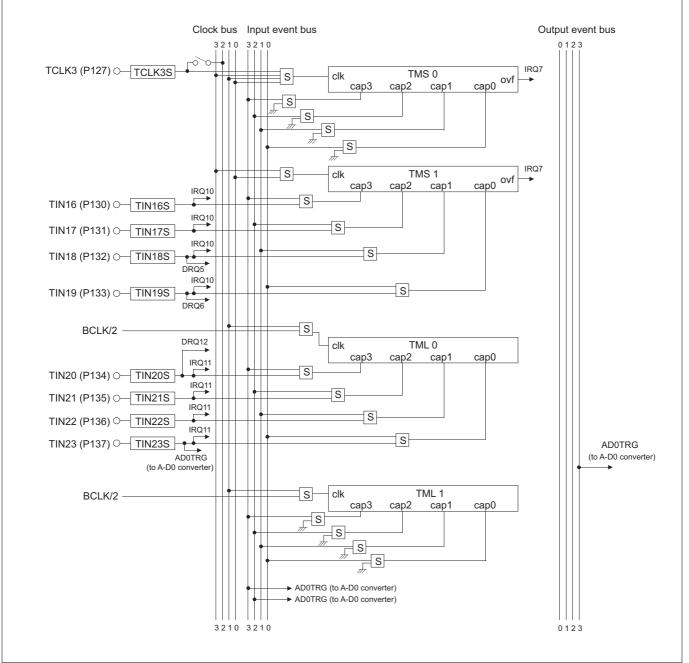


Figure 10.1.2 Block Diagram of MJT (2/3)

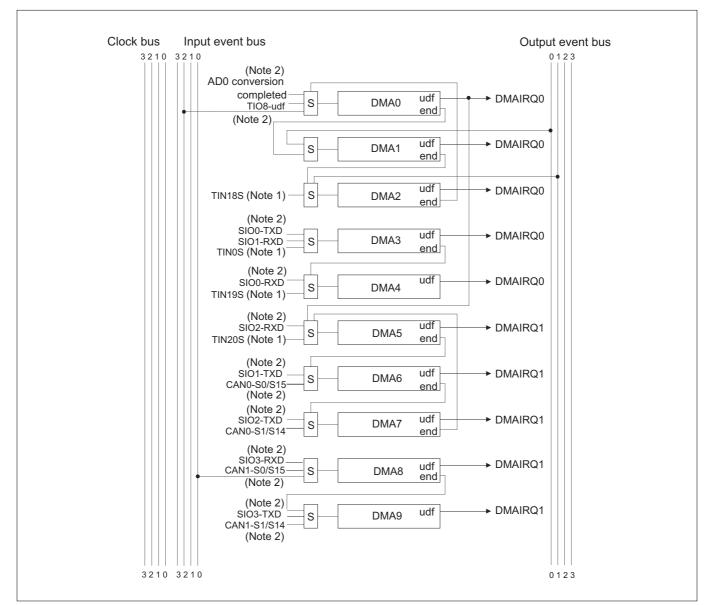


Figure 10.1.3 Block Diagram of MJT (3/3)

10.2 Common Units of Multijunction Timers

The common units of MJT include the following:

- Prescaler Unit
- Clock Bus and Input/Output Event Bus Control Unit
- Input Processing Control Unit
- Output Flip-flop Control Unit
- Interrupt Control Unit

10.2.1 MJT Common Unit Register Map

The table below shows a common unit register map of MJT.

MJT Common Unit Register Map

Address	+0 address b0 b7	+1 address b8 b15	See pages
H'0080 0200	(Use inhibited area)	Clock Bus & Input Event Bus Control Register (CKIEBCR)	10-13
H'0080 0202	Prescaler Register 0 (PRS0)	Prescaler Register 1 (PRS1)	10-9
H'0080 0204	Prescaler Register 2 (PRS2)	Output Event Bus Control Register (OEBCR)	10-9 10-14
I	(Use inhit	bited area)	
H'0080 0210		sing Control Register KCR)	10-17
H'0080 0212	TIN Input Processin	g Control Register 0 CR0)	10-18
H'0080 0214		bited area)	
H'0080 0216	(Use inhit	pited area)	
H'0080 0218		ng Control Register 3 CR3)	10-19
H'0080 021A	TIN Input Processin	ig Control Register 4 CR4)	10-19
H'0080 021C		bited area)	
H'0080 021E	(Use inhit	pited area)	
H'0080 0220		elect Register 0 FS0)	10-21
H'0080 0222	(Use inhibited area)	F/F Source Select Register 1 (FFS1)	10-22
H'0080 0224	F/F Protect Register 0 (FFP0)		10-23
H'0080 0226	F/F Data	Register 0 D0)	10-24
H'0080 0228	(Use inhibited area)	F/F Protect Register 1 (FFP1)	10-23
H'0080 022A	(Use inhibited area)	F/F Data Register 1 (FFD1)	10-24
I	(Use inhit	bited area)	
H'0080 0230	TOP Interrupt Control Register 0 (TOPIR0)	TOP Interrupt Control Register 1 (TOPIR1)	10-29
H'0080 0232	TOP Interrupt Control Register 2 (TOPIR2)	TOP Interrupt Control Register 3 (TOPIR3)	10-31 10-32
H'0080 0234	TIO Interrupt Control Register 0 (TIOIR0)	TIO Interrupt Control Register 1 (TIOIR1)	10-33 10-34
H'0080 0236	TIO Interrupt Control Register 2 (TIOIR2)	TMS Interrupt Control Register (TMSIR)	10-35 10-36
H'0080 0238	TIN Interrupt Control Register 0 (TINIR0)	TIN Interrupt Control Register 1 (TINIR1)	10-37 10-38
H'0080 023A	(Use inhibited area)		
H'0080 023C	TIN Interrupt Control Register 4 (TINIR4)	TIN Interrupt Control Register 5 (TINIR5)	10-39
H'0080 023E	TIN Interrupt Control Register 6 (TINIR6)	(Use inhibited area)	10-41

10.2.2 Prescaler Unit

The Prescalers PRS0–2 are an 8-bit counter, which generates clocks supplied to each timer (TOP, TIO, TMS and TML) from the internal peripheral clock (BCLK) divided by 2 (10 MHz when f(BCLK) = 20 MHz).

The values of prescaler registers are initialized to H'00 upon exiting the reset state. When the set value of any prescaler register is rewritten, the prescaler starts operating with the new value at the same time it has underflowed.

Values H'00 to H'FF can be set in the prescaler register. The prescaler's divide-by ratio is given by the equation below:

Prescaler divide-by ratio =	1
	prescaler set value + 1

b0 1 2 3 4 5 6 b7 (b8 9 10 11 12 13 14 b15) PRS0-PRS2	Prescale	er Register	r 0 (PRS0) r 1 (PRS1) r 2 (PRS2)					<address: 0202="" h'0080=""> <address: 0203="" h'0080=""> <address: 0204="" h'0080=""></address:></address:></address:>
	b0	1	2	3	4	5	6	b7	
PRS0-PRS2	(b8	9	10	11	12	13	14	b15)	
				PRS0-	PRS2				
	0	0	0	0	0	0	0	0	

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
0–7	PRS0, PRS2	Set the prescaler divide-by value	R	W
(8–15)	PRS1			
_	Prescaler			

Prescaler Registers 0–2 start counting after exiting the reset state.

If the prescaler register is accessed for read during operation, the value written into it, not the current count, is read out.

10.2.3 Clock Bus and Input/Output Event Bus Control Unit

(1) Clock bus

The clock bus is provided for supplying clock to each timer, and is comprised of four lines of clock bus 0–3. Each timer can use these clock bus signals as clock input signals. The table below lists the signals that can be fed into the clock bus.

Table 10.2.1	Acceptable Clock Bus	Signals
--------------	----------------------	---------

Clock Bus	Acceptable Signal
3	TCLK0 input
2	Internal prescaler (PRS2) or TCLK3 input
1	Internal prescaler (PRS1)
0	Internal prescaler (PRS0)

(2) Input event bus

The input event bus is provided for supplying a count enable signal or measure capture signal to each timer, and is comprised of four lines of input event bus 0–3. Each timer can use these input event bus signals as enable (or capture) input. Furthermore, they can also be used as request signals to start A-D conversion or DMA transfer.

The table below lists the signals that can be fed into the input event bus.

Input Event Bus	Connectable (Acceptable) Signal (Note 1)
3	TIN3 input, output event bus 2 or TIO7 underflow signal
2	TIN0 input
1	TIO6 underflow signal
0	TIO5 underflow signal

Table 10.2.2 Connectable (Acceptable) Input Event Bus Signals

Note 1: For the destination (output) to which the input event bus signals are connected, see Figure 10.1.1, "Block Diagram of MJT."

(3) Output event bus

The output event bus has the underflow signal from each timer connected to it, and is comprised of four lines of output event bus 0–3. Output event bus signals are connected to output flip-flops, and output event buses 3, 0 and 1 can be connected to the A-D0 converter, DMA channel 1 and DMA channel 2, respectively. Furthermore, output event bus 2 can be connected to input event bus 3. The table below lists the signals that can be connected to the output event bus.

The table below lists the signals that can be connected to the output event bu

Table 10.2.3	Connectable (Acce	ptable) Output Even	t Bus Signals
--------------	-------------------	---------------------	---------------

Input Event Bus	Connectable (Acceptable) Signal (Note 1)
3	TOP8, TIO3, TIO4 or TIO8 underflow signal
2	TOP9 or TIO2 underflow signal
1	TOP7 or TIO1 underflow signal
0	TOP6 or TIO0 underflow signal

Note 1: For the destination (output) to which the output event bus signals are connected, see Figure 10.1.1, "Block Diagram of MJT."

Note that the signals from each timer to the output event bus (and TIO5, 6 signals to the input event bus) are generated with the timing shown in Table 10.2.4, and not the timing at which signals are output from the timer to the output flip-flop.

Timer	Mode	Timing at which signals are generated to the output event bus			
TOP	Single-shot output mode	When the counter underflows			
	Delayed single-shot output mode	When the counter underflows			
	Continuous output mode	When the counter underflows			
TIO(Note 1)	Measure clear input mode	When the counter underflows			
	Measure free-run input mode	When the counter underflows			
	Noise processing input mode	When the counter underflows			
	PWM output mode	When the counter underflows			
	Single-shot output mode	When the counter underflows			
	Delayed single-shot output mode	When the counter underflows			
	Continuous output mode	When the counter underflows			
TMS	(16-bit measure input)	No signals generated			
TML	(32-bit measure input)	No signals generated			

Table 10.2.4 Timing at Which Signals are Generated to the Output Event Bus by Each Timer

Note 1: TIO5,6 output an underflow signal to the input event bus.

MULTIJUNCTION TIMERS 10.2 Common Units of Multijunction Timers

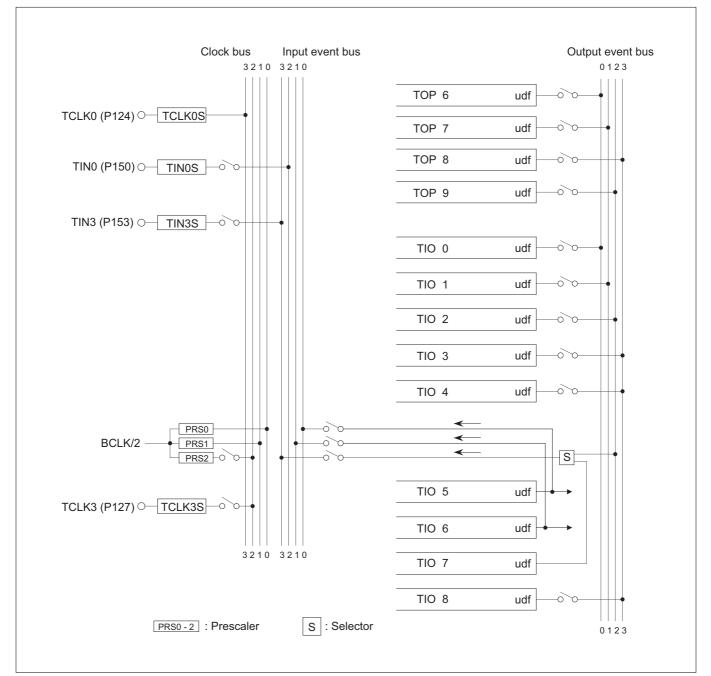


Figure 10.2.1 Conceptual Diagram of the Clock Bus and Input/Output Event Bus

The Clock Bus and Input/Output Event Bus Control Unit has the following registers:

- Clock Bus & Input Event Bus Control Register (CKIEBCR)
- Output Event Bus Control Register (OEBCR)

Clock Bus & Input Event Bus Control Register (CKIEBCR)

<Address: H'0080 0201>

b8 9	10 11	12 13	14	b15
IEB3S	IEB2S	IEB1S IEB0S		CKB2S
0 0	0 0	0 0	0	0

			<upon exiting="" h<="" reset:="" th=""><th>ľ'00></th></upon>	ľ'00>
b	Bit Name	Function	R	W
8, 9	IEB3S	0X: Select external input 3 (TIN3)	R	W
	Input event bus 3 input select bit	10: Select output event bus 2		
		11: Select TIO7 output		
10, 11	IEB2S	00: Select external input 0 (TIN0)	R	W
	Input event bus 2 input select bit	01: Does not use input event bus 2		
		10: Does not use input event bus 2		
		11: Does not use input event bus 2		
12	IEB1S	0: Does not use input event bus 1	R	W
	Input event bus 1 input select bit	1: Select TIO6 output		
13	IEB0S	0: Does not use input event bus 0	R	W
	Input event bus 0 input select bit	1: Select TIO5 output		
14	No function assigned. Fix to "0".		0	0
15	CKB2S	0: Select prescaler 2	R	W
	Clock bus 2 input select bit	1: Select external clock 3 (TCLK3)		

The CKIEBCR register is used to select the clock source (external input or prescaler) supplied to the clock bus and the count enable/capture signal (external input or output event bus) supplied to the input event bus.

Output Event Bus Control Register (OEBCR)

b8	9	10	11	12	13	14	b15
OEI	B3S		OEB2S		OEB1S		OEB0S
0	0	0	0	0	0	0	0

<Address: H'0080 0205>

			<upon exiting="" h<="" reset:="" th=""><th>l'00></th></upon>	l'00>
b	Bit Name	Function	R	W
8, 9	OEB3S	00: Select TOP8 output	R	W
	Output event bus 3 input select bit	01: Select TIO3 output		
		10: Select TIO4 output		
		11: Select TIO8 output		
10	No function assigned. Fix to "0".		0	0
11	OEB2S	0: Select TOP9 output	R	W
	Output event bus 2 input select bit	1: Select TIO2 output		
12	No function assigned. Fix to "0".		0	0
13	OEB1S	0: Select TOP7 output	R	W
	Output event bus 1 input select bit	1: Select TIO1 output		
14	No function assigned. Fix to "0".		0	0
15	OEB0S	0: Select TOP6 output	R	W
	Output event bus 0 input select bit	1: Select TIO0 output		

The OEBCR register is used to select the timer (TOP or TIO) whose underflow signal is supplied to the output event bus.

10.2.4 Input Processing Control Unit

The Input Processing Control Unit processes TCLK and TIN input signals to the MJT. In TCLK input processing, it selects the source of TCLK signal, and for external input, it selects the active edge (rising or falling or both) or level (high or low) of the signal, at which to generate the clock signal supplied to the clock bus.

In TIN input processing, the unit selects the active edge (rising or falling or both) or level (high or low) of the signal, at which to generate the enable, measure or count source signal for each timer or the signal supplied to each event bus.

Following input processing registers are included:

- TLCK Input Processing Control Register (TCLKCR)
- TIN Input Processing Control Register 0 (TINCR0)
- TIN Input Processing Control Register 3 (TINCR3)
- TIN Input Processing Control Register 4 (TINCR4)

MULTIJUNCTION TIMERS 10.2 Common Units of Multijunction Timers

Item	Function
BCLK/2	
Rising edge	TCLK
	Count clock
Falling edge	TCLK
	Count clock
Both edges	TCLK
	Count clock
Low level	TCLK BCLK/2
	Count clock
High level	TCLK BCLK/2
	Count clock

(1) Functions of TCLK Input Processing Control Registers

MULTIJUNCTION TIMERS 10.2 Common Units of Multijunction Timers

Item	Function
Rising edge	
	TIN
	Internal edge signal
Falling edge	
	TIN V
	Internal edgesignal
Both edges	
-	TIN
	Internal edgesignal
Low level	
	TIN
	Prescaler output period or TCLK input period
	Internal edge
High level	
	TIN
	Prescaler output period or TCLK input period
	Internal edge

b0	1 2	3 4	5	6 7	7 8	9	10	11	12	13	14	b15			
	TCLK3	3S		TCLK2S			TCLK1	S			TCL	(0S]		
0	0 0	0 0	0		0	0	0	0	0	0	0	0	J		
													<upon exiting="" read<="" td=""><td>set: H'00</td><td>200></td></upon>	set: H'00	200>
b	Bit Name						Fu	nction						R	W
0, 1	No function	on assigr	ned. Fiz	x to "0".										0	0
2, 3	TCLK3S						00	: BCLł	2</td <td></td> <td></td> <td></td> <td></td> <td>R</td> <td>W</td>					R	W
	TCLK3 in	put proce	essing	select bit			01	: Risin	g edge	е					
							10	: Fallir	ng edg	е					
							11	: Both	edges	6					
4	No function	on assigr	ned. Fix	c to "0".										0	0
5–7	TCLK2S						00	0: Disa	able in	put				R	W
	TCLK2 in	put proce	essing	select bit			00	1: Risi	ng edg	ge					
							01	0: Fall	ing ed	ge					
							01	1: Bot	h edge	es					
							10	0: Low	/ level						
							-	1: Low							
								0: Higl							
							11	1: Hig	h level						
8	No function	on assigr	ned. Fix	k to "0".										0	0
9–11	TCLK1S						00	0: Disa	able in	put				R	W
	TCLK1 in	put proce	essing	select bit			00	1: Risi	ng edg	ge					
							01	0: Fall	ing ed	ge					
							01	1: Bot	h edge	es					
							10	0: Low	/ level						
								1: Low							
								0: Higl							
							11	1: Hig	h level						
12,13	No function	on assigr	ned. Fix	k to "0".										0	0
14,15	TCLK0S						00	: BCLł	< /2					R	W
	TCLK0 in	put proce	essing	select bit			01	: Risin	g edge	е					
							10	: Fallir	ng edg	е					
							11	: Both	edges	6					

TLCK Input Processing Control Register (TCLKCR)

Note: • This register must always be accessed in halfwords.

<Address: H'0080 0210>

TIN Input Processing Control Register 0 (TINCR0)

<Address: H'0080 0212>

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
		TIN4S				TIN3S				TIN	I2S	TIN	I1S	TI	NOS
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

			<upon exiting="" h'00<="" reset:="" th=""><th><000</th></upon>	<000
b	Bit Name	Function	R	W
0	No function assigned. Fix to "0".		0	0
1–3	TIN4S	Fix to "0".	0	0
	Reserved bit			
4	No function assigned. Fix to "0".		0	0
5–7	TIN3S	000: Disable input	R	W
	TIN3 input processing select bit	001: Rising edge		
		010: Falling edge		
		011: Both edges		
		100: Low level		
		101: Low level		
		110: High level		
		111: High level		
8, 9	No function assigned. Fix to "0".		0	0
10,11	TIN2S	Fix to "0".	0	0
	Reserved bit			
12,13	TIN1S	Fix to "0".	0	0
	Reserved bit			
14,15	TINOS	00: Disable input	R	W
	TIN0 input processing select bit	01: Rising edge		
		10: Falling edge		
		11: Both edges		

Note: • This register must always be accessed in halfwords.

MULTIJUNCTION TIMERS 10.2 Common Units of Multijunction Timers

b	Bit	Name				Function			<upon exiting="" reset<="" th=""><th>R</th><th>W</th></upon>	R	W
<u> </u>			9 input proce	ssing select	bit)	00: Disab	le input			R	W
2, 3	TI	N18S (TIN18	B input proce	ssing select	bit)	01: Rising	g edge				
4, 5	TI	N17S (TIN17	7 input proce	ssing select	bit)	10: Falling	g edge				
6, 7	TI	N16S (TIN16	6 input proce	ssing select	bit)	11: Both					
8, 9	TI	N15S (Rese	rved bit)			Fix to "0".				0	0
10, 11	TI	N14S (Rese	rved bit)								
12, 13	TI	N13S (Rese	rved bit)								
14, 15	TI	N12S (Rese	rved bit)								
Note: •	This ı	register mus	st always be	accessed ir	halfwords.						
TIN Inp	out P	rocessing	Control Re	egister 4 (T	INCR4)				<address: h'008<="" td=""><td>0 02</td><td>1A></td></address:>	0 02	1A>
b0	1	2 3	4 5	6 7	89	10 11	12 13	14 b15			
TIN33 0	3S 0	TIN32S 0 0	TIN31S 0 0	TIN30S 0 0	TIN23S 0 0	TIN22S 0 0	TIN21S 0 0	TIN20S 0 0]		
									<upon exiting="" reset<="" td=""><td>t: H'0</td><td>200></td></upon>	t: H'0	200>
b	Bit	Name				Function				R	W
~ 1	-		·····							0	_

			<upon exiting="" h'00<="" reset:="" th=""><th>)00></th></upon>)00>
b	Bit Name	Function	R	W
0, 1	TIN33S (Reserved bit)	Fix to "0".	0	0
2, 3	TIN32S (Reserved bit)			
4, 5	TIN31S (Reserved bit)			
6, 7	TIN30S (Reserved bit)			
8, 9	TIN23S (TIN23 input processing select bit)	00: Disable input	R	W
10, 11	TIN22S (TIN22 input processing select bit)	01: Rising edge		
12, 13	TIN21S (TIN21 input processing select bit)	10: Falling edge		
14, 15	TIN20S (TIN20 input processing select bit)	11: Both edges		

Note: • This register must always be accessed in halfwords.

<Address: H'0080 0218>

TIN Input Processing Control Register 3 (TINCR3)

b0 2 3 4 5 6 7 8 9 10 12 13 14 b15 1 11 TIN19S TIN18S TIN17S TIN15S TIN14S TIN12S TIN16S TIN13S 0 0 0 0 0 1 0 | 0 0 1 0 0 | 0 0 | 0 0 0 0

10.2.5 Output Flip-flop Control Unit

The Output Flip-flop Control Unit controls the flip-flops (F/F) provided for each timer. Following flip-flop control registers are included:

- F/F Source Select Register 0 (FFS0)
- F/F Source Select Register 1 (FFS1)
- F/F Protect Register 0 (FFP0)
- F/F Protect Register 1 (FFP1)
- F/F Data Register 0 (FFD0)
- F/F Data Register 1 (FFD1)

The timing at which signals are generated to the output flip-flop by each timer are shown in Table 10.2.5. (Note that this timing is different from one at which signals are output from the timer to the output event bus.)

10.2.5 Timing at Which Signals Are Generated to the Output Flip-Flop by Each Timer

Timer	Mode	Timing at which signals are generated to the output flip-flop
TOP	Single-shot output mode	When counter is enabled or underflows
	Delayed single-shot output mode	When counter underflows
	Continuous output mode	When counter is enabled or underflows
TIO	Measure clear input mode	When counter underflows
	Measure free-run input mode	When counter underflows
	Noise processing input mode	When counter underflows
	PWM output mode	When counter is enabled or underflows
	Single-shot output mode	When counter is enabled or underflows
	Delayed single-shot output mode	When counter underflows
	Continuous output mode	When counter is enabled or underflows
TMS	(16-bit measure input)	No signals generated
TML	(32-bit measure input)	No signals generated

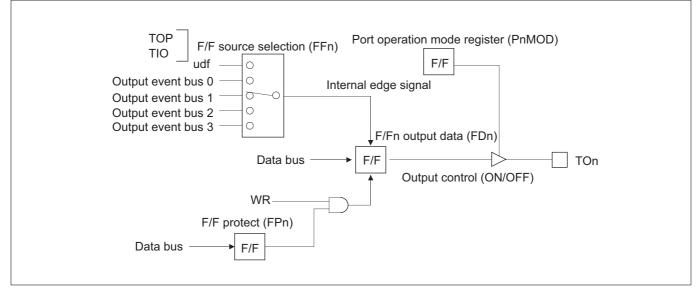


Figure 10.2.2 Configuration of the F/F Output Circuit Table

F/F Source Select Register 0 (FFS0)

<Address: H'0080 0220>

b0)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
				FF15	FF14	FF13	FF12	FF11	FF	10	FF	-9	FF	-8	FF7	FF6
0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		<up< th=""><th>on exiting reset: H'00</th><th>>000</th></up<>	on exiting reset: H'00	>000
b	Bit Name	Function	R	W
0–2	No function assigned. Fix to "0".		0	0
3	FF15	0: TIO4 output	R	W
	F/F15 source select bit	1: Output event bus 0		
4	FF14	0: TIO3 output	R	W
	F/F14 source select bit	1: Output event bus 0		
5	FF13	0: TIO2 output	R	W
	F/F13 source select bit	1: Output event bus 3		
6	FF12	0: TIO1 output	R	W
	F/F12 source select bit	1: Output event bus 2		
7	FF11	0: TIO0 output	R	W
	F/F11 source select bit	1: Output event bus 1		
8, 9	FF10	00: TOP10 output	R	W
	F/F10 source select bit	01: TOP10 output		
		10: Output event bus 0		
		11: Output event bus 1		
10, 11	FF9	00: TOP9 output	R	W
	F/F9 source select bit	01: TOP9 output		
		10: Output event bus 0		
		11: Output event bus 1		
12, 13	FF8	00: TOP8 output	R	W
	F/F8 source select bit	01: Output event bus 0		
		10: Output event bus 1		
		11: Output event bus 2		
14	FF7	0: TOP7 output	R	W
	F/F7 source select bit	1: Output event bus 0		
15	FF6	0: TOP6 output	R	W
	F/F6 source select bit	1: Output event bus 1		

Note: • This register must always be accessed in halfwords.

F/F Source Select Register 1 (FFS1)

b8	9	10	11	12	13	14	b15		
FF1	9	FF	18	FF	17	FF16			
0	0	0	0	0	0	0	0		

<Address: H'0080 0223>

			<upon exiting="" h'00<="" reset:="" th=""><th>)00></th></upon>)00>
b	Bit Name	Function	R	W
8, 9	FF19	00: TIO8 output	R	W
	F/F19 source select bit	01: TIO8 output		
		10: Output event bus 0		
		11: Output event bus 1		
10, 11	FF18	00: TIO7 output	R	W
	F/F18 source select bit	01: TIO7 output		
		10: Output event bus 0		
		11: Output event bus 1		
12, 13	FF17	00: TIO6 output	R	W
	F/F17 source select bit	01: TIO6 output		
		10: Output event bus 0		
		11: Output event bus 1		
14, 15	FF16	00: TIO5 output	R	W
	F/F16 source select bit	01: Output event bus 0		
		10: Output event bus 1		
		11: Output event bus 3		

These registers select the signal source for each output F/F (flip-flop). This signal source can be chosen to be a signal from the internal output bus or an underflow output from each timer.

F/F Protect Register 0 (FFP0)

<Address: H'0080 0224>

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
	5 FP14														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

<Upon exiting reset: H'0000>

b	Bit Name	Function	R	W
0	FP15 (F/F15 protect bit)	0: Enable write to F/F output bit	R	W
1	FP14 (F/F14 protect bit)	1: Disable write to F/F output bit		
2	FP13 (F/F13 protect bit)			
3	FP12 (F/F12 protect bit)			
4	FP11 (F/F11 protect bit)			
5	FP10 (F/F10 protect bit)			
6	FP9 (F/F9 protect bit)			
7	FP8 (F/F8 protect bit)			
8	FP7 (F/F7 protect bit)			
9	FP6 (F/F6 protect bit)			
10	FP5 (F/F5 protect bit)			
11	FP4 (F/F4 protect bit)			
12	FP3 (F/F3 protect bit)			
13	FP2 (F/F2 protect bit)			
14	FP1 (F/F1 protect bit)			
15	FP0 (F/F0 protect bit)			

Note: • This register must always be accessed in halfwords.

F/F Protect Register 1 (FFP1)

b8	9	10	11	12	13	14	b15
			FP20	FP19	FP18	FP17	FP16
0	0	0	0	0	0	0	0

<Address: H'0080 0229>

<Upon exiting reset: H'00>

			<op> <op> initial reset. In</op></op>	-002
b	Bit Name	Function	R	W
8–10	No function assigned. Fix to "0".		0	0
11	FP20 (F/F20 protect bit)	0: Enable write to F/F output bit	R	W
12	FP19 (F/F19 protect bit)	1: Disable write to F/F output bit		
13	FP18 (F/F18 protect bit)			
14	FP17 (F/F17 protect bit)			
15	FP16 (F/F16 protect bit)			

These registers enable or disable write to each output F/F (flip-flop). If write to any output F/F is disabled, writing to the corresponding F/F data register has no effect.

F/F Data Register 0 (FFD0)

b0		1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
FD)15	FD14	FD13	FD12	FD11	FD10 0	FD9	FD8	FD7	FD6	FD5	FD4	FD3	FD2	FD1	FD0
C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

<Address: H'0080 0226>

<u< th=""><th>pon</th><th>exiting</th><th>reset:</th><th>H'0000></th></u<>	pon	exiting	reset:	H'0000>
	P 0	e		

b	Bit Name	Function	R	W
0	FD15 (F/F15 output data bit)	0: F/F output data = 0	R	W
1	FD14 (F/F14 output data bit)	1: F/F output data = 1		
2	FD13 (F/F13 output data bit)			
3	FD12 (F/F12 output data bit)			
4	FD11 (F/F11 output data bit)			
5	FD10 (F/F10 output data bit)			
6	FD9 (F/F9 output data bit)			
7	FD8 (F/F8 output data bit)			
8	FD7 (F/F7 output data bit)			
9	FD6 (F/F6 output data bit)			
10	FD5 (F/F5 output data bit)			
11	FD4 (F/F4 output data bit)			
12	FD3 (F/F3 output data bit)			
13	FD2 (F/F2 output data bit)			
14	FD1 (F/F1 output data bit)			
15	FD0 (F/F0 output data bit)			

Note: • This register must always be accessed in halfwords.

F/F Data Register 1 (FFD1)

b8	9	10	11	12	13	14	b15
			FD20	FD19	FD18	FD17	FD16
0	0	0	0	0	0	0	0

<Address: H'0080 022B>

<Upon exiting reset: H'00>

b	Bit Name	Function	R W
8–10	No function assigned. Fix to "0".		0 0
11	FD20 (F/F20 output data bit)	0: F/F output data = 0	R W
12	FD19 (F/F19 output data bit)	1: F/F output data = 1	
13	FD18 (F/F18 output data bit)		
14	FD17 (F/F17 output data bit)		
15	FD16 (F/F16 output data bit)		

These registers are used to set the data for each output F/F (flip-flop). Although the F/F outputs normally change state depending on timer outputs, the F/F outputs can be set to 1 or cleared to 0 as necessary by writing to this register. The F/F data register can only be operated on when the F/F protect register described previously is enabled for write.

10.2.6 Interrupt Control Unit

The Interrupt Control Unit controls the interrupt request signals output to the Interrupt Controller by each timer. Following timer interrupt control registers are provided for each timer:

- TOP Interrupt Control Register 0 (TOPIR0)
- TOP Interrupt Control Register 1 (TOPIR1)
- TOP Interrupt Control Register 2 (TOPIR2)
- TOP Interrupt Control Register 3 (TOPIR3)
- TIO Interrupt Control Register 0 (TIOIR0)
- TIO Interrupt Control Register 1 (TIOIR1)
- TIO Interrupt Control Register 2 (TIOIR2)
- TMS Interrupt Control Register (TMSIR)
- TIN Interrupt Control Register 0 (TINIR0)
- TIN Interrupt Control Register 1 (TINIR1)
- TIN Interrupt Control Register 4 (TINIR4)
- TIN Interrupt Control Register 5 (TINIR5)
- TIN Interrupt Control Register 6 (TINIR6)

For interrupts which have only one interrupt source in the interrupt vector table, no interrupt control registers are included in the timer, and the interrupt status flags are automatically managed within the Interrupt Controller. The relevant timer interrupt is the following.

(For details, see Chapter 5, "Interrupt Controller.")

• TOP10 MJT Output Interrupt 5 (IRQ5)

For interrupts which have two or more interrupt sources in the interrupt vector table, interrupt control registers are included, with which to control interrupt requests and determine interrupt input. Therefore, the status flags in the Interrupt Controller only serve as a bit to determine interrupt requests from interrupt-enabled sources and cannot be accessed for write.

(1) Interrupt request status bit

This status bit is used to determine whether there is an interrupt request. When an interrupt request occurs, this bit is set in hardware (cannot be set in software). The status bit is cleared by writing "0". Writing "1" has no effect; the bit retains the status it had before the write. Because this status bit is unaffected by the interrupt mask bit, it can be used to inspect the operating status of peripheral functions.

In interrupt handling, make sure that within the grouped interrupt request status, only the status bit for the interrupt request that has been serviced is cleared. If the status bit for any interrupt request that has not been serviced is cleared, the pending interrupt request is cleared simultaneously with its status bit.

(2) Interrupt mask bit

This bit is used to disable unnecessary interrupts within the grouped interrupt. Set this bit to "0" to enable interrupts or "1" to disable interrupts.

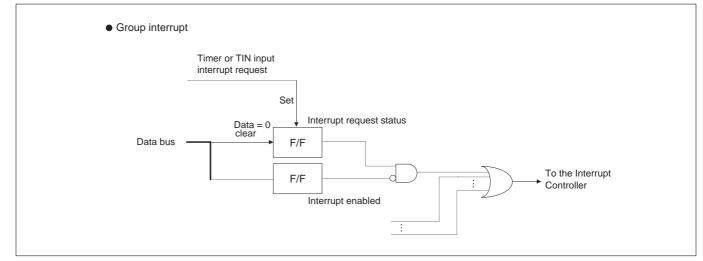


Figure 10.2.3 Interrupt Request Status and Mask Registers

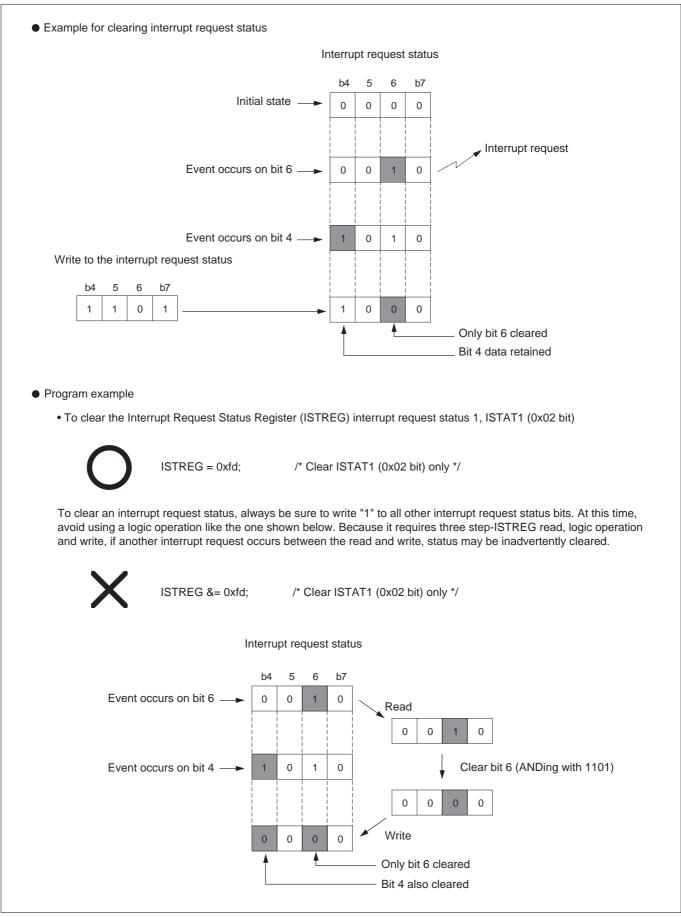


Figure 10.2.4 Example for Clearing Interrupt Request Status

The table below shows the relationship between the interrupt signals generated by multijunction timers and the interrupt sources input to the Interrupt Controller (ICU).

Signal Name	Generated by	ICU Interrupt Input Source (Note 1)	No. of Input Sources
IRQ0	TIO0, TIO1, TIO2, TIO3	MJT output interrupt 0	4
IRQ1	TOP6, TOP7	MJT output interrupt 1	2
IRQ2	TOP0, TOP1, TOP2, TOP3, TOP4, TOP5	MJT output interrupt 2	6
IRQ3	TIO8, TIO9	MJT output interrupt 3	2
IRQ4	TIO4, TIO5, TIO6, TIO7	MJT output interrupt 4	4
IRQ6	TOP8, TOP9	MJT output interrupt 6	2
IRQ7	TMS0, TMS1	MJT output interrupt 7	2
IRQ9	TIN0	MJT input interrupt 1	1
IRQ10	TIN16, TIN17, TIN18, TIN19	MJT input interrupt 2	4
IRQ11	TIN20, TIN21, TIN22, TIN23	MJT input interrupt 3	4
IRQ12	TIN3	MJT input interrupt 4	1

Table 10.2.6 Interrupt Signals Generated by MJT

Note 1: See Chapter 5, "Interrupt Controller (ICU)."

Note: • TOP10 has only one interrupt source in each interrupt group, so that their status and mask registers are nonexistent in the MJT interrupt control registers. (They are controlled directly by the Interrupt Controller.)

b

0, 1

TOP Interrupt Control Register 0 (TOPIR0)

Bit Name

b0	1	2	3	4	5	6	b7
		TOPIS5	TOPIS4	TOPIS3	TOPIS2	TOPIS1	TOPIS0
0	0	0	0	0	0	0	0

<Address: H'0080 0230>

<Upon exiting reset: H'00> Function R W No function assigned. Fix to "0". 0 0

2	TOPIS5 (TOP5 interrupt request status bit)	0: Interrupt not requested	R(Note 1)
3	TOPIS4 (TOP4 interrupt request status bit)	1: Interrupt requested	
4	TOPIS3 (TOP3 interrupt request status bit)		
5	TOPIS2 (TOP2 interrupt request status bit)		
6	TOPIS1 (TOP1 interrupt request status bit)		
7	TOPIS0 (TOP0 interrupt request status bit)		

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

TOP Interrupt Control Register 1 (TOPIR1)

b8	9	10	11	12	13	14	b15
		TOPIM5	TOPIM4	TOPIM3	TOPIM2	TOPIM1	TOPIM0
0	0	0	0	0	0	0	0

<Address: H'0080 0231>

<Upon exiting reset: H'00>

			-1	
b	Bit Name	Function	R	W
8, 9	No function assigned. Fix to "0".		0	0
10	TOPIM5 (TOP5 interrupt request mask bit)	0: Enable interrupt request	R	W
11	TOPIM4 (TOP4 interrupt request mask bit)	1: Mask (disable) interrupt request		
12	TOPIM3 (TOP3 interrupt request mask bit)			
13	TOPIM2 (TOP2 interrupt request mask bit)			
14	TOPIM1 (TOP1 interrupt request mask bit)			
15	TOPIM0 (TOP0 interrupt request mask bit)			

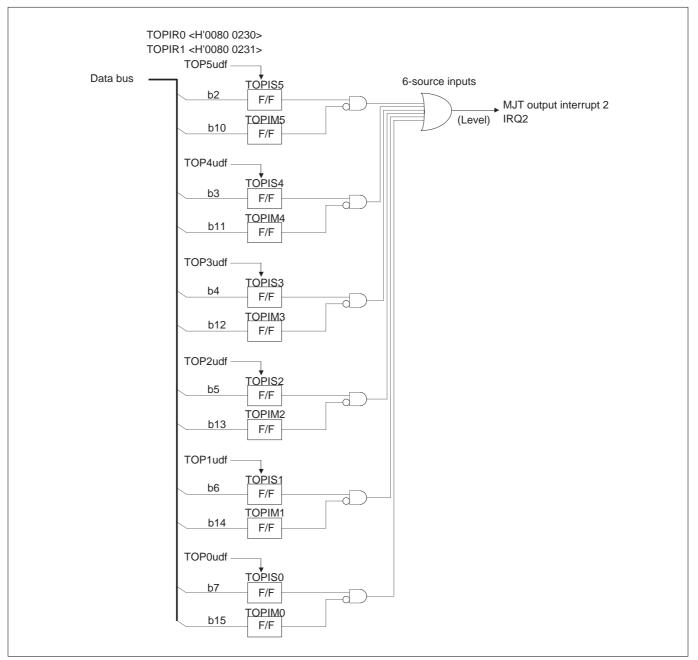


Figure 10.2.5 Block Diagram of MJT Output Interrupt 2

TOP Interrupt Control Register 2 (TOPIR2)

b0	1	2	3	4	5	6	b7
		TOPIS7	TOPIS6			TOPIM7	TOPIM6
0	0	0	0	0	0	0	0

<Address: H'0080 0232>

		<	Upon exiting reset: H	'00>
b	Bit Name	Function	R	W
0, 1	No function assigned. Fix to "0".		0	0
2	TOPIS7 (TOP7 interrupt request status bit)	0: Interrupt not requested	R(1	Note 1)
3	TOPIS6 (TOP6 interrupt request status bit)	1: Interrupt requested		
4, 5	No function assigned. Fix to "0".		0	0
6	TOPIM7 (TOP7 interrupt request mask bit)	0: Enable interrupt request	R	W
7	TOPIM6 (TOP6 interrupt request mask bit)	1: Mask (disable) interrupt request		

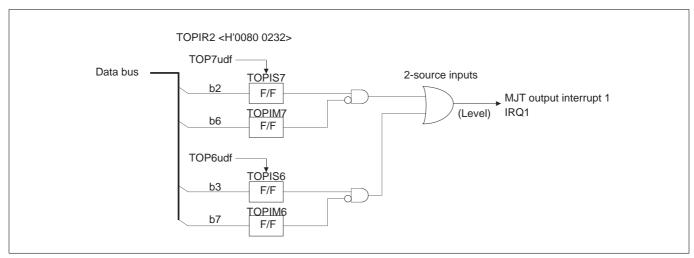


Figure 10.2.6 Block Diagram of MJT Output Interrupt 1

TOP Interrupt Control Register 3 (TOPIR3)

b8	9	10	11	12	13	14	b15
		TOPIS9	TOPIS8			TOPIM9	TOPIM8
0	0	0	0	0	0	0	0

<Address: H'0080 0233>

		•	<upon exiting="" h<="" reset:="" th=""><th>l'00></th></upon>	l'00>
b	Bit Name	Function	R	W
8,9	No function assigned. Fix to "0".		0	0
10	TOPIS9 (TOP9 interrupt request status bit)	0: Interrupt not requested	R(1	Note 1
11	TOPIS8 (TOP8 interrupt request status bit)	1: Interrupt requested		
12,13	No function assigned. Fix to "0".		0	0
14	TOPIM9 (TOP9 interrupt request mask bit)	0: Enable interrupt request	R	W
15	TOPIM8 (TOP8 interrupt request mask bit)	1: Mask (disable) interrupt request		

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

Note: • TOP10 has only one interrupt source in the interrupt group, so that its status and mask registers are nonexistent in the MJT interrupt control registers. (They are controlled directly by the Interrupt Controller.)

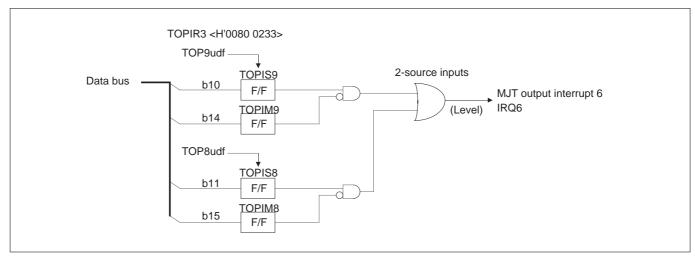


Figure 10.2.7 Block Diagram of MJT Output Interrupt 6

TIO Interrupt Control Register 0 (TIOIR0)

b0	1	2	3	4	5	6	b7
TIOIS3	TIOIS2	TIOIS1	TIOIS0	TIOIM3	TIOIM2	TIOIM1	TIOIM0
0	0	0	0	0	0	0	0

<Address: H'0080 0234>

		<upon (<="" th=""><th>exiting reset: H'00></th></upon>	exiting reset: H'00>
b	Bit Name	Function	R W
0	TIOIS3 (TIO3 interrupt request status bit)	0: Interrupt not requested	R(Note 1
1	TIOIS2 (TIO2 interrupt request status bit)	1: Interrupt requested	
2	TIOIS1 (TIO1 interrupt request status bit)		
3	TIOIS0 (TIO0 interrupt request status bit)		
4	TIOIM3 (TIO3 interrupt request mask bit)	0: Enable interrupt request	R W
5	TIOIM2 (TIO2 interrupt request mask bit)	1: Mask (disable) interrupt request	
6	TIOIM1 (TIO1 interrupt request mask bit)		
7	TIOIM0 (TIO0 interrupt request mask bit)		

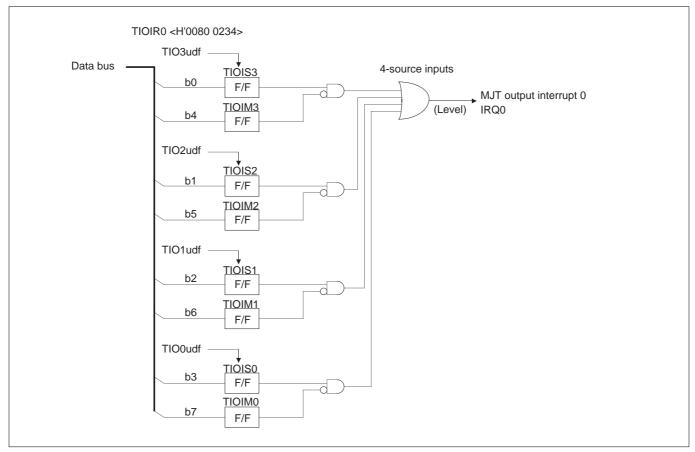


Figure 10.2.8 Block Diagram of MJT Output Interrupt 0

TIO Interrupt Control Register 1 (TIOIR1)

b8	3	9	10	11	12	13	14	b15
TIOI	S7 .	TIOIS6	TIOIS5	TIOIS4	TIOIM7	TIOIM6	TIOIM5	TIOIM4
0		0	0	0	0	0	0	0

<Address: H'0080 0235>

		<upon e<="" th=""><th>exiting reset: H'00></th></upon>	exiting reset: H'00>
b	Bit Name	Function	R W
8	TIOIS7 (TIO7 interrupt request status bit)	0: Interrupt not requested	R(Note 1
9	TIOIS6 (TIO6 interrupt request status bit)	1: Interrupt requested	
10	TIOIS5 (TIO5 interrupt request status bit)		
11	TIOIS4 (TIO4 interrupt request status bit)		
12	TIOIM7 (TIO7 interrupt request mask bit)	0: Enable interrupt request	R W
13	TIOIM6 (TIO6 interrupt request mask bit)	1: Mask (disable) interrupt request	
14	TIOIM5 (TIO5 interrupt request mask bit)		
15	TIOIM4 (TIO4 interrupt request mask bit)		

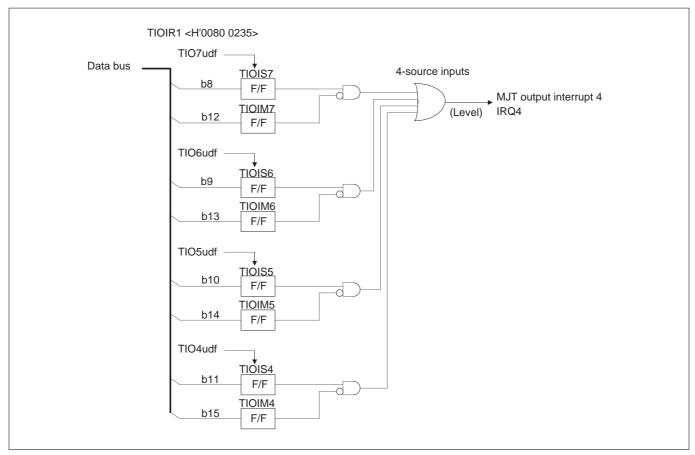


Figure 10.2.9 Block Diagram of MJT Output Interrupt 4

TIO Interrupt Control Register 2 (TIOIR2)

b0	1	2	3	4	5	6	b7
		TIOIS9	TIOIS8			TIOIM9	TIOIM8
0	0	0	0	0	0	0	0

<Address: H'0080 0236>

			<upon exiting="" h<="" reset:="" th=""><th>ľ'00></th></upon>	ľ'00>
b	Bit Name	Function	R	W
0, 1	No function assigned. Fix to "0".		0	0
2	TIOIS9 (TIO9 interrupt request status bit)	0: Interrupt not requested	R(I	Note 1)
3	TIOIS8 (TIO8 interrupt request status bit)	1: Interrupt requested		
4, 5	No function assigned. Fix to "0".		0	0
6	TIOIM9 (TIO9 interrupt request mask bit)	0: Enable interrupt request	R	W
7	TIOIM8 (TIO8 interrupt request mask bit)	1: Mask (disable) interrupt request		

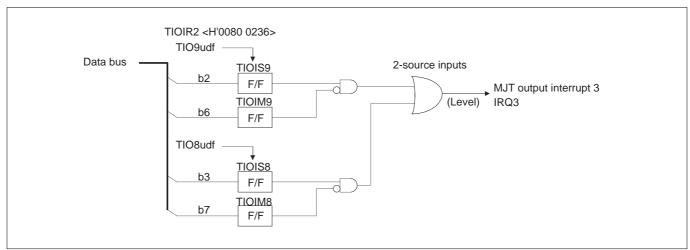


Figure 10.2.10 Block Diagram of MJT Output Interrupt 3

TMS Interrupt Control Register (TMSIR)

b8	9	10	11	12	13	14	b15
		TMSIS1	TMSIS0			TMSIM1	TMSIMO
0	0	0	0	0	0	0	0

<Address: H'0080 0237>

b	Bit Name	Function	R	W
8, 9	No function assigned. Fix to "0".		0	0
10	TMSIS1 (TMS1 interrupt request status bit) 0: Interrupt not requested		R(Note '
11	TMSIS0 (TMS0 interrupt request status bit)	1: Interrupt requested		
12, 13	No function assigned. Fix to "0".		0	0
14	TMSIM1 (TMS1 interrupt request mask bit)	0: Enable interrupt request	R	W
15	TMSIM0 (TMS0 interrupt request mask bit)	1: Mask (disable) interrupt request		

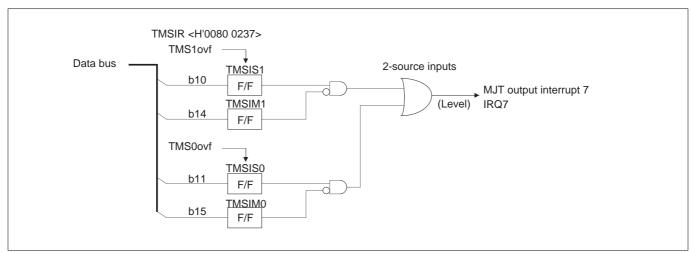


Figure 10.2.11 Block Diagram of MJT Output Interrupt 7

TIN Interrupt Control Register 0 (TINIR0)

b0	1	2	3	4	5	6	b7
			TINIS0		TINIM2	TINIM1	TINIM0
0	0	0	0	0	0	0	0

<Address: H'0080 0238>

			<upon exiting="" h<="" reset:="" th=""><th>'00></th></upon>	'00>
b	Bit Name	Function	R	W
0-2	No function assigned. Fix to "0".		0	0
3	TINISO	0: Interrupt not requested	R(N	Note 1
	TIN0 interrupt request status bit	1: Interrupt requested		
4	No function assigned. Fix to "0".		0	0
5	TINIM2	Fix to "0".	0	0
	Reserved bit			
6	TINIM1			
	Reserved bit			
7	TINIMO	0: Enable interrupt request	R	W
	TIN0 interrupt request mask bit	1: Mask (disable) interrupt request		

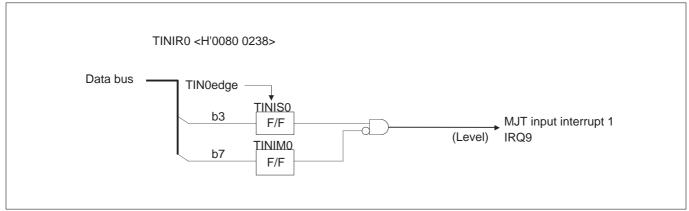


Figure 10.2.12 Block Diagram of MJT Input Interrupt 1

TIN Interrupt Control Register 1 (TINIR1)

b8	9	10	11	12	13	14	b15
			TINIS3	TINIM6	TINIM5	TINIM4	TINIM3
0	0	0	0	0	0	0	0

			<upon exiting="" h<="" reset:="" th=""><th>'00></th></upon>	'00>
b	Bit Name	Function	R	W
8-10	No function assigned. Fix to "0".		0	0
11	TINIS3	0: Interrupt not requested	R(1	Note 1)
	TIN3 interrupt request status bit	1: Interrupt requested		
12	TINIM6	Fix to "0".	0	0
	Reserved bit			
13	TINIM5			
	Reserved bit			
14	TINIM4			
	Reserved bit			
15	TINIM3	0: Enable interrupt request	R	W
	TIN3 interrupt request mask bit	1: Mask (disable) interrupt request		

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

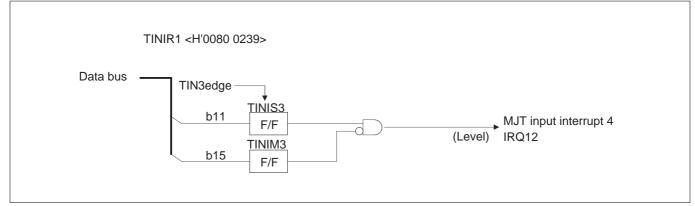


Figure 10.2.13 Block Diagram of MJT Input Interrupt 4

<Address: H'0080 0239>

TIN Interrupt Control Register 4 (TINIR4)

b0	1	2	3	4	5	6	b7
TINIS19	TINIS18	TINIS17	TINIS16				
0	0	0	0	0	0	J 0	0

<Address: H'0080 023C>

			<upon exiting="" h'00="" reset:=""></upon>
b	Bit Name	Function	R W
0	TINIS19 (TIN19 interrupt request status bit)	0: Interrupt not requested	R(Note 1)
1	TINIS18 (TIN18 interrupt request status bit)	1: Interrupt requested	
2	TINIS17 (TIN17 interrupt request status bit)		
3	TINIS16 (TIN16 interrupt request status bit)		
4-7	No function assigned. Fix to "0".		0 0

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

TIN Interrupt ControlRegister 5 (TINIR5)

b8	9	10	11	12	13	14	b15
TINIM19	TINIM18	TINIM17	TINIM16	TINIM15	TINIM14	TINIM13	TINIM12
0	0	0	0	0	0	0	0

<Upon exiting reset: H'00> **Bit Name** Function W b R 8 TINIM19 (TIN19 interrupt request mask bit) 0: Enable interrupt request R W 9 TINIM18 (TIN18 interrupt request mask bit) 1: Mask (disable) interrupt request 10 TINIM17 (TIN17 interrupt request mask bit) 11 TINIM16 (TIN16 interrupt request mask bit) 12 TINIM15 (Reserved bit) Fix to "0". 0 0 13 TINIM14 (Reserved bit) TINIM13 (Reserved bit) 14 15 TINIM12 (Reserved bit)

<Address: H'0080 023D>

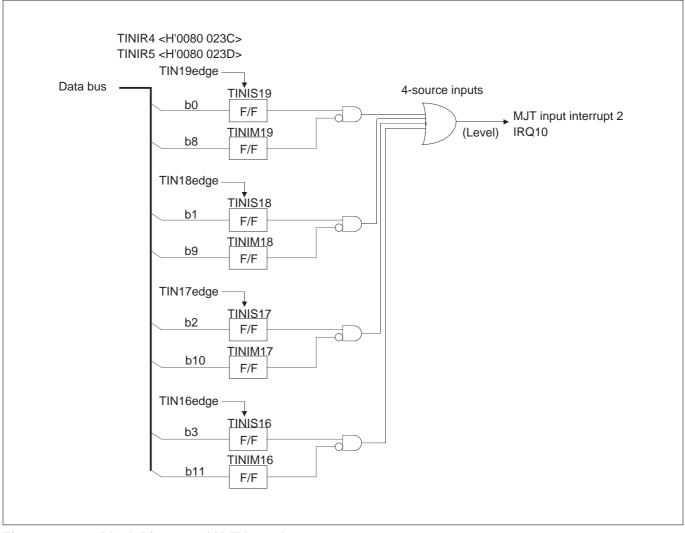


Figure 10.2.14 Block Diagram of MJT Input Interrupt 2

TIN Interrupt Control Register 6 (TINIR6)

b0	1	2	3	4	5	6	b7
TINIS23	TINIS22	TINIS21	TINIS20	TINIM23	TINIM22	TINIM21	TINIM20
0	0	0	0	0	0	0	0

		<upon e<="" th=""><th>exiting reset: H'00></th></upon>	exiting reset: H'00>
b	Bit Name	Function	R W
0	TINIS23 (TIN23 interrupt request status bit)	0: Interrupt not requested	R(Note 1)
1	TINIS22 (TIN22 interrupt request status bit)	1: Interrupt requested	
2	TINIS21 (TIN21 interrupt request status bit)		
3	TINIS20 (TIN20 interrupt request status bit)		
4	TINIM23 (TIN23 interrupt request mask bit)	0: Enable interrupt request	R W
5	TINIM22 (TIN22 interrupt request mask bit)	1: Mask (disable) interrupt request	
6	TINIM21 (TIN21 interrupt request mask bit)		
7	TINIM20 (TIN20 interrupt request mask bit)		

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

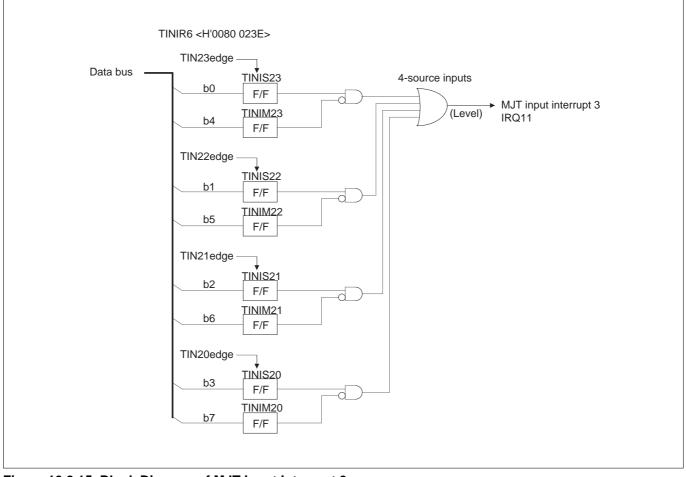


Figure 10.2.15 Block Diagram of MJT Input Interrupt 3

<Address: H'0080 023E>

10.3 TOP (Output-Related 16-Bit Timer)

10.3.1 Outline of TOP

Interrupt request generation

TOP (Timer OutPut) is an output-related 16-bit timer, whose operation mode can be selected from the following by mode switching in software:

- · Single-shot output mode
- Delayed single-shot output mode
- Continuous output mode

Table 10.3.1 below shows specifications of TOP. Figure 10.3.1 shows a block diagram of TOP.

Item	Specification
Number of channels	11 channels
Counter	16-bit down-counter
Reload register	16-bit reload register
Correction register	16-bit correction register
Timer startup	Started by writing to the enable bit in software or enabled by external input (rising or
	falling edge or both)
Mode switching	<with correction="" function=""></with>
	Single-shot output mode
	 Delayed single-shot output mode
	<without correction="" function=""></without>

· Continuous output mode

Can be generated by a counter underflow

40.04.0 ATOD (Output Deleted 40 Dit Ti

MULTIJUNCTION TIMERS 10.3 TOP (Output-Related 16-Bit Timer)

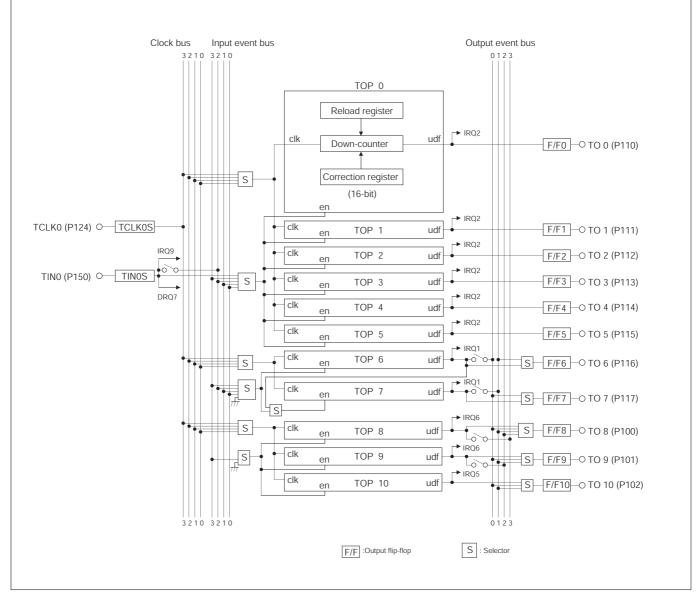


Figure 10.3.1 Block Diagram of TOP (Output-Related 16-Bit Timer)

10.3.2 Outline of Each Mode of TOP

Each mode of TOP is outlined below. For each TOP channel, only one of the following modes can be selected.

(1) Single-shot output mode

In single-shot output mode, the timer generates a pulse in width of (reload register set value + 1) only once and then stops.

When the timer is enabled (by writing to the enable bit in software or by external input) after setting the reload register, the counter is loaded with the content of the reload register and starts counting synchronously with the count clock. The counter counts down and stops when it underflows after reaching the minimum count.

The F/F output waveform in single-shot output mode is inverted at startup and upon underflow, generating a single-shot pulse waveform in width of (reload register set value + 1) only once. An interrupt request can be generated when the counter underflows.

(2) Delayed single-shot output mode

In delayed single-shot output mode, the timer generates a pulse in width of (reload register set value + 1) after a finite time equal to (counter set value + 1) only once and then stops.

When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload register, it starts counting down from the counter's set value synchronously with the count clock. The first time the counter underflows, it is loaded with the reload register value and continues counting down. The counter stops when it underflows next time.

The F/F output waveform in delayed single-shot output mode is inverted when the counter underflows first time and next, generating a single-shot pulse waveform in width of (reload register set value + 1) after a finite time equal to (first set value of counter + 1) only once.

An interrupt request can be generated when the counter underflows first time and next.

(3) Continuous output mode

In continuous output mode, the timer counts down starting from the set value of the counter and when the counter underflows, it is loaded with the reload register value. Thereafter, this operation is repeated each time the counter underflows, thus generating consecutive pulses whose waveform is inverted in width of (reload register set value + 1).

When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload register, it starts counting down from the counter's set value synchronously with the count clock and when the minimum count is reached, generates an underflow. This underflow causes the counter to be loaded with the content of the reload register and start counting over again. Thereafter, this operation is repeated each time an underflow occurs. To stop the counter, disable count by writing to the enable bit in software.

The F/F output waveform in continuous output mode is inverted at startup and upon underflow, generating a waveform of consecutive pulses until the timer stops counting. An interrupt request can be generated each time the counter underflows.

<Count clock-dependent delay>

• Because the timer operates synchronously with the count clock, there is a count clock-dependent delay from when the timer is enabled till when it actually starts operating. In operation mode where the F/F output is inverted when the timer is enabled, the F/F output is inverted synchronously with the count clock.

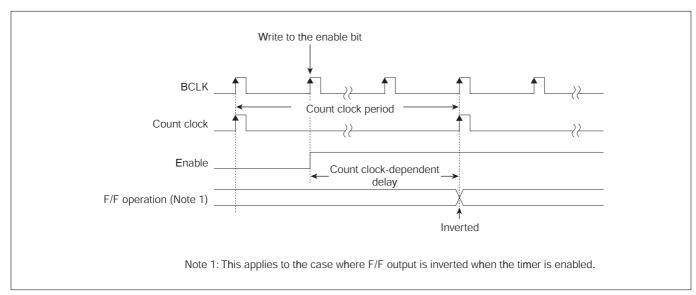


Figure 10.3.2 Count Clock Dependent Delay

10.3.3 TOP Related Register Map

Shown below is a TOP related register map.

TOP Related Register Map (1/2)

Address	+0 address +1 address b7 b8 b15	See pages
H'0080 0240	TOP0 Counter (TOP0CT)	10-53
H'0080 0242	TOP0 Reload Register (TOP0RL)	10-54
H'0080 0244	(Use inhibited area)	
H'0080 0246	TOP0 Correction Register	10-55
	(TOP0CC) (Use inhibited area)	
H'0080 0250	TOP1 Counter	10-53
H'0080 0252	(TOP1CT) TOP1 Reload Register	10-54
H'0080 0254	(TOP1RL) (Use inhibited area)	
H'0080 0256	TOP1 Correction Register	10-55
I	(TOP1CC) (Use inhibited area)	
H'0080 0260	TOP2 Counter	10-53
H'0080 0262	(TOP2CT) TOP2 Reload Register	10-54
H'0080 0264	(TOP2RL) (Use inhibited area)	
H'0080 0266	TOP2 Correction Register	10-55
I	(TOP2CC) (Use inhibited area)	
H'0080 0270	TOP3 Counter (TOP3CT)	10-53
H'0080 0272	TOP3 Reload Register (TOP3RL)	10-54
H'0080 0274	(Use inhibited area)	
H'0080 0276	TOP3 Correction Register (TOP3CC)	10-55
I	(Use inhibited area)	
H'0080 0280	TOP4 Counter (TOP4CT)	10-53
H'0080 0282	TOP4 Reload Register (TOP4RL)	10-54
H'0080 0284	(Use inhibited area)	
H'0080 0286	TOP4 Correction Register (TOP4CC)	10-55
I	(Use inhibited area)	
H'0080 0290	TOP5 Counter (TOP5CT)	10-53
H'0080 0292	TOP5 Reload Register (TOP5RL)	10-54
H'0080 0294	(Use inhibited area)	
H'0080 0296	TOP5 Correction Register (TOP5CC)	10-55
H'0080 0298	(Use inhibited area)	

TOP Related Register Map (2/2)

Address	+0 address +1 address b7 b8 b15	See pages
H'0080 029A	TOP0-5 Control Register 0 (TOP05CR0)	10-49
H'0080 029C	(Use inhibited area) TOP0–5 Control Register 1 (TOP05CR1)	10-49
H'0080 029E	(Use inhibited area)	
H'0080 02A0	TOP6 Counter (TOP6CT)	10-53
H'0080 02A2	TOP6 Reload Register (TOP6RL)	10-54
H'0080 02A4	(Use inhibited area)	
H'0080 02A6	TOP6 Correction Register (TOP6CC)	10-55
H'0080 02A8	(Use inhibited area)	
H'0080 02AA	TOP6,7 Control Register (TOP67CR)	10-51
	(Use inhibited area)	
H'0080 02B0	TOP7 Counter (TOP7CT)	10-53
H'0080 02B2	TOP7 Reload Register (TOP7RL)	10-54
H'0080 02B4	(Use inhibited area)	
H'0080 02B6	TOP7 Correction Register (TOP7CC)	10-55
I	(Use inhibited area)	
H'0080 02C0	TOP8 Counter (TOP8CT)	10-53
H'0080 02C2	TOP8 Reload Register (TOP8RL)	10-54
H'0080 02C4	(Use inhibited area)	
H'0080 02C6	TOP8 Correction Register (TOP8CC)	10-55
I	(Use inhibited area)	
H'0080 02D0	TOP9 Counter (TOP9CT)	10-53
H'0080 02D2	TOP9 Reload Register (TOP9RL)	10-54
H'0080 02D4	(Use inhibited area)	
H'0080 02D6	TOP9 Correction Register (TOP9CC)	10-55
I	(Use inhibited area)	
H'0080 02E0	TOP10 Counter (TOP10CT)	10-53
H'0080 02E2	TOP10 Reload Register (TOP10RL)	10-54
H'0080 02E4	(Use inhibited area)	
H'0080 02E6	TOP10 Correction Register (TOP10CC)	10-55
H'0080 02E8	(Use inhibited area)	
H'0080 02EA	TOP8–10 Control Register (TOP810CR)	10-52
I	(Use inhibited area)	
H'0080 02FA	TOP0-10 External Enable Permit Register (TOPEEN)	10-56
H'0080 02FC	TOP0-10 Enable Protect Register (TOPPRO)	10-56
H'0080 02FE	TOP0-10 Count Enable Register (TOPCEN)	10-57

10.3.4 TOP Control Registers

1()

The TOP control registers are used to select operation modes of TOP0–10 (single-shot output, delayed singleshot output or continuous output mode), as well as select the count enable and count clock sources. Following TOP control registers are provided for each timer group.

- TOP0-5 Control Register 0 (TOP05CR0)
- TOP0-5 Control Register 1 (TOP05CR1)
- TOP6,7 Control Register (TOP67CR)
- TOP8–10 Control Register (TOP810CR)

MULTIJUNCTION TIMERS 10.3 TOP (Output-Related 16-Bit Timer)

TOP0-5 Control Register 0 (TOP05CR0)

<Address: H'0080 029A>

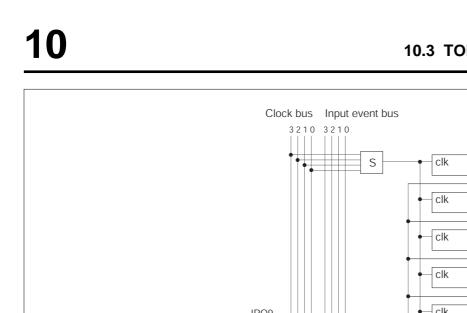
b0 1	2 3	4 5	6 7	8	9 10	11	12 1	3 14 b15
TOP3M	TOP2M	TOP1M	TOP0M		TOP05	ENS		TOP05CKS
0 0	0 0	0 0	0 0	0	0 0	0	0	0 0 0

		<upon exitir<="" th=""><th colspan="5">exiting reset: H'0000></th></upon>	exiting reset: H'0000>				
b	Bit Name	Function	R	W			
0, 1	TOP3M (TOP3 operation mode select bit)	00: Single-shot output mode	R	W			
2, 3	TOP2M (TOP2 operation mode select bit)	01: Delayed single-shot output mode					
4, 5	TOP1M (TOP1 operation mode select bit)	10: Continuous output mode					
6, 7	TOP0M (TOP0 operation mode select bit)	11: Continuous output mode					
8	No function assigned. Fix to "0".		0	0			
9–11	TOP05ENS	000: External TIN0 input	R	W			
	TOP0–5 enable source select bit	001: External TIN0 input					
		010: External TIN0 input					
		011: External TIN0 input					
		100: Input event bus 0					
		101: Input event bus 1					
		110: Input event bus 2					
		111: Input event bus 3					
12, 13	No function assigned. Fix to "0".		0	0			
14, 15	TOP05CKS	00: Clock bus 0	R	W			
	TOP0–5 clock source select bit	01: Clock bus 1					
		10: Clock bus 2					
		11: Clock bus 3					

Notes: • This register must always be accessed in halfwords.

• Operation mode can only be set or changed while the counter is inactive.

TOP0–5 Control Register 1 (TOP05CR1)


b8	9	10	11	12	13	14	b15
				TOP5M		TOF	P4M
0	0	0	0	0	0	0	0

<Address: H'0080 029D>

<Upon exiting reset: H'00>

			-	
b	Bit Name	Function	R	W
8–11	No function assigned. Fix to "0".		0	0
12, 13	TOP5M (TOP5 operation mode select bit)	00: Single-shot output mode	R	W
14, 15	TOP4M (TOP4 operation mode select bit)	01: Delayed single-shot output mode		
		10: Continuous output mode		
		11: Continuous output mode		

Note: • Operation mode can only be set or changed while the counter is inactive.

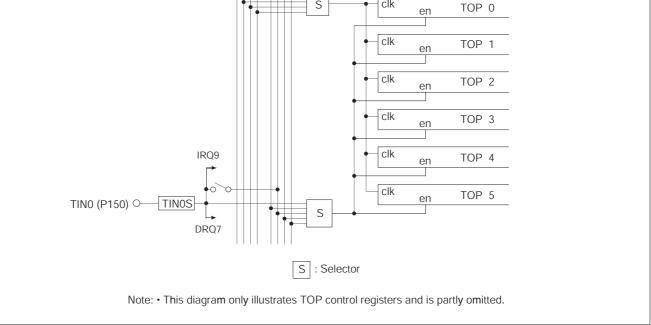


Figure 10.3.3 Outline Diagram of TOP0–5 Clock and Enable Inputs

MULTIJUNCTION TIMERS 10.3 TOP (Output-Related 16-Bit Timer)

TOP6,7 Control Register (TOP67CR)

<Address: H'0080 02AA>

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
	TOP7 ENS	TO				TOP	P6M		тс	DP67E	NS			TOP6	7CKS
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

<upon< th=""><th>exiting</th><th>reset:</th><th>H'0000></th></upon<>	exiting	reset:	H'0000>
-Opon	oxiang	10000	1100002

b	Bit Name	Function	R	W
0	No function assigned. Fix to "0".		0	0
1	TOP7ENS	0: Result selected by TOP67ENS bit	R	W
	TOP7 enable source select bit	1: TOP6 output		
2, 3	TOP7M	00: Single-shot output mode	R	W
	TOP7 operation mode select bit	01: Delayed single-shot output mode		
		10: Continuous output mode		
		11: Continuous output mode		
4, 5	No function assigned. Fix to "0".		0	0
6, 7	TOP6M	00: Single-shot output mode	R	W
	TOP6 operation mode select bit	01: Delayed single-shot output mode		
		10: Continuous output mode		
		11: Continuous output mode		
8	No function assigned. Fix to "0".		0	0
9–11	TOP67ENS	000: Does not select enable source	R	W
	TOP6, TOP7 enable source select bit	001: Does not select enable source		
		010: Does not select enable source		
		011: Does not select enable source		
		100: Input event bus 0		
		101: Input event bus 1		
		110: Input event bus 2		
		111: Input event bus 3		
12, 13	No function assigned. Fix to "0".		0	0
14, 15	TOP67CKS	00: Clock bus 0	R	W
	TOP6, TOP7 clock source select bit	01: Clock bus 1		
		10: Clock bus 2		
		11: Clock bus 3		

Note 1: This register must always be accessed in halfwords.

Note : • Operation mode can only be set or changed while the counter is inactive.

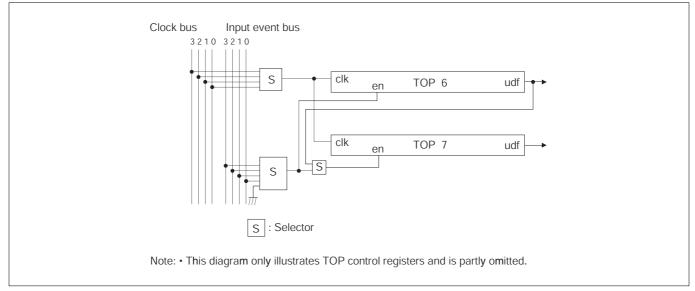


Figure 10.3.4 Outline Diagram of TOP6, TOP7 Clock and Enable Inputs

TOP8–10 Control Register (TOP810CR)

<Address: H'0080 02EA>

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
0	0	TOP10 0	0M 0	TOF 0	9M 0	TOF 0	28M	0	1 0	10	TOP810 ENS 0	0	I 0	TOP8 0	10CKS 0

<Upon exiting reset: H'0000>

b	Bit Name	Function	R	W
0, 1	No function assigned. Fix to "0".		0	0
2, 3	TOP10M	00: Single-shot output mode	R	W
	TOP10 operation mode select bit	01: Delayed single-shot output mode		
4, 5	ТОР9М	10: Continuous output mode		
	TOP9 operation mode select bit	11: Continuous output mode		
6, 7	TOP8M			
	TOP8 operation mode select bit			
8–10	No function assigned. Fix to "0".		0	0
11	TOP810ENS	0: Does not select enable source	R	W
	TOP8–10 enable source select bit	1: Input event bus 3		
12, 13	No function assigned. Fix to "0".		0	0
14, 15	TOP810CKS	00: Clock bus 0	R	W
	TOP8–10 clock source select bit	01: Clock bus 1		
		10: Clock bus 2		
		11: Clock bus 3		

Notes: • This register must always be accessed in halfwords.

• Operation mode can only be set or changed while the counter is inactive.

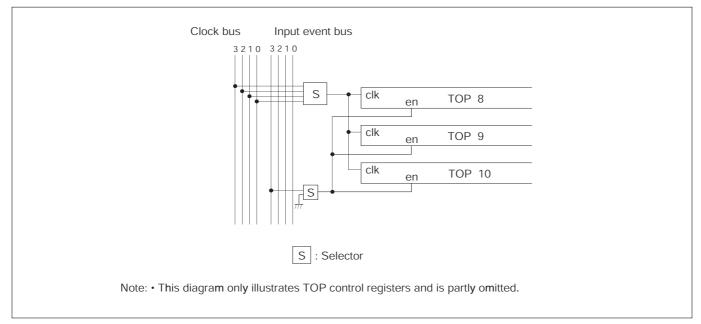


Figure 10.3.5 Outline Diagram of TOP8–10 Clock and Enable Inputs

10.3.5 TOP Counters (TOP0CT-TOP10CT)

TOP0 Counter (TOP0CT) <address: h'00<="" th=""><th>80 0240></th></address:>	80 0240>
TOP1 Counter (TOP1CT) <address: h'00<="" td=""><td>80 0250></td></address:>	80 0250>
TOP2 Counter (TOP2CT) <address: h'00<="" td=""><td>80 0260></td></address:>	80 0260>
TOP3 Counter (TOP3CT) <address: h'00<="" td=""><td>80 0270></td></address:>	80 0270>
TOP4 Counter (TOP4CT) <address: h'00<="" td=""><td>80 0280></td></address:>	80 0280>
TOP5 Counter (TOP5CT) <address: h'00<="" td=""><td>80 0290></td></address:>	80 0290>
TOP6 Counter (TOP6CT) <address: h'00<="" td=""><td>80 02A0></td></address:>	80 02A0>
TOP7 Counter (TOP7CT) <address: h'00<="" td=""><td>80 02B0></td></address:>	80 02B0>
TOP8 Counter (TOP8CT) <address: h'00<="" td=""><td>80 02C0></td></address:>	80 02C0>
TOP9 Counter (TOP9CT) <address: h'00<="" td=""><td>80 02D0></td></address:>	80 02D0>
TOP10 Counter (TOP10CT) <address: h'00<="" td=""><td>80 02E0></td></address:>	80 02E0>
b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15	
TOP0CT-TOP10CT	
? ? ? ? ? ? ? ? ? ?	
<upon exiting="" reset:<="" td=""><td>Undefined></td></upon>	Undefined>

b	Bit Name	Function	R	W
0–15	TOP0CT-TOP10CT	16-bit counter value	R	W

Note: • These registers must always be accessed in halfwords.

The TOP counters are a 16-bit down-counter. After the timer is enabled (by writing to the enable bit in software or by external input), the counter starts counting synchronously with the count clock.

10.3.6 TOP Reload Registers (TOP0RL–TOP10RL)

TOP0 Reload Register (TOP0RL) <address: 0242="" h'0080=""></address:>
TOP1 Reload Register (TOP1RL) <address: 0252="" h'0080=""></address:>
TOP2 Reload Register (TOP2RL) <address: 0262="" h'0080=""></address:>
TOP3 Reload Register (TOP3RL) <address: 0272="" h'0080=""></address:>
TOP4 Reload Register (TOP4RL) <address: 0282="" h'0080=""></address:>
TOP5 Reload Register (TOP5RL) <address: 0292="" h'0080=""></address:>
TOP6 Reload Register (TOP6RL) <address: 02a2="" h'0080=""></address:>
TOP7 Reload Register (TOP7RL) <address: 02b2="" h'0080=""></address:>
TOP8 Reload Register (TOP8RL) <address: 02c2="" h'0080=""></address:>
TOP9 Reload Register (TOP9RL) <address: 02d2="" h'0080=""></address:>
TOP10 Reload Register (TOP10RL) <address: 02e2="" h'0080=""></address:>
b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15
TOP0RL-TOP10RL
? ? ? ? ? ? ? ? ? ?
Inon exiting reset: Undefined>

		 Opon exiting reset: Under 	aetin	ea>
b	Bit Name	Function	R	W
0–15	TOP0RL-TOP10RL	16-bit reload register value	R	W

Note: • These registers must always be accessed in halfwords.

The TOP reload registers are used to load data into the TOP counter registers (TOP0CT–TOP10CT). The content of the reload register is loaded into the counter in the following cases:

- When the counter is enabled in single-shot output mode
- When the counter underflowed in delayed single-shot or continuous output mode

Simply because data is written to the reload register does not mean that the data is loaded into the counter. The counter is loaded with data in only the above cases.

Note that reloading of data after an underflow is performed synchronously with a clock pulse at which the counter underflowed.

10.3.7 TOP Correction Registers (TOP0CC–TOP10CC)

TOP0 Correction Register (TOP0CC)
TOP1 Correction Register (TOP1CC)
TOP2 Correction Register (TOP2CC)
TOP3 Correction Register (TOP3CC)
TOP4 Correction Register (TOP4CC)
TOP5 Correction Register (TOP5CC)
TOP6 Correction Register (TOP6CC)
TOP7 Correction Register (TOP7CC)
TOP8 Correction Register (TOP8CC)
TOP9 Correction Register (TOP9CC)
TOP10 Correction Register (TOP10CC)

<address: 0246="" h'0080=""></address:>
<address: 0256="" h'0080=""></address:>
<address: 0266="" h'0080=""></address:>
<address: 0276="" h'0080=""></address:>
<address: 0286="" h'0080=""></address:>
<address: 0296="" h'0080=""></address:>
<address: 02a6="" h'0080=""></address:>
<address: 02b6="" h'0080=""></address:>
<address: 02c6="" h'0080=""></address:>
<address: 02d6="" h'0080=""></address:>
<address: 02e6="" h'0080=""></address:>

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
	TOP0CC-TOP10CC														
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

(Acceptable range of values: +32767 to -32768)

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
0–15	TOP0CC-TOP10CC	16-bit correction register value	R	W

Note: • These registers must always be accessed in halfwords.

The TOP correction registers are used to correct the TOP counter value by adding or subtracting in the middle of operation. To increase or reduce the counter value, write to this correction register a value by which the counter value is to be increased or reduced from its initial set value. To add, write the value to be added to the correction register directly as is. To subtract, write the 2's complement of the value to be subtracted to the correction register.

The counter is corrected synchronously with a clock pulse next to one at which the correction value was written to the TOP correction register. If the counter is corrected this way, note that because one down count in that clock period is canceled, the counter value actually is corrected by (correction register value + 1). For example, if the initial counter value is 10 and the value 3 is written to the correction register when the counter has counted down to 5, then the counter counts a total of 15 before it underflows.

10.3.8 TOP Enable Control Registers

TOP0-10 External Enable Permit Register (TOPEEN)

<Address: H'0080 02FA>

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
0	0	0	0	0	TOP10 EEN 0	TOP9 EEN 0	TOP8 EEN 0	TOP7 EEN 0	TOP6 EEN 0	TOP5 EEN 0	TOP4 EEN 0	TOP3 EEN 0	TOP2 EEN 0	TOP1 EEN 0	TOP0 EEN 0

<Upon exiting reset: H'0000>

b	Bit Name	Function	R	W
0–4	No function assigned. Fix to "0".		0	0
5	TOP10EEN (TOP10 external enable permit bit)	0: Disable external enable	R	W
6	TOP9EEN (TOP9 external enable permit bit)	1: Enable external enable		
7	TOP8EEN (TOP8 external enable permit bit)	-		
8	TOP7EEN (TOP7 external enable permit bit)			
9	TOP6EEN (TOP6 external enable permit bit)			
10	TOP5EEN (TOP5 external enable permit bit)			
11	TOP4EEN (TOP4 external enable permit bit)			
12	TOP3EEN (TOP3 external enable permit bit)			
13	TOP2EEN (TOP2 external enable permit bit)			
14	TOP1EEN (TOP1 external enable permit bit)			
15	TOP0EEN (TOP0 external enable permit bit)			

Note: • This register must always be accessed in halfwords.

The TOP0-10 External Enable Permit Register controls enable operation on TOP counters from external devices by enabling or disabling it.

TOP0-10 Enable Protect Register (TOPPRO)

<Address: H'0080 02FC>

_	b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
Г						TOP10	TOP9	TOP8	TOP7	TOP6	TOP5	TOP4	TOP3	TOP2	TOP1	TOP0
						PRO	PRO	PRO	PRO	PRO	PRO	PRO	PRO	PRO	PRO	PRO
L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

<Upon exiting reset: H'0000>

b	Bit Name	Function	R	W
0–4	No function assigned. Fix to "0".		0	0
5	TOP10PRO (TOP10 enable protect bit)	0: Enable for rewriting	R	W
6	TOP9PRO (TOP9 enable protect bit)	1: Protect against rewriting		
7	TOP8PRO (TOP8 enable protect bit)			
8	TOP7PRO (TOP7 enable protect bit)			
9	TOP6PRO (TOP6 enable protect bit)			
10	TOP5PRO (TOP5 enable protect bit)			
11	TOP4PRO (TOP4 enable protect bit)			
12	TOP3PRO (TOP3 enable protect bit)			
13	TOP2PRO (TOP2 enable protect bit)			
14	TOP1PRO (TOP1 enable protect bit)			
15	TOP0PRO (TOP0 enable protect bit)			

Note: • This register must always be accessed in halfwords.

The TOP0-10 Enable Protect Register controls rewriting of the TOP0-10 count enable bit by enabling for or protecting it against rewriting.

TOP0-10 Count Enable Register (TOPCEN)

<Address: H'0080 02FE>

b	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
0		0	0	0	0	TOP10 CEN 0	TOP9 CEN 0	TOP8 CEN 0	TOP7 CEN 0	TOP6 CEN 0	TOP5 CEN 0	TOP4 CEN 0	TOP3 CEN 0	TOP2 CEN 0	TOP1 CEN 0	TOP0 CEN 0

<upon< td=""><td>exiting</td><td>reset:</td><td>H'0000></td></upon<>	exiting	reset:	H'0000>

b	Bit Name	Function	R	W
0–4	No function assigned. Fix to "0".		0	0
5	TOP10CEN (TOP10 count enable bit)	0: Stop counting	R	W
6	TOP9CEN (TOP9 count enable bit)	1: Enable counting		
7	TOP8CEN (TOP8 count enable bit)			
8	TOP7CEN (TOP7 count enable bit)			
9	TOP6CEN (TOP6 count enable bit)			
10	TOP5CEN (TOP5 count enable bit)			
11	TOP4CEN (TOP4 count enable bit)			
12	TOP3CEN (TOP3 count enable bit)			
13	TOP2CEN (TOP2 count enable bit)			
14	TOP1CEN (TOP1 count enable bit)			
15	TOP0CEN (TOP0 count enable bit)			

Note: • This register must always be accessed in halfwords.

The TOP0-10 Count Enable Register controls operation of TOP counters. To enable any TOP counter in software, enable its corresponding enable protect bit for write and set the count enable bit by writing "1". To stop any TOP counter, enable its corresponding enable protect bit for write and reset the count enable bit by writing "0".

In all but continuous output mode, when the counter stops due to occurrence of an underflow, the count enable bit is automatically reset to "0". Therefore, the TOP0-10 Count Enable Register when accessed for read serves as a status register indicating whether the counter is operating or idle.

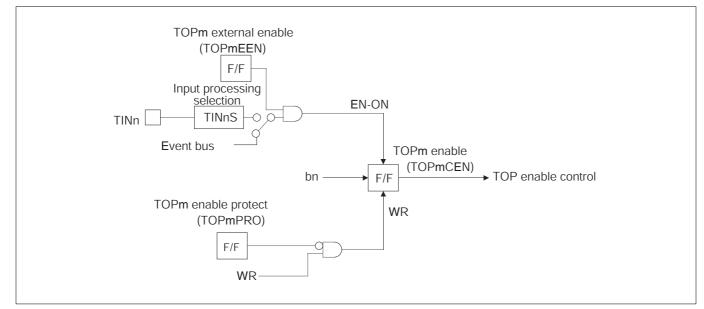
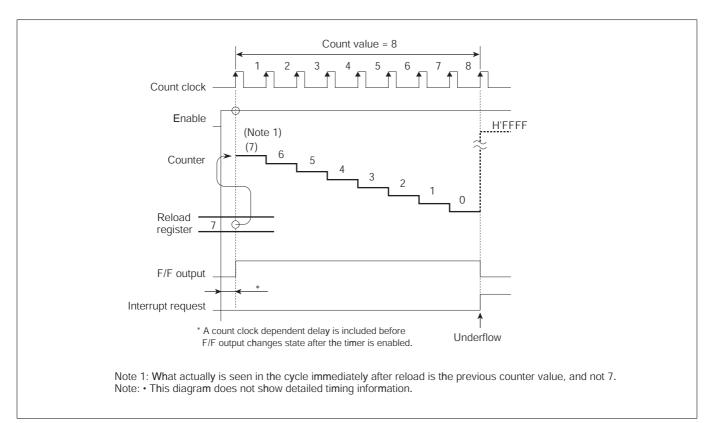


Figure 10.3.6 Configuration of the TOP Enable Circuit


10.3.9 Operation in TOP Single-shot Output Mode (with Correction Function)

(1) Outline of TOP single-shot output mode

In single-shot output mode, the timer generates a pulse in width of (reload register set value + 1) only once and then stops.

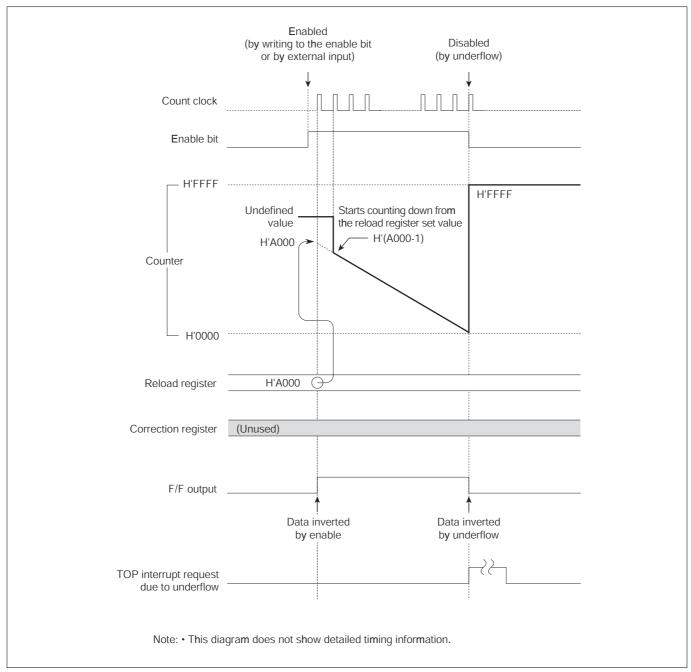
When the timer is enabled (by writing to the enable bit in software or by external input) after setting the reload register, the counter is loaded with the content of the reload register and starts counting synchronously with the count clock. The counter counts down and stops when it underflows after reaching the minimum count.

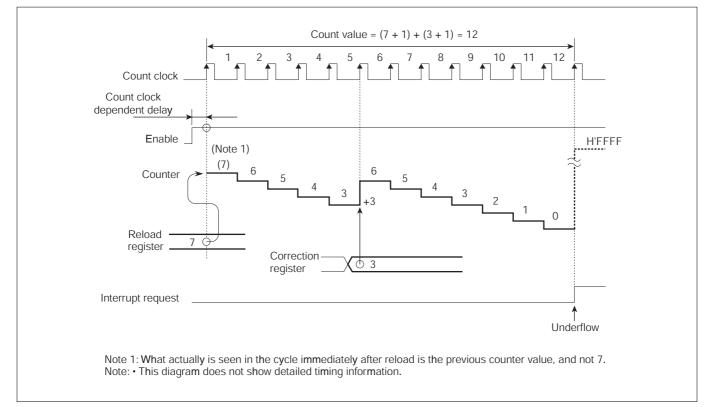
The F/F output waveform in single-shot output mode is inverted (F/F output levels change from low to high or vice versa) at startup and upon underflow, generating a single-shot pulse waveform in width of (reload register set value + 1) only once. An interrupt request can be generated when the counter underflows. The count value is (reload register set value + 1).

For example, if the initial reload register value is 7, then the count value is 8.

Figure 10.3.7 Example of Counting in TOP Single-shot Output Mode

In the example below, the reload register is initially set to H'A000. (The initial counter value can be undefined, and does not have to be specific.) When the timer starts, the reload register value is loaded into the counter, letting it start counting. Thereafter, it continues counting down until it underflows after reaching the minimum count.




Figure 10.3.8 Typical Operation in TOP Single-shot Output Mode

(2) Correction function of TOP single-shot output mode

To change the counter value while in progress, write to the TOP correction register a value by which the counter value is to be increased or reduced from its initial set value. To add, write the value to be added to the correction register directly as is. To subtract, write the 2's complement of the value to be subtracted to the correction register.

The counter is corrected synchronously with a count clock pulse next to one at which the correction value was written to the TOP correction register. If the counter is corrected this way, note that because one down count in that clock period is canceled, the counter value actually is corrected by (correction register value + 1).

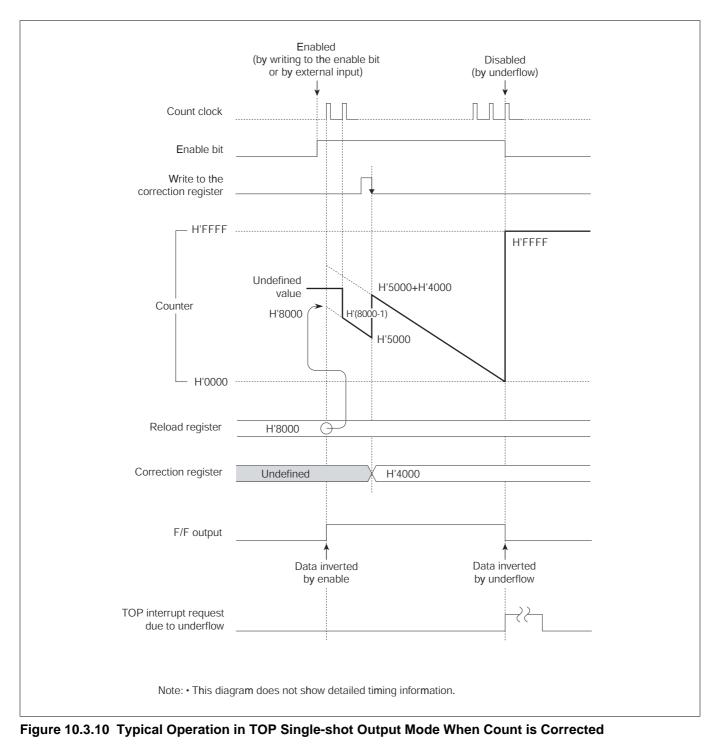
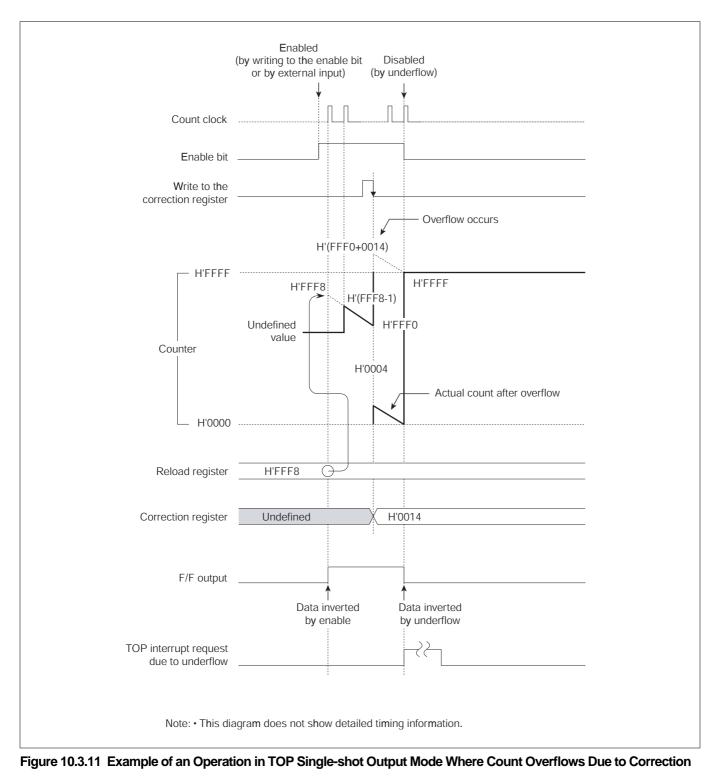

For example, if the initial counter value is 7 and the value 3 is written to the correction register when the counter has counted down to 3, then the counter counts a total of 12 before it underflows.

Figure 10.3.9 Example of Counting in TOP Single-shot Output Mode When Count is Corrected

When writing to the correction register, be careful not to cause the counter to overflow. Even if the counter overflows due to correction of counts, no interrupt requests are generated for reasons of an overflow.

In the example below, the reload register is initially set to H'8000. When the timer starts, the reload register value is loaded into the counter, letting it start counting down. In the diagram below, the value H'4000 is written to the correction register when the counter has counted down to H'5000. As a result of this correction, the count has been increased to H'9000, so that the counter counts a total of (H'8000 + 1 + H'4000 + 1) before it stops.



(3) Precautions on using TOP single-shot output mode

The following describes precautions to be observed when using TOP single-shot output mode.

- If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops.
- If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled.
- If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled.
- Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before starting F/F operation after the timer is enabled.
- When writing to the correction register, be careful not to cause the counter to overflow. Even if the counter overflows due to correction of counts, no interrupt requests are generated for reasons of an overflow. Therefore, if the counter underflows in the subsequent down-count after an overflow, a false interrupt request is generated for an underflow that includes the overflowed count.

In the example below, the reload register is initially set to H'FFF8. When the timer starts, the reload register value is loaded into the counter, letting it start counting down. In the diagram below, the value H'0014 is written to the correction register when the counter has counted down to H'FFF0. As a result of this correction, the count overflows to H'0004 and the counter fails to count correctly. Also, an interrupt request is generated for an erroneous overflowed count.

10.3.10 Operation in TOP Delayed Single-shot Output Mode (with Correction Function)

(1) Outline of TOP delayed single-shot output mode

In delayed single-shot output mode, the timer generates a pulse in width of (reload register set value + 1) after a finite time equal to (counter set value + 1) only once and then stops.

When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload register, it starts counting down from the counter's set value synchronously with the count clock. The first time the counter underflows, it is loaded with the reload register value and continues counting down. The counter stops when it underflows next time.

The F/F output waveform in delayed single-shot output mode is inverted (F/F output level changes from low to high or vice versa) when the counter underflows first time and next, generating a single-shot pulse waveform in width of (reload register set value + 1) after a finite time equal to (first set value of counter + 1) only once. An interrupt request can be generated when the counter underflows first time and next.

The (counter set value + 1) and (reload register set value + 1) are effective as count values.

For example, if the initial counter value is 4 and the initial reload register value is 5, then the timer operates as shown below.

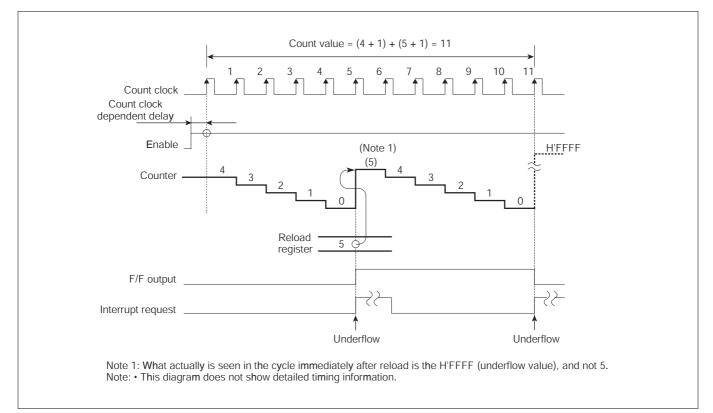
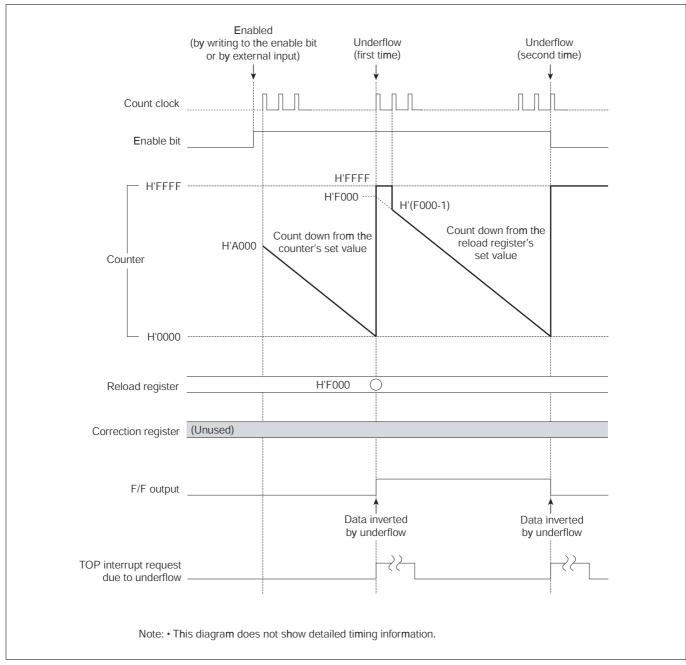
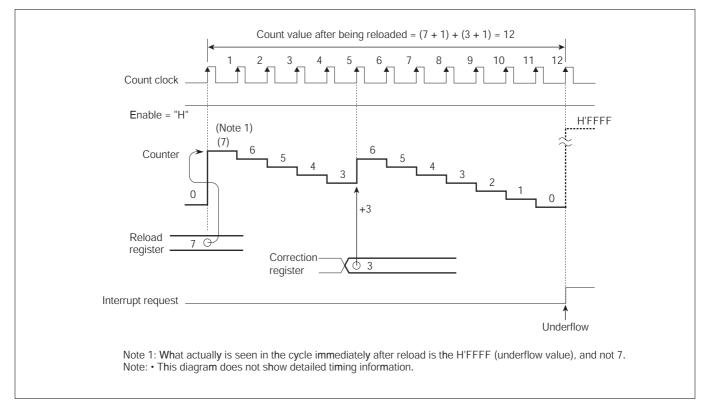


Figure 10.3.12 Example of Counting in TOP Delayed Single-shot Output Mode

In the example below, the counter and the reload register are initially set to H'A000 and H'F000, respectively. When the timer is enabled, the counter starts counting down and when it underflows after reaching the minimum count, the counter is loaded with the content of the reload register and continues counting down. The counter stops when it underflows second time.




Figure 10.3.13 Typical Operation in TOP Delayed Single-shot Output Mode

(2) Correction function of TOP delayed single-shot output mode

To change the counter value while in progress, write to the TOP correction register a value by which the counter value is to be increased or reduced from its initial set value. To add, write the value to be added to the correction register directly as is. To subtract, write the 2's complement of the value to be subtracted to the correction register.

The counter is corrected synchronously with a count clock pulse next to one at which the correction value was written to the TOP correction register. If the counter is corrected this way, note that because one down count in that clock period is canceled, the counter value actually is corrected by (correction register value + 1).

For example, if the reload register value is 7 and the value 3 is written to the correction register when the counter has counted down to 3 after being reloaded, then the counter counts a total of 12 after being reloaded before it underflows.

Figure 10.3.14 Example of Counting in TOP Delayed Single-shot Output Mode When Count is Corrected

When writing to the correction register, be careful not to cause the counter to overflow. Even if the counter overflows due to correction of counts, no interrupt requests are generated for reasons of an overflow.

In the example below, the counter and the reload register are initially set to H'A000 and H'F000, respectively. When the timer is enabled, the counter starts counting down and when it underflows first time after reaching the minimum count, the counter is loaded with the content of the reload register and continues counting down. In the diagram below, the value H'0008 is written to the correction register when the counter has counted down to H'9000. As a result of this correction, the counter has its count value increased to H'9008 and counts (H'F000 + 1 + H'0008 + 1) after the first underflow before it stops.

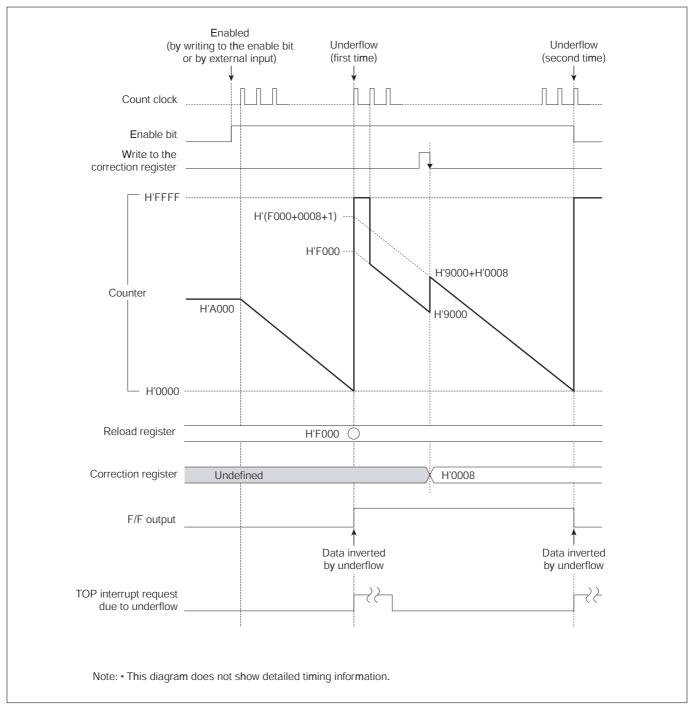


Figure 10.3.15 Typical Operation in TOP Delayed Single-shot Output Mode when Count is Corrected

(3) Precautions on using TOP delayed single-shot output mode

The following describes precautions to be observed when using TOP delayed single-shot output mode.

- If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops.
- If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled.
- If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled.
- Even if the counter overflows due to correction of counts, no interrupt requests are generated for reasons of an overflow. Therefore, if the counter underflows in the subsequent down-count after an overflow, a false interrupt request is generated for an underflow that includes the overflowed count.
- If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value 1) at the next clock edge.

	Reload due to underflow
Count clock	
Enable bit	"H" Count down from the reload register value Reload cycle
Counter value	H'0001 H'0000 H'FFFF H'AAA9 H'AAA8 H'(AAAA-1) H'(AAAA-2)
Reload register	H'AAAA O
	What is seen during reload cycle is always H'FFFF, and not the reload register value (in this case, H'AAAA).

Figure 10.3.16 Counter Value Immediately after Underflow

10.3.11 Operation in TOP Continuous Output Mode (without Correction Function)

(1) Outline of TOP continuous output mode

In continuous output mode, the timer counts down starting from the set value of the counter and when the counter underflows, it is loaded with the reload register value. Thereafter, this operation is repeated each time the counter underflows, thus generating consecutive pulses whose waveform is inverted in width of (reload register set value + 1).

When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload register, it starts counting down from the counter's set value synchronously with the count clock and when the minimum count is reached, generates an underflow. This underflow causes the counter to be loaded with the content of the reload register and start counting over again. Thereafter, this operation is repeated each time an underflow occurs. To stop the counter, disable count by writing to the enable bit in software.

The F/F output waveform in continuous output mode is inverted (F/F output level changes from low to high or vice versa) at startup and upon underflow, generating a waveform of consecutive pulses until the timer stops counting. An interrupt request can be generated each time the counter underflows.

The (counter set value + 1) and (reload register set value + 1) are effective as count values.

For example, if the initial counter value is 4 and the initial reload register value is 5, then the timer operates as shown below.

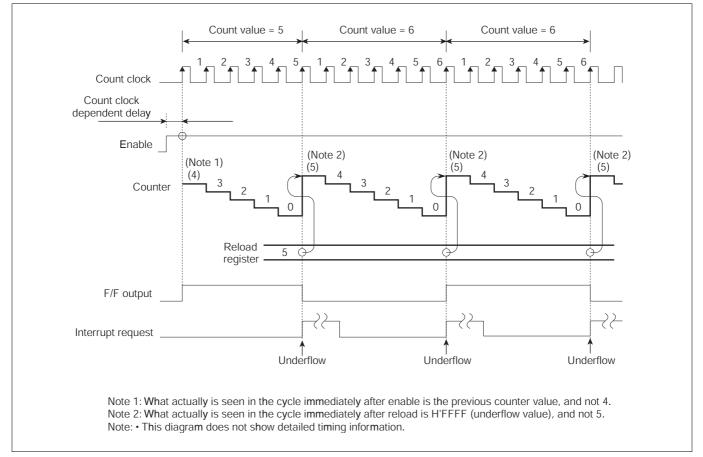


Figure 10.3.17 Example of Counting in TOP Continuous Output Mode

In the example below, the counter and the reload register are initially set to H'A000 and H'E000, respectively. When the timer is enabled, the counter starts counting down and when it underflows after reaching the minimum count, the counter is loaded with the content of the reload register and continues counting down.

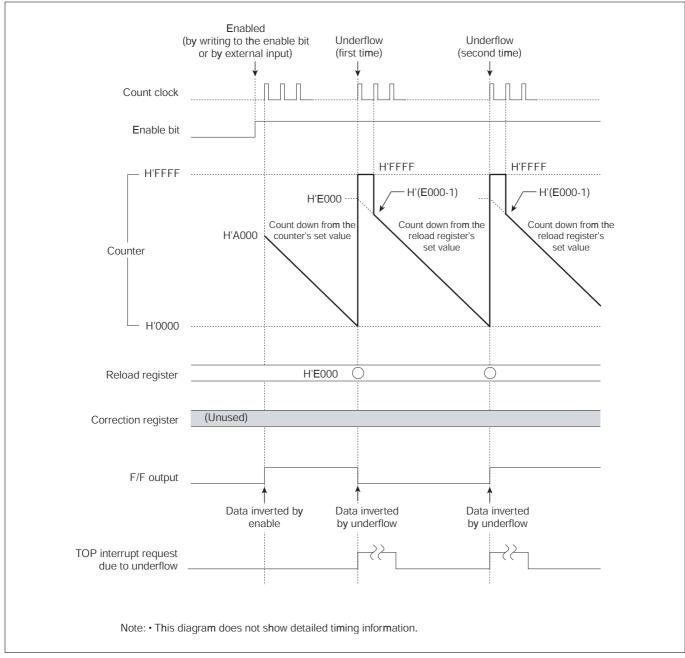


Figure 10.3.18 Typical Operation in TOP Continuous Output Mode

(2) Precautions on using TOP continuous output mode

The following describes precautions to be observed when using TOP continuous output mode.

- If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled.
- If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value 1) at the next clock edge.
- Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled.

10.4 TIO (Input/Output-Related 16-Bit Timer)

10.4.1 Outline of TIO

TIO (Timer Input/Output) is an input/output-related 16-bit timer, whose operation mode can be selected from the following by mode switching in software, one at a time:

<Input modes>

- Measure clear input mode
- Measure free-run input mode
- Noise processing input mode

<Output modes without correction function>

- PWM output mode
- Single-shot output mode
- Delayed single-shot output mode
- Continuous output mode

The table below shows specifications of TIO. The diagram in the next page shows a block diagram of TIO.

Item	Specification
Number of channels	10 channels
Counter	16-bit down-counter
Reload register	16-bit reload register
Measure register	16-bit capture register
Timer startup	Started by writing to the enable bit in software or enabled by external input (rising or falling
	or both edges or high or low level)
Mode switching	<input modes=""/>
	Measure clear input mode
	Measure free-run input mode
	Noise processing input mode
	<output correction="" function="" modes="" without=""></output>
	PWM output mode
	Single-shot output mode
	Delayed single-shot output mode
	Continuous output mode
Interrupt request generation	Can be generated by a counter underflow
DMA transfer request generation	Can be generated by a counter underflow (for only the TIO8)

Table 10.4.1 Specifications of TIO (Input/Output-Related 16-Bit Timer)

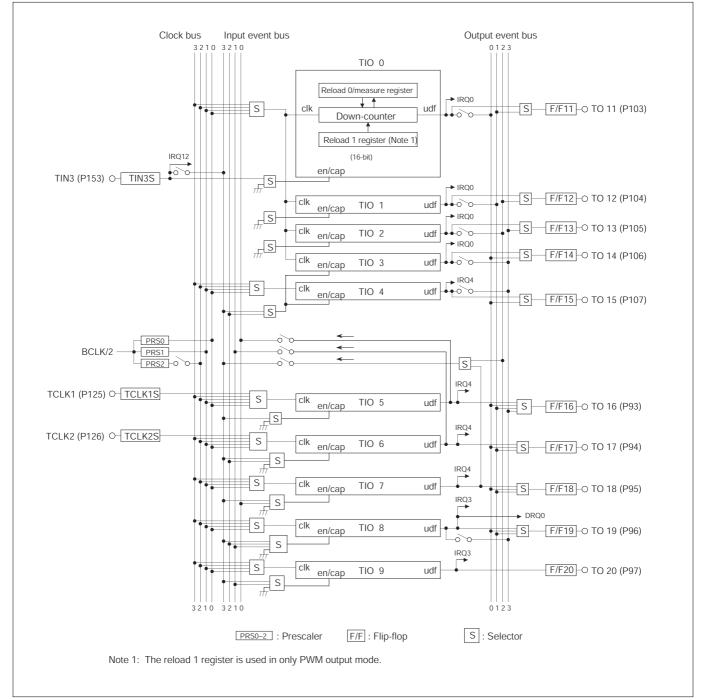


Figure 10.4.1 Block Diagram of TIO (Input/Output-Related 16-Bit Timer)

10.4.2 Outline of Each Mode of TIO

Each mode of TIO is outlined below. For each TIO channel, only one of the following modes can be selected.

(1) Measure clear/free-run input modes

In measure clear/free-run input modes, the timer is used to measure a duration of time from when the counter starts counting till when an external capture signal is entered.

After the timer is enabled (by writing to the enable bit in software), the counter starts counting down synchronously with the count clock. When a capture signal is entered from an external device, the counter value at that point in time is written into a register called the "measure register."

In measure clear input mode, the counter value is initialized to H'FFFF upon capture, from which the counter starts counting down again. In measure free-run input mode, the counter continues counting down even after capture. The counter returns to H'FFFF upon underflow, from which it starts counting down again.

To stop the counter, disable count by writing to the enable bit in software.

Furthermore, it is possible to generate an interrupt request upon underflow of the counter or execution of measurement operation and a DMA transfer request (for only the TI08) upon underflow of the counter.

(2) Noise processing input mode

In noise processing input mode, the timer is used to detect that the input signal remained in the same state for over a predetermined time.

In noise processing input mode, a high or low level on external input activates the counter and if the input signal remains in the same state for over a predetermined time before the counter underflows, the counter generates an interrupt request before stopping. If the valid-level signal being applied turns to an invalid level before the counter underflows, the counter temporarily stops counting and when a valid-level signal is entered again, the counter is reloaded with the initial count and restarts counting.

The timer stops at the same time the counter underflows or count is disabled by writing to the enable bit. Furthermore, it is possible to generate an interrupt request and a DMA transfer request (for only the TI08) upon underflow of the counter.

(3) PWM output mode (without correction function)

In PWM output mode, the timer uses two reload registers to generate a waveform with a given duty cycle.

When the timer is enabled (by writing to the enable bit in software or by external input) after setting the initial values in the reload 0 and reload 1 registers, the counter is loaded with the reload 0 register value and starts counting down synchronously with the count clock. The first time the counter underflows, it is loaded with the reload 1 register value and continues counting. Thereafter, the counter is loaded with the reload 0 and reload 1 register value and continues counting.

The F/F output waveform in PWM output mode is inverted when the counter starts counting and each time it underflows. The timer stops at the same time count is disabled by writing to the enable bit (and not in synchronism with PWM output period).

Furthermore, it is possible to generate an interrupt request at even-numbered occurrences of underflow after the counter is enabled and a DMA transfer request (for only the TI08) every time the counter underflows.

(4) Single-shot output mode (without correction function)

In single-shot output mode, the timer generates a pulse in width of (reload 0 register set value + 1) only once and then stops.

When the timer is enabled (by writing to the enable bit in software or by external input) after setting the reload 0 register, the counter is loaded with the reload 0 register value and starts counting synchronously with the count clock. The counter counts down and when the minimum count is reached, stops upon underflow.

The F/F output waveform in single-shot output mode is inverted at startup and upon underflow, generating a single-shot pulse waveform in width of (reload 0 register set value + 1) only once.

Furthermore, it is possible to generate an interrupt request and a DMA transfer request (for only the TI08) upon underflow of the counter.

(5) Delayed single-shot output mode (without correction function)

In delayed single-shot output mode, the timer generates a pulse in width of (reload 0 register set value + 1) after a finite time equal to (counter set value + 1) only once and then stops.

When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload 0 register, it starts counting down from the counter's set value synchronously with the count clock. The first time the counter underflows, it is loaded with the reload 0 register value and continues counting down. The counter stops when it underflows next time.

The F/F output waveform in delayed single-shot output mode is inverted when the counter underflows first time and next, generating a single-shot pulse waveform in width of (reload 0 register set value + 1) after a finite time equal to (first set value of counter + 1) only once.

Furthermore, it is possible to generate an interrupt request and a DMA transfer request (for only the TI08) upon the first and next underflows of the counter.

(6) Continuous output mode (without correction function)

In continuous output mode, the timer counts down starting from the set value of the counter and when the counter underflows, it is loaded with the reload 0 register value. Thereafter, this operation is repeated each time the counter underflows, thus generating consecutive pulses in width of (reload 0 register set value + 1).

When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload 0 register, it starts counting down from the counter's set value synchronously with the count clock and when the minimum count is reached, generates an underflow. This underflow causes the counter to be loaded with the content of the reload 0 register and start counting over again. Thereafter, this operation is repeated each time an underflow occurs. To stop the counter, disable count by writing to the enable bit in software.

The F/F output waveform in continuous output mode is inverted at startup and upon underflow, generating a waveform of consecutive pulses until the timer stops counting.

Furthermore, it is possible to generate an interrupt request and a DMA transfer request (for only the TI08) each time the counter underflows.

<Count clock-dependent delay>

• Because the timer operates synchronously with the count clock, there is a count clock-dependent delay from when the timer is enabled till when it actually starts operating. In operation mode where the F/F output is inverted when the timer is enabled, the F/F output is inverted synchronously with the count clock.

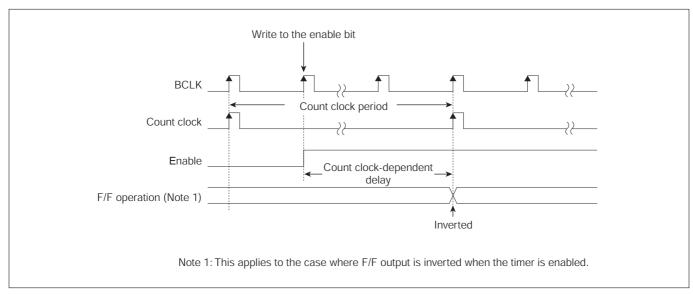


Figure 10.4.2 Count Clock Dependent Delay

10.4.3 TIO Related Register Map

Shown below is a TIO related register map.

TIO Related Register Map (1/2)

Address	+0 address +1 address b7 b8 b15	See pages
H'0080 0300	TIO0 Counter (TIO0CT)	10-87
H'0080 0302	(Use inhibited area)	
H'0080 0304	TIO0 Reload 1 Register (TIO0RL1)	10-89
H'0080 0306	TIO0 Reload 0/Measure Register (TIO0RL0)	10-88
I	(Use inhibited area)	
H'0080 0310	TIO1 Counter (TIO1CT)	10-87
H'0080 0312	(Use inhibited area)	
H'0080 0314	TIO1 Reload 1 Register (TIO1RL1)	10-89
H'0080 0316	TIO1 Reload 0/Measure Register (TIO1RL0)	10-88
H'0080 0318	(Use inhibited area)	
H'0080 031A	TIO0–3 Control Register 0 (TIO03CR0)	10-80
H'0080 031C	(Use inhibited area) TIO0–3 Control Register 1 (TIO03CR1)	10-81
H'0080 031E	(Use inhibited area)	
H'0080 0320	TIO2 Counter (TIO2CT)	10-87
H'0080 0322	(Use inhibited area)	
H'0080 0324	TIO2 Reload 1 Register (TIO2RL1)	10-89
H'0080 0326	TIO2 Reload 0/Measure Register (TIO2RL0)	10-88
I	(Use inhibited area)	
H'0080 0330	TIO3 Counter (TIO3CT)	10-87
H'0080 0332	(Use inhibited area)	
H'0080 0334	TIO3 Reload 1 Register (TIO3RL1)	10-89
H'0080 0336	TIO3 Reload 0/Measure Register (TIO3RL0)	10-88
	(Use inhibited area)	
H'0080 0340	TIO4 Counter (TIO4CT)	10-87
H'0080 0342	(Use inhibited area)	
H'0080 0344	TIO4 Reload 1 Register (TIO4RL1)	10-89
H'0080 0346	TIO4 Reload 0/Measure Register	10-88
H'0080 0348	(TIO4RL0) (Use inhibited area)	
H'0080 034A	TIO4 Control Register TIO5 Control Register	10-82
I	(TIO4CR) (TIO5CR) (TIO5CR)	10-84
H'0080 0350	TIO5 Counter	10-87
H'0080 0352	(TIO5CT) (Use inhibited area)	

TIO Related Register Map (2/2)

Address	+0 address +1 address b7 b8 b15	See pages						
H'0080 0354	TIO5 Reload 1 Register (TIO5RL1)							
H'0080 0356	TIO5 Reload 0/Measure Register (TIO5RL0)	10-88						
1	(Use inhibited area)							
H'0080 0360	TIO6 Counter (TIO6CT)	10-87						
H'0080 0362	(Use inhibited area)							
H'0080 0364	TIO6 Reload 1 Register (TIO6RL1)	10-89						
H'0080 0366	TIO6 Reload 0/Measure Register (TIO6RL0)	10-88						
H'0080 0368	(Use inhibited area)							
H'0080 036A	TIO6 Control Register (TIO6CR) TIO7 Control Register (TIO7CR)	10-85 10-86						
I	(Use inhibited area)	10-80						
H'0080 0370	TIO7 Counter (TIO7CT)	10-87						
H'0080 0372	(Use inhibited area)							
H'0080 0374	TIO7 Reload 1 Register (TIO7RL1)	10-89						
H'0080 0376	TIO7 Reload 0/Measure Register (TIO7RL0)	10-88						
I	(Use inhibited area)							
H'0080 0380	TIO8 Counter (TIO8CT)	10-87						
H'0080 0382	(Use inhibited area)							
H'0080 0384	TIO8 Reload 1 Register (TIO8RL1)	10-89						
H'0080 0386	TIO8 Reload 0/Measure Register (TIO8RL0)	10-88						
H'0080 0388	(Use inhibited area)							
H'0080 038A	TIO8 Control Register (TIO8CR) TIO9 Control Register (TIO9CR)	10-86 10-87						
I	(Use inhibited area)	10-07						
H'0080 0390	TIO9 Counter (TIO9CT)	10-87						
H'0080 0392	(Use inhibited area)							
H'0080 0394	TIO9 Reload 1 Register	10-89						
H'0080 0396	(TIO9RL1) TIO9 Reload 0/Measure Register							
I	(TIO9RL0) (Use inhibited area)							
H'0080 03BC	TIO0-9 Enable Protect Register	10-90						
H'0080 03BE	(TIOPRO) TIO0-9 Count Enable Register	10-91						
	(TIOCEN)							

10.4.4 TIO Control Registers

The TIO control registers are used to select operation modes of TIO0-9 (measure input, noise processing input, PWM output, single-shot output, delayed single-shot output or continuous output mode), as well as select the count enable and count clock sources.

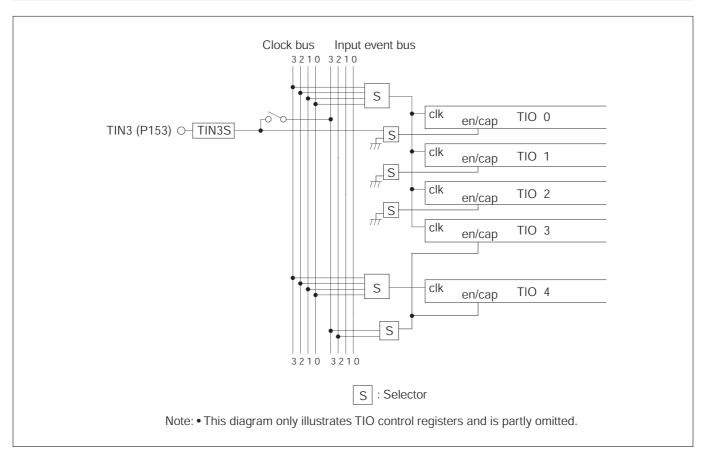
Following TIO control registers are provided for each timer group.

- TIO0-3 Control Register 0 (TIO03CR0)
- TIO0-3 Control Register 1 (TIO03CR1)
- TIO4 Control Register (TIO4CR)
- TIO5 Control Register (TIO5CR)
- TIO6 Control Register (TIO6CR)
- TIO7 Control Register (TIO7CR)
- TIO8 Control Register (TIO8CR)
- TIO9 Control Register (TIO9CR)

TIO0-3 Control Register 0 (TIO03CR0)

<Address: H'0080 031A>

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
TIO3 EEN 0	0	TIO3M ⊥ 0 I	0	TIO2 ENS 0	0	TIO2M	0	TIO1 ENS 0	0	TIO1M	0	TIO0 ENS 0	0	TIO0N	1 1 0


ممعاله	a vitin a	root	110000
<0pon	exiting	reset.	H'0000>

b	Bit Name	Function	R	W
0	TIO3EEN (Note 1)	0: Disable external input	R	W
	TIO3 external input enable bit	1: Enable external input		
1–3	ТІОЗМ	000: Single-shot output mode	R	W
	TIO3 operation mode select bit	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		110: Noise processing input mode		
		111: Noise processing input mode		
4	TIO2ENS (Reserved bit)	Fix to "0"	0	0
5–7	TIO2M	000: Single-shot output mode	R	W
	TIO2 operation mode select bit	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		110: Use inhibited		
		111: Use inhibited		
8	TIO1ENS (Reserved bit)	Fix to "0"	0	0
9–11	TIO1M	000: Single-shot output mode	R	W
	TIO1 operation mode select bit	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		110: Use inhibited		
		111: Use inhibited		
12	TIO0ENS	0: Does not use enable/measure input source	R	W
	TIO0 enable/measure input source select bit	1: External input TIN3		
13–15	TIO0M	000: Single-shot output mode	R	W
	TIO0 operation mode select bit	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		110: Noise processing input mode		
		111: Noise processing input mode		

Note 1: During measure free-run/clear input mode, even if this bit is set to "0" (external input disabled), when a capture signal is entered from an external device, the counter value at that point in time is written into the measure register. In measure clear input mode, however, if this bit = "0" (external input disabled), the counter value is not initialized (H'FFFF) upon capture and, therefore, this bit should be set to "1" (external input enabled).

Notes: • This register must always be accessed in halfwords.

- Operation mode can only be set or changed while the counter is inactive.
- To select TIO3 enable/measure input sources, use the TIO4 Control Register TIO34ENS (TIO3, TIO4 enable/measure input source select) bits.
- TIO1 and TIO2 do not have the capture function during measure free-run/clear input mode.

Figure 10.4.3 Outline Diagram of TIO0-4 Clock and Enable Inputs

TIO0-3 Control Register 1 (TIO03CR1)

<Address: H'0080 031D>

b8	9	10	11	12	13	14	b15
						TIO0	3CKS
0	0	0	0	0	0	0	0

			<upon exiting="" h'00="" reset:=""></upon>
b	Bit Name	Function	R W
8–13	No function assigned. Fix to "0".		0 0
14, 15	TIO03CKS	00: Clock bus 0	R W
	TIO0-3 clock source select bit	01: Clock bus 1	
		10: Clock bus 2	
		11: Clock bus 3	

TIO4 Control Register (TIO4CR)

<Address: H'0080 034A>

b0	1	2	3	4	5	6	b7
TIO4	CKS	TIO4EEN	TIO3	4ENS		TIO4M	
0	0	0	0	0	0	0	0

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
0, 1	TIO4CKS	00: Clock bus 0	R	W
	TIO4 clock source select bit	01: Clock bus 1		
		10: Clock bus 2		
		11: Clock bus 3		
2	TIO4EEN (Note 1)	0: Disable external input	R	W
	TIO4 external input enable bit	1: Enable external input		
3, 4	TIO34ENS	00: Does not use enable/measure input source	R	W
-, -	TIO3,4 enable/measure input source select bit	01: Does not use enable/measure input source		
		10: Input event bus 2		
		11: Input event bus 3		
5–7	TIO4M	000: Single-shot output mode	R	W
	TIO4 operation mode select bit	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		110: Noise processing input mode		
		111: Noise processing input mode		

Note 1: During measure free-run/clear input mode, even if this bit is set to "0" (external input disabled), when a capture signal is entered from an external device, the counter value at that point in time is written into the measure register. In measure clear input mode, however, if this bit = "0" (external input disabled), the counter value is not initialized (H'FFFF) upon capture and, therefore, this bit should be set to "1" (external input enabled).

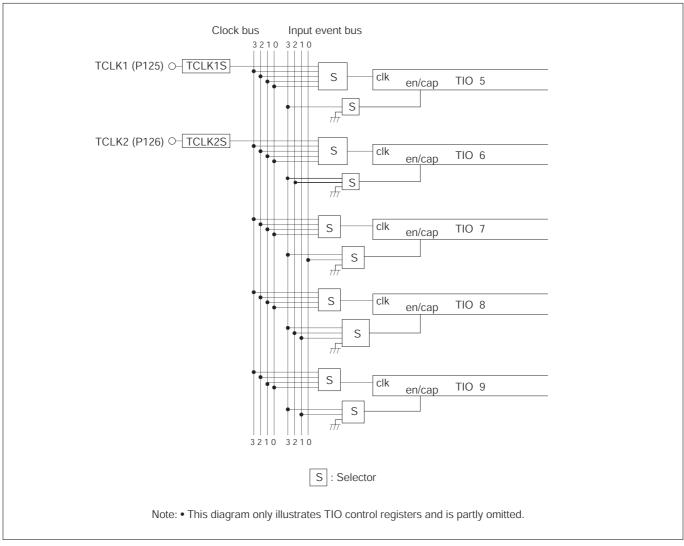


Figure 10.4.4 Outline Diagram of TIO5–9 Clock and Enable Inputs

TIO5 Control Register (TIO5CR)

b8	9	10	11	12	13	14	b15
	TIO5CKS		TIO	5ENS		TIO5M	
0	0	0	0	0	0	0	0

<Address: H'0080 034B>

dlagon	oviting	roact	L ¹ 005
<upon< td=""><td>exiting</td><td>iesei.</td><td>11002</td></upon<>	exiting	iesei.	11002

b	Bit Name	Function	R	W
8–10	TIO5CKS	000: External input TCLK1	R	W
	TIO5 clock source select bit	001: External input TCLK1		
		010: External input TCLK1		
		011: External input TCLK1		
		100: Clock bus 0		
		101: Clock bus 1		
		110: Clock bus 2		
		111: Clock bus 3		
11, 12	TIO5ENS	00: Does not use enable/measure input source	R	W
	TIO5 enable/measure input source select bit	01: Does not use enable/measure input source		
		10: Does not use enable/measure input source		
		11: Input event bus 3		
13–15	TIO5M	000: Single-shot output mode	R	W
	TIO5 operation mode select bit	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		110: Noise processing input mode		
		111: Noise processing input mode		

TIO6 Control Register (TIO6CR)

b0	1	2	3	4	5	6	b7
	TIO6CKS		TIO6	ENS		TIO6M	
0	0	0	0	0	0	0	0

<Address: H'0080 036A>

<upon< th=""><th>exitina</th><th>reset:</th><th>H'00></th></upon<>	exitina	reset:	H'00>
-opon	overeining	10000	11002

b	Bit Name	Function	R	W
0–2	TIO6CKS	000: External input TCLK2	R	W
	TIO6 clock source select bit	001: External input TCLK2		
		010: External input TCLK2		
		011: External input TCLK2		
		100: Clock bus 0		
		101: Clock bus 1		
		110: Clock bus 2		
		111: Clock bus 3		
3, 4	TIO6ENS	00: Does not use enable/measure input source	R	W
	TIO6 enable/measure input source select bit	01: Does not use enable/measure input source		
		10: Input event bus 2		
		11: Input event bus 3		
5–7	TIO6M	000: Single-shot output mode	R	W
	TIO6 operation mode select bit	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		110: Noise processing input mode		
		111: Noise processing input mode		

TIO7 Control Register (TIO7CR)

<Address: H'0080 036B>

b8	9	10	11	12	13	14	b15
	TIO7	CKS	TIO7	ENS		TIO7M	
0	0	0	0	0	0	0	0

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
8	No function assigned. Fix to "0".		0	0
9, 10	TIO7CKS	00: Clock bus 0	R	W
	TIO7 clock source select bit	01: Clock bus 1		
		10: Clock bus 2		
		11: Clock bus 3		
11, 12	TIO7ENS	00: Does not use enable/measure input source	R	W
	TIO7 enable/measure input source select bit	01: Does not use enable/measure input source		
		10: Input event bus 0		
		11: Input event bus 3		
13–15	TIO7M	000: Single-shot output mode	R	W
	TIO7 operation mode select bit	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		110: Noise processing input mode		
		111: Noise processing input mode		

Note: • Operation mode can only be set or changed while the counter is inactive.

TIO8 Control Register (TIO8CR)

b0	1	2	3	4	5	6	b7
TIO80	CKS		TIO8ENS			TIO8M	
0	0	0	0	0	0	0	0

<Address: H'0080 038A>

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
0, 1	TIO8CKS	00: Clock bus 0	R	W
	TIO8 clock source select bit	01: Clock bus 1		
		10: Clock bus 2		
		11: Clock bus 3		
2–4	TIO8ENS	000: Does not use enable/measure input source	R	W
	TIO8 enable/measure input source select bit	001: Does not use enable/measure input source		
		010: Does not use enable/measure input source		
		011: Does not use enable/measure input source		
		100: Does not use enable/measure input source		
		101: Input event bus 1		
		110: Input event bus 2		
		111: Input event bus 3		
5–7	TIO8M	000: Single-shot output mode	R	W
	TIO8 operation mode select bit	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		110: Noise processing input mode		
		111: Noise processing input mode		

TIO9 Control Register (TIO9CR)

<Address: H'0080 038B>

b8	9	10	11	12	13	14	b15
	TIO9CKS		TIO9ENS		TIO9M		
0	0	0	0	0	0	0	0

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
8	No function assigned. Fix to "0".		0	-
9, 10	TIO9CKS	00: Clock bus 0	R	W
	TIO9 clock source select bit	01: Clock bus 1		
		10: Clock bus 2		
		11: Clock bus 3		
11, 12	TIO9ENS	00: Does not use enable/measure input source	R	W
	TIO9 enable/measure input source select bit	01: Does not use enable/measure input source		
		10: Input event bus 1		
		11: Input event bus 3		
13–15	TIO9M	000: Single-shot output mode	R	W
	TIO9 operation mode select bit	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		110: Noise processing input mode		
		111: Noise processing input mode		

Note: • Operation mode can only be set or changed while the counter is inactive.

10.4.5 TIO Counters (TIO0CT-TIO9CT)

TIO0 Counter (TIO0CT)											<address: 0300="" h'0080=""></address:>
TIO1 Counter (TIO1CT)											<address: 0310="" h'0080=""></address:>
TIO2 Counter (TIO2CT)											<address: 0320="" h'0080=""></address:>
TIO3 Counter (TIO3CT)											<address: 0330="" h'0080=""></address:>
TIO4 Counter (TIO4CT)											<address: 0340="" h'0080=""></address:>
TIO5 Counter (TIO5CT)											<address: 0350="" h'0080=""></address:>
TIO6 Counter (TIO6CT)											<address: 0360="" h'0080=""></address:>
TIO7 Counter (TIO7CT)											<address: 0370="" h'0080=""></address:>
TIO8 Counter (TIO8CT)											<address: 0380="" h'0080=""></address:>
TIO9 Counter (TIO9CT)											<address: 0390="" h'0080=""></address:>
	- <i>,</i>	× 7	0	0	10		40	40		64F	
b0 1 2 3 4	-	67	8	9	10	11	12	13	14	b15	•
		TIOOCT	TIO9C	Г							
? ? ? ? ?	<u> ? </u> '	? ?	?	?	?	?	?	?	?	?	1

<Upon exiting reset: Undefined>

b	Bit Name	Function	R W
0–15	TIO0CT-TIO9CT	16-bit counter value	R(Note 1)
Note 1:	Protected against write during PWM output	it mode.	

Note 1. There are istance and shares he are and is helf and

Note: $\ensuremath{\bullet}$ These registers must always be accessed in halfwords.

The TIO counter is a 16-bit down-counter. After the timer is enabled (by writing to the enable bit in software or by external input), the counter starts counting synchronously with the count clock. These counters are protected against write during PWM output mode.

10.4.6 TIO Reload 0/ Measure Registers (TIO0RL0–TIO9RL0)

TIO0 Reload 0/ Measure Register (TIO0RL0) <address: 030<="" h'0080="" th=""><th>26></th></address:>	26>
TIO1 Reload 0/ Measure Register (TIO1RL0) <address: 03<="" h'0080="" td=""><td>16></td></address:>	16>
TIO2 Reload 0/ Measure Register (TIO2RL0) <address: 032<="" h'0080="" td=""><td>26></td></address:>	26>
TIO3 Reload 0/ Measure Register (TIO3RL0) <address: 033<="" h'0080="" td=""><td>36></td></address:>	36>
TIO4 Reload 0/ Measure Register (TIO4RL0) <address: 034<="" h'0080="" td=""><td>46></td></address:>	46>
TIO5 Reload 0/ Measure Register (TIO5RL0) <address: 03<="" h'0080="" td=""><td>56></td></address:>	56>
TIO6 Reload 0/ Measure Register (TIO6RL0) <address: 030<="" h'0080="" td=""><td>36></td></address:>	36>
TIO7 Reload 0/ Measure Register (TIO7RL0) <address: 03<="" h'0080="" td=""><td>76></td></address:>	76>
TIO8 Reload 0/ Measure Register (TIO8RL0) <address: 038<="" h'0080="" td=""><td>36></td></address:>	36>
TIO9 Reload 0/ Measure Register (TIO9RL0) <address: 039<="" h'0080="" td=""><td>96></td></address:>	96>
b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15	
TIO0RL0-TIO9RL0	
? ? ? ? ? ? ? ? ? ?	

		<upon exiting="" reset:<="" th=""><th colspan="3">exiting reset: Undefined></th></upon>	exiting reset: Undefined>		
b	Bit Name	Function	R W		
0–15	TIO0RL0-TIO9RL0	16-bit reload register value	R(Note 1)		

Note 1: These registers are protected against write during measure input mode.

Note: • These registers must always be accessed in halfwords.

The TIO Reload 0/ Measure Registers serve dual purposes as a register for reloading data into the TIO Counter Registers (TIO0CT–TIO9CT) and as a measure register during measure input mode. These registers are protected against write during measure input mode.

The content of the reload 0 register is loaded into the counter in the following cases:

- When after the counter started counting in noise processing input mode, the input signal is inverted and a valid-level signal is entered again before the counter underflows
- When the counter is enabled in single-shot output mode
- When the counter underflowed in delayed single-shot output or continuous output mode
- When the counter is enabled in PWM output mode and when the counter value set by the reload 1 register underflowed

Simply because data is written to the reload 0 register does not mean that the data is loaded into the counter.

If this register is used as a measure register, the counter value is latched into that measure register by event input.

10.4.7 TIO Reload 1 Registers (TIO0RL1-TIO9RL1)

TIO0 Reload 1 Register (TIO0RL1)	<address: 0304="" h'0080=""></address:>
TIO1 Reload 1 Register (TIO1RL1)	<address: 0314="" h'0080=""></address:>
TIO2 Reload 1 Register (TIO2RL1)	<address: 0324="" h'0080=""></address:>
TIO3 Reload 1 Register (TIO3RL1)	<address: 0334="" h'0080=""></address:>
TIO4 Reload 1 Register (TIO4RL1)	<address: 0344="" h'0080=""></address:>
TIO5 Reload 1 Register (TIO5RL1)	<address: 0354="" h'0080=""></address:>
TIO6 Reload 1 Register (TIO6RL1)	<address: 0364="" h'0080=""></address:>
TIO7 Reload 1 Register (TIO7RL1)	<address: 0374="" h'0080=""></address:>
TIO8 Reload 1 Register (TIO8RL1)	<address: 0384="" h'0080=""></address:>
TIO9 Reload 1 Register (TIO9RL1)	<address: 0394="" h'0080=""></address:>
b0 1 2 3 4 5 6 7 8 9 10 11 12	13 14 b15
TIO0RL1-TIO9RL1	
? ? ? ? ? ? ? ? ? ?	? ? ?
	<upon exiting="" reset:="" undefined=""></upon>

b	Bit Name	Function	R	W
0–15	TIO0RL1-TIO9RL1	16-bit reload register value	R	W

Note: • These registers must always be accessed in halfwords.

The TIO Reload 1 Registers are used to reload data into the TIO Counter Registers (TIO0CT-TIO9CT).

The content of the reload 1 register is loaded into the counter in the following cases:

• When the count value set by the reload 0 register underflowed in PWM output mode

Simply because data is written to the reload 1 register does not mean that the data is loaded into the counter.

10.4.8 TIO Enable Control Registers

TIO0-9 Enable Protect Register (TIOPRO)

<Address: H'0080 03BC>

b0	1	2		3	4	4	5	6	7	8	9	10	11	12	13	14	b15
0	0	0	I	0	() I	0	TIO9 PRO 0	TIO8 PRO 0	TIO7 PRO 0	TIO6 PRO 0		TIO4 PRO 0	TIO3 PRO 0	TIO2 PRO 0	TIO1 PRO 0	TIO0 PRO 0

<Upon exiting reset: H'0000>

b	Bit Name	Function	R	W
0–5	No function assigned. Fix to "0".		0	0
6	TIO9PRO (TIO9 enable protect bit)	0: Enable rewrite	R	W
7	TIO8PRO (TIO8 enable protect bit)	1: Disable rewrite		
8	TIO7PRO (TIO7 enable protect bit)			
9	TIO6PRO (TIO6 enable protect bit)			
10	TIO5PRO (TIO5 enable protect bit)			
11	TIO4PRO (TIO4 enable protect bit)			
12	TIO3PRO (TIO3 enable protect bit)			
13	TIO2PRO (TIO2 enable protect bit)			
14	TIO1PRO (TIO1 enable protect bit)			
15	TIO0PRO (TIO0 enable protect bit)			

Note: • This register must always be accessed in halfwords.

The TIO0-9 Enable Protect Register controls rewriting of the TIO count enable bit described in the next page by enabling or disabling it.

TIO0-9 Count Enable Register (TIOCEN)

<Address: H'0080 03BE>

b0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
0 0	0	0	0	0	TIO9 CEN 0	TIO8 CEN 0	TIO7 CEN 0	TIO6 CEN 0	TIO5 CEN 0	TIO4 CEN 0	TIO3 CEN 0	TIO2 CEN 0	TIO1 CEN 0	TIO0 CEN 0

			<upon exiting="" h'0000="" reset:=""></upon>
b	Bit Name	Function	R W
0–5	No function assigned. Fix to "0".		0 0
6	TIO9CEN (TIO9 count enable bit)	0: Stop count	R W
7	TIO8CEN (TIO8 count enable bit)	1: Enable count	
8	TIO7CEN (TIO7 count enable bit)		
9	TIO6CEN (TIO6 count enable bit)		
10	TIO5CEN (TIO5 count enable bit)		
11	TIO4CEN (TIO4 count enable bit)		
12	TIO3CEN (TIO3 count enable bit)		
13	TIO2CEN (TIO2 count enable bit)		
14	TIO1CEN (TIO1 count enable bit)		
15	TIO0CEN (TIO0 count enable bit)		

Note: • This register must always be accessed in halfwords

The TIO0-9 Count Enable Register controls operation of the TIO counters. To enable any TIO counter in software, enable its corresponding enable protect bit for write and set the count enable bit by writing "1". To stop any TIO counter, enable its corresponding enable protect bit for write and reset the count enable bit by writing "0".

In all but continuous output mode, when the counter stops due to occurrence of an underflow, the count enable bit is automatically reset to "0". Therefore, the TIO0-9 Count Enable Register when accessed for read serves as a status register indicating whether the counter is operating or idle.

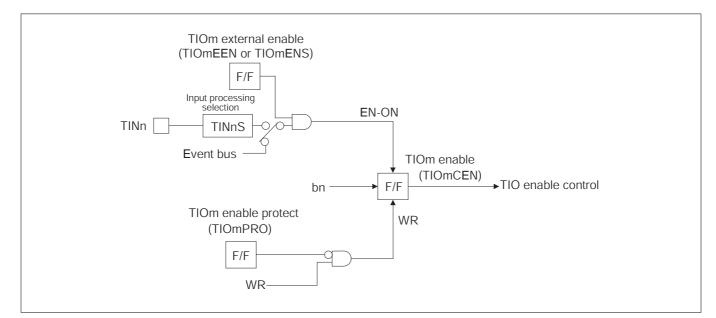
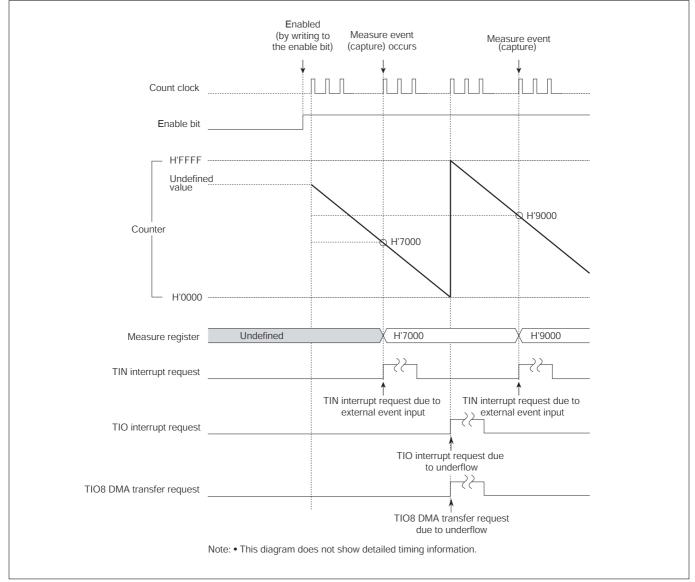


Figure 10.4.5 Configuration of the TIO Enable Circuit


10.4.9 Operation in TIO Measure Free-Run/Clear Input Modes

(1) Outline of TIO measure free-run/clear input modes

In measure free-run/clear input modes, the timer is used to measure a duration of time from when the counter starts counting till when an external capture signal is entered. It is possible to generate an interrupt request upon underflow of the counter or execution of measurement operation and a DMA transfer request (for only the TI08) upon underflow of the counter.

After the timer is enabled (by writing to the enable bit in software), the counter starts counting down synchronously with the count clock. When a capture signal is entered from an external device, the counter value at that point in time is written into a register called the "measure register."

In measure clear input mode, the counter value is initialized to H'FFFF upon capture, from which the counter starts counting down again. When the counter underflows, it starts counting down from H'FFFF. In measure free-run input mode, the counter continues counting down even after capture. The counter returns to H'FFFF upon underflow, from which it starts counting down again.

To stop the counter, disable count by writing to the enable bit in software.

Figure 10.4.6 Typical Operation in Measure Free-Run Input Mode

MULTIJUNCTION TIMERS 10.4 TIO (Input/Output-Related 16-Bit Timer)

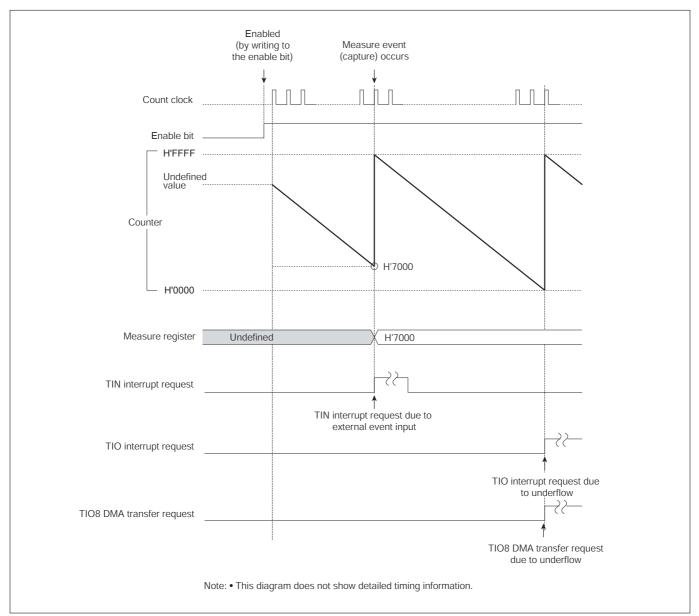


Figure 10.4.7 Typical Operation in Measure Clear Input Mode

(2) Precautions on using TIO measure free-run/clear input modes

The following describes precautions to be observed when using TIO measure free-run/clear input modes.

• If measure event input and write to the counter occur in the same clock period, the write value is set in the counter while at the same time latched into the measure register.

10.4.10 Operation in TIO Noise Processing Input Mode

In noise processing input mode, the timer is used to detect that the input signal remained in the same state for over a predetermined time.

In noise processing input mode, a high or low level on external input activates the counter and if the input signal remains in the same state for over a predetermined time before the counter underflows, the counter generates an interrupt request before stopping. If the valid-level signal being applied turns to an invalid level before the counter underflows, the counter temporarily stops counting and when a valid-level signal is entered again, the counter is reloaded with the initial count and restarts counting. The effective count width is (reload 0 register set value + 1).

The timer stops at the same time the counter underflows or count is disabled by writing to the enable bit. Furthermore, it is possible to generate an interrupt request and a DMA transfer request (for only the TI08) upon underflow of the counter.

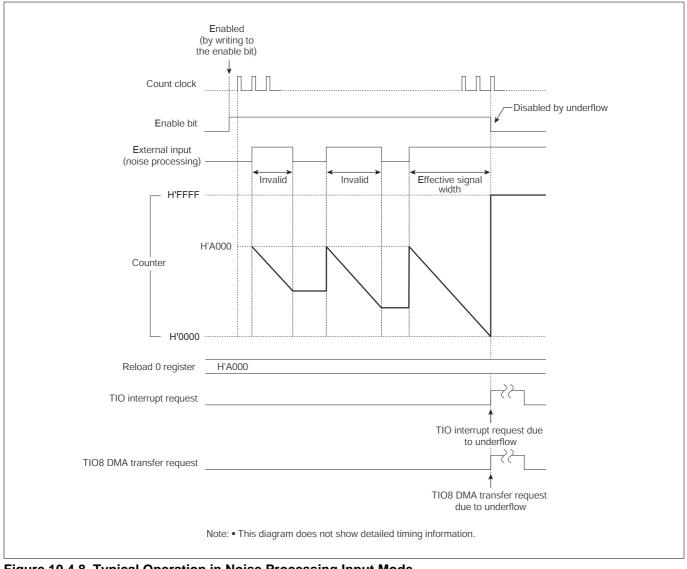
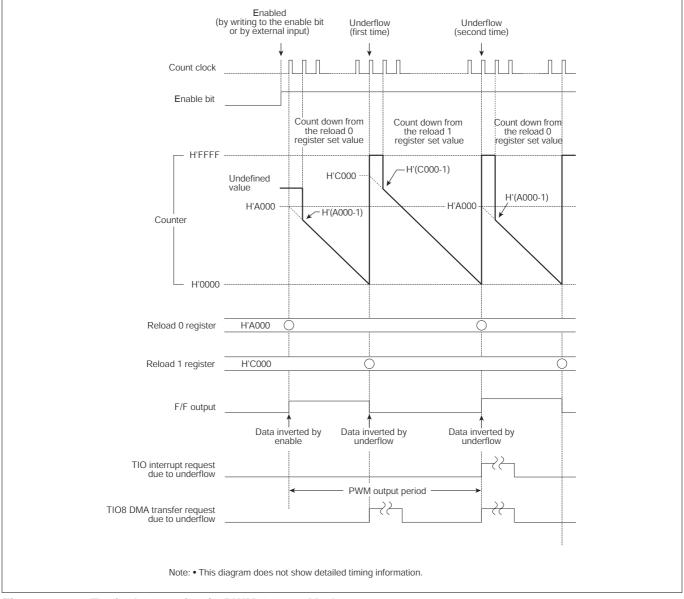


Figure 10.4.8 Typical Operation in Noise Processing Input Mode

10.4.11 Operation in TIO PWM Output Mode

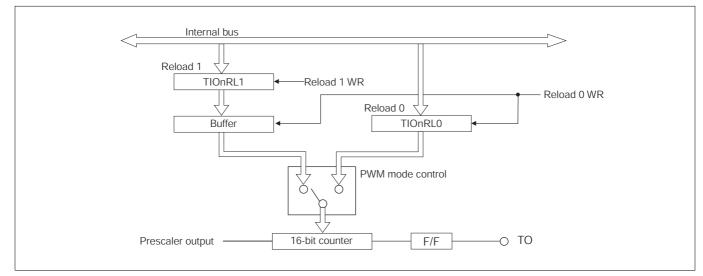

(1) Outline of TIO PWM output mode

In PWM output mode, the timer uses two reload registers to generate a waveform with a given duty cycle.

When the timer is enabled (by writing to the enable bit in software or by external input) after setting the initial values in the reload 0 and reload 1 registers, the counter is loaded with the reload 0 register value and starts counting down synchronously with the count clock. The first time the counter underflows, it is loaded with the reload 0 and reload 1 register and continues counting. Thereafter, the counter is loaded with the reload 0 and reload 1 register values alternately each time an underflow occurs. The (reload 0 register set value + 1) and (reload 1 register set value + 1) respectively are effective as count values. The timer stops at the same time count is disabled by writing to the enable bit (and not in synchronism with PWM output period).

The F/F output waveform in PWM output mode is inverted (F/F output level changes from low to high or vice versa) when the counter starts counting and each time it underflows.

Furthermore, it is possible to generate an interrupt request at even-numbered occurrences of underflow after the counter is enabled and a DMA transfer request (for only the TI08) every time the counter underflows.



Note that TIO's PWM output mode does not have the count correction function.

Figure 10.4.9 Typical Operation in PWM Output Mode

(2) Reload register updates in TIO PWM output mode

In PWM output mode, when the timer remains idle, the reload 0 and reload 1 registers are updated at the same time data are written to the respective registers. But when the timer is operating, the reload 1 register is updated by updating the reload 0 register. However, if the reload 0 and reload 1 registers are accessed for read, the read values are always the data that have been written to the respective registers.

Figure 10.4.10 PWM Circuit Diagram

To rewrite the reload 0 and reload 1 registers while the timer is operating, rewrite the reload 1 register first and then the reload 0 register. That way, the reload 0 and reload 1 registers both are updated synchronously with PWM period, from which the timer starts operating. This operation can normally be performed collectively by accessing 32-bit addresses beginning with the reload 1 register address wordwise. (Data are automatically written to the reload 1 and then the reload 0 registers in succession.)

If the reload 0 and reload 1 registers are updated in the reverse order beginning with reload 0, only the reload 0 register is updated. Note also that if the reload 0 and reload 1 registers are accessed for read, the read values are always the data that have been written to the respective registers, and not the reload values being actually used.

When altering PWM period by rewriting the reload registers, if the PWM period terminates before the CPU finishes writing to reload 0, the PWM period is not altered in the current session and the data written to the register is reflected in the next period.

(3) Precautions on using TIO PWM output mode

The following describes precautions to be observed when using TIO PWM output mode.

- If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled.
- If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value 1) at the next clock edge.
- Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled.

MULTIJUNCTION TIMERS 10.4 TIO (Input/Output-Related 16-Bit Timer)

		Write to reload		o reload 0 1 1 data latched)
Reload 0 register	H'10	000		• H'8000	
Reload 1 register	H'20	000	X o	H'9000 •	
F/F output	4	Old PWM — output period —			New PWM output period
				Oper	ation by new reload valu
Enlar			1	New P	
	Count clock		▶ ■	output p	eriod
	Counter	H'0001 H'0000	H'FFFF	H'7FFF	H'7FFE
	Interrupt due to underflow				
Re	eload 0 register	H'1000		H'80	00
Re	eload 1 register	H'2000	0	H'90	00
	Reload 1 buffer	H'2000	X	() H'90	00
	F/F output				
		hich reload 0 and reloa registers are upda	id 1 P	↑ WM period latch	ned
		Write to rele		rite to reload 0 eload 1 data lat	ched)
Reload 0 register	H'10				ched) H'8000
Reload 0 register Reload 1 register		000	oad 1 (R	eload 1 data lat	
	H'20	000		eload 1 data lat	H'8000 Old PWM output period →
Reload 1 register F/F outpu Enla	H'20		oad 1 (R	eload 1 data lat	H'8000 Old PWM
Reload 1 register F/F outpu Enla	H'20		oad 1 (R	eload 1 data lat	Old PWM output period
Reload 1 register F/F outpu Enla	t	000 000 • • • • • • • • • • • • • • • •	oad 1 (R	eload 1 data lat	Old PWM output period
Reload 1 register F/F outpu Enla	t arged ew Count clock	000 000 • • • • • • • • • • • • • • • •	oad 1 (R	eload 1 data lat	Old PWM output period →
Reload 1 register F/F outpu	t t Count clock Counter Interrupt due	000 000 • • • • • • • • • • • • • • • •	oad 1 (R	eload 1 data lat	Old PWM output period →
Reload 1 register	t arged ew Count clock Counter Interrupt due to underflow	000 000 0ld PWM output period -	oad 1 (R	eload 1 data lat	H'8000 Old PWM output period → Operation by old reload M iod H'0FFE
Reload 1 register	t arged ew Count clock Count clock Counter Interrupt due to underflow Reload 0 register	000 000 Old PWM output period -	oad 1 (R	eload 1 data lat	H'8000 Old PWM output period → Operation by old reload M iod H'0FFE
Reload 1 register	t arged ew Count clock Count clock Counter Interrupt due to underflow Reload 0 register Reload 1 register	000 000 Old PWM output period - H'0001 H'0000 H'1000 H'2000 X	oad 1 (R	eload 1 data lat	H'8000 Old PWM output period → Operation by old reload M iod H'0FFE H'8000

Figure 10.4.11 Reload 0 and Reload 1 Register Updates in PWM Output Mode

10.4.12 Operation in TIO Single-shot Output Mode (without Correction Function)

(1) Outline of TIO single-shot output mode

In single-shot output mode, the timer generates a pulse in width of (reload 0 register set value + 1) only once and then stops.

When the timer is enabled (by writing to the enable bit in software or by external input) after setting the reload 0 register, the counter is loaded with the content of the reload 0 register and starts counting synchronously with the count clock. The counter counts down and when the minimum count is reached, stops upon underflow.

The F/F output waveform in single-shot output mode is inverted (F/F output level changes from low to high or vice versa) at startup and upon underflow, generating a single-shot pulse waveform in width of (reload 0 register set value + 1) only once.

Furthermore, it is possible to generate an interrupt request and a DMA transfer request (for only the TI08) upon underflow of the counter.

The count value is (reload 0 register set value + 1). (For counting operation, see also Section 10.3.9, "Operation of TOP Single-shot Output Mode.")

(2) Precautions on using TIO single-shot output mode

The following describes precautions to be observed when using TIO single-shot output mode.

- If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops.
- If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled.
- If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled.
- Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled.

MULTIJUNCTION TIMERS 10.4 TIO (Input/Output-Related 16-Bit Timer)

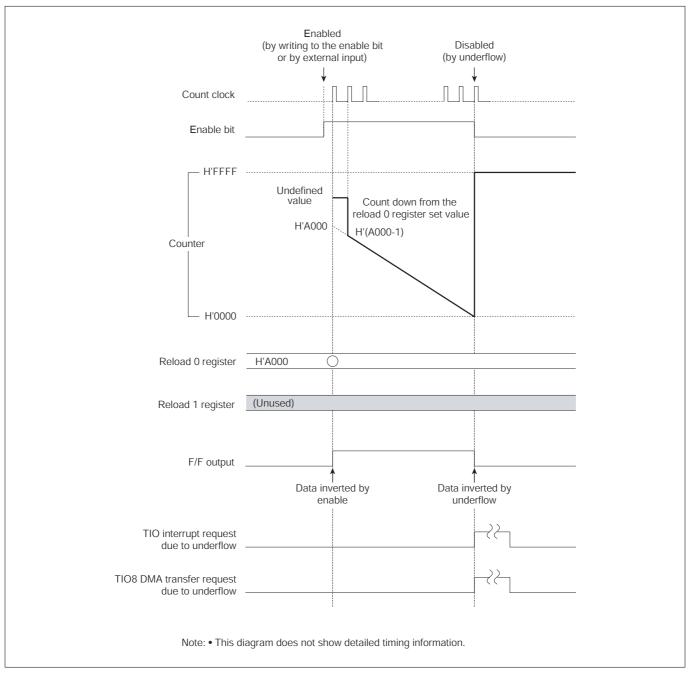


Figure 10.4.12 Typical Operation in TIO Single-shot Output Mode (without Correction Function)

10.4.13 Operation in TIO Delayed Single-shot Output Mode (without Correction Function)

(1) Outline of TIO delayed single-shot output mode

In delayed single-shot output mode, the timer generates a pulse in width of (reload 0 register set value + 1) after a finite time equal to (counter set value + 1) only once and then stops.

When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload 0 register, it starts counting down from the counter's set value synchronously with the count clock. The first time the counter underflows, it is loaded with the reload 0 register value and continues counting down. The counter stops when it underflows next time.

The F/F output waveform in delayed single-shot output mode is inverted (F/F output level changes from low to high or vice versa) when the counter underflows first time and next, generating a single-shot pulse waveform in width of (reload 0 register set value + 1) after a finite time equal to (first set value of counter + 1) only once.

Furthermore, it is possible to generate an interrupt request and a DMA transfer request (for only the TI08) upon the first and next underflows of the counter.

The (counter set value + 1) and (reload 0 register set value + 1) are effective as count values. (For counting operation, see also Section 10.3.10, "Operation of TOP Delayed Single-shot Output Mode.")

(2) Precautions on using TIO delayed single-shot output mode

The following describes precautions to be observed when using TIO delayed single-shot output mode.

- If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops.
- If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled.
- If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled.
- If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value 1) at the next clock edge.

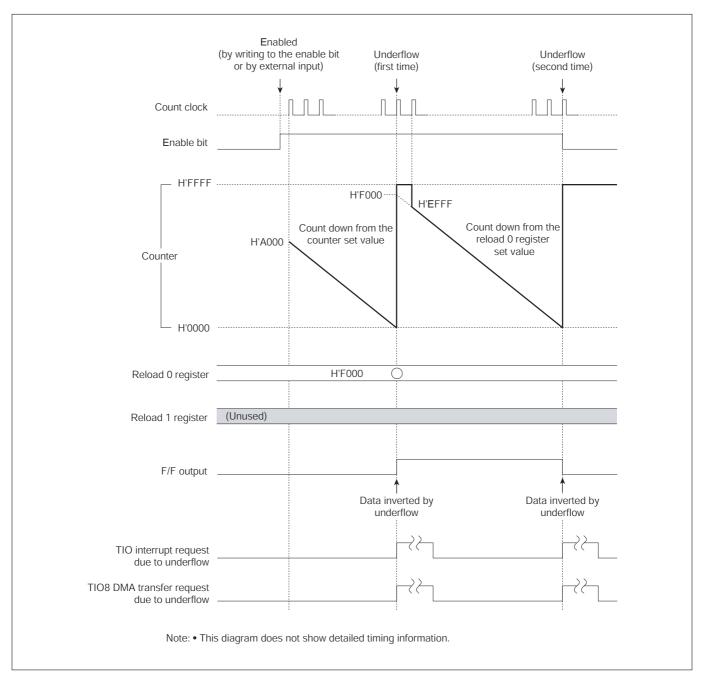


Figure 10.4.13 Typical Operation in TIO Delayed Single-shot Output Mode (without Correction Function)

10.4.14 Operation in TIO Continuous Output Mode (without Correction Function)

(1) Outline of TIO continuous output mode

In continuous output mode, the timer counts down starting from the set value of the counter and when the counter underflows, it is loaded with the reload 0 register value. Thereafter, this operation is repeated each time the counter underflows, thus generating consecutive pulses whose waveform is inverted in width of (reload 0 register set value + 1).

When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload 0 register, it starts counting down from the counter's set value synchronously with the count clock and when the minimum count is reached, generates an underflow. This underflow causes the counter to be loaded with the content of the reload 0 register and start counting over again. Thereafter, this operation is repeated each time an underflow occurs. To stop the counter, disable count by writing to the enable bit in software.

The F/F output waveform in continuous output mode is inverted (F/F output level changes from low to high or vice versa) at startup and upon underflow, generating a waveform of consecutive pulses until the timer stops counting.

Furthermore, it is possible to generate an interrupt request and a DMA transfer request (for only the TI08) each time the counter underflows.

The (counter set value + 1) and (reload 0 register set value + 1) are effective as count values. (For counting operation, see also Section 10.3.11, "Operation of TOP Continuous Output Mode.")

(2) Precautions on using TIO continuous output mode

The following describes precautions to be observed when using TIO continuous output mode.

- If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled.
- If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value 1) at the next clock edge.
- Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled.

MULTIJUNCTION TIMERS 10.4 TIO (Input/Output-Related 16-Bit Timer)

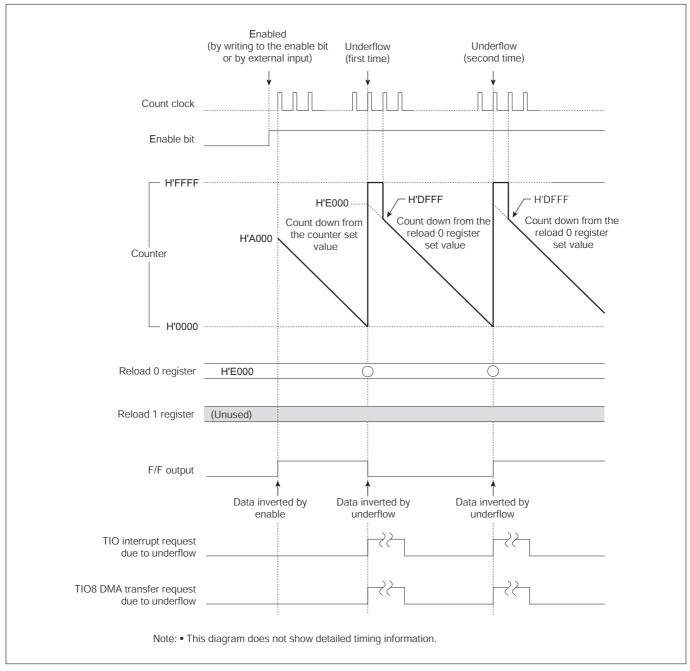


Figure 10.4.14 Typical Operation in TIO Continuous Output Mode (without Correction Function)

10.5 TMS (Input-Related 16-Bit Timer)

10.5.1 Outline of TMS

TMS (Timer Measure Small) is an input-related 16-bit timer capable of measuring input pulses in two circuit blocks comprising a total of eight channels.

The table below shows specifications of TMS. Figure 10.5.1 shows a block diagram of TMS.

Item	Specification
Number of channels	8 channels (2 circuit blocks consisting of 4 channels each, 8 channels in total)
Counter	16-bit up-counter × 2
Measure register	16-bit measure register \times 8
Timer startup	Started by writing to the enable bit in software
Interrupt request generation	Can be generated by a counter overflow

10.5.2 Outline of TMS Operation

In TMS, when the timer is enabled (by writing to the enable bit in software), the counter starts operating. The counter is a 16-bit up-counter, where the counter value is latched into each measure register when a measure signal is entered from an external device.

The counter stops counting at the same time count is disabled by writing to the enable bit in software.

TIN and TMS interrupt requests can be generated by external measure signal input and counter overflow, respectively (however, TMS0 does not have a TIN interrupt).

MULTIJUNCTION TIMERS 10.5 TMS (Input-Related 16-Bit Timer)

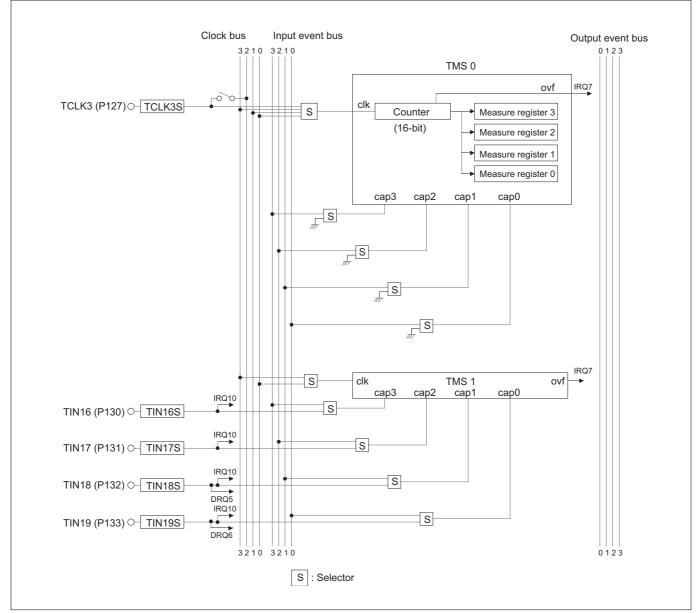


Figure 10.5.1 Block Diagram of TMS (Input-Related 16-Bit Timer)

<Count clock-dependent delay>

• Because the timer operates synchronously with the count clock, there is a count clock-dependent delay from when the timer is enabled till when it actually starts operating.

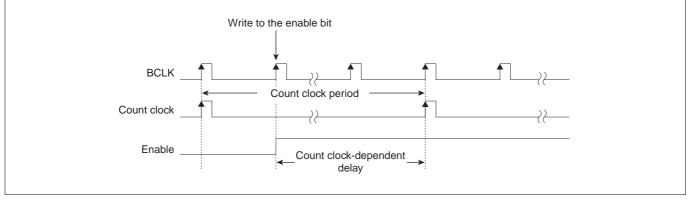


Figure 10.5.2 Count Clock-Dependent Delay

10.5.3 TMS Related Register Map

Shown below is a TMS related register map.

TMS Related Register Map

Address	+0 address	+1 address b8 b15	See pages				
H'0080 03C0		Counter OCT)	10-108				
H'0080 03C2		re 3 Register MR3)	10-108				
H'0080 03C4		re 2 Register MR2)	10-108				
H'0080 03C6		re 1 Register MR1)	10-108				
H'0080 03C8		re 0 Register MR0)	10-108				
H'0080 03CA	TMS0 Control Register (TMS0CR)	TMS1 Control Register (TMS1CR)	10-107				
	(Use inhib	ited area)					
H'0080 03D0		Counter 1CT)	10-108				
H'0080 03D2	TMS1 Measu (TMS ²	re 3 Register IMR3)	10-108				
H'0080 03D4		TMS1 Measure 2 Register (TMS1MR2)					
H'0080 03D6	TMS1 Measu (TMS ⁻	re 1 Register IMR1)	10-108				
H'0080 03D8		re 0 Register IMR0)	10-108				

10.5.4 TMS Control Registers

The TMS control registers are used to select TMS0/1 input events and count clock sources, as well as control count enable. Following two TMS control registers are included:

- TMS0 Control Register (TMS0CR)
- TMS1 Control Register (TMS1CR)

TMS0 Control Register (TMS0CR)

<Address: H'0080 03CA>

b0	1	2	3	4	5	6	b7
TMS0 SS0	TMS0 SS1	TMS0 SS2	TMS0 SS3	тмзо	OCKS		TMS0CEN
0	0	0	0	0	0	0	0

			<upon exiting="" h<="" reset:="" th=""><th>'00></th></upon>	'00>
b	Bit Name	Function	R	W
0	TMS0SS0	0: Does not use measure source	R	W
	TMS0 measure 0 source select bit	1: Input event bus 0		
1	TMS0SS1	0: Does not use measure source	R	W
	TMS0 measure 1 source select bit	1: Input event bus 1		
2	TMS0SS2	0: Does not use measure source	R	W
	TMS0 measure 2 source select bit	1: Input event bus 2		
3	TMS0SS3	0: Does not use measure source	R	W
	TMS0 measure 3 source select bit	1: Input event bus 3		
4, 5	TMS0CKS	00: External input TCLK3	R	W
	TMS0 clock source select bit	01: Clock bus 0		
		10: Clock bus 1		
		11: Clock bus 3		
6	No function assigned. Fix to "0".		0	0
7	TMS0CEN	0: Stop count	R	W
	TMS0 count enable bit	1: Start count		

TMS1 Control Register (TMS1CR)

<Address: H'0080 03CB>

b8	9	10	11	12	13	14	b15	
TMS1 SS0	TMS1 SS1	TMS1 SS2	TMS1 SS3		TMS1CKS		TMS1CEN	
0	0	0	0	0	0	0	0	

<Upon exiting reset: H'00>

Bit Name	Function	R	W
TMS1SS0	0: External input TIN19	R	W
TMS1 measure 0 source select bit	1: Input event bus 0		
TMS1SS1	0: External input TIN18	R	W
TMS1 measure 1 source select bit	1: Input event bus 1		
TMS1SS2	0: External input TIN17	R	W
TMS1 measure 2 source select bit	1: Input event bus 2		
TMS1SS3	0: External input TIN16	R	W
TMS1 measure 3 source select bit	1: Input event bus 3		
No function assigned. Fix to "0".		0	0
TMS1CKS	0: Clock bus 0	R	W
TMS1 clock source select bit	1: Clock bus 3		
No function assigned. Fix to "0".		0	0
TMS1CEN	0: Stop count	R	W
TMS1 count enable bit	1: Start count		
	TMS1SS0 TMS1 measure 0 source select bit TMS1SS1 TMS1 measure 1 source select bit TMS1SS2 TMS1 measure 2 source select bit TMS1SS3 TMS1 measure 3 source select bit No function assigned. Fix to "0". TMS1CKS TMS1 clock source select bit No function assigned. Fix to "0". TMS1CKS TMS1 clock source select bit No function assigned. Fix to "0". TMS1CEN	TMS1SS00: External input TIN19TMS1 measure 0 source select bit1: Input event bus 0TMS1SS10: External input TIN18TMS1 measure 1 source select bit1: Input event bus 1TMS1SS20: External input TIN17TMS1 measure 2 source select bit1: Input event bus 2TMS1SS30: External input TIN16TMS1 measure 3 source select bit1: Input event bus 3No function assigned. Fix to "0".0: Clock bus 0TMS1 clock source select bit1: Clock bus 3No function assigned. Fix to "0".0: Stop count	TMS1SS00: External input TIN19RTMS1 measure 0 source select bit1: Input event bus 0RTMS1SS10: External input TIN18RTMS1 measure 1 source select bit1: Input event bus 1RTMS1SS20: External input TIN17RTMS1SS30: External input TIN16RTMS1 measure 3 source select bit1: Input event bus 3RNo function assigned. Fix to "0".0RTMS1 clock source select bit1: Clock bus 0RTMS1 clock source select bit1: Clock bus 3RTMS1 clock source select bit1: Clock bus 3RNo function assigned. Fix to "0".0RTMS1CEN0: Stop countR

10.5.5 TMS Counters (TMS0CT, TMS1CT)

TMS0 Counter (TMS0CT)	
TMS1 Counter (TMS1CT)	

<Address: H'0080 03C0> <Address: H'0080 03D0>

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
	TMS0CT, TMS1CT														
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
0–15	TMS0CT,TMS1CT	16-bit counter value	R	W

Note: • These registers must always be accessed in halfwords.

The TMS counter is a 16-bit up-counter, which starts counting when the timer is enabled (by writing to the enable bit in software). The counters can be read during operation.

10.5.6 TMS Measure Registers (TMS0MR3-0, TMS1MR3-0)

TMS0 Measure 3 Register (TMS0MR3) <address: h'008<="" th=""><th>30 03C2></th></address:>	30 03C2>
TMS0 Measure 2 Register (TMS0MR2) <address: h'008<="" td=""><td>30 03C4></td></address:>	30 03C4>
TMS0 Measure 1 Register (TMS0MR1) <address: h'008<="" td=""><td>30 03C6></td></address:>	30 03C6>
TMS0 Measure 0 Register (TMS0MR0) <address: h'008<="" td=""><td>80 03C8></td></address:>	80 03C8>
TMS1 Measure 3 Register (TMS1MR3) <address: h'008<="" td=""><td>80 03D2></td></address:>	80 03D2>
TMS1 Measure 2 Register (TMS1MR2) <address: h'008<="" td=""><td>80 03D4></td></address:>	80 03D4>
TMS1 Measure 1 Register (TMS1MR1) <address: h'008<="" td=""><td>80 03D6></td></address:>	80 03D6>
TMS1 Measure 0 Register (TMS1MR0) <address: h'008<="" td=""><td>30 03D8></td></address:>	30 03D8>
b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15	
TMS0MR3-0, TMS1MR3-0	
? ? ? ? ? ? ? ? ? ?	
 Upon exiting reset: I 	Jndefined>

b	Bit Name	Function	R	W
0–15	TMS0MR3-TMS0MR0	16-bit counter value	R	_
	TMS1MR3-TMS1MR0			

Notes: • This register is a read-only register.

• This register can be accessed in either byte or halfword.

The TMS measure registers are used to latch counter contents upon event input. The TMS measure registers are a read-only register.

10.5.7 Operation of TMS Measure Input

(1) Outline of TMS measure input

In TMS measure input, the timer starts counting up when it is enabled (by writing to the enable bit in software). Then when event input to TMS is detected while the timer is operating, the counter value is latched into measure registers 0–3.

The timer stops counting at the same time count is disabled by writing to the enable bit.

A TIN interrupt request can be generated by measure signal input from an external device (TMS1 alone has a TIN interrupt. TMS0 does not have a TIN interrupt.) A TMS interrupt request can be generated when the counter overflows.

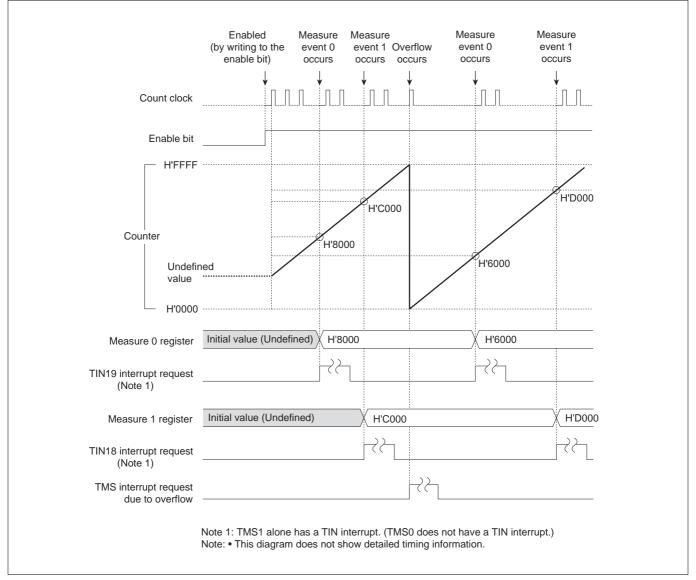


Figure 10.5.3 Typical Operation of TMS Measure Input

(2) Precautions on using TMS measure input

The following describes precautions to be observed when using TMS measure input.

• If measure event input and write to the counter occur in the same clock period, the write value is set in the counter while at the same time latched into the measure register.

10.6.1 Outline of TML

10

TML (Timer Measure Large) is an input-related 32-bit timer capable of measuring input pulses in two circuit blocks comprising a total of eight channels.

The table below shows specifications of TML. Figure 10.6.1 shows a block diagram of TML.

Table 10.6.1	Specifications of TML (Input-Related 32-Bit Timer)
--------------	--

Item	Specification
Number of channels	8 channels (2 circuit blocks consisting of 4 channels each, 8 channels in total)
Input clock	BCLK/2 (10.0 MHz when f(BCLK) = 20 MHz) or clock bus 1 input
Counter	32-bit up-counter × 2
Measure register	32-bit measure register × 8
Timer startup	Start counting after exiting the reset state

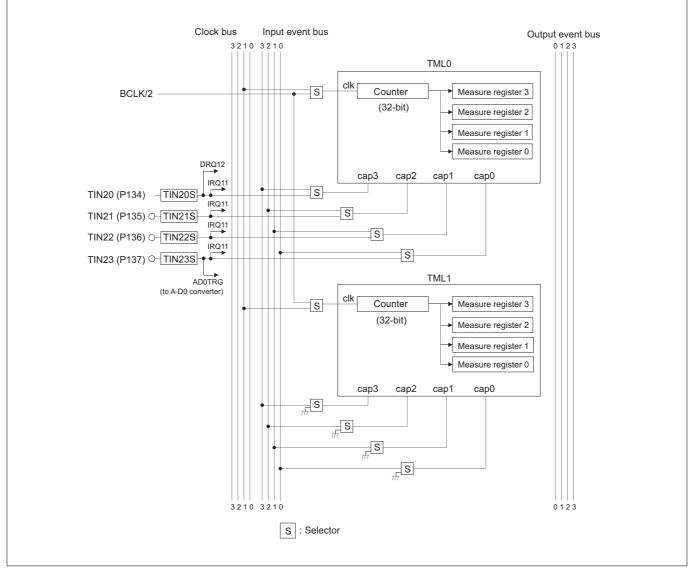


Figure 10.6.1 Block Diagram of TML (Input-Related 32-Bit Timer)

10.6.2 Outline of TML Operation

In TML, the timer starts counting upon deassertion of the reset input signal. The counter included in the timer is a 32-bit up-counter, where when a measure event signal is entered from an external device, the counter value at that point in time is stored in each 32-bit measure register.

When the reset input signal is deasserted, the counter starts operating with a BCLK/2, and cannot be stopped once it has started. The counter is idle only when the microcomputer remains reset.

A TIN interrupt request can be generated by external measure signal input (TML0 alone has a TIN interrupt. TML1 does not have a TIN interrupt.) However, no TML counter overflow interrupts are available.

10.6.3 TML Related Register Map

Shown below is a TML related register map.

TML Related Register Map

Address	+0 address	b8	+1 address	See pages
H'0080 03E0	TMLO C (TMLC	Counter	(Upper)	10-113
H'0080 03E2	TMLOC	Counter	(Lower)	10-113
	(Use inhib	,		
H'0080 03EA	(Use inhibited area)	T	ML0 Control Register (TML0CR)	10-112
	(Use inhib	ited area)		
H'0080 03F0	TML0 Measu (TML0I	re 3 Register //R3H)	(Upper)	10-114
H'0080 03F2	TML0 Measu (TML0I		(Lower)	10-114
H'0080 03F4	TML0 Measu (TML01	re 2 Register MR2H)	(Upper)	10-114
H'0080 03F6	TML0 Measu (TML0I	re 2 Register MR2L)	(Lower)	10-114
H'0080 03F8	TML0 Measu (TML01		(Upper)	10-114
H'0080 03FA	TML0 Measu (TML0I		(Lower)	10-114
H'0080 03FC	TML0 Measu (TML01	re 0 Register MR0H)	(Upper)	10-114
H'0080 03FE	TML0 Measu (TML0I		(Lower)	10-114
	(Use inhib	ited area)		
H'0080 0FE0	TML1 C (TML1		(Upper)	10-113
H'0080 0FE2	TML1 C (TML1	Counter	(Lower)	10-113
	(Use inhib	ited area)		
H'0080 0FEA	(Use inhibited area)	T	ML1 Control Register (TML1CR)	10-112
	(Use inhib	ited area)		
H'0080 0FF0	TML1 Measu (TML11		(Upper)	10-115
H'0080 0FF2	TML1 Measu (TML1)	re 3 Register	(Lower)	10-115
H'0080 0FF4	TML1 Measu (TML1)		(Upper)	10-115
H'0080 0FF6	TML1 Measu (TML1)	re 2 Register	(Lower)	10-115
H'0080 0FF8	TML1 Measu (TML1)	re 1 Register MR1H)	(Upper)	10-115
H'0080 0FFA	TML1 Measu (TML1)	re 1 Register	(Lower)	10-115
H'0080 0FFC	TML1 Measu (TML1)	re 0 Register	(Upper)	10-115
H'0080 0FFE	TML1 Measu (TML1	re 0 Register	(Lower)	10-115

<Address: H'0080 03EB>

10.6.4 TML Control Registers

TML0 Control Register (TML0CR)

	-	-	-							
b8	9	10	11	1:	2	13		14	b15	
TML0SS0	TML0SS1	TML0SS2	TML0SS3						TML0CKS	
0	0	0	0	C		0	1	0	0	

<Upon exiting reset: H'00> Bit Name Function R W b 8 TML0SS0 0: External input TIN23 R W 1: Input event bus 0 TML0 measure 0 source select bit 9 TML0SS1 0: External input TIN22 R W TML0 measure 1 source select bit 1: Input event bus 1 10 TML0SS2 0: External input TIN21 W R TML0 measure 2 source select bit 1: Input event bus 2 11 TML0SS3 0: External input TIN20 R W TML0 measure 3 source select bit 1: Input event bus 3 12-14 No function assigned. Fix to "0". 0 0 15 TML0CKS (Note 1) 0: BCLK/2 R W TML0 clock source select bit 1: Clock bus 1

Note 1: The counter can only be written normally when BCLK/2 is used as the clock source for the counter. If the selected clock source is not BCLK/2, do not write to the counter because it cannot be written normally.

TML1 Control Register (TML1CR)

<Address: H'0080 0FEB>

b8	9	10	11	12	13	14	b15
TML1SS0	TML1SS1	TML1SS2	TML1SS3				TML1CKS
0	0	0	0	0	0	0	0

<Upon exiting reset: H'00>

		•	0	
b	Bit Name	Function	R	W
8	TML1SS0	0: Does not use measure source	R	W
	TML1 measure 0 source select bit	1: Input event bus 0		
9	TML1SS1	0: Does not use measure source	R	W
	TML1 measure 1 source select bit	1: Input event bus 1		
10	TML1SS2	0: Does not use measure source	R	W
	TML1 measure 2 source select bit	1: Input event bus 2		
11	TML1SS3	0: Does not use measure source	R	W
	TML1 measure 3 source select bit	1: Input event bus 3		
12–14	No function assigned. Fix to "0".		0	0
15	TML1CKS (Note 1)	0: BCLK/2	R	W
	TML1 clock source select bit	1: Clock bus 1		

Note 1: The counter can only be written normally when BCLK/2 is used as the clock source for the counter. If the selected clock source is not BCLK/2, do not write to the counter because it cannot be written normally.

The TML control register is used to select TML input event and count clock.

10.6.5 TML Counters

	counter (Uppe counter (Lowe												<address: 03e0="" h'0080=""> <address: 03e2="" h'0080=""></address:></address:>
b0 ^	1 2 3	4	56	7	8	9	10	11	12	13	14	b15	
			TML0CTH	(16 h	gh-or	der bits	s)						
? 1	? ? ?	?	? ?	?	?	?	, ?	?	?	?	?	?	
b0	1 2 3	4	56	7	8	9	10	11	12	13	14	b15	_
			TML0CTL	. (16 lo	ow-ord	er bits	.)						
?	? ? ?	?	? ?	?	?	?	, ?	?	?	?	?	?	
												<l< td=""><td>Jpon exiting reset: Undefined></td></l<>	Jpon exiting reset: Undefined>
b	Bit Name						Fu	inctior	ı				R W
0–15	TML0CTH						32	-bit co	unter	value	(16 hi	gh-ord	er bits) R W

 U-15
 IMLOCTH
 32-bit counter value (16 high-order bits)
 R

 TMLOCTL
 32-bit counter value (16 low-order bits)

Note: • This register must always be accessed wordwise (in 32 bits) beginning with the address of the TML0CTH.

The TML0 counter is a 32-bit up-counter, which starts counting upon deassertion of the reset input signal. The TML0CTH accommodates the 16 high-order bits of the 32-bit counter, and the TML0CTL accommodates the 16 low-order bits. The counters can be read during operation.

٦	ML	1 Co	our	nter	(U	pp	er)	(T	ML	.10	CTH	H)																	<address: 0fe0="" h'0080=""></address:>
٦	ML	1 Co	our	nter	(L	ow	er)	(T	ML	.10	TL	_)																	<address: 0fe2="" h'0080=""></address:>
	h 0	4		2		2		4		F		c		7		0		^		10		. 4	47	,	10	4.4		.15	
-	b0			2		3		4		5		6		7		8		9		10		11	12	<u> </u>	13	14	Ĺ	515	-
L										Т	ML	1CT	Ή ((16	hig	h-o	rde	r bi	ts)										
L	?	?	1	?	I	?	T	?	I	?		?	L	?	1	?	1	?	1	?	1	?	?	1	?	?	1	?	
_	b0	1		2		3		4		5		6		7		8		9	,	10		11	12	2	13	14	k	o15	
										Т	ML	1CT	"L (16	low	-oro	der	bits	5)										
	?	?		?		?	I	?	I	?		?	Ì	?		?	I	?	Í	?	I	?	?	I	?	?		?	J
_																												<	Upon exiting reset: Undefined>
b)		В	t Na	me	•														F	unc	tio	n						R W

0–15	TML1CTH	32-bit counter value (16 high-order bits)	R	W
	TML1CTL	32-bit counter value (16 low-order bits)		

Note: • This register must always be accessed wordwise (in 32 bits) beginning with the address of the TML1CTH.

The TML1 counter is a 32-bit up-counter, which starts counting upon deassertion of the reset input signal. The TML1CTH accommodates the 16 high-order bits of the 32-bit counter, and the TML1CTL accommodates the 16 low-order bits. The counters can be read during operation.

10.6.6 TML Measure Registers

TML0 Measure 3 Register (TML0MR3H) <address: h<="" td=""><td>'0080 03</td><td>F0></td></address:>	'0080 03	F0>
TML0 Measure 3 Register (TML0MR3L) <address: h<="" td=""><td>'0080 03</td><td>F2></td></address:>	'0080 03	F2>
TML0 Measure 2 Register (TML0MR2H) <address: h<="" td=""><td>'0080 03</td><td>F4></td></address:>	'0080 03	F4>
TML0 Measure 2 Register (TML0MR2L) <address: h<="" td=""><td>0080 03</td><td>F6></td></address:>	0080 03	F6>
TML0 Measure 1 Register (TML0MR1H) <pre><address: h<="" pre=""></address:></pre>	0080 03	F8>
TML0 Measure 1 Register (TML0MR1L) < Address: H	'0080 03I	FA>
TML0 Measure 0 Register (TML0MR0H) <address: h<="" td=""><td>0080 03</td><td>FC></td></address:>	0080 03	FC>
TML0 Measure 0 Register (TML0MR0L) <address: h<="" td=""><td>'0080 03I</td><td>FE></td></address:>	'0080 03I	FE>
b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15		
TML0MR3H-TML0MR0H (16 high-order bits)		
? ? ? ? ? ? ? ? ? ?		
b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15		
TML0MR3L-TML0MR0L (16 low-order bits)		
? ? ? ? ? ? ? ? ? ?		
<upon exiting="" res<="" td=""><td>et: Undefir</td><td>וed></td></upon>	et: Undefir	וed>
	et: Undefir R	ned> W

Notes: • These registers are a read-only register.

TML0MR3L-0L

• These registers must always be accessed wordwise (in 32 bits) beginning with the word boundary.

The TML0 measure register is used to latch the counter content upon event input. The TML0 measure register consists of 32 bits, which TML0MR3H–0H and TML0MR3L–0L are 16 high-order bits and 16 low-order bits, respectively. The TML0 measure registers can only be read, and cannot be written to. The register must always be accessed wordwise beginning with the word boundary.

32-bit measure register value (16 low-order bits)

MULTIJUNCTION TIMERS 10.6 TML (Input-Related 32-Bit Timer)

TML1 Measure 3 Register (TML1MR3H)	<address: 0ff0="" h'0080=""></address:>
TML1 Measure 3 Register (TML1MR3L)	<address: 0ff2="" h'0080=""></address:>
TML1 Measure 2 Register (TML1MR2H)	<address: 0ff4="" h'0080=""></address:>
TML1 Measure 2 Register (TML1MR2L)	<address: 0ff6="" h'0080=""></address:>
TML1 Measure 1 Register (TML1MR1H)	<address: 0ff8="" h'0080=""></address:>
TML1 Measure 1 Register (TML1MR1L)	<address: 0ffa="" h'0080=""></address:>
TML1 Measure 0 Register (TML1MR0H)	<address: 0ffc="" h'0080=""></address:>
TML1 Measure 0 Register (TML1MR0L)	<address: 0ffe="" h'0080=""></address:>
b0 1 2 3 4 5 6 7 8 9 10 11 12 1	3 14 b15
TML1MR3H-TML1MR0H (16 high-order bits)	
? ? ? ? ? ? ? ? ? ?	? ? ?
b0 1 2 3 4 5 6 7 8 9 10 11 12 1	3 14 b15
TML1MR3L-TML1MR0L (16 low-order bits)	
	? ? ?
	<upon exiting="" reset:="" undefined=""></upon>
b Bit Name Function	R W
0–15 TML1MR3H–0H 32-bit measure re	gister value (16 high-order bits) R -
TML1MR3L–0L 32-bit measure reg	gister value (16 low-order bits)

Notes: • These registers are a read-only register.

• These registers must always be accessed wordwise (in 32 bits) beginning with the word boundary.

The TML1 measure register is used to latch the counter content upon event input. The TML1 measure register consists of 32 bits, which TML1MR3H–0H and TML1MR3L–0L are 16 high-order bits and 16 low-order bits, respectively. The TML1 measure registers can only be read, and cannot be written to. The register must always be accessed wordwise beginning with the word boundary.

10.6.7 Operation of TML Measure Input

(1) Outline of TML measure input

In TML measure input, the counter starts counting up when the reset input signal is deasserted. Upon event input to measure registers 0–3, the counter value is latched into each measure register.

A TIN interrupt request can be generated by measure signal input from an external device (TML0 alone has a TIN interrupt. TML1 does not have a TIN interrupt.) However, no TML counter overflow interrupts are available.

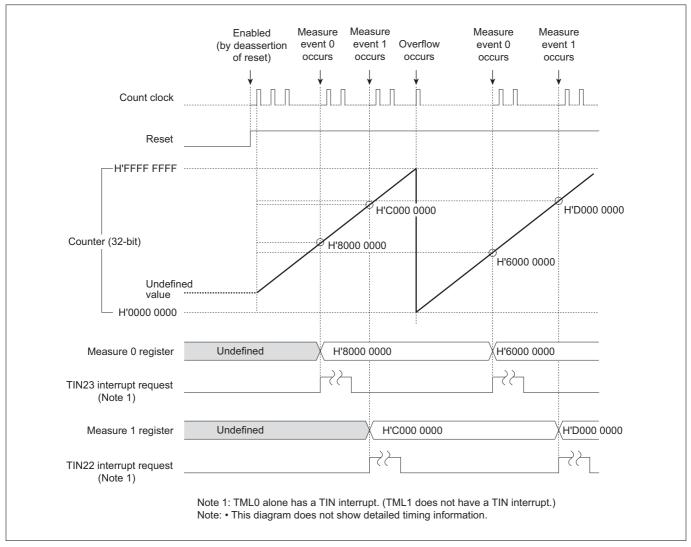


Figure 10.6.2 Typical Operation of TML Measure Input

(2) Precautions on using TML measure input

The following describes precautions to be observed when using TML measure input.

- If measure event input and write to the counter occur in the same clock period, the write value is set in the counter, whereas the up-count value (before being rewritten) is latched into the measure register.
- If clock bus 1 is selected and any clock other than BCLK/2 is used for the timer, the counter cannot be written normally. Therefore, when using any clock other than BCLK/2, do not write to the counter.
- If clock bus 1 is selected and any clock other than BCLK/2 is used for the timer, the value captured into the measure register is one count larger the counter value. During the count clock to BCLK/2 period interval, however, the captured value is exactly the counter value.

The diagram below shows the relationship between counter operation and the valid data that can be captured.

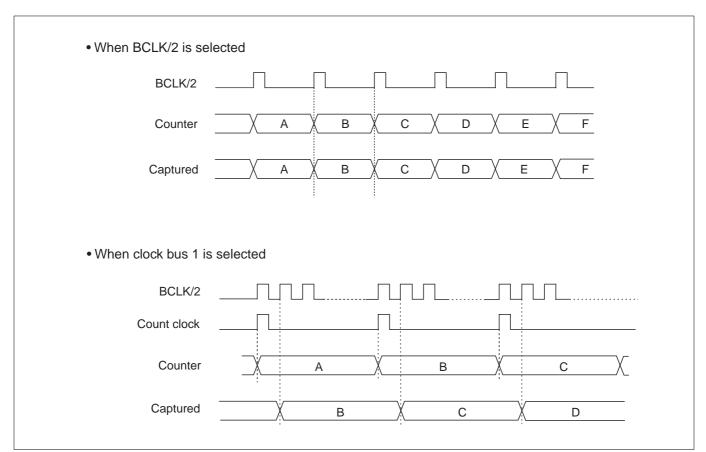


Figure 10.6.3 Mistimed Counter Value and the Captured Value

This page is blank for reasons of layout.

CHAPTER 11

A-D CONVERTER

- 11.1 Outline of A-D Converter
- 11.2 A-D Converter Related Registers
- 11.3 Functional Description of A-D Converter
- 11.4 Inflow Current Bypass Circuit
- 11.5 Precautions on Using A-D Converter

11.1 Outline of A-D Converter

The 32176 contains 10-bit resolution A-D Converter of the successive approximation type. The A-D converter has 16 analog input pins (channels) AD0IN0–AD0IN15. In addition to performing conversion individually on each channel, the A-D Converter can perform conversion successively on all of N channels (N = 1-16) as a single group. The conversion result can be read out in either 10 or 8 bits.

There are following conversion and operation modes for the A-D conversion:

(1) Conversion Modes

- A-D conversion mode : Ordinary mode in which analog input voltages are converted into digital quantities.
- Comparator mode (Note 1): A mode in which analog input voltage is compared with a preset comparison voltage to find only the relative magnitude of two quantities. (Useful in only single operation mode)

(2) Operation Modes

Single mode	: Analog input voltage on o (Note 1) with a given quar	one channel is A-D converted once or comparated ntity.
Scan mode	: Analog input voltages on tv 1–16) are sequentially A-	vo or more selected channels (in N channel units, N = D converted.
	Single-shot scan mode Continuous scan mode	: Scan operation is performed for one cycle. : Scan operation is repeatedly until stopped.

(3) Special Operation Modes

• Forcible single mode execution during scan mode	: Conversion is forcibly executed in single mode (comparator mode) during scan operation.
Scan mode start after single mode execution	: Scan operation is started subsequently after executing conversion in single mode.
Conversion restart	: A-D conversion being executed in single or scan mode is restarted.

(4) Sample-and-Hold Function

The analog input voltage is sampled when starting A-D conversion, and A-D conversion is performed on the sampled voltage. This function can be enabled or disabled as necessary.

(5) A-D Disconnection Detection Assist Function

To suppress influences of the analog input voltage leakage from any preceding channel during scan mode operation, a function is incorporated that helps to fix the electric charge on the chopper amp capacitor to the given state (AVCC or AVSS) before starting A-D conversion. This function provides a sure and reliable means of detecting a disconnection in the wiring patterns connecting to the analog input pins.

(6) Inflow Current Bypass Circuit

If an overvoltage or negative voltage is applied to any analog input channel which is currently inactive, a current flows into or out of the analog input channel currently being A-D converted via the internal circuit, causing the conversion accuracy to degrade. To solve this problem, the A-D Converter incorporates a circuit that bypasses such inflow current. This circuit is always enabled.

(7) Conversion Speed

The A-D conversion and comparate speed can be selected from a total of four speeds available: slow mode (normal or double speed) and fast mode (normal or double speed). The normal speed and double speed in slow mode are compatible with the 32170 group of Renesas microcomputers.

(8) Interrupt Request and DMA Transfer Request Generation Functions

An A-D conversion interrupt or DMA transfer request can be generated each time A-D conversion or comparate operation in single mode is completed, as well as when a single-shot scan operation or one cycle of continuous scan operation is completed.

Note 1: To discriminate between the comparison performed internally by the successive approximationtype A-D Converter and that performed in comparator mode using the same A-D Converter as a comparator, the comparison in comparator mode is referred to in this manual as "comparate."

Table 11.1.1 outlines the A-D Converter and Figure 11.1.1 shows block diagram of A-D Converter.

er 8 or 10 bits) ode Normal speed ±2LSB Double speed ±2LSB de Normal speed ±3LSB Double speed ±3LSB ode Normal speed ±3LSB Double speed ±3LSB Double speed ±3LSB de Normal speed ±3LSB
Normal speed ±2LSB Double speed ±2LSB de Normal speed ±3LSB Double speed ±3LSB de Normal speed ±3LSB Double speed ±3LSB uous scan mode ************************************
Normal speed ±2LSB Double speed ±2LSB de Normal speed ±3LSB Double speed ±3LSB de Normal speed ±3LSB Double speed ±3LSB uous scan mode ************************************
Double speed ±2LSB de Normal speed ±3LSB Double speed ±3LSB ode Normal speed ±3LSB Double speed ±3LSB Double speed ±3LSB Double speed ±3LSB Double speed ±3LSB de Normal speed ±3LSB Double speed ±3LSB uous scan mode
de Normal speed ±3LSB Double speed ±3LSB ode Normal speed ±3LSB Double speed ±3LSB de Normal speed ±3LSB Double speed ±3LSB de Normal speed ±3LSB Double speed ±3LSB uous scan mode ************************************
Double speed ±3LSB ode Normal speed ±3LSB Double speed ±3LSB de Normal speed ±3LSB Double speed ±3LSB Double speed ±3LSB Double speed ±3LSB Double speed ±8LSB uous scan mode A-D conversion start bit to "1"
Normal speed ±3LSB Double speed ±3LSB de Normal speed ±3LSB Double speed ±3LSB Double speed ±3LSB uous scan mode A-D conversion start bit to "1"
Double speed ±3LSB de Normal speed ±3LSB Double speed ±8LSB uous scan mode A-D conversion start bit to "1"
de Normal speed ±3LSB Double speed ±8LSB uous scan mode A-D conversion start bit to "1"
Double speed ±8LSB uous scan mode A-D conversion start bit to "1"
uous scan mode A-D conversion start bit to "1"
A-D conversion start bit to "1"
A-D conversion start bit to "1"
(input event bus 2), MJT (input event bus 3),
(output event bus 3) and MJT (TIN23S)
de Normal speed 299BCLK 14.95µs (Note 2)
Double speed 173BCLK 8.65µs
de Normal speed 131BCLK 6.55µs
Double speed 89BCLK 4.45µs
de Normal speed 191BCLK 9.55µs
Double speed 101BCLK 5.05µs
de Normal speed 95BCLK 4.75µs
Double speed 53BCLK 2.65µs
de Normal speed 47BCLK 2.35µs
Double speed 29BCLK 1.45µs
de Normal speed 23BCLK 1.15µs
Double speed 17BCLK 0.85µs
bled as necessary.
m any preceding channel during scan
ration is completed
eration is completed ne cycle of continuous scan operation is completed
a

Table 11.1.1 Outline of the A-D Converter

Note 2: This indicates the conversion time when f(BCLK) = 20 MHz (1 BCLK = 50 ns).

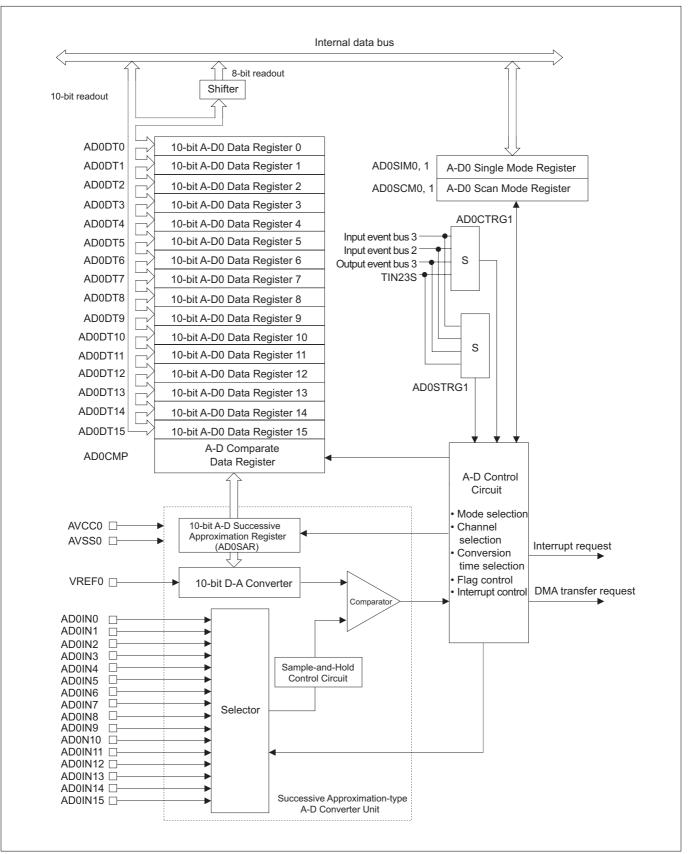


Figure 11.1.1 Block Diagram of the A-D0 Converter

11.1.1 Conversion Modes

The A-D Converter has two conversion modes: "A-D Conversion mode" and "Comparator mode."

(1) A-D Conversion Mode

In A-D conversion mode, the analog input voltage on a specified channel is A-D converted. In single mode, A-D conversion is performed on a channel selected by the A-D Single Mode Register 1 analog input pin select bit.

In scan mode, A-D conversion is performed on channels selected by A-D Scan Mode Register 1 according to settings of A-D Scan Mode Register 0.

The conversion result is stored in each channel's corresponding 10-bit A-D Data Register. There is also an 8-bit A-D Data Register for each channel, from which 8-bit A-D conversion results can be read out.

An A-D conversion interrupt or DMA transfer request can be generated when A-D conversion in single mode is completed, as well as when one cycle of scan loop in scan mode is completed.

(2) Comparator Mode

In comparator mode, the analog input voltage on a specified channel is "comparated" (compared) with the successive approximation register value, and the result (relative magnitude of two values) is returned to a flag.

The channel to be comparated is selected using the A-D Single Mode Register 1 analog input pin select bit. The result of comparate operation is flagged ("0" or "1") by setting the A-D Comparate Data Register bit that corresponds to the selected channel.

An A-D conversion interrupt or DMA transfer request can be generated when comparate operation is completed.

11.1.2 Operation Modes

There are two operation modes for the A-D Converter: "Single mode" and "Scan mode." When comparator mode is selected as A-D conversion mode, only single mode can be used.

(1) Single Mode

In single mode, the analog input voltage on one selected channel is A-D converted or comparated once. An A-D conversion interrupt or DMA transfer request can be generated when A-D conversion or comparate operation is completed.

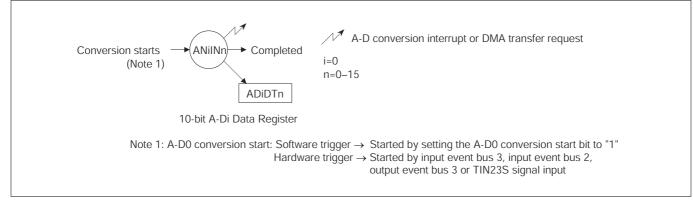


Figure 11.1.2 Operation in Single Mode (A-D Conversion)

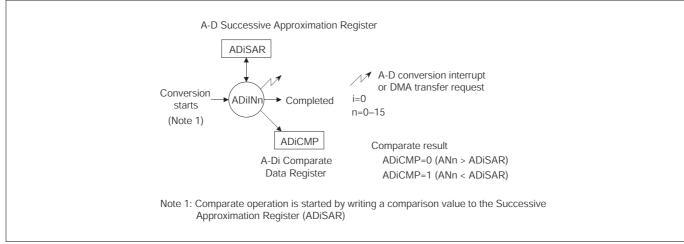


Figure 11.1.3 Operation in Single Mode (Comparate)

(2) Scan Mode

In scan mode, the analog input voltages from channel 0 to the channel selected by the A-D Scan Mode Register 1 scan loop select bit (channels 0–15) are sequentially A-D converted.

There are two types of scan mode: "Single-shot scan mode" in which A-D conversion is completed after performing one cycle of scan operation, and "Continuous scan mode" in which scan operation is continued until halted by setting the A-D scan mode register 0's A-D conversion stop bit to "1".

These types of scan mode are selected using A-D Scan Mode Register 0. The channels to be scanned are selected using A-D Scan Mode Register 1. The selected channels are scanned sequentially beginning with channel 0.

An A-D conversion interrupt or DMA transfer request can be generated when one cycle of scan operation is completed.

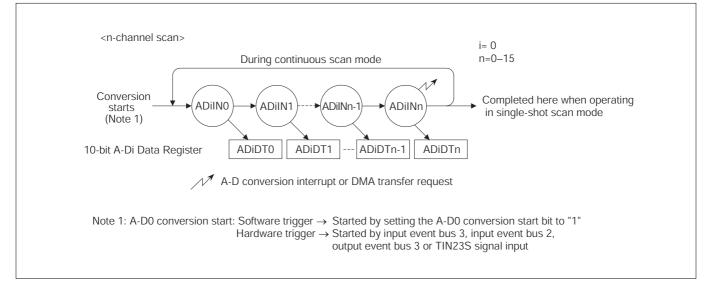


Figure 11.1.4 Operation of A-D Conversion in Scan Mode

Scan Mode Register 1	Selected channels	Selected channels	A-D conversion result
channel selection	for single-shot scan	for continuous scan	storage register
B'0000:0	ADiIN0	ADiINO	10-bit A-Di Data Register 0
(ADiIN0)	Completed	ADiIN0	10-bit A-Di Data Register 0
		: (Repeated until forcibly terminated)	:
B'0001:1	ADilN0	ADiIN0	10-bit A-Di Data Register 0
(ADiIN1)	ADilN1	ADiIN1	10-bit A-Di Data Register 1
	Completed	ADilNO	10-bit A-Di Data Register 0
		: (Repeated until forcibly terminated)	÷
B'0010:2	ADilN0	ADiIN0	10-bit A-Di Data Register 0
(ADiIN2)	ADiIN1	ADiIN1	10-bit A-Di Data Register 1
	ADiIN2	ADiIN2	10-bit A-Di Data Register 2
	Completed	ADilN0	10-bit A-Di Data Register 0
		: (Repeated until forcibly terminated)	:
B'0011:3	ADiIN0	ADiIN0	10-bit A-Di Data Register 0
(ADiIN3)	ADiIN1	ADiIN1	10-bit A-Di Data Register 1
	ADilN2	ADiIN2	10-bit A-Di Data Register 2
	ADiIN3	ADiIN3	10-bit A-Di Data Register 3
	Completed	A <u>D</u> iINO	10-bit A-Di Data Register 0
		: (Repeated until forcibly terminated)	:
B'XXXX:n	ADiIN0	ADiIN0	10-bit A-Di Data Register 0
(ADilNn)	ADiIN1	ADiIN1	10-bit A-Di Data Register 1
	ADiIN2	ADiIN2	10-bit A-Di Data Register 2
n≤15			:
	ADilNn	ADilNn	10-bit A-Di Data Register n
	Completed	ADiIN0	10-bit A-Di Data Register 0
		: (Repeated until forcibly terminated)	÷

Table 11.1.2 Registers in Which Scan Mode A-D Conversion Results Are Stored

(i=0)

11.1.3 Special Operation Modes

(1) Forcible single mode execution during scan mode

In this special operation mode, single mode conversion (A-D conversion or comparate) is forcibly executed on a specified channel during scan mode operation. For A-D conversion mode, the conversion result is stored in the 10-bit A-D Data Register corresponding to the specified channel, whereas for comparate mode, the conversion result is stored in the 10-bit A-D Comparate Data Register. When the A-D conversion or comparate operation on a specified channel finishes, scan mode A-D conversion is restarted from where it was canceled during scan operation.

To start single mode conversion during scan mode operation in software, choose a software trigger using the A-D Single Mode Register 0 A-D conversion start trigger select bit. Then, for A-D conversion, set the said register's A-D conversion start bit to "1". For comparate mode, write a comparison value to the A-D Successive Approximation Register (AD0SAR) during scan mode operation.

To start single mode conversion during scan mode operation in hardware, choose a hardware trigger using the A-D Single Mode Register 0 A-D conversion start trigger select bit. Then enter the hardware trigger selected with the said register.

An A-D conversion interrupt or DMA transfer request can be generated when conversion on a specified channel or one cycle of scan operation is completed.

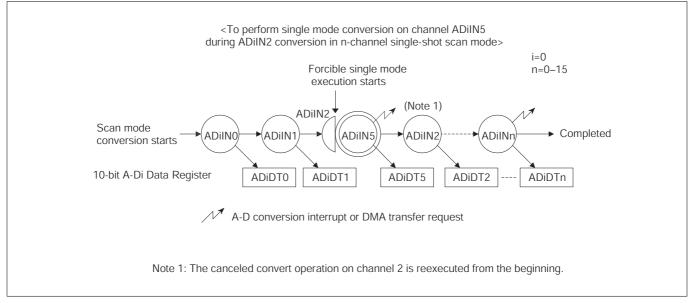


Figure 11.1.5 Forcible Single Mode Execution during Scan Mode

(2) Scan mode start after single mode execution

In this special operation mode, scan operation is started subsequently after executing single mode conversion (A-D conversion or comparate).

To start this mode in software, choose a software trigger using the A-D Scan Mode Register 0 A-D conversion start trigger select bit. Then set the said register's A-D conversion start bit to "1" during single mode conversion operation.

To start this mode in hardware, choose a hardware trigger using the A-D Scan Mode Register 0 A-D conversion start trigger select bit. Then enter the hardware trigger selected with the said register during single mode conversion operation.

If a hardware trigger is selected using the A-D conversion start trigger select bit in both A-D Single Mode Register 0 and A-D Scan Mode Register 0 and the selected hardware triggers are entered, the A-D Converter first performs single mode conversion and then scan mode conversion in succession.

An A-D conversion interrupt or DMA transfer request can be generated when single mode conversion on a specified channel or one cycle of scan operation is completed.

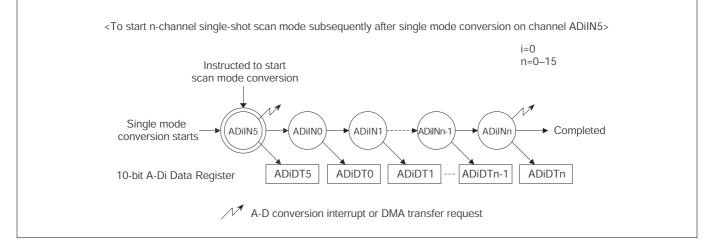


Figure 11.1.6 Scan Mode Start after Single Mode Execution

(3) Conversion restart

In this special operation mode, operation being executed in single or scan mode is stopped in the middle and reexecuted from the beginning.

When in single mode, set the A-D Single Mode Register 0 A-D conversion start bit to "1" again or enter a hardware trigger during A-D conversion or comparate operation, and the operation being executed is restarted over again.

When in scan mode, set the A-D Scan Mode Register 0 A-D conversion start bit to "1" again or enter a hardware trigger signal during scan operation, and the channel being converted is canceled and A-D conversion is performed from channel 0 over again.

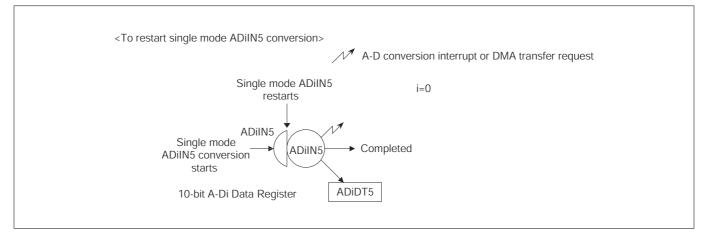


Figure 11.1.7 Conversion Restart during Single Mode Operation

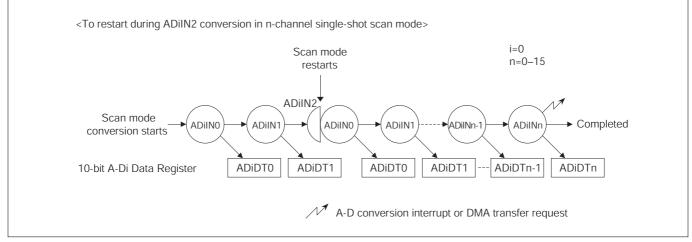


Figure 11.1.8 Conversion Restart during Scan Operation

11.1.4 A-D Converter Interrupt and DMA Transfer Requests

The A-D Converter can generate an A-D conversion interrupt or DMA transfer request each time A-D conversion, comparate operation, single-shot scan or one cycle of continuous scan mode is completed. The A-D Single Mode Register 0 and A-D Scan Mode Register 0 are used to select between A-D conversion interrupt and DMA transfer requests.

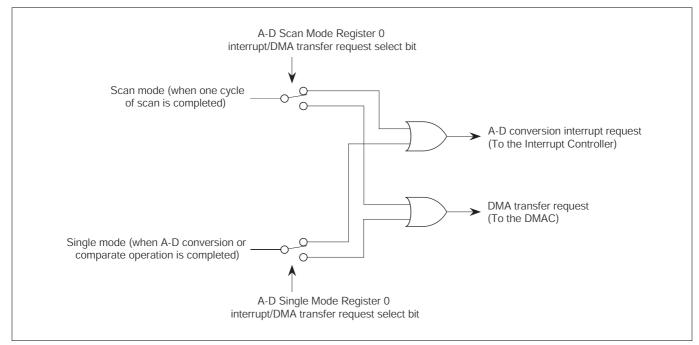


Figure 11.1.9 Selecting between Interrupt and DMA Transfer Requests

11.1.5 Sample-and-Hold Function

The analog input voltage that was sampled immediately after A-D conversion started is held on, and A-D conversion is performed on that seized voltage.

The A-D conversion time in "normal" sample-and-hold mode is the same as in conventional A-D conversion mode of the 32170, etc. The A-D conversion time in "fast" sample-and-hold mode is significantly short, allowing to obtain conversion results more quickly than ever.

11.2 A-D Converter Related Registers

Shown below is an A-D converter related register map.

A-D Converter Related Register Map (1/2)

Address b0 H'0080 0080 H'0080 0082 H'0080 0084 H'0080 0084 H'0080 0086 A-E H'0080 0088 H'0080 0088 H'0080 008A H'0080 008A H'0080 008C H'0080 008E	A-D0 Single Mode Register 0 (ADOSIM0) (Use inhib A-D0 Scan Mode Register 0 (AD0SCM0) D0 Disconnection Detection Assist Function Control Register (AD0DDACR)	A-D0 Single Mode Register 1 (AD0SIM1) ited area) A-D0 Scan Mode Register 1 (AD0SCM1) A-D0 Conversion Speed Control Register	See pages 11-14 11-16 11-18 11-20
H'0080 0082 H'0080 0084 H'0080 0086 A-E H'0080 0088 H'0080 008A H'0080 008C	(ADOSIMO) (Use inhib A-D0 Scan Mode Register 0 (AD0SCM0) D0 Disconnection Detection Assist Function Control Register (AD0DDACR)	(AD0SIM1) ited area) A-D0 Scan Mode Register 1 (AD0SCM1) A-D0 Conversion Speed Control Register	11-16
H'0080 0084 H'0080 0086 A-E H'0080 0088 H'0080 008A H'0080 008C	A-D0 Scan Mode Register 0 (AD0SCM0) D0 Disconnection Detection Assist Function Control Register (AD0DDACR)	A-D0 Scan Mode Register 1 (AD0SCM1) A-D0 Conversion Speed Control Register	
H'0080 0086 A-E H'0080 0088 H'0080 008A H'0080 008C	(AD0SCM0) D0 Disconnection Detection Assist Function Control Register (AD0DDACR)	(AD0SCM1) A-D0 Conversion Speed Control Register	
H'0080 0088 H'0080 008A H'0080 008C	D0 Disconnection Detection Assist Function Control Register (AD0DDACR)	A-D0 Conversion Speed Control Register	
H'0080 008A H'0080 008C		(AD0CVSCR)	11-23 11-22
H'0080 008C	A-D0 Successive App (AD0)	proximation Register SAR)	11-27
	· · · · · · · · · · · · · · · · · · ·	on Assist Method Select Register	11-24
H'0080 008E	A-D0 Comparate (AD00		11-28
	(Use inhib	,	
H'0080 0090	10-bit A-D0 Da (AD0)		11-29
H'0080 0092	10-bit A-D0 Da (AD0)	ata Register 1	11-29
H'0080 0094	10-bit A-D0 Da (AD0)	ata Register 2	11-29
H'0080 0096	10-bit A-D0 (AD0)	ata Register 3	11-29
H'0080 0098	10-bit A-D0 Da (AD0)	ata Register 4	11-29
H'0080 009A	10-bit A-D0 Dz (AD0)	ata Register 5	11-29
H'0080 009C	10-bit A-D0 Da (AD0)	ata Register 6	11-29
H'0080 009E	10-bit A-D0 Da (AD0)	ata Register 7	11-29
H'0080 00A0	10-bit A-D0 D2 (AD0)	ata Register 8	11-29
H'0080 00A2	10-bit A-D0 Da (AD0)	ata Register 9	11-29
H'0080 00A4	10-bit A-D0 Da (AD0E	ta Register 10	11-29
H'0080 00A6	10-bit A-D0 Da (AD0E	ta Register 11	11-29
H'0080 00A8	10-bit A-DO Da (ADOE	ta Register 12	11-29
H'0080 00AA	10-bit A-D0 Da (AD0E	ita Register 13	11-29
H'0080 00AC	10-bit A-DO Da (ADOE	ata Register 14	11-29
H'0080 00AE	10-bit A-D0 Da (AD0E	ta Register 15	11-29
H'0080 00D0	(Use inhibited area)	8-bit A-D0 Data Register 0 (AD08DT0)	11-30
H'0080 00D2	(Use inhibited area)	8-bit A-D0 Data Register 1 (AD08DT1)	11-30
H'0080 00D4	(Use inhibited area)	8-bit A-D0 Data Register 2 (AD08DT2)	11-30
H'0080 00D6	(Use inhibited area)	8-bit A-D0 Data Register 3 (AD08DT3)	11-30
H'0080 00D8	(Use inhibited area)	8-bit A-D0 Data Register 4 (AD08DT4)	11-30
H'0080 00DA	(Use inhibited area)	8-bit A-D0 Data Register 5 (AD08DT5)	11-30
H'0080 00DC	(Use inhibited area)	8-bit A-D0 Data Register 6 (AD08DT6)	11-30

A-D Converter Related Register Map (2/2)

Address	+0 address b0 b7	+1 address b8 b15	See pages
H'0080 00DE	(Use inhibited area)	8-bit A-D0 Data Register 7 (AD08DT7)	11-30
H'0080 00E0	(Use inhibited area)	8-bit A-D0 Data Register 8 (AD08DT8)	11-30
H'0080 00E2	(Use inhibited area)	8-bit A-D0 Data Register 9 (AD08DT9)	11-30
H'0080 00E4	(Use inhibited area)	8-bit A-D0 Data Register 10 (AD08DT10)	11-30
H'0080 00E6	(Use inhibited area)	8-bit A-D0 Data Register 11 (AD08DT11)	11-30
H'0080 00E8	(Use inhibited area)	8-bit A-D0 Data Register 12 (AD08DT12)	11-30
H'0080 00EA	(Use inhibited area)	8-bit A-D0 Data Register 13 (AD08DT13)	11-30
H'0080 00EC	(Use inhibited area)	8-bit A-D0 Data Register 14 (AD08DT14)	11-30
H'0080 00EE	(Use inhibited area)	8-bit A-D0 Data Register 15 (AD08DT15)	11-30

11.2.1 A-D Single Mode Register 0

A-D0 Single Mode Register 0 (AD0SIM0)

b0	1	2	3	4	5	6	b7
ADSTRG1		ADSTRG0	ADSSEL	ADSREQ	ADSCMP	ADSSTP	ADSSTT
0	0	0	0	0	1	0	0

<Address: H'0080 0080>

<Upon exiting reset: H'04>

b	Bit Name	Function	R ۱	W	
0	ADSTRG1 (Note 1)	Bits 0 and 2 are used to select an A-D hardware trigger.R			
	A-D hardware trigger select 1 bit	b0 b2			
		0 0 : Input event bus 2			
		0 1 : Input event bus 3			
		1 0 : Output event bus 3			
		1 1 : TIN23S signal			
1	No function assigned. Fix to "0".		0	0	
2	ADSTRG0 (Note 1)	Bits 0 and 2 are used to select an A-D hardware trigger.	R۱	W	
	A-D hardware trigger select 0 bit	(See the column for bit 0.)			
3	ADSSEL	0: Software trigger			
	A-D conversion start trigger select bit	1: Hardware trigger (Note 2)			
4	ADSREQ	0: A-D conversion interrupt request	R ۱	W	
	A-D Interrupt/DMA transfer request select bit	1: DMA transfer request			
5	ADSCMP	0: A-D conversion/comparate in progress	R ·	_	
	A-D conversion/comparate completed bit	1: A-D conversion/comparate completed			
6	ADSSTP	0: No operation	0 ۱	W	
	A-D conversion stop bit	1: Stop A-D conversion			
7	ADSSTT	0: No operation	0 ۱	W	
	A-D conversion start bit	1:Start A-D conversion			

Note 1: Two bits—bit 0 (A-D hardware trigger select 1) and bit 2 (A-D hardware trigger select 0)—are used to select an A-D hardware trigger.

Note 2: During comparator mode, hardware triggers, if any selected, are ignored and operation is started by a software trigger.

A-D Single Mode Register 0 is used to control operation of the A-D Converter during single mode (including "Forcible single mode execution during scan mode").

(1) ADSTRG (A-D Hardware Trigger Select) bits (Bits 0 and 2)

These bits select a hardware trigger when A-D conversion by the A-D Converter is to be started in hardware. Select one from the following hardware trigger sources:

A-D0 Converter: Input event bus 2 Input event bus 3 Output event bus 3 TIN23 edge select output

The contents of these bits are ignored if a software trigger is selected by ADSSEL (A-D conversion start trigger select bit).

(2) ADSSEL (A-D Conversion Start Trigger Select) bit (Bit 3)

This bit selects whether to use a software or hardware trigger to start A-D conversion during single mode. If a software trigger is selected, A-D conversion is started by setting the ADSSTT (A-D conversion start) bit to "1". If a hardware trigger is selected, A-D conversion is started by the trigger source selected with the ADSTRG (hardware trigger select) bits.

(3) ADSREQ (A-D Interrupt Request/DMA Transfer Request Select) bit (Bit 4)

This bit selects whether to request an A-D conversion interrupt or a DMA transfer when single mode operation (A-D conversion or comparate) is completed. If neither an interrupt nor a DMA transfer are used, choose to request an A-D conversion interrupt and use the A-D Conversion Interrupt Control Register of the Interrupt Controller (ICU) to mask the interrupt request, or choose to request a DMA transfer and use the DMA Channel Control Register to disable DMA transfers to be performed upon completion of A-D conversion.

(4) ADSCMP (A-D Conversion/Comparate Completed) bit (Bit 5)

This is a read-only bit, whose value when exiting the reset state is "1". This bit is "0" when the A-D Converter is performing single mode operation (A-D conversion or comparate) and is set to "1" when the operation finishes. This bit is also set to "1" when A-D conversion or comparate operation is forcibly terminated by setting the ADSSTP (A-D conversion stop) bit to "1" during A-D conversion or comparate operation.

(5) ADSSTP (A-D Conversion Stop) bit (Bit 6)

Setting this bit to "1" while the A-D Converter is performing single mode operation (A-D conversion or comparate) causes the operation being performed to stop. Manipulation of this bit is ignored while single mode operation is idle or scan mode operation is under way.

Operation stops immediately after writing to this bit. If the A-D Successive Approximation Register is read after being stopped, the content read from the register is the value in the middle of conversion (not transferred to the A-D Data Register).

If the A-D conversion start bit and A-D conversion stop bit are set to "1" at the same time, the A-D conversion stop bit has priority.

If this bit is set to "1" when performing single mode operation in special mode "Forcible single mode execution during scan mode," only single mode conversion stops and scan mode operation restarts.

(6) ADSSTT (A-D Conversion Start) bit (Bit 7)

If this bit is set to "1" when a software trigger has been selected with the ADSSEL (A-D conversion start trigger select) bit, the A-D Converter starts A-D conversion.

If the A-D conversion start bit and A-D conversion stop bit are set to "1" at the same time, the A-D conversion stop bit has priority.

If this bit is set to "1" again while performing single mode conversion, special operation mode "Conversion restart" is turned on, so that single mode conversion restarts.

If this bit is set to "1" again while performing A-D conversion in scan mode, special operation mode "Forcible single mode execution during scan mode" is turned on, so that the channel being converted in scan mode is canceled and single mode conversion is performed. When the single mode conversion finishes, scan mode A-D conversion restarts beginning with the canceled channel.

11.2.2 A-D Single Mode Register 1

A-D0 Single Mode Register 1 (AD0SIM1)

<Address: H'0080 0081>

b 8	9	10	11	12	13	14	b15	
ADSMSL	ADSSPD	ADSSHSL	ADSSHSPD	ANSEL				
0	0	0	0	0	0	0	0	

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
8	ADSMSL	0: A-D0 conversion mode	R	W
	A-D conversion mode select bit	1: Comparator mode		
9	ADSSPD (Note 1)	0: Normal speed	R	W
	A-D conversion speed select bit	1: Double speed		
10	ADSSHSL	0: Disable sample-and-hold	R	W
	A-D conversion method select bit	1: Enable sample-and-hold		
11	ADSSHSPD (Note 2)	0: Normal sample-and-hold	R	W
	A-D sample-and-hold conversion speed select bit	1: Fast sample-and-hold		
12–15	ANSEL	0000 : Select ADilN0 (i = 0)	R	W
	A-D analog input pin select bit	0001 : Select ADilN1		
		0010 : Select ADiIN2		
		0011 : Select ADiIN3		
		0100 : Select ADilN4		
		0101 : Select ADiIN5		
		0110 : Select ADiIN6		
		0111 : Select ADilN7		
		1000 : Select ADilN8		
		1001 : Select ADilN9		
		1010 : Select ADilN10		
		1011 : Select ADilN11		
		1100 : Select ADilN12		
		1101 : Select ADilN13		
		1110 : Select ADilN14		
		1111 : Select ADilN15		

Note 1: The A-D conversion speed is determined by a combination of ADSSPD, ADSSHSL and ADSSHSPD bits and the A-D Conversion Speed Control Register ADCVSD bit.

Note 2: Setting of this bit is effective when the sample-and-hold function is enabled by ADSSHSL bit.

A-D Single Mode Register 1 is used to select operation mode, conversion speed and analog input pins when the A-D Converter is operating in single mode.

(1) ADSMSL (A-D Conversion Mode Select) bit (Bit 8)

This bit selects A-D conversion mode when the A-D Converter is operating in single mode. Setting this bit to "0" selects A-D conversion mode, and setting this bit to "1" selects comparator mode.

(2) ADSSPD (A-D Conversion Speed Select) bit (Bit 9)

This bit selects the A-D conversion speed when the A-D Converter is operating in single mode. Setting this bit to "0" selects normal speed, and setting this bit to "1" selects double speed.

(3) ADSSHSL (A-D Conversion Method Select) bit (Bit 10)

This bit enables or disables the sample-and-hold function when the A-D Converter is operating in single mode. Setting this bit to "0" disables the sample-and-hold function, and setting this bit to "1" enables the sample-and-hold function.

Setting of this bit has no effect if comparator mode is selected with the ADSMSL (A-D conversion mode select) bit.

(4) ADSSHSPD (A-D Sample-and-Hold Speed Select) bit (Bit 11)

When the A-D Converter's sample-and-hold function is enabled, this bit selects a conversion speed. When this bit is "0", the conversion speed is the same as normal A-D conversion speed. When this bit is "1", conversion is performed at a speed faster than normal A-D conversion speed.

Setting of this bit has no effect if the sample-and-hold function is disabled by setting the ADSSHSL (A-D conversion method select) bit to "0".

For details about the conversion time, see Section 11.3.4, "Calculating the A-D Conversion Time."

(5) ANSEL (A-D Analog Input Pin Select) bits (Bits 12–15)

These bits select the analog input pins when the A-D Converter is operating in single mode. A-D conversion or comparate operation is performed on the channels selected with these bits. If these bits are accessed for read, the value written to them is read out.

11.2.3 A-D Scan Mode Register 0

A-D0 Scan Mode Register 0 (AD0SCM0)

<Address: H'0080 0084>

b0	1	2	3	4	5	6	b7
ADCTRG1	ADCMSL	ADCTRG0	ADCSEL	ADCREQ	ADCCMP	ADCSTP	ADCSTT
0	0	0	0	0	1	0	0

		<upon exiting="" reset:<="" th=""><th>H'04></th></upon>	H'04>
b	Bit Name	Function F	r W
0	ADCTRG1 (Note 1)	Bits 0 and 2 are used to select an A-D hardware trigger.	r w
	A-D hardware trigger select 1 bit	b0 b2	
		0 0 : Input event bus 2	
		0 1 : Input event bus 3	
		1 0 : Output event bus 3	
		1 1 : TIN23S signal	
1	ADCMSL	0: Single-shot mode F	r w
	A-D scan mode select bit	1: Continuous mode	
2	ADCTRG0	Bits 0 and 2 are used to select an A-D hardware trigger.	r w
	A-D hardware trigger select 0 bit	(See the column for bit 0.)	
3	ADCSEL	0: Software trigger F	R W
	A-D conversion start trigger select bit	1: Hardware trigger	
4	ADCREQ	0: A-D conversion interrupt request F	r w
	A-D Interrupt/DMA transfer request select bit	1: DMA transfer request	
5	ADCCMP	0: A-D conversion in progress F	<u>ا ا</u>
	A-D conversion completed bit	1: A-D conversion completed	
6	ADCSTP	0: No operation () W
	A-D conversion stop bit	1: Stop A-D conversion	
7	ADCSTT	0: No operation () W
	A-D conversion start bit	1: Start A-D conversion	

Note 1: Two bits—bit 0 (A-D hardware trigger select 1) and bit 2 (A-D hardware trigger select 0)—are used to select an A-D hardware trigger.

A-D Scan Mode Register 0 is used to control operation of the A-D Converter during scan mode.

(1) ADCTRG (A-D Hardware Trigger Select) bits (Bits 0 and 2)

These bits select a hardware trigger when A-D conversion by the A-D Converter is to be started in hardware. Select one from the following hardware trigger sources:

A-D0 Converter: Input event bus 2 Input event bus 3 Output event bus 3 TIN23 edge select output

The contents of these bits are ignored if a software trigger is selected by ADCSEL (A-D conversion start trigger select bit).

(2) ADCMSL (A-D Scan Mode Select) bit (Bit 1)

This bit selects scan mode of the A-D Converter between single-shot scan and continuous scan. Setting this bit to "0" selects single-shot scan mode, where the channels selected with the ANSCAN (A-D scan loop select) bits are sequentially A-D converted and when A-D conversion on all selected channels is completed, the conversion operation stops.

Setting this bit to "1" selects continuous scan mode, where after operation in single-shot scan mode finishes, A-D conversion is reexecuted beginning with the first channel and continued until stopped by setting the ADCSTP (A-D conversion stop) bit to "1".

(3) ADCSEL (A-D Conversion Start Trigger Select) bit (Bit 3)

This bit selects whether to use a software or hardware trigger to start A-D conversion during scan mode. If a software trigger is selected, A-D conversion is started by setting the ADCSTT (A-D conversion start) bit to "1". If a hardware trigger is selected, A-D conversion is started by the trigger source selected with the ADCTRG (hardware trigger select) bits.

(4) ADCREQ (A-D Interrupt Request/DMA Transfer Request Select) bit (Bit 4)

This bit selects whether to request an A-D conversion interrupt or a DMA transfer when one cycle of scan mode operation is completed. If neither an interrupt nor a DMA transfer are used, choose to request an A-D conversion interrupt and use the A-D Conversion Interrupt Control Register of the Interrupt Controller (ICU) to mask the interrupt request, or choose to request a DMA transfer and use the DMA Channel Control Register to disable DMA transfers to be performed upon completion of A-D conversion.

(5) ADCCMP (A-D Conversion Completed) bit (Bit 5)

This is a read-only bit, whose value when exiting the reset state is "1". This bit is "0" when the A-D Converter is performing scan mode A-D conversion and is set to "1" when single-shot scan mode finishes or continuous scan mode is stopped by setting the ADCSTP (A-D conversion stop) bit to "1".

(6) ADCSTP (A-D Conversion Stop) bit (Bit 6)

Setting this bit to "1" while the A-D Converter is performing scan mode A-D conversion causes the operation being performed to stop. This bit is effective only for scan mode operation, and does not affect single mode operation even when single and scan modes both are active during special operation mode.

Operation stops immediately after writing to this bit, and the A-D conversion being performed on any channel is aborted in the middle, without transferring the result to the A-D data register.

If the A-D conversion start bit and A-D conversion stop bit are set to "1" at the same time, the A-D conversion stop bit has priority.

(7) ADCSTT (A-D Conversion Start) bit (Bit 7)

This bit is used to start scan mode operation of the A-D Converter in software. Only when a software trigger has been selected with the ADCSEL (A-D conversion start trigger select) bit, setting this bit to "1" causes A-D conversion to start.

If the A-D conversion start bit and A-D conversion stop bit are set to "1" at the same time, the A-D conversion stop bit has priority.

If this bit is set to "1" again while performing scan mode conversion, special operation mode "Conversion restart" is turned on, so that scan mode operation is restarted using the contents set by A-D Scan Mode Registers 0 and 1.

If this bit is set to "1" again while performing A-D conversion in single mode, special operation mode "Scan mode start after single mode execution" is turned on, so that scan mode operation starts subsequently after single mode has finished.

11.2.4 A-D Scan Mode Register 1

A-D0 Scan Mode Register 1 (AD0SCM1)

<Address: H'0080 0085>

b8	9	10	11	12	13	14	b15	
	ADCSPD	ADCSHSL	ADCSHSPD		ANSCAN			
0	0	0	0	0	0	0	0	

		Function		D	14/
b	Bit Name	Function		R	W
8	No function assigned. Fix to "0".			0	0
9	ADCSPD (Note 1)	0: Normal speed		R	W
	A-D conversion speed select bit	1: Double speed			
10	ADCSHSL	0: Disable sample-and-hold		R	W
	A-D conversion method select bit	1: Enable sample-and-hold			
11	ADCSHSPD (Note 2)	0: Normal sample-and-hold		R	W
	A-D sample-and-hold conversion speed select bit	1: Fast sample-and-hold			
12–15	ANSCAN	<for write=""></for>		R	W
	A-D scan loop select bit	'B0000–1111 (channels 0–15)			
		<for conversion="" during="" read=""></for>	(i = 0)		
		0000: Converting ADilN0			
		0001: Converting ADilN1			
		0010: Converting ADiIN2			
		0011: Converting ADiIN3			
		0100: Converting ADiIN4			
		0101: Converting ADiIN5			
		0110: Converting ADiIN6			
		0111: Converting ADilN7			
		1000: Converting ADilN8			
		1001: Converting ADiIN9			
		1010: Converting ADiIN10			
		1011: Converting ADiIN11			
		1100: Converting ADiIN12			
		1101: Converting ADiIN13			
		1110: Converting ADiIN14			
		1111: Converting ADiIN15			

Note 1: The A-D conversion speed is determined by a combination of ADCSPD, ADCSHSL and ADCSHSPD bits and the A-D Conversion Speed Control Register ADCVSD bit.

Note 2: Setting of this bit is effective when the sample-and-hold function is enabled by ADCSHSL bit.

A-D Scan Mode Register 1 is used to select operation mode, conversion speed and scan loop when the A-D Converter is operating in scan mode. The channels selected with the scan loop select bit are scanned sequentially beginning with channel 0 (n-channel scan).

(1) ADCSPD (A-D Conversion Speed Select) bit (Bit 9)

This bit selects an A-D conversion speed when the A-D Converter is operating in scan mode. Setting this bit to "0" selects normal speed, and setting this bit to "1" selects double speed.

(2) ADCSHSL (A-D Conversion Method Select) bit (Bit 10)

This bit enables or disables the sample-and-hold function when the A-D Converter is operating in scan mode. Setting this bit to "0" disables the sample-and-hold function, and setting this bit to "1" enables the sample-and-hold function.

(3) ADCSHSPD (A-D Sample-and-Hold Conversion Speed Select) bit (Bit 11)

When the A-D Converter's sample-and-hold function is enabled, this bit selects a conversion speed. When this bit is "0", the conversion speed is the same as normal A-D conversion speed. When this bit is "1", conversion is performed at a speed faster than normal A-D conversion speed.

Setting of this bit has no effect if the sample-and-hold function is disabled by setting the ADCSHSL (A-D conversion method select) bit to "0".

For details about the conversion time, see Section 11.3.4, "Calculating the A-D Conversion Time."

(4) ANSCAN (A-D Scan Loop Select) bits (Bits 12–15)

The ANSCAN (A-D scan loop select) bits set the channels to be scanned during scan mode of the A-D Converter.

The ANSCAN (A-D scan loop select) bits when accessed for read during scan operation serve as a status register indicating the channel being scanned.

The value read from these bits during single mode is always B'0000.

When accessed for read after scan operation in single-shot mode is completed, the value read from these bits indicates the channel whose A-D conversion has been finished last.

If A-D conversion is stopped by setting A-D Scan Mode Register 0 ADCSTP (A-D conversion stop) bit to "1" while executing scan mode, the value read from these bits indicates the channel whose A-D conversion has been canceled.

Also, if read during single mode conversion of special operation mode "Forcible single mode execution during scan mode," the value of these bits indicates the channel whose A-D conversion has been canceled in the middle of scan.

11.2.5 A-D Conversion Speed Control Register

A-D conversion speed control bit

A-D0 Conversion Speed Control Register (AD0CVSCR) <Address: H'0080 0087> b8 9 10 11 12 13 14 b15 ADCVSD 0 0 0 0 0 0 0 0 <Upon exiting reset: H'00> Bit Name Function W b R 8-14 No function assigned. Fix to "0". 0 0 15 ADCVSD (Note 1) 0: Slow mode R W

Note 1: The A-D conversion speed is determined by a combination of ADCVSD bit and A-D Single Mode Register 1's relevant bit during single mode, or a combination of ADCVSD bit and A-D Scan Mode Register 1's relevant bit during scan mode.

The A-D Conversion Speed Control Register controls the A-D conversion speed during single and scan modes of the A-D Converter. The A-D conversion speed is determined in combination with A-D Single Mode Register 1's conversion speed select bit (Double/Normal).

1: Fast mode

11.2.6 A-D Disconnection Detection Assist Function Control Register

A-D0 Disconnection Detection Assist Function Control Register (AD0DDACR) <Address: H'0080 0086>

b0	1	2	3	4	5	6	b7
							ADDDAEN
0	0	0	0	0	0	0	0

		<upon exiting="" h'00="" reset:=""></upon>						
b	Bit Name	Function R	W					
0–6	No function assigned. Fix to "0".	0	0					
7	ADDDAEN (Note 1)	0: Disable A-D disconnection detection assist function R	W					
	A-D disconnection detection assist function enable bit	1: Enable A-D disconnection detection assist function						

Note 1: For the A-D disconnection detection assist function to be enabled, the conversion start state (discharge or precharge) must be set using the A-D disconnection detection assist method select register after setting the ADDDAEN bit to "1".

The A-D Disconnection Detection Assist Function Control Register is used to enable or disable the content of the A-D Disconnection Detection Assist Method Select Register.

Note: • If any analog input wiring is disconnected, the conversion result varies depending on the circuits fitted external to the chip. This function must be fully evaluated in the actual application system before it can be used.

11.2.7 A-D Disconnection Detection Assist Method Select Register

A-D0 Disconnection Detection Assist Method Select Register (AD0DDASEL) <Address: H'0080 008A>

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
ADDDA	ADDDA	ADDDA	ADDDA	ADDDA	ADDDA	ADDDA	ADDDA	ADDDA	ADDDA	ADDDA	ADDDA	ADDDA	ADDDA	ADDDA	ADDDA
SEL0	SEL1	SEL2	SEL3	SEL4	SEL5	SEL6	SEL7	SEL8	SEL9	SEL10	SEL11	SEL12	SEL13	SEL14	SEL15
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
0	ADDDASEL0	0: Discharge before conversion	R	W
	Channel 0 disconnection detection assist method select bit	1: Precharge before conversion		
1	ADDDASEL1			
	Channel 1 disconnection detection assist method select bit			
2	ADDDASEL2			
	Channel 2 disconnection detection assist method select bit			
3	ADDDASEL3			
	Channel 3 disconnection detection assist method select bit			
4	ADDDASEL4			
	Channel 4 disconnection detection assist method select bit			
5	ADDDASEL5			
	Channel 5 disconnection detection assist method select bit			
6	ADDDASEL6			
	Channel 6 disconnection detection assist method select bit			
7	ADDDASEL7			
	Channel 7 disconnection detection assist method select bit			
8	ADDDASEL8			
	Channel 8 disconnection detection assist method select bit			
9	ADDDASEL9			
	Channel 9 disconnection detection assist method select bit			
10	ADDDASEL10			
	Channel 10 disconnection detection assist method select bit			
11	ADDDASEL11			
	Channel 11 disconnection detection assist method select bit			
12	ADDDASEL12			
	Channel 12 disconnection detection assist method select bit			
13	ADDDASEL13			
	Channel 13 disconnection detection assist method select bit			
14	ADDDASEL14			
	Channel 14 disconnection detection assist method select bit			
15	ADDDASEL15			
	Channel 15 disconnection detection assist method select bit			

Notes: • This register must always be accessed in halfwords.

• For these bits to be enabled, the ADDDAEN bit (A-D Disconnection Detection Assist Function Control Register bit 7) must be set to "1" before setting these bits.

In order to prevent the A-D conversion result from being affected by the analog input voltage leakage from any preceding channel, the A-D Disconnection Detection Assist Method Select Register is used to control the conversion start state by selecting whether to discharge or precharge the chopper amp capacitor before starting regular conversion operation.

Figure 11.2.1 shows an example of A-D disconnection detection assist method in which the conversion start state is set to the AVCC side (i.e., precharge before conversion is selected). Figure 11.2.2 shows an example of A-D disconnection detection assist method in which the conversion start state is set to the AVSS side (i.e., discharge before conversion is selected).

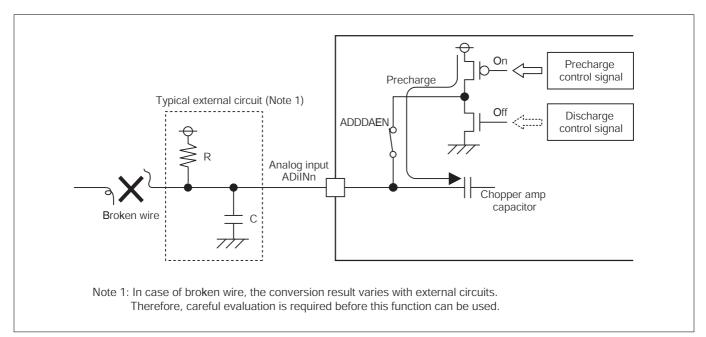


Figure 11.2.1 Example of A-D Disconnection Detection on AVCC Side (Precharge Before Conversion Selected)

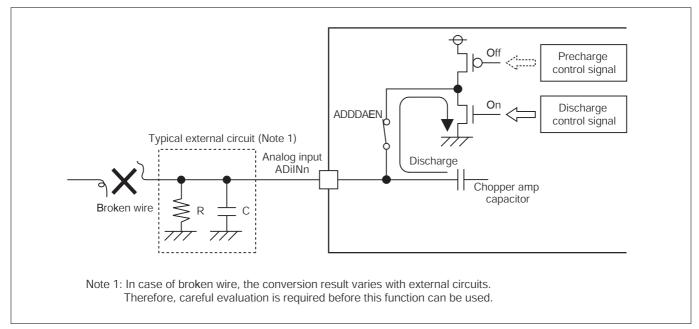


Figure 11.2.2 Example of A-D Disconnection Detection on AVSS Side (Discharge Before Conversion Selected)

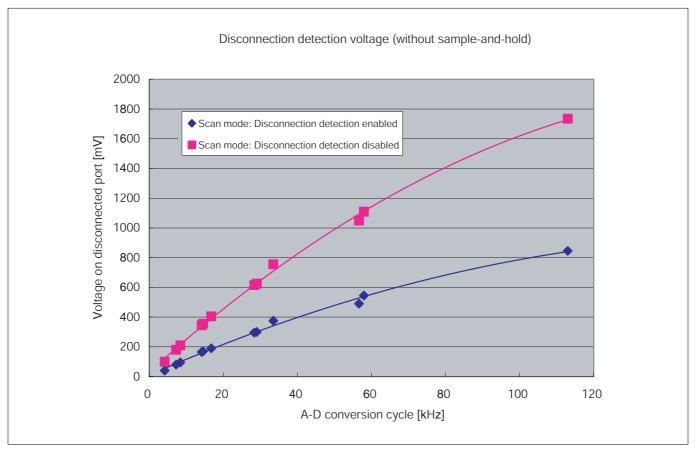


Figure 11.2.3 A-D Disconnection Detection Assist Data (when Discharge Before Conversion Selected)

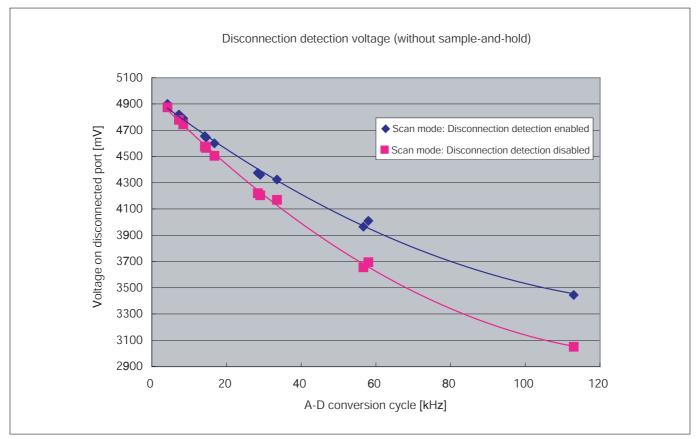


Figure 11.2.4 A-D Disconnection Detection Assist Data (when Precharge Before Conversion Selected)

11.2.8 A-D Successive Approximation Register

A-D0 S	Successive	Appr	oxima	ation	Regi	ster(A	AD0S/	AR)							<address: h'00<="" th=""><th>80 00</th><th>88></th></address:>	80 00	88>
b0	1 2	3	4	5	6	7	8	9	10	11	12	13	14	b15	_		
									AD	SAR							
0	0 0	0	0	0	?	?	?	?	?	?	?	?	?	?			
														<u< th=""><th>pon exiting reset: l</th><th>Jndefir</th><th>ned></th></u<>	pon exiting reset: l	Jndefir	ned>
b	Bit Name								Fur	oction						R	W
0–5	No functio	n ass	signed	. Fix t	o "0".											0	0
6–15	ADSAR								• A-	D succe	essive ap	oproxim	ation va	alue (A-[O conversion mode)	R	W

A-D successive approximation value/comparison value • Comparison value (comparator mode)

Note: • This register must always be accessed in halfwords.

The A-D Successive Approximation Register (ADSAR) is used to read the conversion result of the A-D Converter when operating in A-D conversion mode or write a comparison value when operating in comparator mode.

In A-D conversion mode, the successive approximation method is used to perform A-D conversion. With this method, the reference voltage VREF and analog input voltages are sequentially compared bitwise beginning with the high-order bit, and the comparison result is set in the A-D Successive Approximation Register (ADSAR) bits 6–15. When the A-D conversion has finished, the value of this register is transferred to the 10-bit A-D Data Register (ADDTn) corresponding to each converted channel. When this register is accessed for read in the middle of A-D conversion, the value read from the register indicates the intermediate result of conversion.

In comparator mode, this register is used to write a comparison value (the voltage with which to "comparate"). Simultaneously with a write to this register, the A-D Converter starts comparing the voltage on the analog input pin selected with A-D Single Mode Register 1 and the value written in this register. After comparate operation, the result is stored in the A-D Comparate Data Register (ADCMP).

Use the calculation formula shown below to find the comparison value to be written to the A-D Successive Approximation Register (ADSAR) during comparator mode.

Comparison value = H'3FF x $\frac{\text{Comparate comparison voltage [V]}}{\text{VREF input voltage [V]}}$

0-15

R

11.2.9 A-D Comparate Data Register

A-E	00 Con	nparate	e Data	Regist	er (AD	OCMP)							<add< th=""><th>Iress: H</th><th>1'0080</th><th>008C</th><th>></th></add<>	Iress: H	1'0080	008C	>
	b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15	
	AD CMP0 ?	AD CMP1 ?	AD CMP2 ?	AD CMP3 ?	AD CMP4 ?	AD CMP5 ?	AD CMP6 ?	AD CMP7 ?	AD CMP8 ?	AD CMP9 ?	AD CMP10 ?	AD CMP11 ?	AD CMP12 ?	AD CMP13 ?	AD CMP14 ?	AD CMP15 ?	
													<upon e<="" td=""><td>exiting re</td><td>set: Un</td><td>defined</td><td>1></td></upon>	exiting re	set: Un	defined	1>
b		Bit Nam	е						Functio	า						R V	N

A-D comparate result flag 1: Analog input voltage < comparison voltage Note 1: During comparator mode, the bits in this register correspond one for one to channels 0–15.

Note: • This register must always be accessed in halfwords.

ADCMP0-ADCMP15 (Note 1)

When comparator mode is selected using the A-D Single Mode Register 1 ADSMSL (A-D conversion mode select) bit, the selected analog input voltage is compared with the value written to the A-D Successive Approximation Register and the result is stored in the corresponding bit of this comparate data register.

0: Analog input voltage > comparison voltage

The bit or flag in this register is "0" when analog input voltage > comparison voltage, or "1" when analog input voltage < comparison voltage.

11.2.10 10-bit A-D Data Registers

	A-D0 Data R A-D0 Data R			-										0 0090: 0 0092:
	A-D0 Data R	-												0 0094:
	A-D0 Data R	-												0 0096:
	A-D0 Data R			-										0 0098:
	A-D0 Data R	-									<ac< td=""><td>dress:</td><td>H'008</td><td>0 009A:</td></ac<>	dress:	H'008	0 009A:
	A-D0 Data R										<ac< td=""><td>Idress:</td><td>H'008</td><td>0 009C:</td></ac<>	Idress:	H'008	0 009C:
	A-D0 Data R	•									<ac< td=""><td>dress:</td><td>H'008</td><td>0 009E:</td></ac<>	dress:	H'008	0 009E:
10-bit A	A-D0 Data R	egister 8(AD0DT	8)							<ac< td=""><td>dress:</td><td>H'008</td><td>0 00A0:</td></ac<>	dress:	H'008	0 00A0:
10-bit A	A-D0 Data R	egister 9(AD0DT	9)							<ac< td=""><td>dress:</td><td>H'008</td><td>0 00A2:</td></ac<>	dress:	H'008	0 00A2:
10-bit A	A-D0 Data R	egister 10	(AD0D	T10)							<ac< td=""><td>dress:</td><td>H'008</td><td>0 00A4:</td></ac<>	dress:	H'008	0 00A4:
10-bit A	A-D0 Data F	egister 11	I(AD0D	T11)							<ac< td=""><td>ldress:</td><td>H'008</td><td>0 00A6:</td></ac<>	ldress:	H'008	0 00A6:
10-bit A	A-D0 Data R	egister 12	2(AD0D	T12)							<ac< td=""><td>ldress:</td><td>H'008</td><td>0 00A8:</td></ac<>	ldress:	H'008	0 00A8:
10-bit A	A-D0 Data F	egister 13	B(AD0D	T13)							<ad< td=""><td>dress:</td><td>H'008</td><td>0 00AA:</td></ad<>	dress:	H'008	0 00AA:
10-bit A	A-D0 Data R	egister 14	4(AD0D	T14)							<ad< td=""><td>dress:</td><td>H'0080</td><td>00AC:</td></ad<>	dress:	H'0080	00AC:
10-bit A	A-D0 Data R	egister 15	5(AD0D	T15)							<ad< td=""><td>dress:</td><td>H'008</td><td>0 00AE:</td></ad<>	dress:	H'008	0 00AE:
b0	1	2 3	4	5	6	7	8	9	10	11	12	13	14	b15
									AD0DT	0-AD0DT1	5			
0	0	0 0	0	0	?	?	?	?	?	?	?	?	?	?
											<upon< td=""><td>exiting</td><td>reset: U</td><td>ndefined</td></upon<>	exiting	reset: U	ndefined
b	Bit Name						Funct	ion						R W
0–5	No functio	assigned.												0 -

0	Dit Name	T difetion	IN IN	• •
0–5	No function assigned.		0	-
6–15	AD0DT0-AD0DT15	10-bit A-D conversion result	R	-
	10-bit A-D data			

Note: • These registers must always be accessed in halfwords.

During single mode, the 10-bit A-D Data Registers are used to store the result of A-D conversion performed on each corresponding channel.

During single-shot or continuous scan mode, the content of the A-D Successive Approximation Register is transferred to the 10-bit A-D Data Register for the corresponding channel when A-D conversion on each channel has finished. Each 10-bit A-D Data Register retains the last conversion result until they receive the next conversion result transferred, allowing the content to be read out at any time.

11.2.11 8-bit A-D Data Registers

b	Bit Name					Functio	n	R W
								<upon exiting="" reset:="" td="" undefined:<=""></upon>
?	?	?	?	?	?	?	?	
			AD08DT0-/	AD08DT15				
b8	9	10	11	12	13	14	b15	
8-bit A	-D0 Data R	egister 1	5(AD08DT	15)				<address: 00ef;<="" h'0080="" td=""></address:>
	-D0 Data R	-	-	-				<address: 00ed;<="" h'0080="" td=""></address:>
	-D0 Data R	•	•	,				<address: 00eb<="" h'0080="" td=""></address:>
8-bit A	-D0 Data R	egister 12	2(AD08DT	12)				<address: 00e9;<="" h'0080="" td=""></address:>
8-bit A	-D0 Data R	legister 1	1(AD08DT	11)				<address: 00e7;<="" h'0080="" td=""></address:>
8-bit A	-D0 Data R	egister 10)(AD08DT	10)				<address: 00e5<="" h'0080="" td=""></address:>
8-bit A	-D0 Data R	egister 9(AD08DT9)				<address: 00e3;<="" h'0080="" td=""></address:>
8-bit A	-D0 Data R	egister 8(AD08DT8)				<address: 00e1;<="" h'0080="" td=""></address:>
8-bit A	-D0 Data R	egister 7(AD08DT7)				<address: 00df;<="" h'0080="" td=""></address:>
8-bit A	-D0 Data R	egister 6(AD08DT6)				<address: 00dd:<="" h'0080="" td=""></address:>
8-bit A	-D0 Data R	egister 5(AD08DT5)				<address: 00db;<="" h'0080="" td=""></address:>
8-bit A	-D0 Data R	egister 4(AD08DT4)				<address: 00d9;<="" h'0080="" td=""></address:>
8-bit A	-D0 Data R	egister 3(AD08DT3)				<address: 00d7;<="" h'0080="" td=""></address:>
8-bit A	-D0 Data R	egister 2(AD08DT2)				<address: 00d5;<="" h'0080="" td=""></address:>
8-bit A	-D0 Data R	egister 1(AD08DT1)				<address: 00d3;<="" h'0080="" td=""></address:>
8-bit A	-D0 Data R	egister 0(AD08DT0)				<address: 00d1;<="" h'0080="" td=""></address:>

b	Bit Name	Function	R	W
8–15	AD08DT0-AD08DT15	8-bit A-D conversion result	R	_
	8-bit A-D data			

The A-D data register is used to store the 8-bit conversion data for the A-D converter.

During single mode, the 8-bit A-D Data Registers store the result of A-D conversion performed on each corresponding channel.

During single-shot or continuous scan mode, the content of the A-D Successive Approximation Register is transferred to the 8-bit A-D Data Register for the corresponding channel when A-D conversion on each channel has finished. Each 8-bit A-D Data Register retains the last conversion result until they receive the next conversion result transferred, allowing the content to be read out at any time.

11.3 Functional Description of A-D Converter

11.3.1 How to Find Analog Input Voltages

The A-D Converter performs A-D conversion using a 10-bit successive approximation method. The equation shown below is used to calculate the actual analog input voltage from the digital value obtained by executing A-D conversion.

Analog input voltage $[v] = \frac{A-D \text{ conversion result x VREF input voltage } [V]}{1.024}$

The A-D Converter is a 10-bit converter, providing a resolution of 1,024 discrete voltage levels. Because the reference voltage for the A-D Converter is the voltage applied to the VREF pin, make sure that an exact and stable constant-voltage power supply is connected to VREF. Also make sure the analog circuit power supply and ground (AVCC, AVSS) are separated from those of the digital circuit, with sufficient noise prevention measures incorporated.

For details about the conversion accuracy, see Section 11.3.5, "Accuracy of A-D Conversion."

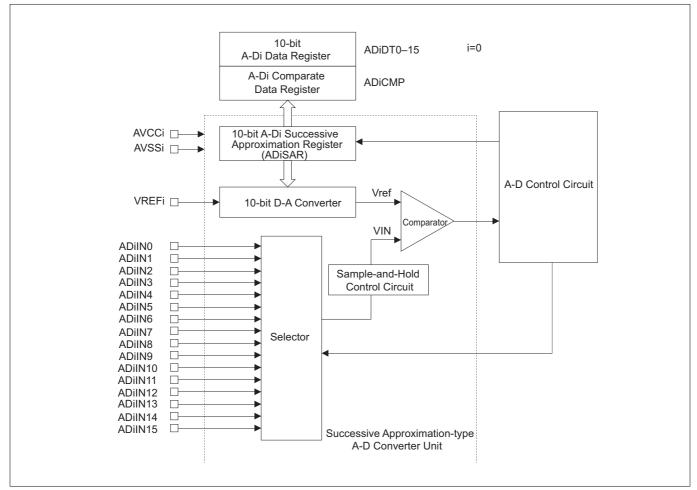


Figure 11.3.1 Outline Block Diagram of the Successive Approximation-type A-D Converter Unit

11.3.2 A-D Conversion by Successive Approximation Method

The A-D Converter use an A-D conversion start trigger (software or hardware) as they start A-D conversion. Once A-D conversion begins, the following operation is automatically performed.

- 1. During single mode, A-D Single Mode Register 0's A-D conversion/comparate completion bit is cleared to "0". During scan mode, A-D Scan Mode Register 0's A-D conversion completion bit is cleared to "0".
- 2. The content of the A-D Successive Approximation Register is cleared to H'0000.
- 3. The A-D Successive Approximation Register's most significant bit (bit 6) is set to "1".
- 4. The comparison voltage, Vref (Note 1), is fed from the D-A Converter into the comparator.
- 5. The comparison voltage, Vref, and the analog input voltage, VIN, are compared, and the comparison result will be stored in bit 6.
 - If Vref < VIN, then bit 6 = "1"
 - If Vref > VIN, then bit 6 = "0"
- 6. Operations in 3 through 5 above are executed for all other bits from bit 7 to bit 15.
- 7. The value stored in the A-D Successive Approximation Register by the time comparison for bit 15 has finished is held in it as the A-D conversion result.

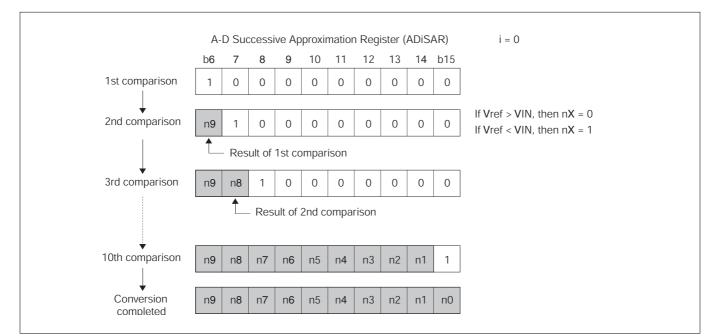


Figure 11.3.2 Changes of the A-D Successive Approximation Register during A-D Convert Operation

- Note 1: The comparison voltage, Vref (the voltage fed from the D-A Converter into the comparator), is determined according to changes of the A-D Successive Approximation Register content. Shown below are the equations used to calculate the comparison voltage, Vref.
 - If the A-D Successive Approximation Register content = 0

- If the A-D Successive Approximation Register content = 1 to 1,023
 - Vref [V] = (reference voltage VREF / 1,024) \times (A-D Successive Approximation Register content 0.5)

The conversion result is stored in the 10-bit A-D Data Register (AD0DTn) corresponding to each converted channel. There is also an 8-bit A-D Data Register (AD08DTn) for each channel, from which the 8 high-order bits of the 10-bit A-D conversion result can be read out.

The following shows the procedure for A-D conversion by a successive approximation method in each operation mode.

(1) Single mode

The convert operation stops when comparison for the A-D Successive Approximation Register bit 15 is completed. The content (A-D conversion result) of the A-D Successive Approximation Register is transferred to the 10-bit A-D Data Registers 0–15 for the converted channel.

(2) Single-shot scan mode

When comparison for the A-D Successive Approximation Register bit 15 on a specified channel is completed, the content of the A-D Successive Approximation Register is transferred to the corresponding 10-bit A-D Data Registers 0–15, and the convert operations in steps 2 to 7 above are reexecuted for the next channel to be converted. In single-shot scan mode, the convert operation stops when A-D conversion in one specified scan loop is completed.

(3) Continuous scan mode

When comparison for the A-D Successive Approximation Register bit 15 on a specified channel is completed, the content of the A-D Successive Approximation Register is transferred to the corresponding 10-bit A-D Data Registers 0–15, and the convert operations in steps 2 to 7 above are reexecuted for the next channel to be converted. In continuous scan mode, the convert operation is executed continuously until scan operation is forcibly terminated by setting the A-D conversion stop bit (Scan Mode Register 0 bit 6) to "1".

11.3.3 Comparator Operation

When comparator mode (single mode only) is selected, the A-D Converter functions as a comparator which compares analog input voltages with the comparison voltage that is set by software.

When a comparison value is written to the successive approximation register, the A-D Converter starts "comparating" the analog input voltage selected by the Single Mode Register 1 analog input select bit with the value written into the successive approximation register. Once comparate begins, the following operation is automatically executed.

- 1. The A-D Single Mode Register 0 A-D conversion/comparate completion bit is cleared to "0".
- 2. The comparison voltage, Vref (Note 1), is fed from the D-A Converter into the comparator.
- 3. The comparison voltage, Vref, and the analog input voltage, VIN, are compared, and the comparison result will be stored in the comparate result flag for the corresponding channel.
 - If Vref < VIN, then the comparate result flag = 0
 - If Vref > VIN, then the comparate result flag = 1
- 4. The comparate operation is stopped after storing the comparison result.

The comparison result is stored in the A-D Comparate Data Register (AD0CMP)'s corresponding bit.

- Note 1: The comparison voltage, Vref (the voltage fed from the D-A Converter into the comparator), is determined according to changes of the A-D Successive Approximation Register content. Shown below are the equations used to calculate the comparison voltage, Vref.
 - If the A-D Successive Approximation Register content = 0
 - Vref [V] = 0
 - If the A-D Successive Approximation Register content = 1 to 1,023
 - Vref [V] = (reference voltage VREF0 / 1,024) x (A-D0 Successive Approximation Register content 0.5)

11.3.4 Calculating the A-D Conversion Time

The A-D conversion time is expressed by the sum of dummy cycle time and actual execution cycle time. The following shows each time factor necessary to calculate the conversion time.

1. Start dummy time

A time from when the CPU executed the A-D conversion start instruction to when the A-D Converter starts A-D conversion

2. A-D conversion execution cycle time

If sample-and-hold is enabled, the sampling time is included in this execution cycle time.

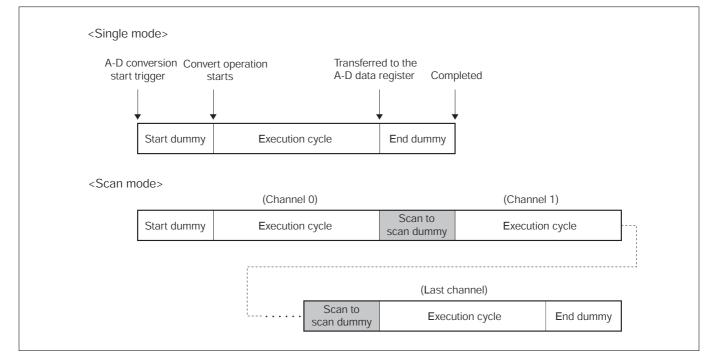
3. Comparate execution cycle time

4. End dummy time

A time from when the A-D Converter has finished A-D conversion to when the CPU can stably read out the conversion result from the A-D data register.

5. Scan to scan dummy time

A time during single-shot or continuous scan mode from when the A-D Converter has finished A-D conversion on a channel to when it starts A-D conversion on the next channel.


The equation to calculate the A-D conversion time is as follows:

A-D conversion time = Start dummy time + Execution cycle time

- (+ Scan to scan dummy time + Execution cycle time
- + Scan to scan dummy time + Execution cycle time
- + Scan to scan dummy time + Execution cycle time)
- + End dummy time
- Note: Enclosed in () are the conversion time required for the second and subsequent channels to be converted in scan mode.

(1) Calculating the conversion time during A-D conversion mode

The following schematically shows the method for calculating the conversion time during A-D conversion mode.

Figure 11.3.3 Conceptual Diagram of A-D Conversion Time

Conversion sp	heed	Start dummy (Note 1)	Execution cycle	End dummv	Scan to scan dummy (Note 2)
001110113101131			Execution cycle		
Slow mode	Normal speed	4	294	1	4
	Double speed	4	168	1	4
Fast mode	Normal speed	4	126	1	4
	Double speed	4	84	1	4

Note 1: The same applies to both software and hardware triggers.

Note 2: Only during scan operation, execution time per channel is added.

(2) Calculating the conversion time when sample-and-hold is enabled

The following schematically shows the method for calculating the conversion time when the sample-and-hold function is enabled.

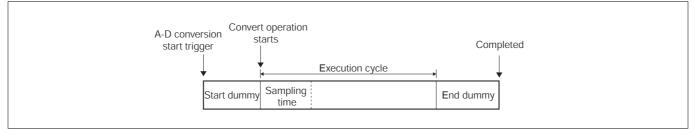


Figure 11.3.4 Conceptual Diagram of A-D Conversion Time when Sample-and-Hold is Enabled

Conversion Clo	Unit: BCLK			
beed	Start dum	my (Note 1) Execution cycle	End dummy	Scan to scan dummy (Note 2)
Normal speed	4	294	1	4
Double speed	4	168	1	4
Normal speed	4	126	1	4
Double speed	4	84	1	4
	Normal speed Double speed Normal speed	Deed Start dum Normal speed 4 Double speed 4 Normal speed 4	DeedStart dummy (Note 1)Execution cycleNormal speed4294Double speed4168Normal speed4126	Normal speed42941Double speed41681Normal speed41261

Note 1: The same applies to both software and hardware triggers.

Note 2: Only during scan operation, execution time per channel is added.

Table 11.3.3	Unit: BCLK				
Conversion sp	beed	Start dummy (Note 1) Execution cycl		End dummy	Scan to scan dummy (Note 2)
Slow mode	Normal speed	4	186	1	4
	Double speed	4	96	1	4
Fast mode	Normal speed	4	90	1	4
	Double speed	4	48	1	4

Note 1: The same applies to both software and hardware triggers.

Note 2: Only during scan operation, execution time per channel is added.

(3) Calculating the conversion time during comparator mode

The following schematically shows the method for calculating the conversion time during comparator mode.

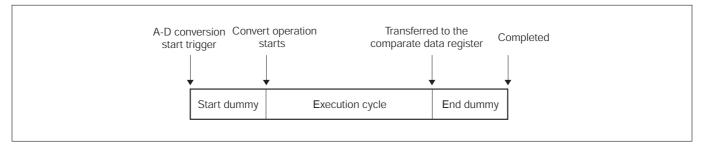


Figure 11.3.5 Conceptual Diagram of A-D Conversion Time during Comparator Mode

Table 11.3.4	Conversion Clo	Unit: BCLK			
Conversion speed		Start dummy	Execution cycle	End dummy	
Slow mode	Normal speed	4	42	1	
	Double speed	4	24	1	
Fast mode	Normal speed	4	18	1	
	Double speed	4	12	1	

(4) A-D conversion time

A total A-D conversion time in various modes are shown in the table below.

			11110)		Ont. BOEK
Conversion start method	I Con	version speed	Conversion mode (Note 1)	Conversion time	When fast sample- and-hold enabled
Software and		Normal speed	Single mode	299	191
hardware triggers		·	n-channel single-shot scan/	(298 × n)+1	(190 × n)+1
(Note 2)			continuous scan mode		· · ·
	Slow		Comparator mode	47	47
	Mode	Double speed	Single mode	173	101
			n-channel single-shot scan/	(172 × n)+1	(100 × n)+1
			continuous scan mode		
			Comparator mode	29	29
		Normal speed	Single mode	131	95
			n-channel single-shot scan/	(130 × n)+1	(94 × n)+1
			continuous scan mode		
	Fast		Comparator mode	23	23
	Mode	Double speed	Single mode	89	53
			n-channel single-shot scan/	(88 × n)+1	(52 × n)+1
			continuous scan mode		
			Comparator mode	17	17

Note 1: For single mode and comparator mode, this indicates an A-D conversion or comparate time per channel. For singleshot and continuous scan modes, this indicates an A-D conversion time per scan loop.

Note 2: This indicates a time from when a register write cycle has finished to when an A-D conversion completion interrupt request is generated, or a time from when an event bus or other MJT event has occurred to when an A-D conversion completion interrupt request is generated.

Unit: BCLK

11.3.5 Accuracy of A-D Conversion

The accuracy of the A-D Converter is indicated by an absolute accuracy. The absolute accuracy refers to a difference expressed by LSB between the output code obtained by A-D converting the analog input voltages and the output code expected for an A-D converter with ideal characteristics. The analog input voltages used during accuracy measurement are the midpoint values of the voltage width in which an A-D converter with ideal characteristics produces the same output code. If VREF = 5.12 V, for example, the width of 1 LSB for a 10-bit A-D converter is 5 mV, so that 0 mV, 5 mV, 10 mV, 15 mV, 20 mV, 25 mV and so on are selected as midpoints of the analog input voltage.

If an A-D converter is said to have the absolute accuracy of ± 2 LSB, it means that if the input voltage is 25 mV, for example, the output code expected for an A-D converter with ideal characteristics is H'005, and the actual A-D conversion result is in the range of H'003 to H'007. Note that the absolute accuracy includes zero and full-scale errors.

When actually using the A-D Converter, the analog input voltages are in the range of AVSS to VREF. Note, however, that low VREF voltages result in a poor resolution. Note also that output codes for the analog input voltages from VREF to AVCC are always H'3FF.

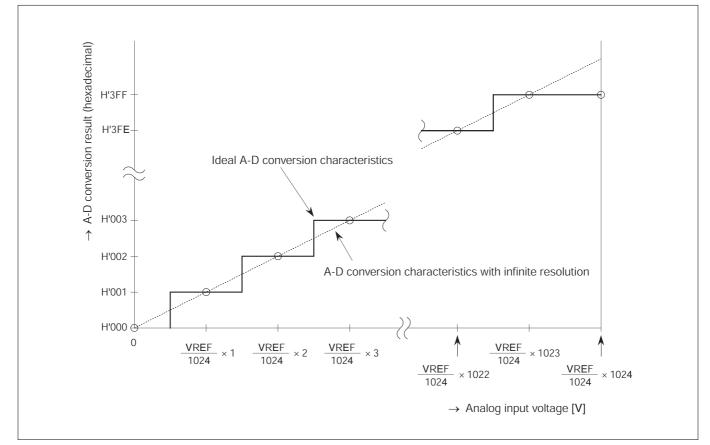


Figure 11.3.6 Ideal A-D Conversion Characteristics Relative to the 10-bit A-D Converter's Analog Input Voltages

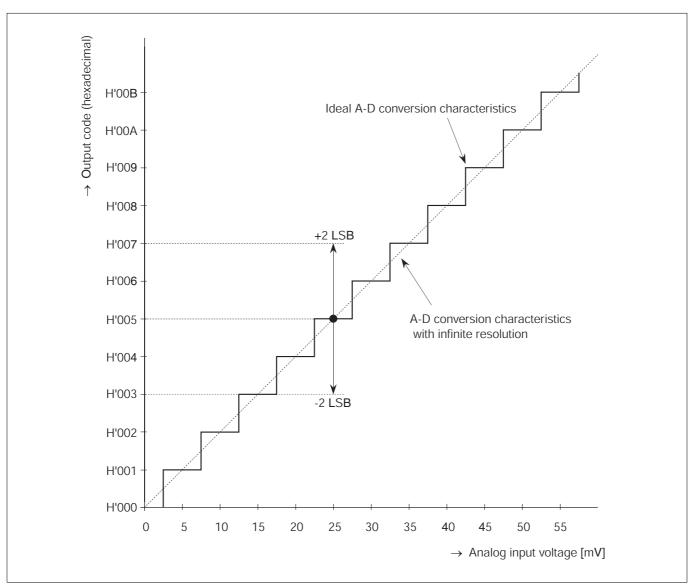


Figure 11.3.7 Absolute Accuracy of A-D Converter

11.4 Inflow Current Bypass Circuit

If when the A-D Converter is A-D converting a selected analog input an overvoltage exceeding the converter's absolute maximum rating is applied to any unselected analog input, the selector for the unselected analog input is inadvertently turned on by that overvoltage. This causes current to leak to the selected analog input, and the accuracy of the A-D conversion result is thereby deteriorated.

The Inflow Current Bypass Circuit fixes the internal signals of unselected analog inputs to the GND level, so that when an overvoltage is applied, this circuit lets the current flow into the GND and prevents it from leaking to the selected analog input. That way, the accuracy of the A-D conversion result is prevented from being deteriorated by overvoltages.

This circuit is always active while the A-D Converter is operating, and does not need to be controlled in software.

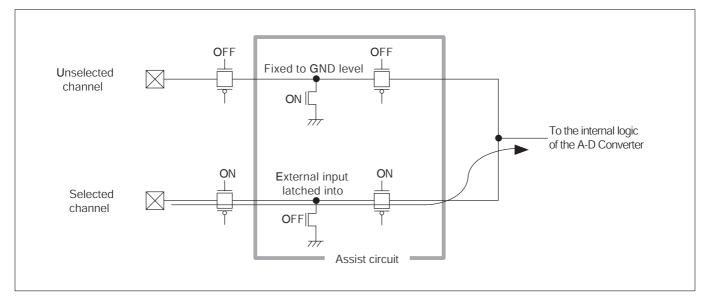


Figure 11.4.1 Configuration of the Inflow Current Bypass Circuit

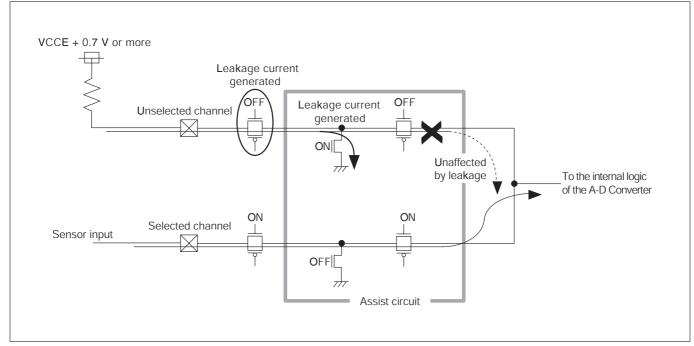


Figure 11.4.2 Example of an Inflow Current Bypass Circuit where VCCE + 0.7 V or More is Applied

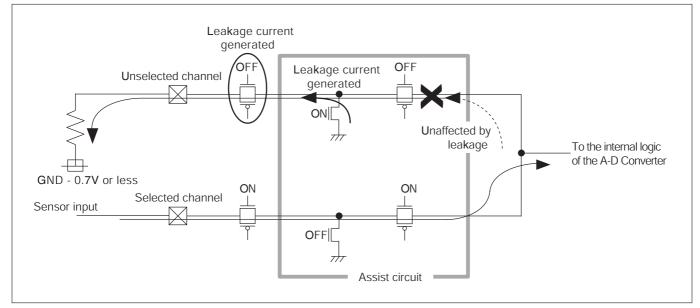


Figure 11.4.3 Example of an Inflow Current Bypass Circuit where GND – 0.7 V or Less is Applied

/	/						Accura	acy error or	n overcurre	nt injected	ports (Unit	:: LSB)					
Analog in	putpin	AD0IN0	AD0IN1	AD0IN2	AD0IN3	AD0IN4	AD0IN5	AD0IN6	AD0IN7	AD0IN8	AD0IN9	AD0IN10	AD0IN11	AD0IN12	AD0IN13	AD0IN14	AD0IN15
Injection current	10mA	\geq	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(Note 1)	9mA	\searrow	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8mA	\geq	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7mA	>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6mA	>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5mA	\triangleleft	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4mA		0	0	0	0	0	0	0		0	0	0	0	0	0	0
	3mA		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2mA		0	0	0	0	0	0	0			0					0
	1mA	\Leftrightarrow	0	0	0	0	0	0	0	0		0	0	0	0	0	0
	0mA	\Leftrightarrow	0	0	0		0		0			0	0	0	0		
	-1mA	\Leftrightarrow	0	0	0		0	0	0				0	0	0		
	-2mA	\Leftrightarrow	-1	0	0		0	0	0			0	0	0			
	-3mA	\Leftrightarrow	-1	0	0		0	0	0								
	-4mA	\bigcirc	-1	0	0	0	0	0	0			0	0	0	0		
25	-5mA	\Leftrightarrow	-2	-1	0		0		0			0	0	0	0		
	-6mA	\Leftrightarrow	-3	-1	0		0	0	0			0	0	0	0		
	-7mA	\Leftrightarrow	-3	-1	0		0	0	0			0	0	0	0		
	-8mA	\Leftrightarrow	-3	-1	0		0	0	0			0			0		
	-9mA	\bigcirc	-4	-1	0		0	0	0			0	0	0	0		
	-10mA	\searrow	-5	-1	0	0	0	0	0	0	0	0	0	0	0	0	0

Note 1: The conversion accuracy is not affected unless the injection current is greater than 1 mA.

11.5 Precautions on Using A-D Converter

Forcible termination during scan operation

If A-D conversion is forcibly terminated by setting the A-D conversion stop bit (AD0CSTP) to "1" during scan mode operation and the A-D data register for the channel that was in the middle of conversion is accessed for read, the read value shows the last conversion result that had been transferred to the data register before the conversion was forcibly terminated.

• Modification of the A-D converter related registers

If the content of any register—A-D Conversion Interrupt Control Register, Single or Scan Mode Registers or A-D Successive Approximation Register, except the A-D conversion stop bit—is modified in the middle of A-D conversion, the conversion result cannot be guaranteed. Therefore, do not modify the contents of these registers while A-D conversion is in progress, or be sure to restart A-D conversion if register contents have been modified.

• Handling of analog input signals

When using the A-D Converter with its sample-and-hold function disabled, make sure the analog input level is fixed during A-D conversion.

• A-D conversion completed bit read timing

To read the A-D conversion completed bit (Single Mode Register 0 bit 5 or Scan Mode Register 0 bit 5) immediately after A-D conversion has started, be sure to adjust the timing 2 BCLK periods by, for example, inserting a NOP instruction before read.

• Regarding the analog input pins

Figure 11.5.1 shows the internal equivalent circuit of the A-D Converter's analog input part. To obtain accurate A-D conversion results, make sure the internal capacitor C2 of the A-D conversion circuit is charged up within a predetermined time (sampling time). To meet this sampling time requirement, it is recommended that a stabilizing capacitor C1 be connected external to the chip.

The method for determining the necessary value of this external stabilizing capacitor with respect to the output impedance of an analog output device is described below. Also, an explanation is made of the case where the output impedance of an analog output device is low and the external stabilizing capacitor C1 is unnecessary.

Rated value of the absolute accuracy

The rated value of the absolute accuracy is the actual performance value of the microcomputer alone, with influences of the power supply wiring and noise on the board not taken into account. When designing the application system, use caution for the board layout by, for example, separating the analog circuit power supply and ground (AVCC0, AVSS0 and VREF0) from those of the digital circuit and incorporating measures to prevent the analog input pins from being affected by noise, etc. from other digital signals.

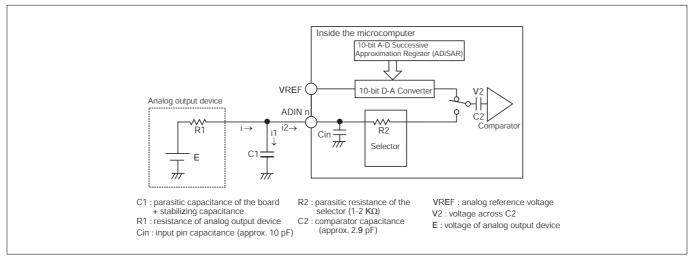


Figure 11.5.1 Internal Equivalent Circuit of the Analog Input Part

(a) Example for calculating the external stabilizing capacitor C1 (addition of this capacitor is recommended)

Assuming the R1 in Figure 11.5.1 is infinitely large and that the current necessary to charge the internal capacitor C2 is supplied from C1, if the potential fluctuation, Vp, caused by capacitance division of C1 and C2 is to be within 0.1 LSB, then what amount of capacitance C1 should have. For a 10-bit A-D Converter where VREF is 5.12 V, 1 LSB determination voltage = 5.12 V / 1,024 = 5 mV. The potential fluctuation of 0.1 LSB means a 0.5 mV fluctuation.

The relationship between the capacitance division of C1 and C2 and the potential fluctuation, Vp, is obtained by the equation below:

$$Vp = \frac{C2}{C1 + C2} \times (E - V2)$$
 Eq. A-1

Vp is also obtained by the equation below:

$$Vp = Vp1 \times \sum_{i=0}^{X-1} \frac{1}{2^{i}} < \frac{VREF}{10 \times 2^{X}}$$
where $Vp1$ = potential fluctuation in the first A-D conversion performed
and x = 10 for a 10-bit resolution A-D converter

When Eq. A-1 and Eq. A-2 are solved, the following results:

C1 = C2 {
$$\frac{E - V2}{Vp1} - 1$$
 } Eq. A-3
 \therefore C1 > C2 {10 × 2[×] × $\sum_{i=0}^{x-1} \frac{1}{2^{i}} - 1$ } ------ Eq. A-4

Thus, for a 10-bit resolution A-D Converter where C2 = 2.9 pF, C1 is 0.06 μ F or more. Use this value for reference when setting up C1.

(b) Maximum value of the output impedance R1 when C1 is not added

If the external capacitor C1 in Figure 11.5.1 is not used, examination must be made to see if the analog output device can fully charge C2 within a predetermined time. First, the equation to find i2 when C1 in Figure 11.5.1 does not exist is shown below.

$$i2 = \frac{C2(E - V2)}{Cin \times R1 + C2(R1 + R2)} \times exp \quad \frac{\{-t\}}{Cin \times R1 + C2(R1 + R2)} - Eq. B-1$$

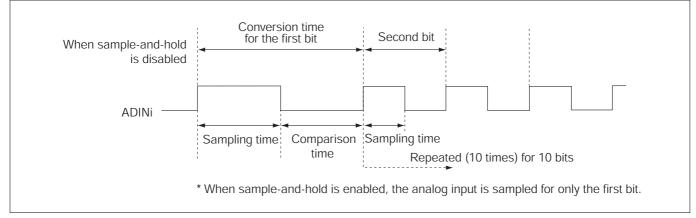


Figure 11.5.2 A-D Conversion Timing Diagram

Figure 11.5.2 shows an A-D conversion timing diagram. C2 must be charged up within the sampling time shown in this diagram. When the sample-and-hold function is disabled, the sampling time for the second and subsequent bits is about half that of the first bit.

The sampling times at the respective conversion speeds are listed in the table 11.5.1. Note that when the sample-and-hold function is enabled, the analog input is sampled for only the first bit.

Conversion start method	Conversion speed		Sampling time for the first bit	Sampling time for the second and subsequent bits
Single mode	Slow mode Normal speed		27.5BCLK	13.5BCLK
(when sample-and		Double speed	15.5BCLK	7.5BCLK
-hold disabled)	Fast mode	Normal speed	11.5BCLK	5.5BCLK
		Double speed	7.5BCLK	3.5BCLK
Single mode Slow mode Nor		Normal speed	27.5BCLK	-
(when sample-and		Double speed	15.5BCLK	-
-hold enabled)	Fast mode	Normal speed	11.5BCLK	-
		Double speed	7.5BCLK	_
Comparator mode	Slow mode Normal speed		27.5BCLK	-
		Double speed	15.5BCLK	-
	Fast mode	Normal speed	11.5BCLK	_
		Double speed	7.5BCLK	_

Table 11.5.1 Sampling Time (in Which C2 Needs to Be Charged)

Therefore, the time in which C2 needs to be charged is found from Eq. B-1, as follows:

Sampling time (in which C2 needs to be charged) > Cin \times R1 + C2(R1 + R2)--- Eq. B2

Thus, the maximum value of R1 can be obtained as a criterion from the equation below. Note, however, that for single mode (when sample-and-hold is disabled), the sampling time for the second and subsequent bits (C2 charging time) must be applied.

R1 < $\frac{\text{C2 charging time - C2 × R2}}{\text{Cin + C2}}$

This page is blank for reasons of layout.

CHAPTER 12

SERIAL I/O

- 12.1 Outline of Serial I/O
- 12.2 Serial I/O Related Registers
- 12.3 Transmit Operation in CSIO Mode
- 12.4 Receive Operation in CSIO Mode
- 12.5 Precautions on Using CSIO Mode
- 12.6 Transmit Operation in UART Mode
- 12.7 Receive Operation in UART Mode
- 12.8 Fixed Period Clock Output Function
- 12.9 Precautions on Using UART Mode

12.1 Outline of Serial I/O

The 32176 contains a total of four serial I/O channels, SIO0–SIO3. Channels SIO0 and SIO1 can be selected between CSIO mode (clock-synchronous serial I/O) and UART mode (clock-asynchronous serial I/O). Channels SIO2 and SIO3 are UART mode only.

• CSIO mode (clock-synchronous serial I/O)

Communication is performed synchronously with a transfer clock, using the same clock on both transmit and receive sides. The transfer data is 8 bits long (fixed).

• UART mode (clock-asynchronous serial I/O)

Communication is performed at any transfer rate in any transfer data format. The transfer data length can be selected from 7, 8 and 9 bits.

Channels SIO0–SIO3 each have a transmit DMA transfer and a receive DMA transfer request. These serial I/Os, when combined with the internal DMA Controller (DMAC), allow serial communication to be performed at high speed, as well as reduce the data communication load of the CPU.

Serial I/O is outlined below.

Item	Description					
Number of channels	CSIO mode/UART mode : 2 channels (SIO0, SIO1)					
	UART only : 2 channels (SIO2, SIO3)					
Clock	During CSIO mode : Internal clock or external clock as selected (Note 1), clock polarity					
	can be selected					
	During UART mode : Internal clock only					
Transfer mode	Transmit half-duplex, receive half-duplex, transmit/receive full-duplex					
BRG count source	f(BCLK), f(BCLK)/8, f(BCLK)/32, f(BLCK)/256 (Note 2)					
(when internal clock selected)	f(BCLK): Peripheral clock operating frequency					
Data format	CSIO mode : Data length = 8 bits (fixed)					
	Order of transfer = LSB first (fixed)					
	UART mode: Start bit = 1 bit					
	Character length = $7, 8 \text{ or } 9 \text{ bits}$					
	Parity bit = Added (odd, even) or not added					
	Stop bit = 1 or 2 bits					
	Order of transfer = LSB first (fixed)					
Baud rate	CSIO mode : 152 bits/sec to 2 Mbits/sec (when f(BCLK) = 20 MHz)					
	UART mode : 19 bits/sec to 1.25 Mbits/sec (when f(BCLK) = 20 MHz)					
Error detection	CSIO mode : Overrun error only					
	UART mode : Overrun, parity and framing errors					
	(Occurrence of any of these errors is indicated by an error sum bit)					
Fixed period clock output function	When using SIO0 and SIO1 as UART, this function outputs a divided-by-2 BRG clock					
	from the SCLK pin.					

Table 12.1.1 Outline of Serial I/O

Note 2: If f(BCLK) is selected as the count source, the BRG set value is subject to limitations.

Table 12.1.2 Interrupt Generation Functions of Serial I/O

•	
Serial I/O Interrupt Request Source	ICU Interrupt Sources
SIO0 transmit buffer empty or transmission finished	SIO0 transmit interrupt
SIO0 reception finished or receive error	SIO0 receive interrupt
SIO1 transmit buffer empty or transmission finished	SIO1 transmit interrupt
SIO1 reception finished or receive error	SIO1 receive interrupt
SIO2 transmit buffer empty or transmission finished	SIO2,3 transmit/receive interrupt (group interrupt)
SIO2 reception finished or receive error	SIO2,3 transmit/receive interrupt (group interrupt)
SIO3 transmit buffer empty or transmission finished	SIO2,3 transmit/receive interrupt (group interrupt)
SIO3 reception finished or receive error	SIO2,3 transmit/receive interrupt (group interrupt)

Note: • The transmission-finished interrupt is effective when the internal clock is selected in UART or CSIO mode.

Table 12.1.3 DMA Transfer Request Generation Functions of Serial I/O

Serial I/O DMA Transfer Request	DMAC Input Channels
SIO0 transmit buffer empty	DMA3
SIO0 reception finished	DMA4
SIO1 transmit buffer empty	DMA6
SIO1 reception finished	DMA3
SIO2 transmit buffer empty	DMA7
SIO2 reception finished	DMA5
SIO3 transmit buffer empty	DMA9
SIO3 reception finished	DMA8

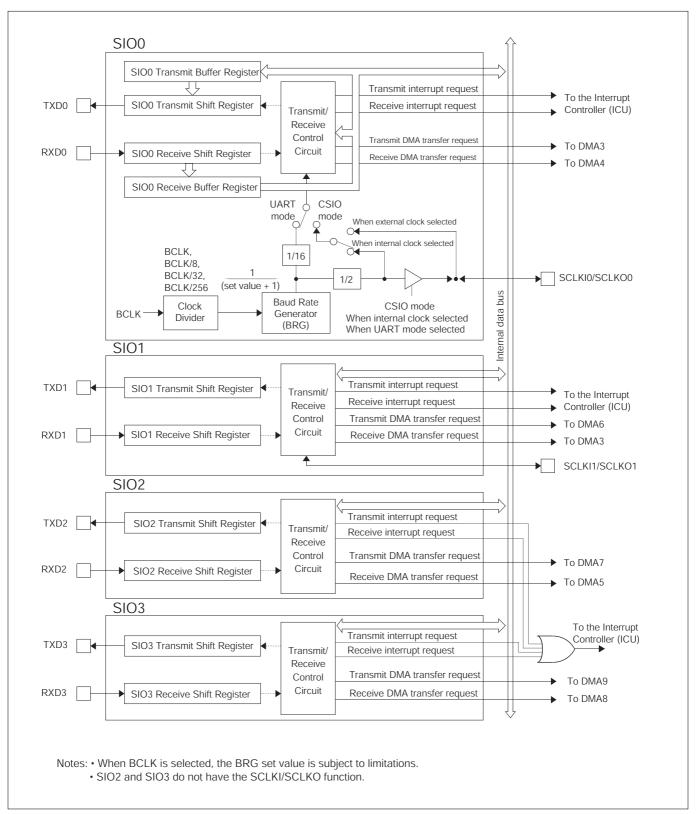


Figure 12.1.1 Block Diagram of SIO0–SIO3

12.2 Serial I/O Related Registers

Shown below is a serial I/O related register map.

Serial I/O Related Register Map

Address	+0 address b0 b7	+1 address b15	See pages		
H'0080 0100	SIO23 Interrupt Request Status Register (SI23STAT)	SIO03 Interrupt Request Mask Register (SI03MASK)	12-9 12-10		
H'0080 0102	SIO03 Interrupt Source Select Register (SI03SEL)	(Use inhibited area)	12-11		
	(Use inhib	ited area)			
H'0080 0110	SIO0 Transmit Control Register (S0TCNT)	SIO0 Transmit/Receive Mode Register (S0MOD)	12-13 12-15		
H'0080 0112	SIO0 Transmit (S01		12-18		
H'0080 0114	SIO0 Receive (S0F	Buffer Register RXB)	12-19		
H'0080 0116	SIO0 Receive Control Register (S0RCNT)	SIO0 Baud Rate Register (S0BAUR)	12-20 12-23		
H'0080 0118	SIO0 Special Mode Register (S0SMOD)	(Use inhibited area)	12-24		
I	(S0SMOD) (Use inhibited area)				
H'0080 0120	SIO1 Transmit Control Register (S1TCNT)	SIO1 Transmit/Receive Mode Register (S1MOD)	12-13 12-15		
H'0080 0122	SIO1 Transmit (S17		12-18		
H'0080 0124	SIO1 Receive (S1F		12-19		
H'0080 0126	SIO1 Receive Control Register (S1RCNT)	SIO1 Baud Rate Register (S1BAUR)	12-20 12-23		
H'0080 0128	SIO1 Special Mode Register (S1SMOD)	(Use inhibited area)	12-24		
	(Use inhib	ited area)			
H'0080 0130	SIO2 Transmit Control Register (S2TCNT)	SIO2 Transmit/Receive Mode Register (S2MOD)	12-13 12-15		
H'0080 0132	SIO2 Transmit (S21		12-18		
H'0080 0134	SIO2 Receive (S2F	Buffer Register	12-19		
H'0080 0136	SIO2 Receive Control Register (S2RCNT)	SIO2 Baud Rate Register (S2BAUR)	12-20 12-23		
	(S2RCN1) (S2BAUR) (Use inhibited area)				
H'0080 0140	SIO3 Transmit Control Register (S3TCNT)	SIO3 Transmit/Receive Mode Register (S3MOD)	12-13 12-15		
H'0080 0142	SIO3 Transmit (S31	Buffer Register	12-18		
H'0080 0144	SIO3 Receive (S3F	Buffer Register	12-19		
H'0080 0146	SIO3 Receive Control Register (S3RCNT)	SIO3 Baud Rate Register (S3BAUR)	12-20 12-23		

12.2.1 SIO Interrupt Related Registers

The SIO interrupt related registers are used to control the interrupt request signals output from SIO to the Interrupt Controller (ICU), as well as select the source of each interrupt request.

(1) Interrupt request status bit

This status bit is used to determine whether an interrupt is requested. When an interrupt request occurs, this bit is set in hardware (cannot be set in software). The status bit is cleared by writing "0". Writing "1" has no effect; the bit retains the status it had before the write. Because this bit is unaffected by the interrupt request mask bit, it can also be used to inspect the operating status of peripheral functions.

In interrupt handling, make sure that within the grouped interrupt request status, only the status bit for the interrupt request that has been serviced is cleared. If the status bit for any interrupt request that has not been serviced is cleared, the pending interrupt request is cleared simultaneously with its status bit.

(2) Interrupt request mask bit

This bit is used to disable unnecessary interrupt requests within the grouped interrupt request. Set this bit to "1" to enable interrupt requests or "0" to disable interrupt requests.

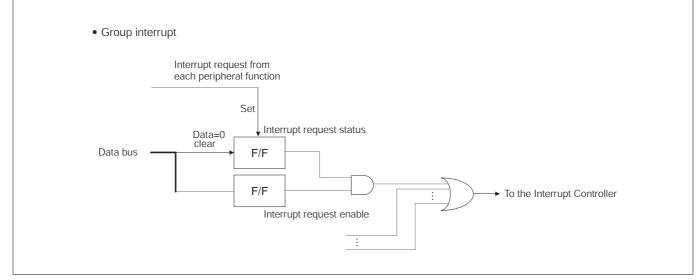


Figure 12.2.1 Interrupt Request Status and Mask Registers

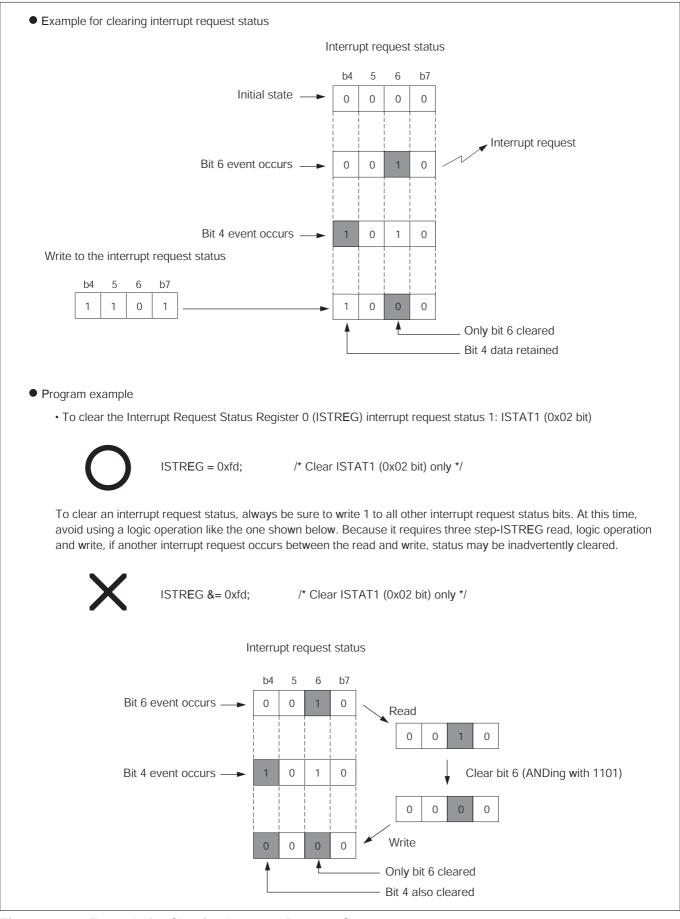


Figure 12.2.2 Example for Clearing Interrupt Request Status

(3) Selecting the source of an interrupt request

The interrupt request signals sent from each SIO to the Interrupt Controller (ICU) are classified into transmit interrupts and receive interrupts. Transmit interrupt requests can be generated when the transmit buffer is empty or transmission is finished, and the receive interrupt requests can be generated when reception is finished or an receive error is detected, as selected by the Interrupt Source Select Register (SI03SEL).

- Notes: No interrupt request signals are generated unless interrupts are generated by the SIO Interrupt Request Mask Register after enabling the TEN (Transmit Enable) bit or REN (Receive Enable) bit for the corresponding SIO.
 - SIO2 and SIO3 together comprise one interrupt group.
 - The transmission-finished interrupt is effective when the internal clock is selected in UART or CSIO mode.

(4) Notes on using transmit interrupts

While the SIO Interrupt Request Mask Register is set to enable interrupts, a transmit interrupt request is generated upon enabling the corresponding TEN (Transmit Enable) bit.

(5) About DMA transfer requests from SIO

Each SIO can generate a transmit DMA transfer and a reception-finished DMA transfer request. These DMA transfer requests can be generated by enabling each SIO's corresponding TEN (Transmit Enable) bit or REN (Receive Enable) bit. When using DMA transfers to communicate with external devices, be sure to set the DMA Controller (DMAC) before enabling the TEN or REN bit. No reception-finished DMA transfer requests are generated if a receive error occurs.

Transmit DMA transfer request

Generated when the transmit buffer is empty and the TEN bit is enabled.

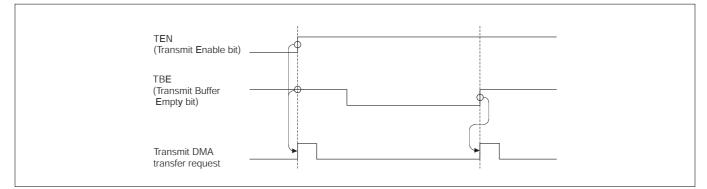


Figure 12.2.3 Transmit DMA Transfer Request

• Reception-finished DMA transfer request

A DMA transfer request is generated when the receive buffer is filled.

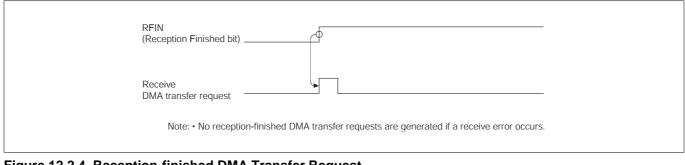


Figure 12.2.4 Reception-finished DMA Transfer Request

12.2.2 SIO Interrupt Control Registers

SIO23 Interrupt Request Status Register (SI23STAT)

<Address: H'0080 0100>

b0	1		2	3	4	5	6	b7
					IRQT2	IRQR2	IRQT3	IRQR3
0	C)	0	0	0	0	0	0

<Upon exiting reset: H'00>

		•	•	
b	Bit Name	Function	R	W
0–3	No function assigned. Fix to "0".		0	0
4	IRQT2	0: Interrupt not requested	R	(Note 1
	SIO2 transmit interrupt request status bit	1: Interrupt requested		
5	IRQR2	0: Interrupt not requested	R	(Note 1
	SIO2 receive interrupt request status bit	1: Interrupt requested		
6	IRQT3	0: Interrupt not requested	R	(Note 1
	SIO3 transmit interrupt request status bit	1: Interrupt requested		
7	IRQR3	0: Interrupt not requested	R	(Note 1
	SIO3 receive interrupt request status bit	1: Interrupt requested		

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

The register indicates the transmit/receive interrupt requests from SIO2 and SIO3.

[Setting the interrupt request status bit]

This bit can only be set in hardware, and cannot be set in software.

[Clearing the interrupt request status bit]

This bit is cleared by writing "0" in software.

Note: • If the status bit is set in hardware at the same time it is cleared in software, the former has priority and the status bit is set.

When writing to the SIO Interrupt Request Status Register, make sure only the bits to be cleared are set to "0" and all other bits are set to "1". Those bits that have been set to "1" are unaffected by writing in software and retain the value they had before the write.

b8	9	10	11	12	13	14	b15
TOMASK	R0MASK	T1MASK	R1MASK	T2MASK	R2MASK	T3MASK	R3MASK
0	0	0	0	0	0	0	0

<Address: H'0080 0101>

			<upon exiting="" h<="" reset:="" th=""><th>'00></th></upon>	'00>
b	Bit Name	Function	R	W
8	TOMASK	0: Mask (disable) interrupt request	R	W
	SIO0 transmit interrupt request mask bit	1: Enable interrupt request		
9	ROMASK	0: Mask (disable) interrupt request	R	W
	SIO0 receive interrupt request mask bit	1: Enable interrupt request		
10	T1MASK	0: Mask (disable) interrupt request	R	W
	SIO1 transmit interrupt request mask bit	1: Enable interrupt request		
11	R1MASK	0: Mask (disable) interrupt request	R	W
	SIO1 receive interrupt request mask bit	1: Enable interrupt request		
12	T2MASK	0: Mask (disable) interrupt request	R	W
	SIO2 transmit interrupt request mask bit	1: Enable interrupt request		
13	R2MASK	0: Mask (disable) interrupt request	R	W
	SIO2 receive interrupt request mask bit	1: Enable interrupt request		
14	T3MASK	0: Mask (disable) interrupt request	R	W
	SIO3 transmit interrupt request mask bit	1: Enable interrupt request		
15	R3MASK	0: Mask (disable) interrupt request	R	W
	SIO3 receive interrupt request mask bit	1: Enable interrupt request		

The register enables or masks (disables) the interrupt requests generated by each SIO. Interrupt requests from any SIO are enabled by setting its corresponding interrupt request mask bit to "1".

SIO03 Interrupt Request Source Select Register (SI03SEL)

b0	1	2	3	4	5	6	b7
IST0	IST1	IST2	IST3	ISR0	ISR1	ISR2	ISR3
0	0	0	0	0	0	0	0

<Address: H'0080 0102>

			<upon exiting="" h<="" reset:="" th=""><th>ł'00></th></upon>	ł'00>
b	Bit Name	Function	R	W
0	ISTO	0: Transmit buffer empty interrupt	R	W
	SIO0 transmit interrupt request source select bit	1: Transmission finished interrupt		
1	IST1	0: Transmit buffer empty interrupt	R	W
	SIO1 transmit interrupt request source select bit	1: Transmission finished interrupt		
2	IST2	0: Transmit buffer empty interrupt	R	W
	SIO2 transmit interrupt request source select bit	1: Transmission finished interrupt		
3	IST3	0: Transmit buffer empty interrupt	R	W
	SIO3 transmit interrupt request source select bit	1: Transmission finished interrupt		
4	ISR0	0: Reception finished interrupt	R	W
	SIO0 receive interrupt request source select bit	1: Receive error interrupt		
5	ISR1	0: Reception finished interrupt	R	W
	SIO1 receive interrupt request source select bit	1: Receive error interrupt		
6	ISR2	0: Reception finished interrupt	R	W
	SIO2 receive interrupt request source select bit	1: Receive error interrupt		
7	ISR3	0: Reception finished interrupt	R	W
	SIO3 receive interrupt request source select bit	1: Receive error interrupt		

The register selects the source of interrupt requests generated by each SIO when transmit or receive operation is completed.

(1) SIOn transmit interrupt source select bit

[When set to "0"]

The transmit buffer empty interrupt is selected. A transmit buffer empty interrupt request is generated when data is transferred from the transmit buffer register to the transmit shift register. Also, a transmit buffer empty interrupt request is generated when the TEN (Transmit Enable) bit is set to "1" (interrupt enabled).

[When set to "1"]

The transmission finished (transmit shift buffer empty) interrupt is selected. A transmission finished interrupt request is generated when all of the data in the transmit shift register has been transferred.

Note: • Do not select the transmission finished interrupt when an external clock is selected in CSIO mode.

(2) SIOn receive interrupt request source select bit

[When set to "0"]

The reception finished (receive buffer full) interrupt is selected. A reception finished interrupt request is also generated when a receive error (except overrun error) occurs.

[When set to "1"]

The receive error interrupt is selected. Following types of errors constitute a receive error:

- CSIO mode: Overrun error
- UART mode: Overrun, parity and framing errors

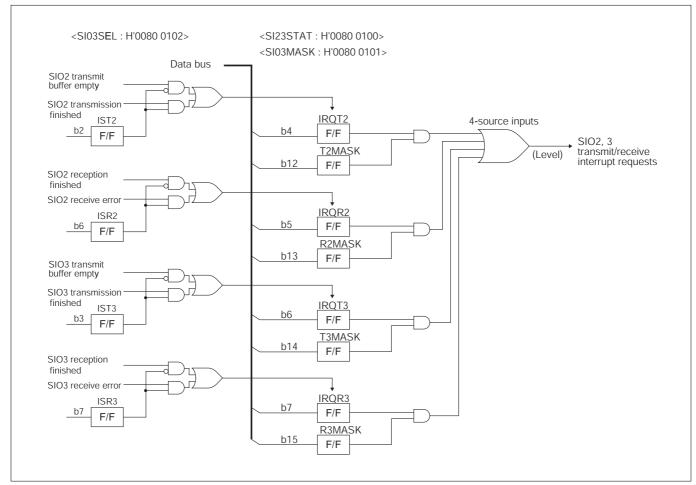


Figure 12.2.5 Block Diagram of SIO2,3 Transmit/Receive Interrupt Requests

12.2.3 SIO Transmit Control Registers

SIO0 Transmit Control Register (S0TCNT) SIO1 Transmit Control Register (S1TCNT) SIO2 Transmit Control Register (S2TCNT) SIO3 Transmit Control Register (S3TCNT)

b0	1	2	3	4	5	6	b7
		CDI	IV		TSTAT	TBE	TEN
0	0	0	1	0	0	1	0

<Address: H'0080 0110> <Address: H'0080 0120> <Address: H'0080 0130> <Address: H'0080 0140>

b	Bit Name	Function	R	W
0, 1	No function assigned. Fix to "0".		0	0
2, 3	CDIV	b2 b3	R	W
	BRG count source select bit	0 0: Select f(BCLK)		
		0 1: Select f(BCLK) divided by 8		
		1 0: Select f(BCLK) divided by 32		
		1 1: Select f(BCLK) divided by 256		
4	No function assigned. Fix to "0".		0	0
5	TSTAT	0:Transmission stopped and no data in transmit buffer register	R	_
	Transmit status bit	1:Transmitting now or data present in transmit buffer register		
6	ТВЕ	0:Data present in transmit buffer register	R	_
	Transmit buffer empty bit	1: No data in transmit buffer register		
7	TEN	0: Disable transmission	R	W
	Transmit enable bit	1: Enable transmission		

I non exiting reset: H'12

(1) CDIV (baud rate generator count source select) bits (Bits 2-3)

These bits select the count source for the Baud Rate Generator (BRG).

Note: • If f(BCLK) is selected as the count source for the BRG, care must be taken when setting the BRG so that the baud rate will not exceed the maximum transfer speed. For details, see the section 12.2.8, "SIO Baud Rate Registers".

(2) TSTAT (Transmit Status) bit (Bit 5)

[Set condition]

This bit is set to "1" by a write to the transmit buffer register while transmission is enabled.

[Clear condition]

This bit is cleared to "0" when transmission is idle (no data in the transmit shift register) and no data exists in the transmit buffer register. This bit is also cleared by clearing the transmit enable bit.

(3) TBE (Transmit Buffer Empty) bit (Bit 6)

[Set condition]

This bit is set to "1" when data is transferred from the transmit buffer register to the transmit shift register and the transmit buffer register is thereby emptied. This bit is also set by clearing the transmit enable bit to "0".

[Clear condition]

This bit is cleared to "0" by writing data to the lower byte of the transmit buffer register while transmission is enabled (TEN = "1").

(4) TEN (Transmit Enable) bit (Bit 7)

Transmission is enabled by setting this bit to "1" and disabled by clearing this bit to "0". If this bit is cleared to "0" while transmitting data, the transmit operation stops.

12.2.4 SIO Transmit/Receive Mode Registers

SIO0 Transmit/Receive Mode Register (S0MOD)

SIO1 Transmit/Receive Mode Register (S1MOD) SIO2 Transmit/Receive Mode Register (S2MOD)

SIO3 Transmit/Receive Mode Register (S3MOD)

b8	9	10	11	12	13	14	b15
	SMOD		CKS	STB	PSEL	PEN	SEN
0	0	0	0	0	0	0	0

<Address: H'0080 0111> <Address: H'0080 0121> <Address: H'0080 0131> <Address: H'0080 0141>

		<upon exiting<="" th=""><th>reset: H'00></th></upon>	reset: H'00>
b	Bit Name	Function	R W
8–10	SMOD	b8 b9 b10	R W
	Serial I/O mode select bit	0 0 0 : 7-bit UART	
	(Note 1)	0 0 1 : 8-bit UART	
		0 1 0 : 9-bit UART	
		0 1 1 : 9-bit UART	
		1 0 0 : 8-bit clock-synchronous serial I/O	
		1 0 1 : 8-bit clock-synchronous serial I/O	
		1 1 0 : 8-bit clock-synchronous serial I/O	
		1 1 1 : 8-bit clock-synchronous serial I/O	
11	СКЅ	0: Internal clock	R W
	Internal/external clock select bit	1: External clock	(Note 2)
12	STB	0: One stop bit	R W
	Stop bit length select bit, UART mode only	1: Two stop bits	(Note 3)
13	PSEL	0: Odd parity	RW
	Odd/even parity select bit, UART mode only	1: Even parity	(Note 3)
14	PEN	0: Disable parity	R W
	Parity enable bit, UART mode only	1: Enable parity	(Note 3)
15	SEN	0: Disable sleep function	R W
	Sleep select bit, UART mode only	1: Enable sleep function	(Note 3)

Note 1: For SIO2 and 3, bit 8 is fixed to "0" in hardware. This bit cannot be set to "1" in software (to select clock-synchronous serial I/O). Note 2: Has no effect when UART mode selected.

Note 3: Bits 12-15 have no effect during clock-synchronous mode.

The SIO Transmit/Receive Mode Registers consist of bits to set the serial I/O operation mode, data format and the functions used during communication.

The SIO Transmit/Receive Mode Registers must always be set before the serial I/O starts operating. To change register settings after the serial I/O starts sending or receiving data, first confirm that transmit and receive operations have finished and then disable transmit/receive operations (by clearing the SIO Transmit Control Register transmit enable bit and SIO Receive Control Register receive enable bit to "0") before making changes.

(1) SMOD (Serial I/O Mode Select) bits (Bits 8–10)

These bits select the operation mode of serial I/O.

(2) CKS (Internal/External Clock Select) bit (Bit 11)

This bit is effective when CSIO mode is selected. Setting this bit has no effect when UART mode is selected, in which case the serial I/O is clocked by the internal clock.

(3) STB (Stop Bit Length Select) bit (Bit 12)

This bit is effective during UART mode. Use this bit to select the stop bit length that indicates the end of data to transmit. Setting this bit to "0" selects one stop bit, and setting this bit to "1" selects two stop bits. During clock-synchronous mode, the content of this bit has no effect.

(4) PSEL (Odd/Even Parity Select) bit (Bit 13)

This bit is effective during UART mode. When parity is enabled (bit 14 = "1"), use this bit to select the parity attribute (whether odd or even). Setting this bit to "0" selects an odd parity, and setting this bit to "1" selects an even parity.

When parity is disabled (bit 14 = "0") or during clock-synchronous mode, the content of this bit has no effect.

(5) PEN (Parity Enable) bit (Bit 14)

This bit is effective during UART mode. When this bit is set to "1", a parity bit is added immediately after the data bits of the transmit data, and the received data is checked for parity.

The parity bit added to the transmit data is automatically determined to be "0" or "1" so that the attribute (odd/ even) derived by adding the number of 1's in data bits and the content of the parity bit agrees with one that was selected with the odd/even parity select bit (bit 13).

Figure 12.2.6 shows an example of a data format when parity is enabled.

(6) SEN (Sleep Select) bit (Bit 15)

This bit is effective during UART mode. If the sleep function is enabled by setting this bit to "1", data is latched into the UART Receive Buffer Register only when the most significant bit (MSB) of the received data is "1".

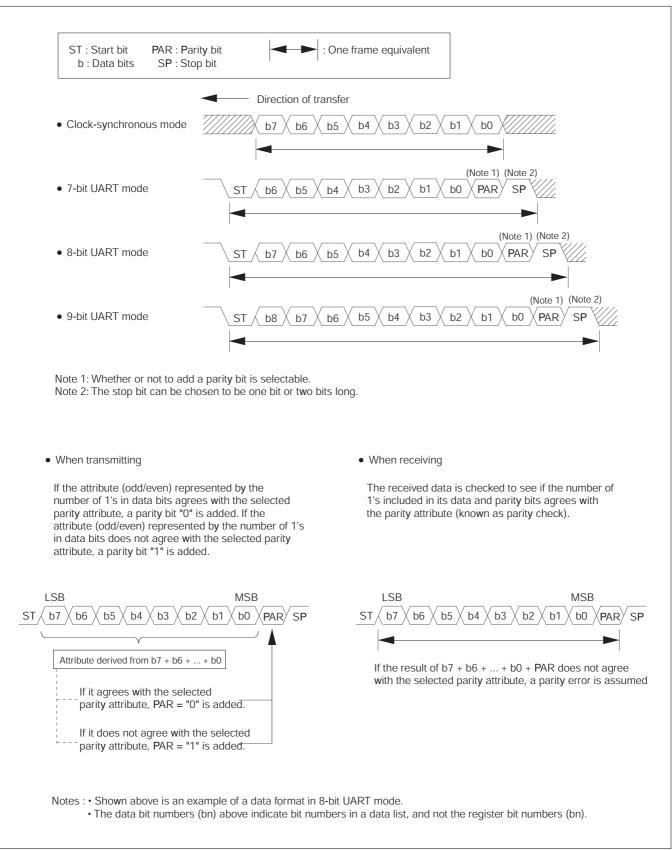


Figure 12.2.6 Data Format When Parity is Enabled

12.2.5 SIO Transmit Buffer Registers

S	100	Tra	nsr	mit	Βι	Iffe	er F	Reg	jist	er	(S01	TXE	3)											<address: 0112="" h'0080=""></address:>
S	101	Tra	nsr	mit	Βι	Iffe	er F	Reg	jist	er	(S11	TXE	3)											<address: 0122="" h'0080=""></address:>
S	102	Tra	nsr	mit	Βι	Iffe	er F	Reg	jist	er	(S21	TXE	3)											<address: 0132="" h'0080=""></address:>
S	103	Tra	nsr	mit	Βι	Iffe	er F	Reg	jist	er	(S31	TXE	3)											<address: 0142="" h'0080=""></address:>
				~		~				_			_	~		4.0								
_	b0	1		2		3		4		5	6	;	1	8)	10		11	12	13	14	•	b15	_
																	ΤD	ATA	۱.					
	?	?		?		?		?		?	?	,	?	?	?	?		?	?	?	?		?	
_																							<ل	Jpon exiting reset: Undefined>

b	Bit Name	Function	R	W
0–6	No function assigned. Fix to "0".		?	0
7–15	TDATA	Transmit data is set in these bits.	?	W
	Transmit data			

The SIO Transmit Buffer Registers are used to set transmit data. These registers are a write-only register, and the contents of these registers cannot be read out. Data must be LSB-aligned when set in these registers. Therefore, write transmit data to bits 9–15 for the 7-bit data format (UART mode only), bits 8–15 for the 8-bit data format, or bits 7–15 for the 9-bit data format (UART mode only).

Before setting transmit data in these registers, enable the Transmit Control Register TEN (Transmit Enable) bit by setting it to "1". Writing data to these registers while the TEN bit is disabled (cleared to "0") has no effect. When data is written to the SIO Transmit Buffer Register while transmission is enabled, the data is transferred from that register to the SIO Transmit Shift Register, upon which the serial I/O starts sending data.

Note: For the 7-bit and 8-bit data formats, the register can be accessed bytewise.

12.2.6 SIO Receive Buffer Registers

SIO0 Receive Buffer Register (S0RXB) <Address: H'0080 0114> SIO1 Receive Buffer Register (S1RXB) <Address: H'0080 0124> SIO2 Receive Buffer Register (S2RXB) <Address: H'0080 0134> SIO3 Receive Buffer Register (S3RXB) <Address: H'0080 0144> 2 4 7 b0 1 3 5 6 8 9 10 11 12 13 14 b15 RDATA ? | ? | ? | ? | ? | ? ? ? ? ? ? ? | ? | ? ? ? <Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
0–6	No function assigned.		0	_
8–15	RDATA	Received data is stored in these bits.	R	_
	Received data			

The SIO Receive Buffer Registers are used to store the received data. When the serial I/O has finished receiving data, the content of the SIO Receive Shift Register is transferred to the SIO Receive Buffer Register. These registers are a read-only register.

For the 7-bit data format (UART mode only), data is set in bits 9–15, with bits 8 and 7 always set to "0". For the 8-bit data format, data is set in bits 8–15, with bit 7 always set to "0".

When reading the content of the SIO Receive Buffer Register after reception is completed, if the serial I/O finishes receiving the next data before the previous data is not read out, an overrun error occurs and the subsequent received data are not transferred to the Receive Buffer Register.

To restart normal receive operation, clear the Receive Control Register REN (Receive Enable) bit to "0".

Note: For the 7-bit and 8-bit data formats, the register can be accessed bytewise.

12.2.7 SIO Receive Control Registers

SIO0 Receive Control Register (S0RCNT) SIO1 Receive Control Register (S1RCNT) SIO2 Receive Control Register (S2RCNT) SIO3 Receive Control Register (S3RCNT)

b0	1	2	3	4	5	6	b7
	RSTAT	RFIN	REN	OVR	PTY	FLM	ERS
0	0	0	0	0	0	0	0

<Address: H'0080 0116> <Address: H'0080 0126> <Address: H'0080 0136> <Address: H'0080 0146>

		<upon exi<="" th=""><th>ting reset: H</th><th>l'00></th></upon>	ting reset: H	l'00>
b	Bit Name	Function	R	W
0	No function assigned. Fix to "0".		0	0
1	RSTAT	0: Reception stopped	R	_
	Receive status bit	1: Reception in progress		
2	RFIN	0: No data in receive buffer register	R	_
	Reception finished bit	1: Data present in receive buffer register		
3	REN	0: Disable reception	R	W
	Receive enable bit	1: Enable reception		
4	OVR	0: No overrun error	R	_
	Overrun error bit	1: Overrun error occurred		
5	PTY	0: No parity error	R	_
	Parity error bit, UART mode only	1: Parity error occurred		
6	FLM	0: No framing error	R	_
	Framing error bit, UART mode only	1: Framing error occurred		
7	ERS	0: No error	R	_
	Error sum bit	1: Error occurred		

=

(1) RSTAT (Receive Status) bit (Bit 1)

[Set condition]

This bit is set to "1" by a start of receive operation. When this bit = "1", the serial I/O is receiving data.

[Clear condition]

This bit is cleared to "0" upon completion of receive operation or by clearing the REN (Receive Enable) bit.

(2) RFIN (Reception Finished) bit (Bit 2)

[Set condition]

This bit is set to "1" when all data bits have been received in the Receive Shift Register and whose content is transferred to the Receive Buffer Register.

[Clear condition]

This bit is cleared to "0" by reading out the lower byte of the Receive Buffer Register or by clearing the REN (Receive Enable) bit. However, if an overrun error occurs, this bit cannot be cleared by reading out the lower byte of the Receive Buffer Register. In this case, clear REN (Receive Enable) bit to "0".

(3) REN (Receive Enable) bit (Bit 3)

Reception is enabled by setting this bit to "1", and is disabled by clearing this bit to "0", in which case the receiver unit is initialized. Accordingly, the receive status and reception finished flags, as well as the overrun error, framing error, parity error and error sum flags all are cleared.

The receive operation stops if the Receive Enable bit is cleared to "0" while receiving data.

(4) OVR (Overrun Error) bit (Bit 4)

[Set condition]

This bit is set to "1" when all bits of the next received data have been set in the Receive Shift Register while the Receive Buffer Register still contains the previous received data. In this case, the received data is not stored in the Receive Buffer Register. Although receive operation continues even when the overrun error flag = "1", the received data is not stored in the Receive Buffer Register. This error bit must be cleared before normal reception can be restarted.

[Clear condition]

This bit is cleared to "0" by only clearing the REN (Receive Enable) bit.

(5) PTY (Parity Error) bit (Bit 5)

This bit is effective in only UART mode. It is fixed to "0" during CSIO mode.

[Set condition]

The PTY (Parity Error) bit is set to "1" when the SIO Transmit/Receive Mode Register PEN (Parity Enable/Disable) bit is enabled and the parity (even or odd) of the received data does not agree with one that was set by the said register's PSEL (Parity Select) bit.

[Clear condition]

The PTY bit is cleared to "0" by reading out the lower byte of the SIO Receive Buffer Register or by clearing the SIO Receive Control Register REN (Receive Enable) bit. However, if an overrun error occurs, this bit cannot be cleared by reading out the lower byte of the Receive Buffer Register. In this case, clear the REN (Receive Enable) bit.

(6) FLM (Framing Error) bit (Bit 6)

This bit is effective in only UART mode. It is fixed to "0" during CSIO mode.

[Set condition]

The FLM (Framing Error) bit is set to "1" when the number of received bits does not agree with one that was set by the SIO Transmit/Receive Mode Register.

[Clear condition]

The FLM bit is cleared to "0" by reading out the lower byte of the SIO Receive Buffer Register or by clearing the SIO Receive Control Register REN (Receive Enable) bit.

However, if an overrun error occurs, this bit cannot be cleared by reading out the lower byte of the Receive Buffer Register. In this case, clear the REN (Receive Enable) bit to "0".

(7) ERS (Error Sum) bit (Bit 7)

[Set condition]

This flag is set to "1" when any of overrun, framing or parity errors is detected at completion of reception.

[Clear condition]

If the detected error was an overrun error, this flag is cleared by clearing the REN (Receive Enable) bit to "0". Otherwise, this flag is cleared by reading out the lower byte of the SIO Receive Buffer Register or by clearing the SIO Receive Control Register REN (Receive Enable) bit.

12.2.8 SIO Baud Rate Registers

<address: 0117="" h'0080=""></address:>						BAUR)	(S0	gister	e Re	d Rate	Baud	SIO0 E
<address: 0127="" h'0080=""></address:>						BAUR)	(S1	gister	e Re	d Rate	Baud	SIO1 E
<address: 0137="" h'0080=""></address:>						BAUR)	(S2	gister	Re	d Rate	Baud	SIO2 E
<address: 0147="" h'0080=""></address:>						BAUR)	(S3	gister	e Re	d Rate	Baud	SIO3 E
	b15	14	13		12	11		10		9		b8
					RG	В						
	?	?	?		?	?		?		?		?
<upon exiting="" reset:="" undefined=""></upon>												
				Inotic	Fur				~~		D	h

b	Bit Name	Function	R	W
8–15	BRG	Set a baud rate divide value	R	W
	Baud rate divide value			

(1) BRG (baud rate divide value) (Bits 8–15)

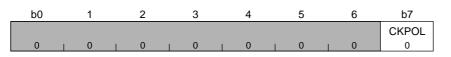
The SIO Baud Rate Registers are used to set a baud rate divide value, so that the baud rate count source selected by SIO Mode Register is divided by (BRG set value + 1).

Because the BRG value initially is undefined, be sure to set the divide value before the serial I/O starts operating. The value written to the BRG during transmit/receive operation takes effect in the next cycle after the BRG counter has finished counting.

When using the internal clock (to output the SCLKO signal) in CSIO mode, the serial I/O divides the internal BCLK using a clock divider and then divides the resulting clock by (BRG set value + 1) and further by 2, thereby generating a transmit/receive shift clock.

When using an external clock in CSIO mode, the serial I/O does not use the BRG. (Transmit/receive operations are synchronized to the externally supplied clock.)

During UART mode, the serial I/O divides the internal BCLK using a clock divider and then divides the resulting clock by (BRG set value + 1) and further by 16, thereby generating a transmit/receive shift clock. When using SIO0 or SIO1 in UART mode, set the relevant port (P84 or P87) to function as an SCLKO pin, so that a BRG output clock divided by 2 can be output from that SCLKO pin.


When using the internal clock (internally clocked CSIO mode), if f(BCLK) is selected as the BRG count source, make sure the transfer rate does not exceed 2 Mbits/second during CSIO mode.

<Address: H'0080 0118>

<Address: H'0080 0128>

12.2.9 SIO Special Mode Registers

SIO0 Special Mode Register (S0SMOD) SIO1 Special Mode Register (S1SMOD)

		<upon exiting="" reset<="" th=""><th>: Undefi</th><th>ned></th></upon>	: Undefi	ned>
b	Bit Name	Function	R	W
0–6	No function assigned.		0	0
7	CKPOL Transmit/receive clock polarity select bit	 0: Transmit data is output at a fall of SCLK receive data is latched in at a rise of SCLK 1: Transmit data is output at a rise of SCLK receive data is latched in at a fall of SCLK 	R	W

(1) CKPOL(transmit/receive clock polarity select) bit (Bit 7)

This bit selects the polarity of the transmit/receive clock when in CSIO mode.

When the CKPOL bit is set to "0", data is output from the TXD pin synchronously with a falling edge of SCLK, and data is taken in from the RXD pin synchronously with a rising edge of SCLK.

When the CKPOL bit is set to "1", data is output from the TXD pin synchronously with a rising edge of SCLK, and data is taken in from the RXD pin synchronously with a falling edge of SCLK.

Notes • Do not rewrite the clock polarity select bit when the transmit enable bit or receive enable bit is enabled.

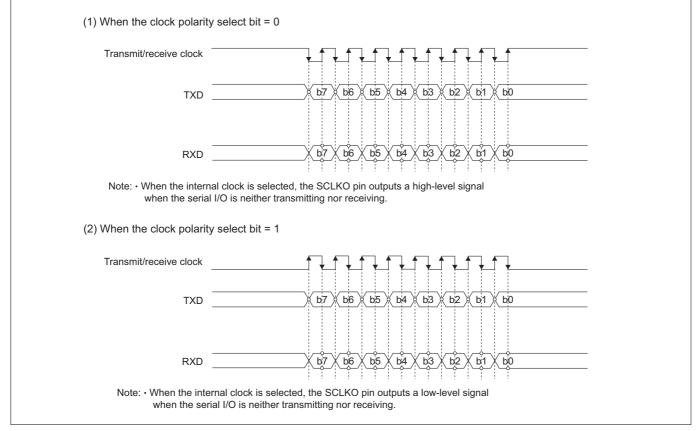


Figure 12.2.7 Selecting the Transmit/receive Clock Polarity

12.3 Transmit Operation in CSIO Mode

12.3.1 Setting the CSIO Baud Rate

The baud rate (data transfer rate) in CSIO mode is determined by a transmit/receive shift clock. The clock source from which a transmit/receive shift clock derives is selected from the internal clock f(BCLK) or external clock. The CKS (Internal/External Clock Select) bit (SIO Transmit/Receive Mode Register bit 11) is used to select the clock source.

The equation used to calculate the transmit/receive baud rate differs depending on whether an internal or external clock is selected.

(1) When internal clock is selected in CSIO mode

When the internal clock is selected, f(BCLK) is divided by a clock divider before being supplied to the Baud Rate Generator (BRG).

The clock divider's divide-by value is selected from 1, 8, 32 or 256 by using the CDIV (baud rate generator count source select) bits (Transmit Control Register bits 2–3).

The Baud Rate Generator divides the clock divider output by (baud rate register set value + 1) and further by 2, thus generating a transmit/receive shift clock.

When the internal clock is selected in CSIO mode, the baud rate is calculated using the equation below.

Baud rate = $\frac{f(BCLK)}{Clock divider's divide-by value x (baud rate register set value + 1) x 2}$

f(BCLK): Peripheral clock operating frequency Baud rate register set value = H'00 to H'FF (Note 1) Clock divider's divide-by value = 1, 8, 32 or 256

Note 1: If divide-by-1 (i.e., f(BCLK) itself) is selected as the baud rate generator count source, use caution when setting the baud rate register so that the transfer rate will not exceed 2 Mbps.

(2) When external clock is selected in CSIO mode

In this case, the Baud Rate Generator is not used, and the input clock from the SCLKI pin serves directly as a transmit/receive shift clock for CSIO.

The maximum frequency of the SCLKI pin input clock is f(BCLK)/16.

Baud rate = SCLKI pin input clock [bps]

12.3.2 Initializing CSIO Transmission

To transmit data in CSIO mode, initialize the serial I/O following the procedure described below.

(1) Setting SIO Special Mode Register

• Select the clock polarity in CSIO mode.

(2) Setting SIO Transmit/Receive Mode Register

- Set the register to CSIO mode.
- Select the internal or an external clock.

(3) Setting SIO Transmit Control Register

• Select the clock divider's divide-by ratio (when internal clock selected).

(4) Setting SIO Baud Rate Register

When the internal clock is selected, set a baud rate generator value. (See Section 12.3.1, "Setting the CSIO Baud Rate.")

(5) Setting SIO interrupt related registers

- Select the source of transmit interrupt request (transmit buffer empty or transmission finished) (SIO Interrupt Request Source Select Register).
- Enable or disable transmit interrupt requests (SIO Interrupt Request Mask Register).

Note: • Transmission finished interrupt requests are effective only when the internal clock is selected.

(6) Setting the Interrupt Controller (SIO Transmit Interrupt Control Register)

To use transmit interrupts, set their priority levels.

(7) Setting DMAC

To issue DMA transfer requests to the internal DMAC when the transmit buffer is empty, set up the DMAC. (See Chapter 9, "DMAC.")

(8) Selecting pin functions

Because the serial I/O related pins serve dual purposes, set the pin functions for use as SIO pins or input/ output ports. (See Chapter 8, "Input/Output Ports and Pin Functions.")

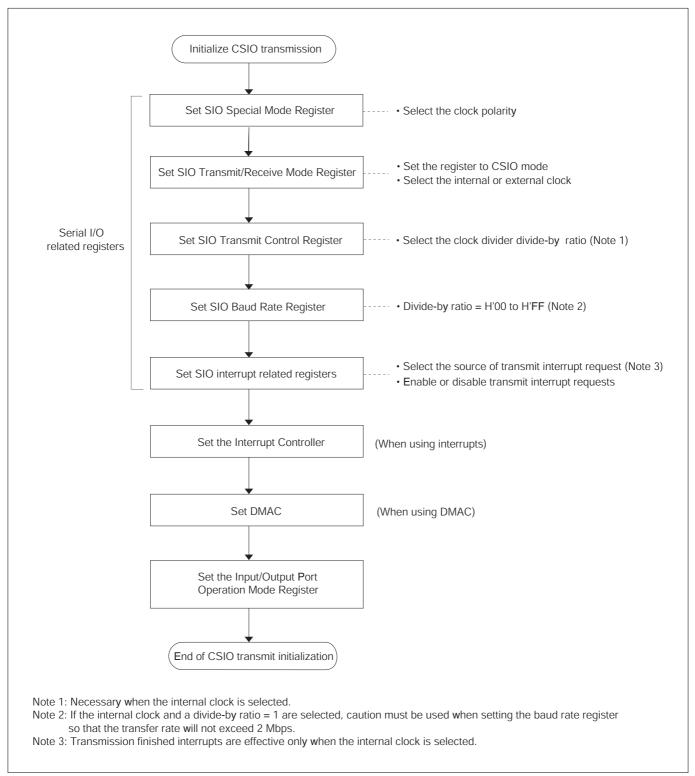


Figure 12.3.1 Procedure for Initializing CSIO Transmission

12.3.3 Starting CSIO Transmission

The serial I/O starts a transmit operation when all of the following conditions are met after being initialized.

(1) Transmit conditions when CSIO mode internal clock is selected

- The SIO Transmit Control Register transmit enable bit is set to "1".
- Transmit data (8 bits) is written to the lower byte of the SIO Transmit Buffer Register (transmit buffer empty bit = "0")

(2) Transmit conditions when CSIO mode external clock is selected

- The SIO Transmit Control Register transmit enable bit is set to "1".
- Transmit data is written to the lower byte of the SIO Transmit Buffer Register (transmit buffer empty bit = "0")
- When the clock polarity select bit = "0", the transmit clock input at the SCLKI pin goes low; when the clock polarity select bit = "1", the transmit clock input at the SCLKI pin goes high.
 - Notes: While the transmit enable bit is cleared to "0", writes to the transmit buffer register are invalid. Always set the transmit enable bit to "1" before writing to the transmit buffer register.
 - When the internal clock is selected, a write to the lower byte of the transmit buffer register in above triggers transmission to start.
 - The transmit status bit is set to "1" at the time data is set in the lower byte of the SIO Transmit Buffer Register.

When transmission starts, the serial I/O sends data following the procedure described below.

- Transfer the content of the SIO Transmit Buffer Register to the SIO Transmit Shift Register.
- Set the transmit buffer empty bit to "1" (Note 1).
- Start sending data synchronously with the shift clock beginning with the LSB.
 - Note 1: A transmit interrupt request can be generated for reasons that the transmit buffer is empty or transmission has finished. Also, a DMA transfer request can be generated when the transmit buffer is empty. No DMA transfer requests can be generated for reasons that transmission has finished.

12.3.4 Successive CSIO Transmission

Once data has been transferred from the transmit buffer register to the transmit shift register, the next data can be written to the transmit buffer register even when the serial I/O has not finished sending the previous data. If the next data is written to the transmit buffer register before transmission has finished, the previous and the next data are transmitted successively.

Check the SIO Transmit Control Register's transmit buffer empty flag to see if data has been transferred from the transmit buffer register to the transmit shift register.

12.3.5 Processing at End of CSIO Transmission

When data transmission finishes, the following operation is automatically performed in hardware.

(1) When not transmitting successively

• The transmit status bit is cleared to "0".

(2) When transmitting successively

• When transmission of the last data in a consecutive data train finishes, the transmit status bit is cleared to "0".

12.3.6 Transmit Interrupts

(1) Transmit buffer empty interrupt

If the transmit buffer empty interrupt was selected using the SIO Interrupt Request Source Select Register, a transmit buffer empty interrupt request is generated when data has been transferred from the transmit buffer register to the transmit shift register. A transmit buffer empty interrupt request is also generated when the TEN (Transmit Enable) bit is set to "1" (disabled \rightarrow enabled) while the transmit buffer empty interrupt has been enabled.

(2) Transmission finished interrupt

If the transmission finished interrupt was selected using the SIO Interrupt Request Source Select Register, a transmission finished interrupt request is generated by a falling edge of the internal transfer clock pulse at which the last bit of data in the transmit shift register has been transmitted.

The SIO Interrupt Request Mask Register and the Interrupt Controller (ICU) must be set before these transmit interrupts can be used.

12.3.7 Transmit DMA Transfer Request

When data has been transferred from the transmit buffer register to the transmit shift register, a transmit DMA transfer request for the corresponding SIO channel is output to the DMAC. A transmit DMA transfer request is also output when the TEN (Transmit Enable) bit is set to "1" (disabled \rightarrow enabled).

The DMAC must be set before DMA transfers can be used during data transmission.

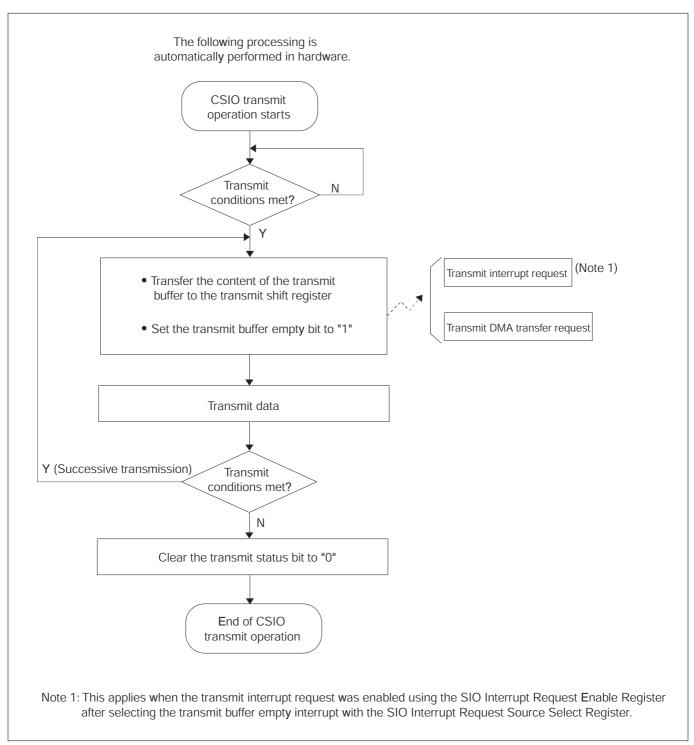
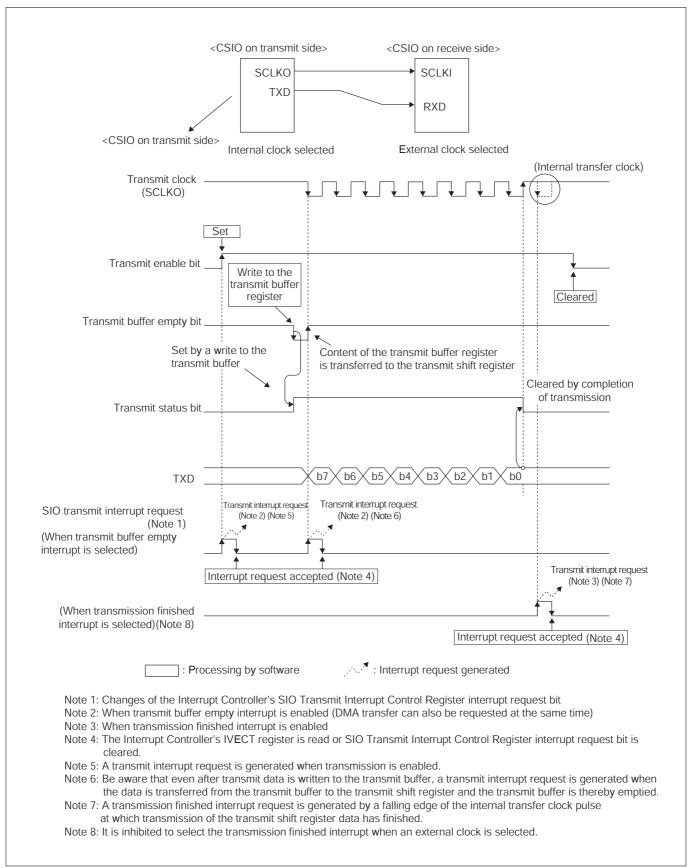



Figure 12.3.2 Transmit Operation during CSIO Mode (Hardware Processing)

12.3.8 Example of CSIO Transmit Operation

The following shows a typical transmit operation in CSIO mode.

Figure 12.3.3 Example of CSIO Transmission (Transmitted Only Once)

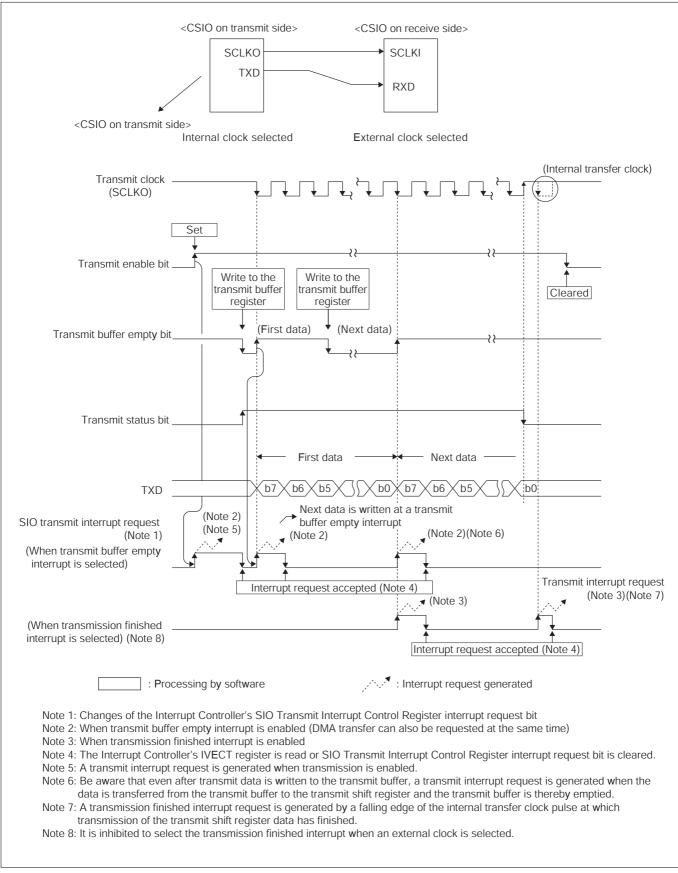


Figure 12.3.4 Example of CSIO Transmission (Transmitted Successively)

12.4 Receive Operation in CSIO Mode

12.4.1 Initialization for CSIO Reception

To receive data in CSIO mode, initialize the serial I/O following the procedure described below. Note, however, that because the receive shift clock is derived by an operation of the transmit circuit, transmit operation must always be executed even when the serial I/O is used for only receiving data.

(1) Setting SIO Special Mode Register

• Set the clock polarity in CSIO mode.

(2) Setting SIO Transmit/Receive Mode Register

- Set the register to CSIO mode.
- Select the internal or an external clock.

(3) Setting SIO Transmit Control Register

• Select the clock divider's divide-by ratio (when internal clock selected).

(4) Setting SIO Baud Rate Register

When the internal clock is selected, set a baud rate generator value. (See Section 12.3.1, "Setting the CSIO Baud Rate.")

(5) Setting SIO interrupt related registers

- Select the source of receive interrupt request (reception finished or error) (SIO Interrupt Request Source Select Register).
- Enable or disable receive interrupts (SIO Interrupt Request Mask Register).

(6) Setting SIO Receive Control Register

• Set the receive enable bit.

(7) Setting the Interrupt Controller (SIO Transmit Interrupt Control Register)

To use receive interrupts, set their priority levels.

(8) Setting DMAC

Set up the DMAC when the DMA transfer is requested to the internal DMAC on completion of the transmission. (See Chapter 9, "DMAC.")

(9) Selecting pin functions

Because the serial I/O related pins serve dual purposes, set the pin functions for use as SIO pins or input/ output ports. (See Chapter 8, "Input/Output Ports and Pin Functions.")

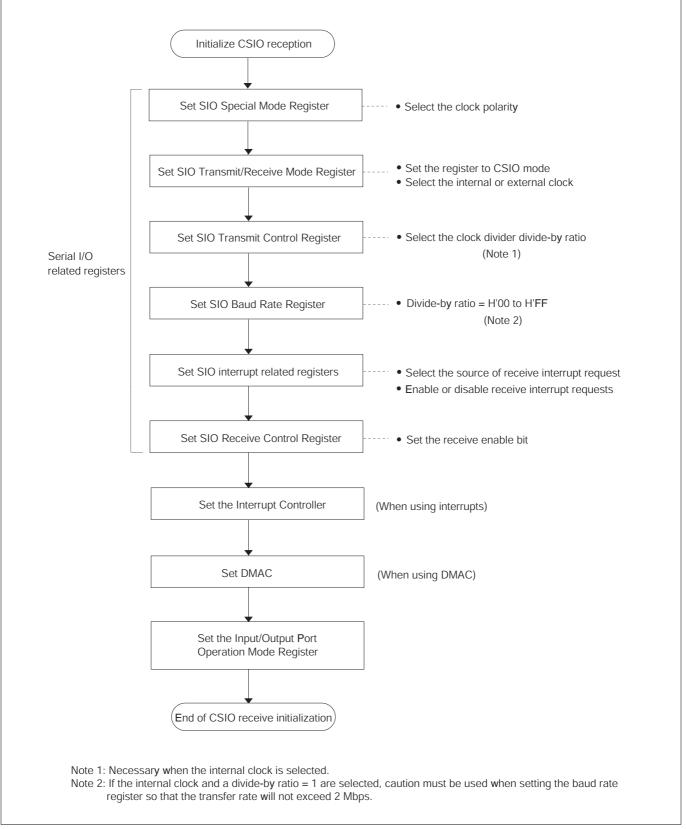


Figure 12.4.1 Procedure for Initializing CSIO Reception

12.4.2 Starting CSIO Reception

The serial I/O starts receive operation when all of the following conditions are met after being initialized.

(1) Receive conditions when CSIO mode internal clock is selected

- The SIO Receive Control Register receive enable bit is set to "1".
- Transmit conditions are met. (See Section 12.3.3, "Starting CSIO Transmission.")

(2) Receive conditions when CSIO mode external clock is selected

- The SIO Receive Control Register receive enable bit is set to "1".
- Transmit conditions are met. (See Section 12.3.3, "Starting CSIO Transmission.")

Note: • The receive status bit is set to "1" at the time dummy data is set in the lower byte of the SIO Transmit Buffer Register.

When the above conditions are met, the serial I/O starts receiving 8-bit serial data (LSB first) synchronously with the receive shift clock.

12.4.3 Processing at End of CSIO Reception

When data reception finishes, the following operation is automatically performed in hardware.

(1) When reception is completed normally

The reception finished (receive buffer full) bit is set to "1".

- Notes: An interrupt request is generated if the reception finished (receive buffer full) interrupt has been enabled.
 - A DMA transfer request is generated.

(2) When an error occurred during reception

If an error (only overrun error in CSIO mode) occurred during reception, the overrun error bit and receive error sum bit are set to "1".

- Notes: If the reception finished interrupt has been selected (by SIO Receive Interrupt Request Source Select Register), neither a reception finished interrupt request nor a DMA transfer request is generated.
 - If the receive error interrupt has been selected (by SIO Receive Interrupt Request Source Select Register), a receive error interrupt request is generated when interrupt requests are enabled. No DMA transfer requests are generated.

12.4.4 About Successive Reception

If the following conditions are met when data reception has finished, data may be received successively.

- The receive enable bit is set to "1".
- Transmit conditions are met.
- No overrun error has occurred.

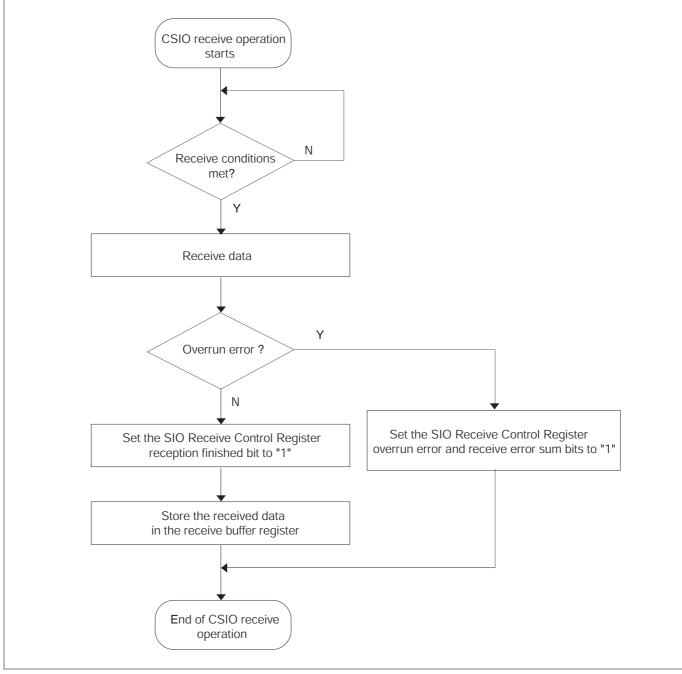


Figure 12.4.2 Receive Operation during CSIO Mode (Hardware Processing)

12.4.5 Flags Showing the Status of CSIO Receive Operation

There are following flags that indicate the status of receive operation during CSIO mode:

- SIO Receive Control Register receive status bit
- SIO Receive Control Register reception finished bit
- SIO Receive Control Register receive error sum bit
- SIO Receive Control Register overrun error bit

When reading the content of the SIO Receive Buffer Register after reception is completed, if the serial I/O finishes receiving the next data before the previous data is not read out, an overrun error occurs and the subsequent received data are not transferred to the receive buffer register.

Before receive operation can be restarted, the receive enable bit must temporarily be cleared to "0" to initialize the receiver control unit.

The above reception finished bit, if no receive errors occurred (Note 1), may be cleared by reading out the lower byte of the SIO Receive Buffer Register or clearing the REN (Receive Enable) bit.

However, if any receive error occurred, the reception finished bit can only be cleared by clearing the REN (Receive Enable) bit, and cannot be cleared by reading out the lower byte of the SIO Receive Buffer Register.

Note 1: Overrun errors are the only error that can be detected during reception in CSIO mode.

12.4.6 Example of CSIO Receive Operation

The following shows a typical receive operation in CSIO mode.

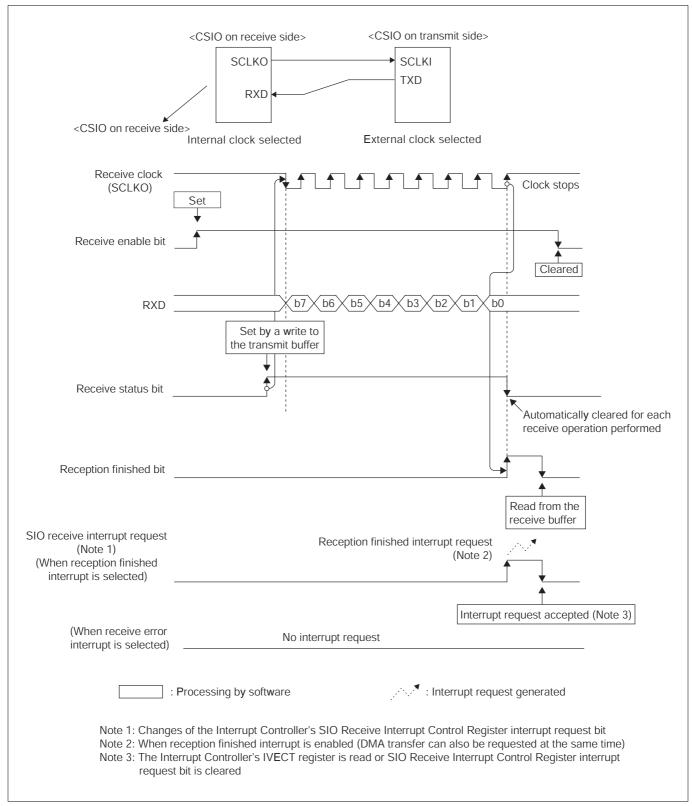


Figure 12.4.3 Example of CSIO Reception (When Received Normally)

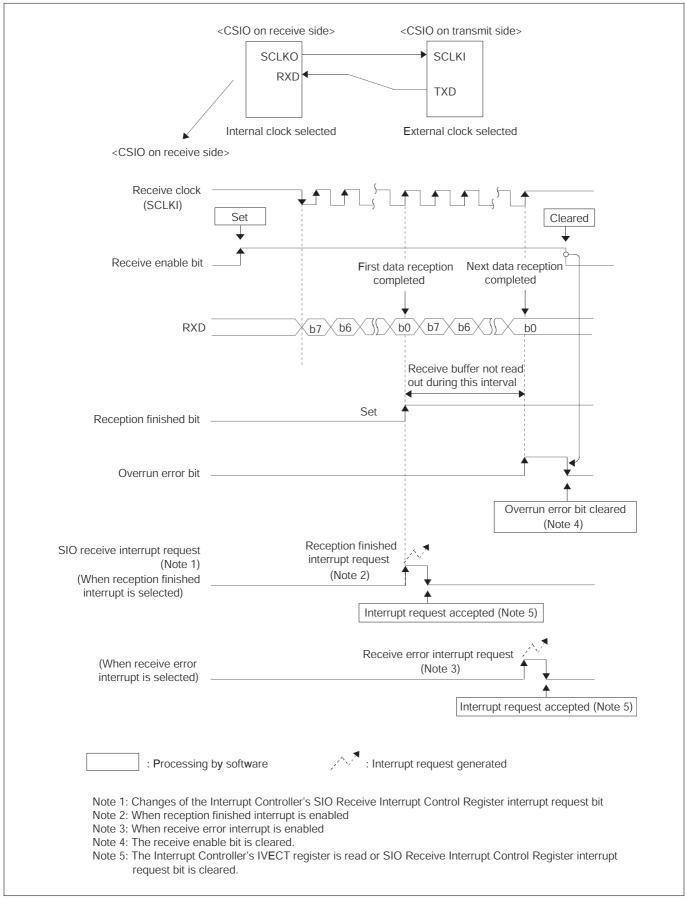


Figure 12.4.4 Example of CSIO Reception (When Overrun Error Occurred)

12.5 Precautions on Using CSIO Mode

• Settings of SIO Transmit/Receive Mode Register and SIO Baud Rate Register

The SIO Transmit/Receive Mode Register and SIO Baud Rate Register and the Transmit Control Register's BRG count source select bit must always be set when the serial I/O is not operating. If a transmit or receive operation is in progress, wait until the transmit and receive operations are finished and then clear the transmit and receive enable bits before making changes.

• Settings of BRG (Baud Rate Register)

If f(BCLK) is selected with the BRG clock source select bit, use caution when setting the BRG register so that the transfer rate will not exceed 2 Mbps.

About successive transmission

To transmit data successively, make sure the next transmit data is set in the SIO Transmit Buffer Register before the current data transmission finishes.

About reception

Because the receive shift clock in CSIO mode is derived by an operation of the transmit circuit, transmit operation must always be executed (by sending dummy data) even when the serial I/O is used for only receiving data. In this case, be aware that if the port function is set for the TXD pin (by setting the operation mode register to "1"), dummy data may actually be output from the pin.

About successive reception

To receive data successively, make sure that data (dummy data) is set in the SIO Transmit Buffer Register before a transmit operation on the transmitter side starts.

• Transmission/reception using DMA

To transmit/receive data in DMA request mode, enable the DMAC to accept transfer requests (by setting the DMA Mode Register) before serial communication starts.

About reception finished bit

If a receive error (overrun error) occurs, the reception finished bit can only be cleared by clearing the receive enable bit, and cannot be cleared by reading out the receive buffer register.

About overrun error

If all bits of the next received data have been set in the SIO Receive Shift Register before reading out the SIO Receive Buffer Register (i.e., an overrun error occurred), the received data is not stored in the receive buffer register, with the previous received data retained in it. Although a receive operation continues thereafter, the subsequent received data is not stored in the receive buffer register (receive status bit = "1"). Before normal receive operation can be restarted, the receive enable bit must be temporarily cleared to "0". And this is the only way that the overrun error flag can be cleared.

About DMA transfer request generation during SIO transmission

If the transmit buffer register becomes empty (transmit buffer empty flag = "1") while the transmit enable bit remains set to "1" (transmission enabled), an SIO transmit buffer empty DMA transfer request is generated.

About DMA transfer request generation during SIO reception

If the reception finished bit is set to "1" (receive buffer register full), a reception finished DMA transfer request is generated. Be aware, however, that if an overrun error occurred during reception, this DMA transfer request is not generated.

12.6 Transmit Operation in UART Mode

12.6.1 Setting the UART Baud Rate

The baud rate (data transfer rate) in UART mode is determined by a transmit/receive shift clock. During UART mode, the source for this transmit/receive shift clock is always the internal clock no matter how the internal/ external clock select bit (SIO Transmit/Receive Mode Register bit 11) is set.

(1) Calculating the UART mode baud rate

After being divided by a clock divider, f(BCLK) is supplied to the Baud Rate Generator (BRG), after which it is further divided by 16 to produce a transmit/receive shift clock.

The clock divider's divide-by value is selected from 1, 8, 32 or 256 by using the SIO Transmit Control Register CDIV (baud rate generator count source select) bits (bits 2–3).

The Baud Rate Generator divides the clock divider output by (baud rate register set value + 1) and further by 16, thus generating a transmit/receive shift clock.

When the internal clock is selected in UART mode, the baud rate is calculated using the equation below.

Baud rate = [bps] f(BCLK) Clock divider's divide-by value x (baud rate register set value + 1) x 16

Baud rate register set value = H'00 to H'FF Clock divider's divide-by value = 1, 8, 32 or 256

12.6.2 UART Transmit/Receive Data Formats

The transmit/receive data format during UART mode is determined by setting the SIO Transmit/Receive Mode Register. Shown below is the transmit/receive data format that can be used in UART mode.

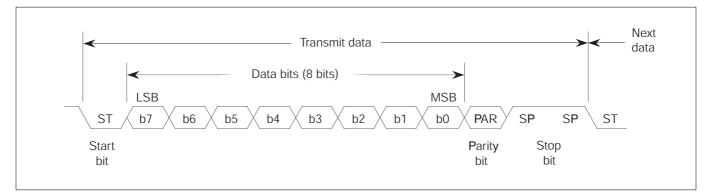
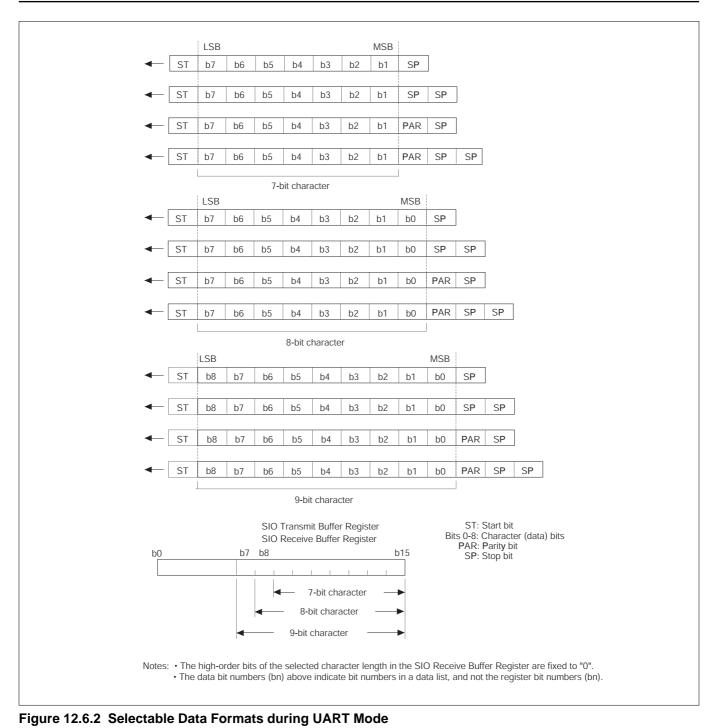



Figure 12.6.1 Example of a Transfer Data Format during UART Mode

Bit Name	Content
ST (start bit)	Indicates the beginning of data transmission. This is a low-level signal of a one bit
	period, which is added immediately preceding the transmit data.
Bits 0–8 (character bits)	Transmit/receive data transferred via serial I/O. In UART mode, 7, 8 or 9 bits of data
	can be transmitted/received.
PAR (parity bit)	Added to the transmit/receive character. When parity is enabled, parity is
	automatically set in such a way that the number of 1's in the character including the
	parity bit itself is always even or odd as selected by the even/odd parity select bit.
SP (stop bit)	Indicates the end of data transmission, which is added immediately following the
	character (or if parity is enabled, immediately following the parity bit). The stop bit
	can be chosen to be one bit or two bits long.

12.6.3 Initializing UART Transmission

To transmit data in UART mode, initialize the serial I/O following the procedure described below.

(1) Setting SIO Transmit/Receive Mode Register

- Set the register to UART mode.
- Set parity (when enabled, select odd/even).
- Set the stop bit length.
- Set the character length (Note 1).

Note 1: During UART mode, settings of the internal/external clock select bit have no effect (only the internal clock is useful).

(2) Setting SIO Transmit Control Register

• Select the clock divider's divide-by ratio.

(3) Setting SIO Baud Rate Register

Set a baud rate generator value. (See Section 12.6.1, "Setting the UART Baud Rate.")

(4) Setting SIO interrupt related registers

- Select the source of transmit interrupt request (transmit buffer empty or transmission finished) (SIO Interrupt Request Source Select Register).
- Enable or disable SIO transmit interrupt requests (SIO Interrupt Request Mask Register).

(5) Setting the Interrupt Controller (SIO Transmit Interrupt Control Register)

To use transmit interrupts, set their priority levels.

(6) Setting DMAC

To issue DMA transfer requests to the internal DMAC when the transmit buffer is empty, set up the DMAC. (See Chapter 9, "DMAC.")

(7) Selecting pin functions

Because the serial I/O related pins serve dual purposes, set the pin functions for use as SIO pins or input/ output ports. (See Chapter 8, "Input/Output Ports and Pin Functions.")

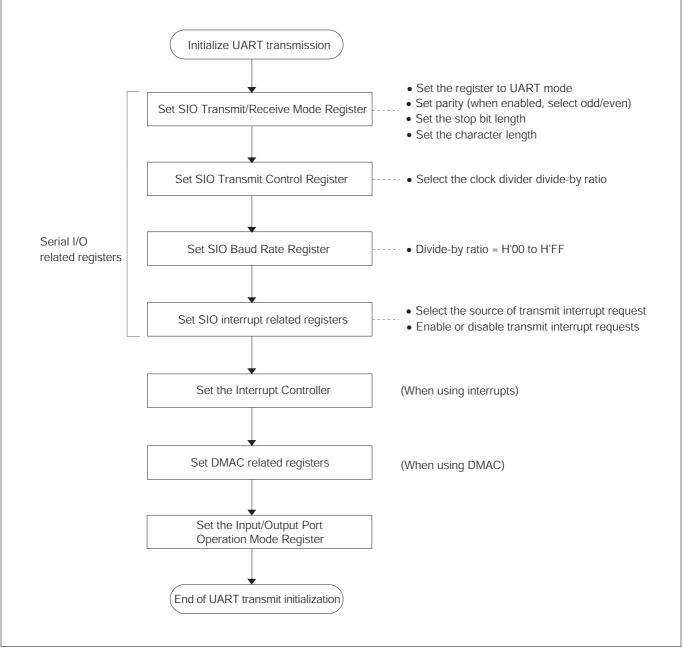


Figure 12.6.3 Procedure for Initializing UART Transmission

12.6.4 Starting UART Transmission

The serial I/O starts a transmit operation when all of the following conditions are met after being initialized.

- SIO Transmit Control Register TEN (Transmit Enable) bit is set to "1" (Note 1).
- Transmit data is written to the SIO Transmit Buffer Register (transmit buffer empty bit = "0").

Note 1: While the transmit enable bit is cleared to "0", writes to the transmit buffer are ignored. Always be sure to set the transmit enable bit to "1" before writing to the transmit buffer register.

When transmission starts, the serial I/O sends data following the procedure described below.

- Transfer the content of the SIO Transmit Buffer Register to the SIO Transmit Shift Register.
- Set the transmit buffer empty bit to "1" (Note 2).
- Start sending data synchronously with the shift clock beginning with the LSB.
 - Note 2: A transmit interrupt request can be generated for reasons that the transmit buffer is empty or transmission has finished. Also, a DMA transfer request can be generated when the transmit buffer is empty. No DMA transfer requests can be generated for reasons that transmission has finished.

12.6.5 Successive UART Transmission

Once data has been transferred from the transmit buffer register to the transmit shift register, the next data can be written to the transmit buffer register even when the serial I/O has not finished sending the previous data. If the next data is written to the transmit buffer before transmission has finished, the previous and the next data are transmitted successively.

Check the SIO Transmit Control Register's transmit buffer empty flag to see if data has been transferred from the transmit buffer register to the transmit shift register.

12.6.6 Processing at End of UART Transmission

When data transmission finishes, the following operation is automatically performed in hardware.

(1) When not transmitting successively

• The transmit status bit is cleared to "0".

(2) When transmitting successively

• When transmission of the last data in a consecutive data train finishes, the transmit status bit is cleared to "0".

12.6.7 Transmit Interrupts

(1) Transmit buffer empty interrupt

If the transmit buffer empty interrupt was selected using the SIO Interrupt Request Source Select Register, a transmit buffer empty interrupt request is generated when data has been transferred from the transmit buffer register to the transmit shift register. A transmit buffer empty interrupt request is also generated when the TEN (Transmit Enable) bit is set to "1" (reenabled after being disabled) while the transmit buffer empty interrupt has been enabled.

(2) Transmission finished interrupt

If the transmission finished interrupt was selected using the SIO Interrupt Request Source Select Register, a transmission finished interrupt request is generated when data in the transmit shift register has all been transmitted.

The SIO Interrupt Request Mask Register and the Interrupt Controller (ICU) must be set before these transmit interrupts can be used.

12.6.8 Transmit DMA Transfer Request

When data has been transferred from the transmit buffer register to the transmit shift register, a transmit DMA transfer request for the corresponding SIO channel is output to the DMAC. A transmit DMA transfer request is also output when the TEN (Transmit Enable) bit is set to "1" (disabled \rightarrow enabled). The DMAC must be set before DMA transfers can be used during data transmission.

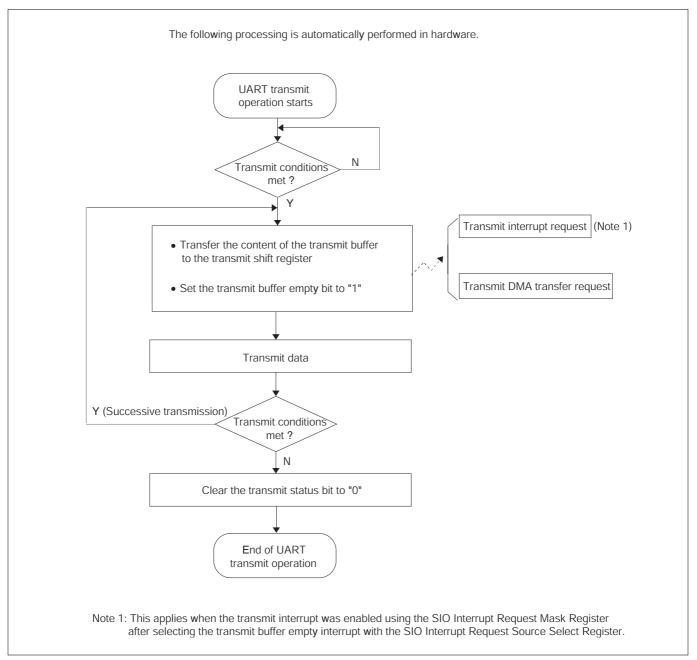


Figure 12.6.4 Transmit Operation during UART Mode (Hardware Processing)

12.6.9 Example of UART Transmit Operation

The following shows a typical transmit operation in UART mode.

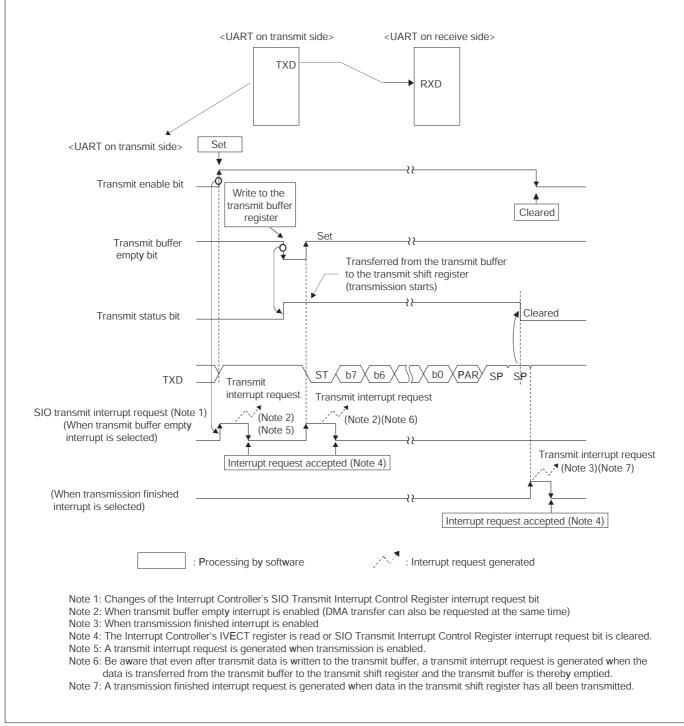


Figure 12.6.5 Example of UART Transmission (Transmitted Only Once)

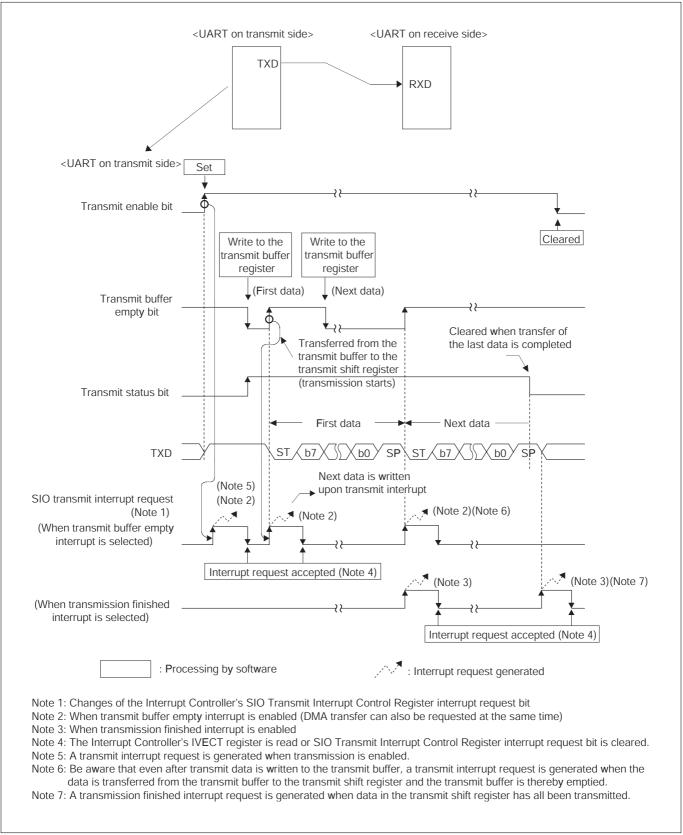


Figure 12.6.6 Example of UART Transmission (Transmitted Successively)

12.7 Receive Operation in UART Mode

12.7.1 Initialization for UART Reception

To receive data in UART mode, initialize the serial I/O following the procedure described below.

(1) Setting SIO Transmit/Receive Mode Register

- Set the register to UART mode.
- Set parity (when enabled, select odd/even).
- Set the stop bit length.
- Set the character length.
 - Note: During UART mode, settings of the internal/external clock select bit have no effect (only the internal clock is useful).

(2) Setting SIO Transmit Control Register

• Set the clock divider's divide-by ratio.

(3) Setting SIO Baud Rate Register

Set a baud rate generator value. (See Section 12.6.1, "Setting the UART Baud Rate.")

(4) Setting SIO interrupt related registers

- Select the source of receive interrupt request (reception finished or receive error) (Interrupt Request Source Select Register).
- Enable or disable receive interrupts (Interrupt Request Mask Register).

(5) Setting the Interrupt Controller

To use receive interrupt, set their priority levels.

(6) Setting DMAC

To issue DMA transfer requests to the internal DMAC when reception has finished, set up the DMAC. (See Chapter 9, "DMAC.")

(7) Selecting pin functions

Because the serial I/O related pins serve dual purposes, set the pin functions for use as SIO pins or input/ output ports. (See Chapter 8, "Input/Output Ports and Pin Functions.")

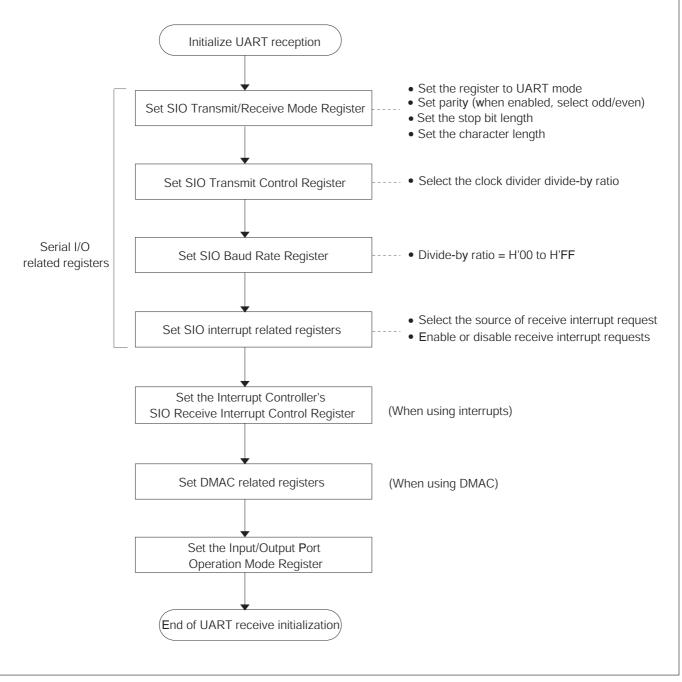


Figure 12.7.1 Procedure for Initializing UART Reception

12.7.2 Starting UART Reception

The serial I/O starts receive operation when all of the following conditions are met after being initialized.

- SIO Receive Control Register receive enable bit is set to "1"
- Start bit (falling edge signal) is applied to the RXD pin

When the above conditions are met, the serial I/O enters UART receive operation. However, the start bit is checked again at the first rise of the internal receive shift clock and if it is detected high for reasons of noise, etc., the serial I/O stops receive operation and waits for the start bit again.

12.7.3 Processing at End of UART Reception

When data reception finishes, the following operation is automatically performed in hardware.

(1) When reception is completed normally

The reception finished (receive buffer full) bit is set to "1".

- Notes: An interrupt request is generated if the reception finished (receive buffer full) interrupt has been enabled.
 - A DMA transfer request is generated.

(2) When a receive error occurred

If an error occurred, the corresponding error bit (OE, FE or PE) and the receive error sum bit are set to "1".

- Notes: If the reception finished interrupt has been selected (by SIO Receive Interrupt Request Source Select Register), a reception finished interrupt request is generated when interrupt requests are enabled. However, this does not apply when the detected error is an overrun error, in which case no reception finished interrupt requests are generated.
 - If the receive error interrupt has been selected (by SIO Receive Interrupt Request Source Select Register), a receive error interrupt request is generated when interrupt requests are enabled.
 - No DMA transfer requests are generated.

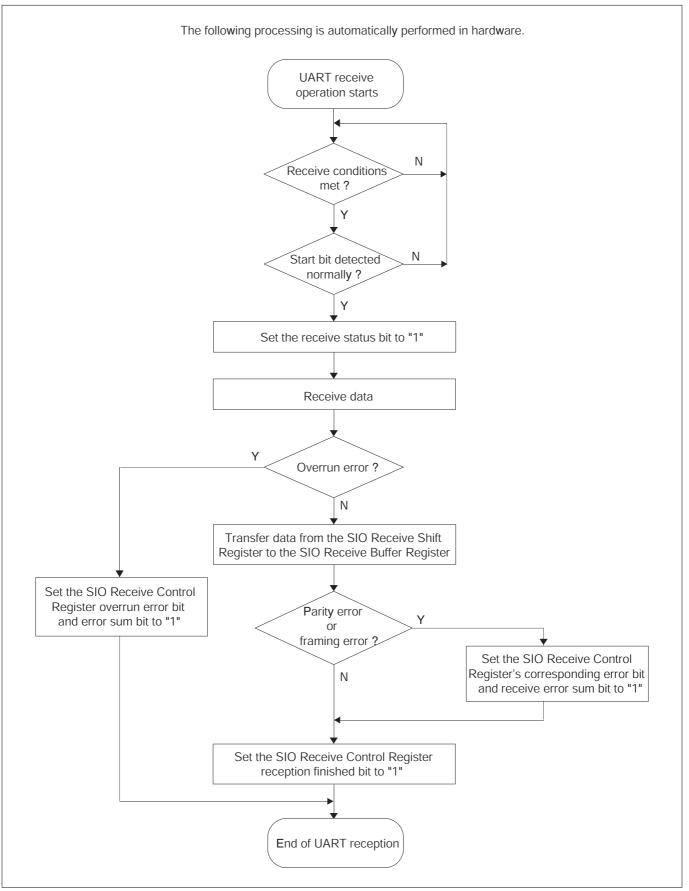


Figure 12.7.2 Receive Operation during UART Mode (Hardware Processing)

12.7.4 Example of UART Receive Operation

The following shows a typical receive operation in UART mode.

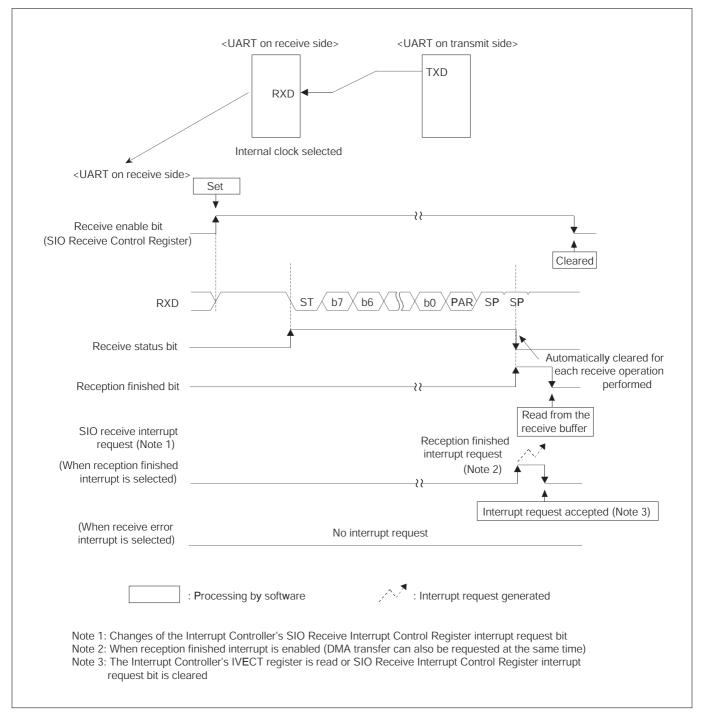


Figure 12.7.3 Example of UART Reception (When Received Normally)

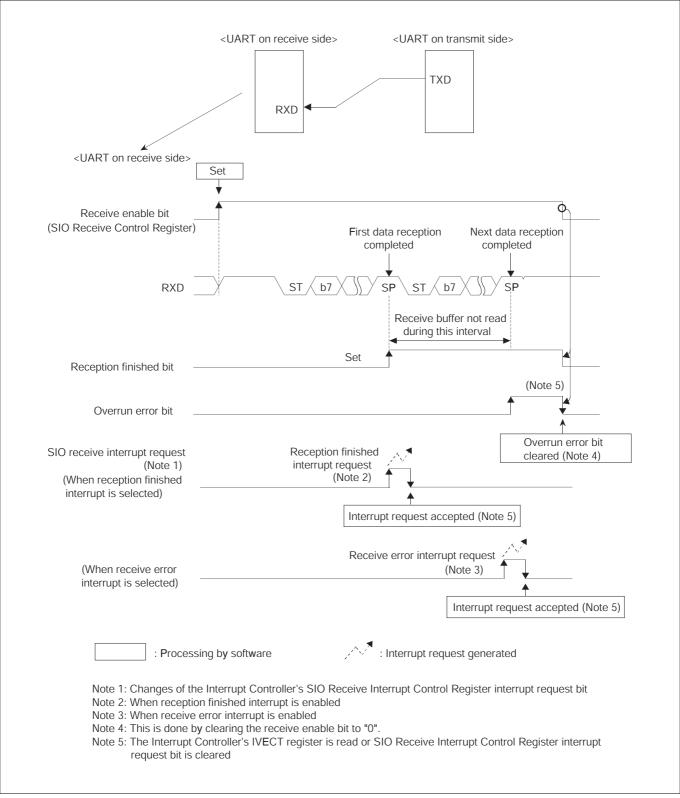


Figure 12.7.4 Example of UART Reception (When Overrun Error Occurred)

12.7.5 Start Bit Detection during UART Reception

The start bit is sampled synchronously with the internal BRG output. If the received signal remains low for 8 BRG output cycles after the falling edge of the start bit, the CPU recognizes that part of the received signal as the start bit and starts latching the received data another 8 cycles after that, beginning with the LSB (first bit). If some sampled part of the received signal is high before being determined to be the start bit, the CPU starts detecting the falling edge of the received signal again. Because the start bit is sampled synchronously with the internal BRG output, there is a delay equivalent to one BRG output cycle at maximum. The subsequent received data is latched into the internal circuit with that delayed timing.

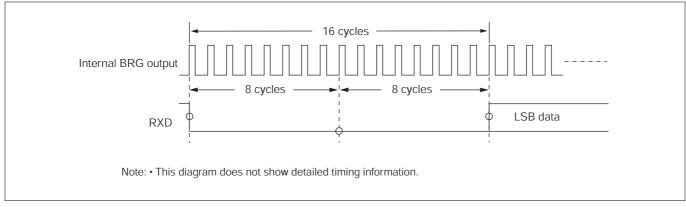


Figure 12.7.5 Start Bit Detection

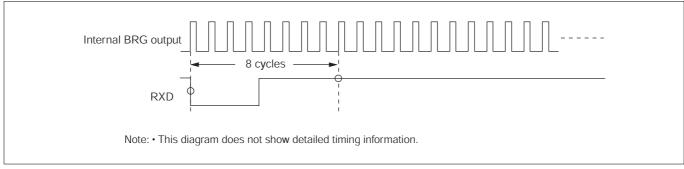


Figure 12.7.6 Example of an Invalid Start Bit (Not Received)

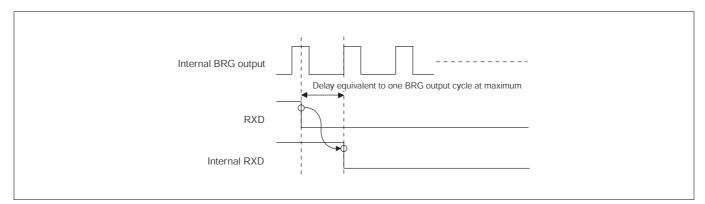


Figure 12.7.7 Delay in Receive Timing

12.8 Fixed Period Clock Output Function

When using SIO0 or SIO1 in UART mode, the relevant port (P84 or P87) can be switched for use as an SCLKO0 or SCLKO1 pin, respectively. That way, a BRG output clock divided by 2 can be output from the SCLKO pin.

Note: • This clock is output not just during data transfer.

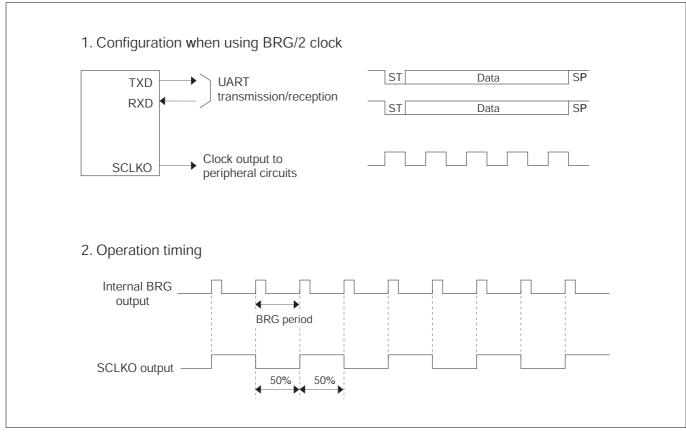


Figure 12.8.1 Example of Fixed Period Clock Output

12.9 Precautions on Using UART Mode

• Settings of SIO Transmit/Receive Mode Register and SIO Baud Rate Register

The SIO Transmit/Receive Mode Register and SIO Baud Rate Register and the Transmit Control Register's BRG count source select bit must always be set when the serial I/O is not operating. If a transmit or receive operation is in progress, wait until the transmit and receive operations are finished and then clear the transmit and receive enable bits before making changes.

• Settings of BRG (Baud Rate Register)

Writes to the SIO Baud Rate Register take effect in the next cycle after the BRG counter has finished counting. However, if the register is accessed for write while transmission and reception are disabled, the written value takes effect at the same time it is written.

• Transmission/reception using DMA

To transmit/receive data in DMA request mode, enable the DMAC to accept transfer requests (by setting the DMA Mode Register) before serial communication starts.

About overrun error

If all bits of the next received data have been set in the SIO Receive Shift Register before reading out the SIO Receive Buffer Register (i.e., an overrun error occurred), the received data is not stored in the receive buffer register, with the previous received data retained in it. Once an overrun error occurs, although a receive operation continues, the subsequent received data is not stored in the receive buffer register. Before normal receive operation can be restarted, the receive enable bit must be temporarily cleared. And this is the only way that the overrun error flag can be cleared.

• Flags showing the status of UART receive operation

There are following flags that indicate the status of receive operation during UART mode:

- SIO Receive Control Register receive status bit
- SIO Receive Control Register reception finished bit
- SIO Receive Control Register receive error sum bit
- SIO Receive Control Register overrun error bit
- SIO Receive Control Register parity error bit
- SIO Receive Control Register framing error bit

The manner in which the reception finished bit and various error flags are cleared differs depending on whether an overrun error occurred, as described below.

[When an overrun error did not occur]

Cleared by reading out the lower byte of the receive buffer register or by clearing the receive enable bit.

[When an overrun error occurred]

Cleared by only clearing the receive enable bit.

This page is blank for reasons of layout.

CHAPTER 13

CAN MODULE

- 13.1 Outline of the CAN Module
- 13.2 CAN Module Related Registers
- 13.3 CAN Protocol
- 13.4 Initializing the CAN Module
- 13.5 Transmitting Data Frames
- 13.6 Receiving Data Frames
- 13.7 Transmitting Remote Frames
- 13.8 Receiving Remote Frames
- 13.9 Precautions about CAN Module

13.1 Outline of the CAN Module

The 32176 contains two-channel Full CAN modules compliant with CAN (Controller Area Network) Specification V2.0 B Active. These CAN modules each have 16 message slots and three mask registers, effective use of which helps to reduce the data processing load of the CPU.

The CAN modules are outlined below.

Item	Description
Protocol	CAN Specification V2.0 B Active
Number of message slots	Total 16 slots (14 global slots, two local slots)
Polarity	0: Dominant
, , , , , , , , , , , , , , , , , , ,	1: Recessive
Acceptance filter	Global mask: 1
(Function to receive only a range	Local mask: 2
of IDs specified by receive ID filter)	
Baud rate	1 time quantum (Tq) = (BRP + 1) / CPU clock
	(BRP: Baud Rate Prescaler set value)
	Baud rate = $\frac{1}{\text{Tq period} \times \text{number of Tq's for one bit}}$ ····· Max 1 Mbps (Note 1)
	BRP: 1–255 (0: inhibited)
	Number of Tq's for one bit = Synchronization Segment + Propagation Segment
	+ Phase Segment 1 + Phase Segment 2
	Propagation Segment: 1–8Tq
	Phase Segment 1: 1–8Tq
	Phase Segment 2: 1–8Tq (IPT = 1)
Remote frame automatic	The slot that received a remote frame responds by automatically sending a data frame.
response function	
Timestamp function	This function is implemented using a 16-bit counter. The count period is derived from the
	CAN bus bit period by dividing it by 1, 2, 3 or 4.
BasicCAN mode	BasicCAN function is materialized using two local slots.
Transmit abort function	Transmit requests can be canceled.
Loopback function	The CAN module receives the data transmitted by the module itself.
Return bus off function	Error active mode is forcibly entered into after clearing the error counter.
Single shot function	Transmission is not retried even when it failed due to arbitration-lost or a transmit error.
DMA transfer function	DMA transfer request is generated when transmission failed or transmit/receive operation finished.
Self-diagnostic function	Communication module is diagnosed by communicating internally in the CAN module.

Table 13.1.1 Outline of the CAN Module

Note 1: The maximum allowable error of oscillation depends on the system configuration (e.g., bus length, clock error, CAN bus transceiver, sampling position and bit configuration).

Table 13.1.2	DMA	Transfer Requests	Generated b	v CAN
	D.110.1	114110101110940000	Contration of	,

DMA Transfer Request by CAN	DMAC Input Channel
CAN0: Slot 0 transmission failed or slot 15 transmit/receive operation finished	DMA6
CAN0: Slot 1 transmission failed or slot 14 transmit/receive operation finished	DMA7
CAN1: Slot 0 transmission failed or slot 15 transmit/receive operation finished	DMA8
CAN1: Slot 1 transmission failed or slot 14 transmit/receive operation finished	DMA9

Table 13.1.3	Interrupt Requests	Generated by CAN Modu	les
--------------	--------------------	-----------------------	-----

CAN Module Interrupt Request Source	ICU Interrupt Request Source
CAN0 transmission completed	CAN0 transmit/receive & error interrupt
CAN1 transmission completed	CAN1 transmit/receive & error interrupt
CAN0 reception completed	CAN0 transmit/receive & error interrupt
CAN1 reception completed	CAN1 transmit/receive & error interrupt
CAN0 bus error	CAN0 transmit/receive & error interrupt
CAN1 bus error	CAN1 transmit/receive & error interrupt
CAN0 error passive	CAN0 transmit/receive & error interrupt
CAN1 error passive	CAN1 transmit/receive & error interrupt
CAN0 bus off	CAN0 transmit/receive & error interrupt
CAN1 bus off	CAN1 transmit/receive & error interrupt
CAN0 single shot	CAN0 transmit/receive & error interrupt
CAN1 single shot	CAN1 transmit/receive & error interrupt

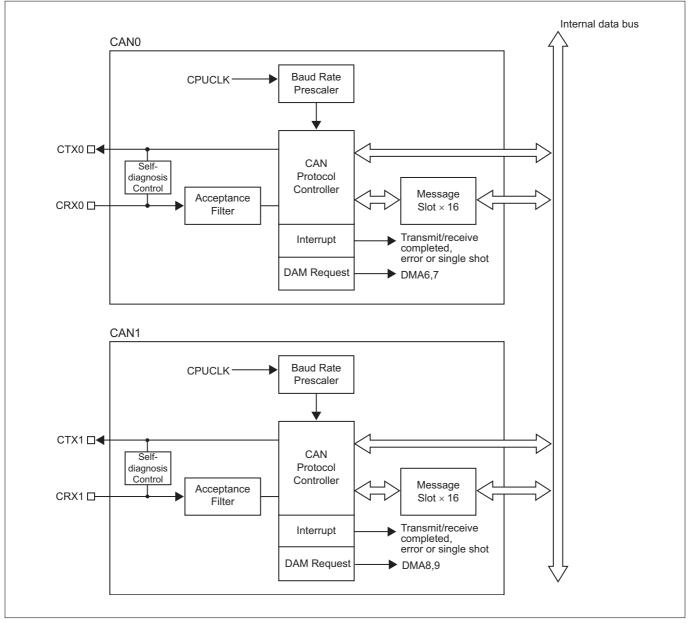


Figure 13.1.1 Block Diagram of the CAN Modules

13.2 CAN Module Related Registers

Shown below is a CAN module related register map.

CAN Module Related Register Map (1/11)

Address	+0 address b7	+1 address b15	See pages
H'0080 1000	CAN0 Control Register (CAN0CNT)		13-15
H'0080 1002		us Register	13-18
H'0080 1004	CAN0 Extende	CANO Extended ID Register (CANOEXTID)	
H'0080 1006	CAN0 Configu	ration Register CONF)	13-22
H'0080 1008		p Count Register	13-24
H'0080 100A	CAN0 Receive Error Count Register (CAN0REC)	CAN0 Transmit Error Count Register (CAN0TEC)	13-25
H'0080 100C	· · · · · · · · · · · · · · · · · · ·	equest Status Register	13-29
H'0080 100E	· · · · · · · · · · · · · · · · · · ·	ited area)	
H'0080 1010		equest Mask Register SLIMK)	13-30
H'0080 1012		bited area)	
H'0080 1014	CAN0 Error Interrupt Request Status Register (CAN0ERIST)	CAN0 Error Interrupt Request Mask Register (CAN0ERIMK)	13-31 13-32
H'0080 1016	CANO Baud Rate Prescaler (CAN0BRP)	CAN0 Cause of Error Register (CAN0EF)	13-26 13-45
H'0080 1018	CAN0 Mode Register (CAN0MOD)	CAN0 DMA Transfer Request Select Register (CAN0DMARQ)	13-47 13-48
	· · · · · · · · · · · · · · · · · · ·	ited area)	
H'0080 1028	CAN0 Global Mask Register Standard ID0 (C0GMSKS0)	CAN0 Global Mask Register Standard ID1 (C0GMSKS1)	13-49
H'0080 102A	CAN0 Global Mask Register Extended ID0 (C0GMSKE0)	CAN0 Global Mask Register Extended ID1 (C0GMSKE1)	13-50
H'0080 102C	CAN0 Global Mask Register Extended ID2 (C0GMSKE2)	(Use inhibited area)	13-51
H'0080 102E	(Use inhibited area)		
H'0080 1030	CAN0 Local Mask Register A Standard ID0 (C0LMSKAS0)	CAN0 Local Mask Register A Standard ID1 (C0LMSKAS1)	13-49
H'0080 1032	CAN0 Local Mask Register A Extended ID0 (C0LMSKAE0)	CAN0 Local Mask Register A Extended ID1 (C0LMSKAE1)	13-50
H'0080 1034	CAN0 Local Mask Register A Extended ID2 (C0LMSKAE2)	(Use inhibited area)	13-51
H'0080 1036	(Use inhib	ited area)	
H'0080 1038	CAN0 Local Mask Register B Standard ID0 (C0LMSKBS0)	CAN0 Local Mask Register B Standard ID1 (C0LMSKBS1)	13-49
H'0080 103A	CAN0 Local Mask Register B Extended ID0 (C0LMSKBE0)	CAN0 Local Mask Register B Extended ID1 (C0LMSKBE1)	13-50
H'0080 103C	CAN0 Local Mask Register B Extended ID2 (C0LMSKBE2)	(Use inhibited area)	13-51
H'0080 103E	(Use inhib	ited area)	
H'0080 1040		ode Control Register SMODE)	13-53
H'0080 1042	(Use inhibited area)		
H'0080 1044	CAN0 Single-Shot Interrup (CAN0	ot Request Status Register SSIST)	13-33
H'0080 1046		bited area)	

CAN Module Related Register Map (2/11)

Address	+0 address 0 b7	+1 address b15	See pages
H'0080 1048	CAN0 Single-Shot Interru (CAN0		13-34
	(Use inhib	/	
H'0080 1050	CAN0 Message Slot 0 Control Register (C0MSL0CNT)	CAN0 Message Slot 1 Control Register (C0MSL1CNT)	13-54
H'0080 1052	CAN0 Message Slot 2 Control Register (COMSL2CNT)	CAN0 Message Slot 3 Control Register (C0MSL3CNT)	13-54
H'0080 1054	CAN0 Message Slot 4 Control Register (C0MSL4CNT)	CAN0 Message Slot 5 Control Register (C0MSL5CNT)	13-54
H'0080 1056	CAN0 Message Slot 6 Control Register (C0MSL6CNT)	CAN0 Message Slot 7 Control Register (C0MSL7CNT)	13-54
H'0080 1058	CAN0 Message Slot 8 Control Register (C0MSL8CNT)	CAN0 Message Slot 9 Control Register (C0MSL9CNT)	13-54
H'0080 105A	CAN0 Message Slot 10 Control Register (C0MSL10CNT)	CAN0 Message Slot 11 Control Register (C0MSL11CNT)	13-54
H'0080 105C	CAN0 Message Slot 12 Control Register (C0MSL12CNT)	CAN0 Message Slot 13 Control Register (C0MSL13CNT)	13-54
H'0080 105E	CAN0 Message Slot 14 Control Register (C0MSL14CNT)	CAN0 Message Slot 15 Control Register (C0MSL15CNT)	13-54
	(Use inhib	ited area)	
H'0080 1100	CAN0 Message Slot 0 Standard ID0	CAN0 Message Slot 0 Standard ID1	13-58
	(C0MSL0SID0)	(C0MSL0SID1)	13-59
H'0080 1102	CAN0 Message Slot 0 Extended ID0	CAN0 Message Slot 0 Extended ID1	13-60
	(C0MSL0EID0)	(COMSLOEID1)	13-61
H'0080 1104	CAN0 Message Slot 0 Extended ID2	CAN0 Message Slot 0 Data Length Register	13-62
	(C0MSL0EID2)	(COMSLDDLC)	13-63
H'0080 1106	CANO Message Slot 0 Data 0	CAN0 Message Slot 0 Data 1	13-64
	(COMSL0DT0)	(C0MSL0DT1)	13-65
H'0080 1108	CANO Message Slot 0 Data 2	CAN0 Message Slot 0 Data 3	13-66
	(COMSL0DT2)	(C0MSL0DT3)	13-67
H'0080 110A	CANO Message Slot 0 Data 4	CAN0 Message Slot 0 Data 5	13-68
	(COMSL0DT4)	(C0MSL0DT5)	13-69
H'0080 110C	CANO Message Slot 0 Data 6	CAN0 Message Slot 0 Data 7	13-70
	(COMSL0DT6)	(COMSL0DT7)	13-71
H'0080 110E	CANO Message S (COMSI	Slot 0 Timestamp	13-72
H'0080 1110	CAN0 Message Slot 1 Standard ID0	CAN0 Message Slot 1 Standard ID1	13-58
	(C0MSL1SID0)	(C0MSL1SID1)	13-59
H'0080 1112	CAN0 Message Slot 1 Extended ID0	CAN0 Message Slot 1 Extended ID1	13-60
	(COMSL1EID0)	(C0MSL1EID1)	13-61
H'0080 1114	CAN0 Message Slot 1 Extended ID2	CAN0 Message Slot 1 Data Length Register	13-62
	(C0MSL1EID2)	(C0MSL1DLC)	13-63
H'0080 1116	CANO Message Slot 1 Data 0	CAN0 Message Slot 1 Data 1	13-64
	(COMŠL1DT0)	(C0MSL1DT1)	13-65
H'0080 1118	CAN0 Message Slot 1 Data 2	CAN0 Message Slot 1 Data 3	13-66
	(C0MSL1DT2)	(C0MSL1DT3)	13-67
H'0080 111A	CAN0 Message Slot 1 Data 4	CAN0 Message Slot 1 Data 5	13-68
	(C0MSL1DT4)	(C0MSL1DT5)	13-69
H'0080 111C	CAN0 Message Slot 1 Data 6	CAN0 Message Slot 1 Data 7	13-70
	(C0MSL1DT6)	(COMSL1DT7)	13-71
H'0080 111E	CAN0 Message S (C0MSI	Slot 1 Timestamp	13-72
H'0080 1120	CAN0 Message Slot 2 Standard ID0	CAN0 Message Slot 2 Standard ID1	13-58
	(C0MSL2SID0)	(C0MSL2SID1)	13-59
H'0080 1122	CANO Message Slot 2 Extended ID0	CANO Message Slot 2 Extended ID1	13-60
	(COMSL2EID0)	(COMSL2EID1)	13-61
H'0080 1124	CANO Message Slot 2 Extended ID2	CANO Message Slot 2 Data Length Register	13-62
	(COMSL2EID2)	(COMSL2DLC)	13-63
H'0080 1126	CANO Message Slot 2 Data 0	CANO Message Slot 2 Data 1	13-64
	(COMSL2DT0)	(COMSL2DT1)	13-65
H'0080 1128	CANO Message Slot 2 Data 2	CANO Message Slot 2 Data 3	13-66
	(COMSL2DT2)	(COMSL2DT3)	13-67
H'0080 112A	CANO Message Slot 2 Data 4	CANO Message Slot 2 Data 5	13-68
	(COMSL2DT4)	(COMSL2DT5)	13-69
H'0080 112C	CANO Message Slot 2 Data 6 (COMSL2DT6)	CANO Message Slot 2 Data 7 (COMSL2DT7)	13-00 13-70 13-71
H'0080 112E	CANO Message S (COMSL2D10)	Slot 2 Timestamp	13-72

CAN Module Related Register Map (3/11)

Address	+0 address	+1 address b8 b15	See pages
H'0080 1130	CAN0 Message Slot 3 Standard ID0	CAN0 Message Slot 3 Standard ID1	13-58
	(C0MSL3SID0)	(C0MSL3SID1)	13-59
H'0080 1132	CAN0 Message Slot 3 Extended ID0	CAN0 Message Slot 3 Extended ID1	13-60
	(C0MSL3EID0)	(C0MSL3EID1)	13-61
H'0080 1134	CAN0 Message Slot 3 Extended ID2	CAN0 Message Slot 3 Data Length Register	13-62
	(C0MSL3EID2)	(C0MSL3DLC)	13-63
H'0080 1136	CAN0 Message Slot 3 Data 0	CAN0 Message Slot 3 Data 1	13-64
	(C0MSL3DT0)	(C0MSL3DT1)	13-65
H'0080 1138	CAN0 Message Slot 3 Data 2	CAN0 Message Slot 3 Data 3	13-66
	(C0MSL3DT2)	(C0MSL3DT3)	13-67
H'0080 113A	CAN0 Message Slot 3 Data 4	CAN0 Message Slot 3 Data 5	13-68
	(C0MSL3DT4)	(C0MSL3DT5)	13-69
H'0080 113C	CAN0 Message Slot 3 Data 6	CAN0 Message Slot 3 Data 7	13-70
	(C0MSL3DT6)	(C0MSL3DT7)	13-71
H'0080 113E		Slot 3 Timestamp L3TSP)	13-72
H'0080 1140	CAN0 Message Slot 4 Standard ID0	CAN0 Message Slot 4 Standard ID1	13-58
	(C0MSL4SID0)	(C0MSL4SID1)	13-59
H'0080 1142	CAN0 Message Slot 4 Extended ID0	CAN0 Message Slot 4 Extended ID1	13-60
	(C0MSL4EID0)	(COMSL4EID1)	13-61
H'0080 1144	CAN0 Message Slot 4 Extended ID2	CAN0 Message Slot 4 Data Length Register	13-62
	(C0MSL4EID2)	(C0MSL4DLC)	13-63
H'0080 1146	CAN0 Message Slot 4 Data 0	CAN0 Message Slot 4 Data 1	13-64
	(C0MSL4DT0)	(C0MSL4DT1)	13-65
H'0080 1148	CAN0 Message Slot 4 Data 2	CAN0 Message Slot 4 Data 3	13-66
	(C0MSL4DT2)	(C0MSL4DT3)	13-67
H'0080 114A	CAN0 Message Slot 4 Data 4	CAN0 Message Slot 4 Data 5	13-68
	(C0MSL4DT4)	(C0MSL4DT5)	13-69
H'0080 114C	CAN0 Message Slot 4 Data 6	CAN0 Message Slot 4 Data 7	13-70
	(C0MSL4DT6)	(C0MSL4DT7)	13-71
H'0080 114E		Slot 4 Timestamp L4TSP)	13-72
H'0080 1150	CAN0 Message Slot 5 Standard ID0	CAN0 Message Slot 5 Standard ID1	13-58
	(C0MSL5SID0)	(C0MSL5SID1)	13-59
H'0080 1152	CAN0 Message Slot 5 Extended ID0	CAN0 Message Slot 5 Extended ID1	13-60
	(C0MSL5EID0)	(C0MSL5EID1)	13-61
H'0080 1154	CAN0 Message Slot 5 Extended ID2	CAN0 Message Slot 5 Data Length Register	13-62
	(C0MSL5EID2)	(C0MSL5DLC)	13-63
H'0080 1156	CAN0 Message Slot 5 Data 0	CAN0 Message Slot 5 Data 1	13-64
	(C0MSL5DT0)	(C0MSL5DT1)	13-65
H'0080 1158	CAN0 Message Slot 5 Data 2	CAN0 Message Slot 5 Data 3	13-66
	(C0MSL5DT2)	(C0MSL5DT3)	13-67
H'0080 115A	CAN0 Message Slot 5 Data 4	CAN0 Message Slot 5 Data 5	13-68
	(C0MSL5DT4)	(C0MSL5DT5)	13-69
H'0080 115C	CAN0 Message Slot 5 Data 6	CAN0 Message Slot 5 Data 7	13-70
	(C0MSL5DT6)	(C0MSL5DT7)	13-71
H'0080 115E	CAN0 Message (C0MS	Slot 5 Timestamp L5TSP)	13-72
H'0080 1160	CAN0 Message Slot 6 Standard ID0	CAN0 Message Slot 6 Standard ID1	13-58
	(C0MSL6SID0)	(C0MSL6SID1)	13-59
H'0080 1162	CAN0 Message Slot 6 Extended ID0	CAN0 Message Slot 6 Extended ID1	13-60
	(C0MSL6EID0)	(C0MSL6EID1)	13-61
H'0080 1164	CAN0 Message Slot 6 Extended ID2	CAN0 Message Slot 6 Data Length Register	13-62
	(C0MSL6EID2)	(C0MSL6DLC)	13-63
H'0080 1166	CAN0 Message Slot 6 Data 0	CAN0 Message Slot 6 Data 1	13-64
	(C0MSL6DT0)	(C0MSL6DT1)	13-65
H'0080 1168	CAN0 Message Slot 6 Data 2	CAN0 Message Slot 6 Data 3	13-66
	(C0MSL6DT2)	(COMSL6DT3)	13-67
H'0080 116A	CAN0 Message Slot 6 Data 4	CAN0 Message Slot 6 Data 5	13-68
	(C0MSL6DT4)	(C0MSL6DT5)	13-69
H'0080 116C	CAN0 Message Slot 6 Data 6	CAN0 Message Slot 6 Data 7	13-70
	(C0MSL6DT6)	(C0MSL6DT7)	13-71
H'0080 116E	CANO Message (COMS	Slot 6 Timestamp L6TSP)	13-72

CAN Module Related Register Map (4/11)

H0080 1170 CAN0 Message Sitor 7 Standard ID1 13-58 H0080 1172 CCMSL7SID0) CAN0 Message Sitor 7 Extended ID1 13-59 H0080 1172 CAN0 Message Sitor 7 Extended ID1 13-61 H0080 1174 CAN0 Message Sitor 7 Extended ID1 13-61 H0080 1176 CAN0 Message Sitor 7 Data 0 CAN0 Message Sitor 7 Data 1 13-63 H0080 1176 CAN0 Message Sitor 7 Data 2 CAN0 Message Sitor 7 Data 3 13-66 H0080 1176 CAN0 Message Sitor 7 Data 4 CAN0 Message Sitor 7 Data 3 13-66 H0080 1176 CAN0 Message Sitor 7 Data 4 CAN0 Message Sitor 7 Data 5 13-68 H0080 1177 CAN0 Message Sitor 7 Data 4 CAN0 Message Sitor 7 Data 5 13-68 H0080 1177 CAN0 Message Sitor 7 Data 4 CAN0 Message Sitor 7 Data 7 13-70 H0080 1182 CAN0 Message Sitor 7 Data 4 CAN0 Message Sitor 7 Data 7 13-72 H0080 1182 CAN0 Message Sitor 8 Data 6 CAN0 Message Sitor 1 Data 7 13-72 H0080 1182 CAN0 Message Sitor 8 Data 2 CAN0 Message Sitor 8 Data 1 13-68 H0080 1184 CAN0 Message Sitor 8 Data 2 <	Address	+0 address	+1 address b15	See pages
H0080 1172 CAND Message Slot 7 Extended ID0 CAND Message Slot 7 Extended ID1 13-60 (CMMSL7EID1) H0080 1174 CAND Message Slot 7 Extended ID2 CAND Message Slot 7 Data Length Register (CMMSL7DLC) 13-62 (CMMSL7DLC) H0080 1176 CAND Message Slot 7 Data 0 CAND Message Slot 7 Data 1 13-64 (CMMSL7DLC) H0080 1176 CAND Message Slot 7 Data 2 CAND Message Slot 7 Data 3 13-66 (CMMSL7DT3) H0080 1177 CAND Message Slot 7 Data 4 CAND Message Slot 7 Data 5 13-66 (CMMSL7DT3) H0080 1176 CAND Message Slot 7 Data 4 CAND Message Slot 7 Data 7 13-70 (CMMSL7DT3) H0080 1176 CAND Message Slot 7 Data 6 CAND Message Slot 7 Data 7 13-77 (SMSL7DT3) H0080 1180 CAND Message Slot 8 Standard ID0 (CMMSL8EID0) CAND Message Slot 8 Standard ID1 (CMMSL8EID0) CAND Message Slot 8 Standard ID1 (CMMSL8EID0) 13-68 (CMMSL8EID1) H0080 1186 CAND Message Slot 8 Extended ID 2 CAND Message Slot 8 Data Length Register (SMSL8EID1) 13-64 (CMMSL8EID1) H0080 1186 CAND Message Slot 8 Extended ID 2 CAND Message Slot 8 Data Length Register (SMSL8EID1) 13-64 (CMMSL8EID1) H0080 1186 CAND Message Slot 8 Data 1 Extended ID 2 CAND Message Slot 8 Dat	H'0080 1170	CAN0 Message Slot 7 Standard ID0	CAN0 Message Slot 7 Standard ID1	
Inclusion Inclusion Inclusion Inclusion Houge 1176 CANO Message Stor 7 Data 0 CANO Message Stor 7 Data 3 13-64 HOuge 1178 CANO Message Stor 7 Data 2 CANO Message Stor 7 Data 3 13-66 HOuge 117A CANO Message Stor 7 Data 4 CANO Message Stor 7 Data 5 13-86 HOuge 117A CANO Message Stor 7 Data 4 CANO Message Stor 7 Data 5 13-86 HOuge 117C CANO Message Stor 7 Data 6 CANO Message Stor 7 Data 7 13-70 HOuge 117P CANO Message Stor 7 Data 6 CANO Message Stor 7 Data 7 13-72 HOuge 117P CANO Message Stor 8 Standard ID0 CANO Message Stor 8 Standard ID1 13-56 HOuge 1180 CANO Message Stor 8 Extended ID0 CANO Message Stor 8 Data 1 13-64 HOuge 1184 CANO Message Stor 8 Data 1 13-64 13-65 HOuge 1184 CANO Message Stor 8 Data 1 13-64 13-65 HOuge 1184 CANO Message Stor 8 Data 1 13-64 13-65 HOuge 1186 CANO Message Stor 8 Data 2 CANO Message Stor 8 Data 1 13-64 HOuge 1186 CANO Message Stor	H'0080 1172	CAN0 Message Slot 7 Extended ID0	CAN0 Message Slot 7 Extended ID1	
Image: constraint of the standard	H'0080 1174			
Image: constraint of the standard DD CAND Message Stor 7 Data 4 COMSLIDT3 13-68 H0080 117C CAND Message Stor 7 Data 6 CAND Message Stor 7 Data 6 CAND Message Stor 7 Data 7 13-70 H0080 117C CAND Message Stor 7 Data 6 CAND Message Stor 7 Data 6 COMSLIDT7 13-71 H0080 117C CAND Message Stor 7 Data 6 CAND Message Stor 7 Data 7 13-72 H0080 1180 CAND Message Stor 8 Extended ID0 CAND Message Stor 8 Extended ID1 13-58 H0080 1182 CAND Message Stor 8 Extended ID2 CAND Message Stor 8 Extended ID2 CAND Message Stor 7 Data 7 13-60 H0080 1186 CAND Message Stor 8 Extended ID2 CAND Message Stor 7 Data 7 13-62 H0080 1186 CAND Message Stor 8 Data 1 13-66 12-66 12-66 H0080 1188 CAND Message Stor 8 Data 2 CAND Message Stor 7 Data 3 13-67 H0080 1188 CAND Message Stor 8 Data 4 CAND Message Stor 7 Data 3 13-67 H0080 1188 CAND Message Stor 8 Data 4 CAND Message Stor 8 Data 3 13-67 H0080 1180 CAND Message Stor 8 Data 4 CAND Message Stor 8 Data 7 13-72	H'0080 1176			
(COMSL7DT4) (COMSL7DT5) 13-69 H0080117C CAN0 Message Slot 7 Data 6 CAN0 Message Slot 7 Data 7 (13-70) H0080117E CAN0 Message Slot 8 Standard ID1 (COMSL7TSP) 13-72 H0080117E CAN0 Message Slot 8 Standard ID1 (COMSL7TSP) 13-72 H00801180 CAN0 Message Slot 8 Extended ID0 CAN0 Message Slot 8 Extended ID1 13-60 H00801182 CAN0 Message Slot 8 Extended ID2 CAN0 Message Slot 8 Data Length Register 13-62 H00801184 CAN0 Message Slot 8 Data 0 CAN0 Message Slot 8 Data 1 13-64 H00801186 CAN0 Message Slot 8 Data 2 CAN0 Message Slot 8 Data 3 13-66 H00801186 CAN0 Message Slot 8 Data 2 CAN0 Message Slot 8 Data 3 13-66 H00801186 CAN0 Message Slot 8 Data 4 CAN0 Message Slot 8 Data 5 13-68 H00801186 CAN0 Message Slot 8 Data 6 CAN0 Message Slot 8 Data 6 CAN0 Message Slot 9 Slot 8 Data 7 13-70 H00801186 CAN0 Message Slot 8 Data 6 CAN0 Message Slot 9 Data 7 13-71 13-72 H00801186 CAN0 Message Slot 9 Data 6 CAN0 Message Slot 9 Data 7	H'0080 1178			
(COMŠL7DT6) (COMŠL7DT7) 13-71 H0080117E (COMŠL7TSP) 13-72 H00801180 CAN0 Message Siot 7 Timestamp 13-72 H00801182 CAN0 Message Siot 8 Standard ID0 CAN0 Message Siot 8 Standard ID1 13-88 H00801182 CAN0 Message Siot 8 Extended ID0 CAN0 Message Siot 8 Data Length Register 13-89 H00801182 CAN0 Message Siot 8 Extended ID2 CAN0 Message Siot 8 Data 1 13-64 H00801186 CAN0 Message Siot 8 Data 2 CAN0 Message Siot 8 Data 3 13-64 H00801186 CAN0 Message Siot 8 Data 2 CAN0 Message Siot 8 Data 3 13-66 H00801188 CAN0 Message Siot 8 Data 4 CAN0 Message Siot 8 Data 5 13-88 H00801186 CAN0 Message Siot 8 Data 6 CAN0 Message Siot 8 Data 7 13-72 H00801186 CAN0 Message Siot 8 Data 6 CAN0 Message Siot 8 Data 7 13-72 H00801190 CAN0 Message Siot 9 Standard ID1 13-58 13-72 H00801191 CAN0 Message Siot 9 Standard ID1 13-72 13-72 H00801190 CAN0 Message Siot 9 Standard ID1 13-72 13-72	H'0080 117A		CAN0 Message Slot 7 Data 5 (C0MSL7DT5)	
Incomposition Incomposition Incomposition Incomposition H0080 1180 CAND Message Slot & Standard ID0 (COMSL8SID) CAND Message Slot & Standard ID1 (COMSL8EID) 13-59 H0080 1182 CAND Message Slot & Extended ID2 (COMSL8EID) CAND Message Slot & Data Length Register (COMSL8EID) 13-61 H0080 1184 CAND Message Slot & Extended ID2 (COMSL8DTC) CAND Message Slot & Data 1 (COMSL8DTC) 13-63 H0080 1186 CAND Message Slot & Data 0 (COMSL8DT2) CAND Message Slot & Data 3 (COMSL8DT2) 13-65 H0080 1188 CAND Message Slot B Data 4 (COMSL8DT2) CAND Message Slot B Data 5 (COMSL8DT4) 13-66 H0080 1180 CAND Message Slot B Data 4 (COMSL8DT4) CAND Message Slot B Data 5 (COMSL8DT7) 13-70 H0080 1180 CAND Message Slot B Data 4 (COMSL8DT6) CAND Message Slot B Data 7 (COMSL8DT6) 13-72 H0080 1182 CAND Message Slot 9 Standard ID0 (COMSL9SID0) CAND Message Slot 9 Standard ID1 (COMSL9SID1) 13-58 H0080 1192 CAND Message Slot 9 Standard ID0 (COMSL9SID0) CAND Message Slot 9 Standard ID1 (COMSL9SID1) 13-66 H0080 1192 CAND Message Slot 9 Standard ID0 (COMSL9SID1) CAND Message Slot 9 Standard ID1 (COMSL9SID1) 13-61	H'0080 117C			
H0080 1180 CAND Message Stot 8 Standard ID1 13-58 (CMMSL8SID0) H0080 1182 CAND Message Stot 8 Extended ID0 (CMMSL8EID0) CAND Message Stot 8 Extended ID1 (CMMSL8EID0) 13-61 (CMMSL8EID0) H0080 1184 CAND Message Stot 8 Extended ID2 (CMMSL8EID0) CAND Message Stot 8 Extended ID1 (CMMSL8EID0) 13-61 (CMMSL8EID0) H0080 1186 CAND Message Stot 8 Extended ID2 (CMMSL8DID) CAND Message Stot 8 Data 1 13-62 (CMMSL8DID) H0080 1186 CAND Message Stot 8 Data 2 (CMMSL8DID) CAND Message Stot 8 Data 3 (CMMSL8DIT) 13-65 (CMMSL8DIT) H0080 1186 CAND Message Stot 8 Data 4 (COMSL8DIT) CAND Message Stot 8 Data 5 (CMMSL8DIT) 13-67 (CMMSL8DIT) H0080 1186 CAND Message Stot 8 Data 6 (CMMSL8DIT) CAND Message Stot 8 Data 7 (CMMSL8DIT) 13-76 (CMMSL8DIT) H0080 1186 CAND Message Stot 9 Standard ID0 (CMMSL8DIT) CAND Message Stot 9 Standard ID1 (CMMSL8DIT) 13-77 (CMMSL8DIT) H0080 1190 CAND Message Stot 9 Standard ID0 (CMMSL8DID) CAND Message Stot 9 Standard ID1 (CMMSL9SIDD) 13-68 (CMMSL9SIDD) H0080 1192 CAND Message Stot 9 Standard ID1 (CMMSL9SIDD) 13-64 (CMMSL9SIDD) 13-64 (CMMSL9SIDD) 13-64 (CMMSL9SIDD) H0080 1194 CAND Message Stot 9 Standard ID0 (CMMSL9SI	H'0080 117E	CAN0 Message (C0MS	Slot 7 Timestamp L7TSP)	13-72
(CÓMSLAEIDO) (CÓMSLAEID1) 13-61 H'0080 1184 CAN0 Message Slot 8 Dita tended ID2 CAN0 Message Slot 8 Data Length Register 13-62 H'0080 1186 CAN0 Message Slot 8 Data 0 CAN0 Message Slot 8 Data 1 13-64 H'0080 1186 CAN0 Message Slot 8 Data 2 CAN0 Message Slot 8 Data 3 13-65 H'0080 1188 CAN0 Message Slot 8 Data 4 CAN0 Message Slot 8 Data 5 13-86 H'0080 1186 CAN0 Message Slot 8 Data 4 CAN0 Message Slot 8 Data 5 13-86 H'0080 1186 CAN0 Message Slot 8 Data 6 CAN0 Message Slot 8 Data 7 13-71 H'0080 1186 CAN0 Message Slot 9 Standard ID0 (COMSLBDT) 13-72 H'0080 1186 CAN0 Message Slot 9 Standard ID1 13-58 H'0080 1190 CAN0 Message Slot 9 Standard ID1 13-59 H'0080 1192 CAN0 Message Slot 9 Standard ID0 CAN0 Message Slot 9 Standard ID1 13-61 H'0080 1192 CAN0 Message Slot 9 Data 0 CAN0 Message Slot 9 Data 1 13-62 (COMSLESID) (COMSLESID) 13-63 13-66 (COMSLESID) CAN0 Message Slot 9 Data 2 CAN0 Message Slot 9 Data 1<	H'0080 1180	CAN0 Message Slot 8 Standard ID0	CAN0 Message Slot 8 Standard ID1	
H'0080 1184 CAND Message Slot 8 Data Length Register (COMSL8DLC) 13-63 (COMSL8DLC) H'0080 1186 CAND Message Slot 8 Data 0 (COMSL8DLT) CAND Message Slot 8 Data 1 (COMSL8DLT) 13-63 (COMSL8DLT) H'0080 1186 CAND Message Slot 8 Data 2 (COMSL8DLT) CAND Message Slot 8 Data 2 (COMSL8DLT) 13-64 (COMSL8DLT) H'0080 118A CAND Message Slot 8 Data 2 (COMSL8DLT) CAND Message Slot 8 Data 5 (13-68 (COMSL8DT5) 13-69 (13-70 (COMSL8DT5) H'0080 118C CAND Message Slot 8 Data 4 (COMSL8DT5) CAND Message Slot 8 Data 7 (COMSL8DT5) 13-70 (13-77 (13-77) H'0080 118C CAND Message Slot 9 Data 6 (COMSL8DT6) CAND Message Slot 9 Data 7 (COMSL8DT7) 13-72 (13-72) H'0080 1192 CAND Message Slot 9 Data 6 (COMSL8TSP) CAND Message Slot 9 Standard ID1 (COMSL8DT0) 13-59 H'0080 1192 CAND Message Slot 9 Data 100 (COMSL9D10) 13-61 (COMSL9D10) 13-62 (COMSL9D10) 13-63 H'0080 1194 CAND Message Slot 9 Data 1 (COMSL9D10) 13-63 13-63 H'0080 1194 CAND Message Slot 9 Data 2 (COMSL9D10) 13-63 13-63 H'0080 1196 CAND Message Slot 9 Data 2 (COMSL9D10) 13-63 13-63 H'0080 1194 CAND Message Sl	H'0080 1182	CAN0 Message Slot 8 Extended ID0 (C0MSL8EID0)		
(COMŠLBDT)) 13-65 H'0080 1188 CAN0 Message Slot 8 Data 2 (COMSLBDT2) CAN0 Message Slot 8 Data 3 (COMSLBDT3) 13-67 H'0080 118A CAN0 Message Slot 8 Data 4 CAN0 Message Slot 8 Data 5 13-68 H'0080 118C CAN0 Message Slot 8 Data 6 CAN0 Message Slot 8 Data 7 13-70 H'0080 118C CAN0 Message Slot 9 Data 6 CAN0 Message Slot 8 Data 7 13-71 H'0080 118E CAN0 Message Slot 9 Standard IDD CAN0 Message Slot 9 Standard ID1 13-58 H'0080 1190 CAN0 Message Slot 9 Standard IDD CAN0 Message Slot 9 Standard ID1 13-59 H'0080 1192 CAN0 Message Slot 9 Stended ID0 CAN0 Message Slot 9 Data Length Register 13-63 H'0080 1192 CAN0 Message Slot 9 Extended ID1 13-58 13-64 H'0080 1194 CAN0 Message Slot 9 Extended ID2 CAN0 Message Slot 9 Data 1 13-65 H'0080 1194 CAN0 Message Slot 9 Data 2 CAN0 Message Slot 9 Data 3 13-66 (COMSL9FID2) (COMSL9DT3) 13-65 13-66 13-66 (COMSL9DT4) (COMSL9DT5) 13-68 13-66 13-68 13-68 13-66 </td <td>H'0080 1184</td> <td></td> <td></td> <td></td>	H'0080 1184			
H'0080 1188 CANO Message Slot B Data 2 (COMSLBDT2) CANO Message Slot B Data 3 (COMSLBDT3) 13-67 13-67 H'0080 118A CANO Message Slot B Data 4 (COMSLBDT4) CANO Message Slot B Data 5 (COMSLBDT5) 13-68 H'0080 118C CANO Message Slot B Data 6 (COMSLBDT5) 13-69 H'0080 118C CANO Message Slot B Data 6 (COMSLBDT5) 13-70 H'0080 118C CANO Message Slot B Data 6 (COMSLBDT6) CANO Message Slot 9 Standard ID1 (COMSLBDT6) 13-72 H'0080 1190 CANO Message Slot 9 Standard ID0 (COMSL9SID1) CANO Message Slot 9 Standard ID1 (COMSL9SID1) 13-59 H'0080 1192 CANO Message Slot 9 Extended ID0 (COMSL9SID1) CANO Message Slot 9 Extended ID1 (COMSL9EID1) 13-66 H'0080 1194 CANO Message Slot 9 Data 0 (COMSL9FID2) CANO Message Slot 9 Data 1 (COMSL9D17) 13-67 H'0080 1196 CANO Message Slot 9 Data 2 (COMSL9D17) CANO Message Slot 9 Data 3 (COMSL9D12) 13-68 H'0080 1196 CANO Message Slot 9 Data 4 (COMSL9D17) CANO Message Slot 9 Data 3 (COMSL9D13) 13-67 H'0080 1194 CANO Message Slot 9 Data 4 (COMSL9D17) CANO Message Slot 9 Data 7 (COMSL9D13) 13-68 H'0080 1194 CANO Message Slot 9 Data 6 (COMSL9D13)	H'0080 1186			
H'0080 118A CAN0 Message Slot 8 Data 4 (COMSL8DT4) CAN0 Message Slot 8 Data 5 (COMSL8DT5) 13-68 13-69 13-70 (COMSL8DT6) H'0080 118C CAN0 Message Slot 8 Data 6 (COMSL8DT6) CAN0 Message Slot 8 Data 7 (COMSL8TSP) 13-70 13-71 H'0080 118E CAN0 Message Slot 9 Standard ID0 (COMSL8TSP) CAN0 Message Slot 9 Standard ID1 13-58 13-72 H'0080 1190 CAN0 Message Slot 9 Standard ID0 (COMSL9EID0) CAN0 Message Slot 9 Standard ID1 13-61 13-72 H'0080 1192 CAN0 Message Slot 9 Standard ID0 (COMSL9EID0) CAN0 Message Slot 9 Standard ID1 13-61 13-62 H'0080 1194 CAN0 Message Slot 9 Standard ID2 (COMSL9EID2) CAN0 Message Slot 9 Data Length Register (COMSL9D12) 13-63 H'0080 1196 CAN0 Message Slot 9 Data 0 (COMSL9D12) CAN0 Message Slot 9 Data 1 (COMSL9D11) 13-64 H'0080 1198 CAN0 Message Slot 9 Data 2 (COMSL9D12) CAN0 Message Slot 9 Data 3 (COMSL9D13) 13-67 H'0080 119A CAN0 Message Slot 9 Data 4 (COMSL9D17) CAN0 Message Slot 9 Data 5 (COMSL9D17) 13-71 H'0080 119A CAN0 Message Slot 9 Data 6 (COMSL9D17) CAN0 Message Slot 9 Data 7 (COMSL9D17) 13-72 H'0080 11A2 CAN0 Message Slot 10 Standard ID0 (COMSL9D17) CAN0 Message Slot 10 Standard	H'0080 1188			
(COMŠLBDT6) (COMŠLBDT7) 13-71 H'0080 118E CAN0 Message Slot 8 Timestamp (COMSL9TSP) 13-72 H'0080 1190 CAN0 Message Slot 9 Standard ID0 (COMSL9SID0) CAN0 Message Slot 9 Standard ID1 (3-58 13-59 H'0080 1192 CAN0 Message Slot 9 Extended ID0 (COMSL9SID1) CAN0 Message Slot 9 Extended ID1 (COMSL9EID0) 13-61 H'0080 1194 CAN0 Message Slot 9 Extended ID2 (COMSL9EID2) CAN0 Message Slot 9 Data 1 (COMSL9DLC) 13-62 H'0080 1196 CAN0 Message Slot 9 Data 0 (COMSL9DL0) CAN0 Message Slot 9 Data 1 (COMSL9DT3) 13-64 H'0080 1196 CAN0 Message Slot 9 Data 2 (COMSL9DT3) CAN0 Message Slot 9 Data 3 (COMSL9DT3) 13-67 H'0080 1198 CAN0 Message Slot 9 Data 4 (COMSL9DT3) CAN0 Message Slot 9 Data 5 (COMSL9DT3) 13-67 H'0080 119A CAN0 Message Slot 9 Data 6 (COMSL9DT3) 13-67 13-70 H'0080 119C CAN0 Message Slot 9 Data 6 (COMSL9DT7) CAN0 Message Slot 9 Data 7 (COMSL9DT7) 13-71 H'0080 11A0 CAN0 Message Slot 10 Standard ID0 (COMSL9DT7) 13-72 13-72 H'0080 11A2 CAN0 Message Slot 10 Standard ID0 (COMSL9DT5) 13-68 13-68 H'0080 11A4	H'0080 118A	CAN0 Message Slot 8 Data 4	CAN0 Message Slot 8 Data 5	13-68
H0080 118E CAN0 Message Slot 8 Timestamp (COMSL8TSP) 13-72 (COMSL9SID1) H0080 1190 CAN0 Message Slot 9 Standard ID0 (COMSL9SID0) CAN0 Message Slot 9 Standard ID1 (COMSL9SID1) 13-58 (COMSL9SID1) H0080 1192 CAN0 Message Slot 9 Standard ID0 (COMSL9FID0) CAN0 Message Slot 9 Extended ID1 (COMSL9FID1) 13-61 (COMSL9FID1) H0080 1194 CAN0 Message Slot 9 Extended ID2 (COMSL9FID2) CAN0 Message Slot 9 Data Length Register (COMSL9DT0) 13-62 (COMSL9DT1) H0080 1196 CAN0 Message Slot 9 Data 0 (COMSL9DT1) CAN0 Message Slot 9 Data 1 (3-65 13-64 (COMSL9DT1) H0080 1198 CAN0 Message Slot 9 Data 2 (COMSL9DT2) CAN0 Message Slot 9 Data 3 (COMSL9DT2) 13-67 H0080 119A CAN0 Message Slot 9 Data 4 (COMSL9DT4) CAN0 Message Slot 9 Data 5 (COMSL9DT5) 13-68 H0080 119C CAN0 Message Slot 9 Data 6 (COMSL9DT4) CAN0 Message Slot 9 Data 7 (COMSL9DT5) 13-72 H0080 11A0 CAN0 Message Slot 10 Standard ID0 (COMSL9DT5) CAN0 Message Slot 10 Standard ID1 (COMSL10DID1) 13-58 H0080 11A2 CAN0 Message Slot 10 Standard ID0 (COMSL10DID1) CAN0 Message Slot 10 Standard ID1 (COMSL10DID1) 13-62 H0080 11A2 CAN0 Message Slot 10 Data 0 (COMSL10DID1) CAN0 Message Slot 10 Data 1 (H'0080 118C			
H0080 1190 CAN0 Message Slot 9 Standard ID0 (COMSL9SID0) CAN0 Message Slot 9 Standard ID1 (COMSL9SID1) 13-58 (COMSL9SID1) H0080 1192 CAN0 Message Slot 9 Extended ID0 (COMSL9EID0) CAN0 Message Slot 9 Extended ID1 (COMSL9EID1) 13-61 (COMSL9EID1) H0080 1194 CAN0 Message Slot 9 Extended ID2 (COMSL9EID2) CAN0 Message Slot 9 Data Length Register (COMSL9DT1) 13-63 (COMSL9DT1) H0080 1196 CAN0 Message Slot 9 Data 0 (COMSL9DT0) CAN0 Message Slot 9 Data 1 (COMSL9DT1) 13-66 (COMSL9DT1) H0080 1198 CAN0 Message Slot 9 Data 2 (COMSL9DT3) CAN0 Message Slot 9 Data 3 (3-66 (COMSL9DT3) 13-67 (3-70 (COMSL9DT3) 13-67 (3-71 (COMSL9DT3) H0080 119A CAN0 Message Slot 9 Data 4 (COMSL9DT4) CAN0 Message Slot 9 Data 7 (COMSL9DT7) 13-71 (3-71 (COMSL9DT6) 13-69 H'0080 11A0 CAN0 Message Slot 9 Data 6 (COMSL9DT6) CAN0 Message Slot 9 Data 7 (COMSL9DT7) 13-72 (COMSL9DT7) 13-72 H'0080 11A2 CAN0 Message Slot 10 Standard ID0 (COMSL10SID0) CAN0 Message Slot 10 Standard ID1 (COMSL10EID1) 13-69 H'0080 11A2 CAN0 Message Slot 10 Extended ID0 (COMSL10EID2) CAN0 Message Slot 10 Data 1 (COMSL10DIC) 13-62 (COMSL10DIC) H'0080 11A2 CAN0 Message Slot 10 Data 2 (COMSL10DIC) CAN0 Message	H'0080 118E	CAN0 Message	Slot 8 Timestamp	13-72
H'0080 1192 CAN0 Message Slot 9 Extended ID0 (COMSL9EID0) CAN0 Message Slot 9 Extended ID1 (COMSL9EID1) 13-60 (COMSL9EID1) H'0080 1194 CAN0 Message Slot 9 Extended ID2 (COMSL9DID) CAN0 Message Slot 9 Data Length Register (COMSL9DID) 13-62 (COMSL9DID) H'0080 1196 CAN0 Message Slot 9 Data 0 (COMSL9DT0) CAN0 Message Slot 9 Data 1 13-64 (COMSL9DID) H'0080 1196 CAN0 Message Slot 9 Data 2 (COMSL9DT1) CAN0 Message Slot 9 Data 3 13-66 H'0080 1198 CAN0 Message Slot 9 Data 4 (COMSL9DT3) CAN0 Message Slot 9 Data 5 13-66 H'0080 119A CAN0 Message Slot 9 Data 6 (COMSL9DT4) CAN0 Message Slot 9 Data 7 13-67 H'0080 119C CAN0 Message Slot 9 Data 6 (COMSL9DT7) CAN0 Message Slot 9 Data 7 13-71 H'0080 11A0 CAN0 Message Slot 10 Standard ID0 (COMSL9DT7) CAN0 Message Slot 10 Standard ID1 13-58 H'0080 11A2 CAN0 Message Slot 10 Extended ID2 (COMSL10SID0) CAN0 Message Slot 10 Extended ID1 13-61 H'0080 11A2 CAN0 Message Slot 10 Extended ID2 (COMSL10EID2) CAN0 Message Slot 10 Extended ID1 13-63 H'0080 11A2 CAN0 Message Slot 10 Extended ID2 (COMSL10DIC) CAN0 Message Slot 10 Data 1 13-64 (COMSL10DT3) <t< td=""><td>H'0080 1190</td><td>CAN0 Message Slot 9 Standard ID0</td><td>CAN0 Message Slot 9 Standard ID1</td><td></td></t<>	H'0080 1190	CAN0 Message Slot 9 Standard ID0	CAN0 Message Slot 9 Standard ID1	
(CÔMSL9EID2) (COMSL9DLC) 13-63 H'0080 1196 CAN0 Message Slot 9 Data 0 (COMSL9DT0) CAN0 Message Slot 9 Data 1 (COMSL9DT1) 13-64 (COMSL9DT1) H'0080 1198 CAN0 Message Slot 9 Data 2 (COMSL9DT2) CAN0 Message Slot 9 Data 3 (COMSL9DT3) 13-66 (COMSL9DT3) H'0080 119A CAN0 Message Slot 9 Data 4 (COMSL9DT4) CAN0 Message Slot 9 Data 5 (COMSL9DT4) 13-67 (COMSL9DT5) H'0080 119C CAN0 Message Slot 9 Data 4 (COMSL9DT6) CAN0 Message Slot 9 Data 5 (COMSL9DT6) 13-70 (COMSL9DT7) H'0080 119C CAN0 Message Slot 9 Data 6 (COMSL9DT6) CAN0 Message Slot 9 Data 7 (COMSL9DT6) 13-71 (COMSL9DT7) H'0080 11A0 CAN0 Message Slot 10 Standard ID0 (COMSL9TSP) CAN0 Message Slot 10 Standard ID1 (COMSL10SID1) 13-58 (COMSL10SID1) H'0080 11A2 CAN0 Message Slot 10 Extended ID0 (COMSL10EID0) CAN0 Message Slot 10 Extended ID1 (COMSL10EID1) 13-61 (COMSL10EID2) H'0080 11A4 CAN0 Message Slot 10 Data Message Slot 10 Data Length Register (COMSL10EID2) 13-63 (COMSL10DT1) 13-62 (COMSL10DT1) H'0080 11A4 CAN0 Message Slot 10 Data 2 (COMSL10DT3) CAN0 Message Slot 10 Data 3 (COMSL10DT3) 13-66 (COMSL10DT3) H'0080 11A8 CAN0 Message Slot 10 Data 4 (COMSL10DT3) CAN0 Message Slot	H'0080 1192	CAN0 Message Slot 9 Extended ID0	CAN0 Message Slot 9 Extended ID1	
(COMŠL9DT0) (COMŠL9DT1) 13-65 H'0080 1198 CAN0 Message Slot 9 Data 2 (COMSL9DT2) CAN0 Message Slot 9 Data 3 (COMSL9DT3) 13-67 H'0080 119A CAN0 Message Slot 9 Data 4 (COMSL9DT4) CAN0 Message Slot 9 Data 5 (COMSL9DT5) 13-68 H'0080 119C CAN0 Message Slot 9 Data 6 (COMSL9DT6) CAN0 Message Slot 9 Data 7 (COMSL9DT7) 13-71 H'0080 119C CAN0 Message Slot 10 Data 6 (COMSL9DT6) CAN0 Message Slot 9 Data 7 (COMSL9TSP) 13-72 H'0080 119E CAN0 Message Slot 10 Standard ID0 (COMSL10SID0) CAN0 Message Slot 10 Standard ID1 (COMSL10SID1) 13-59 H'0080 11A2 CAN0 Message Slot 10 Extended ID0 (COMSL10EID1) CAN0 Message Slot 10 Extended ID1 (COMSL10EID1) 13-60 (COMSL10EID1) H'0080 11A2 CAN0 Message Slot 10 Extended ID2 (COMSL10EID2) CAN0 Message Slot 10 Extended ID2 (COMSL10DT1) 13-61 (COMSL10DT1) H'0080 11A6 CAN0 Message Slot 10 Data 0 (COMSL10DT0) CAN0 Message Slot 10 Data 1 (COMSL10DT3) 13-67 H'0080 11A6 CAN0 Message Slot 10 Data 2 (COMSL10DT3) CAN0 Message Slot 10 Data 3 (3-66 13-68 H'0080 11A6 CAN0 Message Slot 10 Data 4 (COMSL10DT3) CAN0 Message Slot 10 Data 5 (3-63 13-69 H'0080 11AA <td>H'0080 1194</td> <td></td> <td></td> <td></td>	H'0080 1194			
H'0080 1198 CAN0 Message Slot 9 Data 2 (COMSL9DT2) CAN0 Message Slot 9 Data 3 (COMSL9DT3) 13-66 (3-67 H'0080 119A CAN0 Message Slot 9 Data 4 (COMSL9DT4) CAN0 Message Slot 9 Data 5 (COMSL9DT5) 13-68 H'0080 119C CAN0 Message Slot 9 Data 6 (COMSL9DT6) CAN0 Message Slot 9 Data 6 (COMSL9DT7) 13-70 H'0080 119E CAN0 Message Slot 9 Data 6 (COMSL9DT6) CAN0 Message Slot 9 Data 7 (COMSL9DT7) 13-71 H'0080 119E CAN0 Message Slot 10 Standard ID0 (COMSL9TSP) CAN0 Message Slot 10 Standard ID1 (COMSL10SID1) 13-58 H'0080 11A2 CAN0 Message Slot 10 Extended ID0 (COMSL10EID0) CAN0 Message Slot 10 Standard ID1 (COMSL10EID1) 13-61 H'0080 11A2 CAN0 Message Slot 10 Extended ID2 (COMSL10EID2) CAN0 Message Slot 10 Extended ID1 (COMSL10DLC) 13-62 H'0080 11A6 CAN0 Message Slot 10 Data 0 (COMSL10DT0) CAN0 Message Slot 10 Data 1 (COMSL10DT1) 13-64 H'0080 11A6 CAN0 Message Slot 10 Data 2 (COMSL10DT2) CAN0 Message Slot 10 Data 3 (COMSL10DT3) 13-67 H'0080 11A8 CAN0 Message Slot 10 Data 4 (COMSL10DT2) CAN0 Message Slot 10 Data 5 (COMSL10DT3) 13-68 H'0080 11AA CAN0 Message Slot 10 Data 6 (COMSL10DT5) CAN0 Message Slot 10 Data 7 (COMSL10D	H'0080 1196			
HORE COMŠL9DT4) (COMŠL9DT5) 13-69 H'0080 119C CANO Message Slot 9 Data 6 (COMSL9DT6) CANO Message Slot 9 Data 7 (COMSL9DT7) 13-70 H'0080 119E CANO Message Slot 9 Data 6 (COMSL9TSP) CANO Message Slot 9 Timestamp (COMSL9TSP) 13-72 H'0080 11A0 CANO Message Slot 10 Standard ID0 (COMSL10SID0) CANO Message Slot 10 Standard ID1 (COMSL10SID1) 13-58 H'0080 11A2 CANO Message Slot 10 Extended ID0 (COMSL10EID0) CANO Message Slot 10 Extended ID1 (COMSL10EID0) 13-61 H'0080 11A4 CANO Message Slot 10 Extended ID2 (COMSL10EID2) CANO Message Slot 10 Data Length Register (COMSL10DLC) 13-62 H'0080 11A6 CANO Message Slot 10 Data 0 (COMSL10DT0) CANO Message Slot 10 Data 1 (COMSL10DT1) 13-63 H'0080 11A6 CANO Message Slot 10 Data 2 (COMSL10DT3) CANO Message Slot 10 Data 3 (3-66 13-67 H'0080 11A8 CANO Message Slot 10 Data 4 (COMSL10DT2) CANO Message Slot 10 Data 5 (COMSL10DT3) 13-68 H'0080 11AA CANO Message Slot 10 Data 4 (COMSL10DT5) CANO Message Slot 10 Data 5 (COMSL10DT5) 13-69 H'0080 11AC CANO Message Slot 10 Data 6 (COMSL10DT6) CANO Message Slot 10 Data 7 (COMSL10DT7) 13-70	H'0080 1198			
H'0080 119E (COMŠL9DT6) (COMŠL9DT7) 13-71 H'0080 11A0 CAN0 Message Slot 9 Timestamp (COMSL9TSP) 13-72 H'0080 11A0 CAN0 Message Slot 10 Standard ID0 (COMSL10SID0) CAN0 Message Slot 10 Standard ID1 (COMSL10SID1) 13-58 H'0080 11A2 CAN0 Message Slot 10 Extended ID0 (COMSL10EID0) CAN0 Message Slot 10 Extended ID1 (COMSL10EID1) 13-60 H'0080 11A4 CAN0 Message Slot 10 Extended ID2 (COMSL10EID2) CAN0 Message Slot 10 Extended ID2 (COMSL10DLC) 13-61 H'0080 11A6 CAN0 Message Slot 10 Data 0 (COMSL10EID2) CAN0 Message Slot 10 Data 1 (COMSL10DT1) 13-62 H'0080 11A6 CAN0 Message Slot 10 Data 0 (COMSL10DT0) CAN0 Message Slot 10 Data 3 (COMSL10DT1) 13-65 H'0080 11A6 CAN0 Message Slot 10 Data 4 (COMSL10DT3) 13-66 (COMSL10DT3) 13-67 H'0080 11AA CAN0 Message Slot 10 Data 4 (COMSL10DT4) CAN0 Message Slot 10 Data 5 (3-69 13-69 H'0080 11AC CAN0 Message Slot 10 Data 6 (COMSL10DT4) CAN0 Message Slot 10 Data 7 (3-70 13-70 H'0080 11AC CAN0 Message Slot 10 Data 6 (COMSL10DT7) CAN0 Message Slot 10 Data 7 (3-71 13-71 H'0080 11AC CAN0 Message Slot 10 Data 6 (COMSL10DT7)	H'0080 119A	CAN0 Message Slot 9 Data 4 (C0MSL9DT4)		
(COMSL9TSP)H'0080 11A0CAN0 Message Slot 10 Standard ID0 (COMSL10SID0)CAN0 Message Slot 10 Standard ID1 (COMSL10SID1)13-58 13-59H'0080 11A2CAN0 Message Slot 10 Extended ID0 (COMSL10EID0)CAN0 Message Slot 10 Extended ID1 (COMSL10EID1)13-60 13-61H'0080 11A4CAN0 Message Slot 10 Extended ID2 (COMSL10EID2)CAN0 Message Slot 10 Data Length Register (COMSL10DLC)13-62 13-63H'0080 11A6CAN0 Message Slot 10 Data 0 (COMSL10DT0)CAN0 Message Slot 10 Data 1 (COMSL10DT1)13-64 13-65H'0080 11A8CAN0 Message Slot 10 Data 2 (COMSL10DT0)CAN0 Message Slot 10 Data 3 (COMSL10DT3)13-66 13-66H'0080 11AACAN0 Message Slot 10 Data 4 (COMSL10DT2)CAN0 Message Slot 10 Data 5 (COMSL10DT5)13-68 13-68H'0080 11ACCAN0 Message Slot 10 Data 6 (COMSL10DT6)CAN0 Message Slot 10 Data 7 (COMSL10DT7)13-70 13-71H'0080 11AECAN0 Message Slot 10 Data 6 (COMSL10DT6)CAN0 Message Slot 10 Data 7 (3-7113-70 13-71	H'0080 119C		CAN0 Message Slot 9 Data 7 (C0MSL9DT7)	
Image: Horizon Complexity Image: Complexity <td>H'0080 119E</td> <td></td> <td></td> <td>13-72</td>	H'0080 119E			13-72
H'0080 11A2CAN0 Message Slot 10 Extended ID0 (COMSL10EID0)CAN0 Message Slot 10 Extended ID1 (COMSL10EID1)13-60 13-61H'0080 11A4CAN0 Message Slot 10 Extended ID2 (COMSL10EID2)CAN0 Message Slot 10 Data Length Register (COMSL10DLC)13-62 13-63H'0080 11A6CAN0 Message Slot 10 Data 0 (COMSL10DT0)CAN0 Message Slot 10 Data 1 (COMSL10DT1)13-64 13-65H'0080 11A8CAN0 Message Slot 10 Data 2 (COMSL10DT2)CAN0 Message Slot 10 Data 3 (COMSL10DT3)13-66 13-67H'0080 11AACAN0 Message Slot 10 Data 4 (COMSL10DT4)CAN0 Message Slot 10 Data 5 (COMSL10DT5)13-68 13-69H'0080 11ACCAN0 Message Slot 10 Data 6 (COMSL10DT6)CAN0 Message Slot 10 Data 7 (COMSL10DT7)13-70 13-71H'0080 11AECAN0 Message Slot 10 Data 6 (COMSL10DT6)CAN0 Message Slot 10 Data 7 (13-7113-70 13-71	H'0080 11A0			
H'0080 11A4CAN0 Message Slot 10 Extended ID2 (COMSL10EID2)CAN0 Message Slot 10 Data Length Register (COMSL10DLC)13-62 13-63H'0080 11A6CAN0 Message Slot 10 Data 0 (COMSL10DT0)CAN0 Message Slot 10 Data 1 (COMSL10DT1)13-64 13-65H'0080 11A8CAN0 Message Slot 10 Data 2 (COMSL10DT2)CAN0 Message Slot 10 Data 3 (COMSL10DT3)13-66 13-67H'0080 11AACAN0 Message Slot 10 Data 4 (COMSL10DT4)CAN0 Message Slot 10 Data 4 (COMSL10DT5)CAN0 Message Slot 10 Data 5 13-69H'0080 11ACCAN0 Message Slot 10 Data 6 (COMSL10DT6)CAN0 Message Slot 10 Data 7 (COMSL10DT7)13-70 13-71H'0080 11AECAN0 Message Slot 10 Data 6 (COMSL10DT6)CAN0 Message Slot 10 Data 7 (COMSL10DT7)13-72	H'0080 11A2	CAN0 Message Slot 10 Extended ID0	CAN0 Message Slot 10 Extended ID1	13-60
H'0080 11A6 CAN0 Message Slot 10 Data 0 (COMSL10DT0) CAN0 Message Slot 10 Data 1 (COMSL10DT1) 13-64 13-65 H'0080 11A8 CAN0 Message Slot 10 Data 2 (COMSL10DT2) CAN0 Message Slot 10 Data 3 (COMSL10DT3) 13-66 13-67 H'0080 11AA CAN0 Message Slot 10 Data 4 (COMSL10DT4) CAN0 Message Slot 10 Data 4 (COMSL10DT5) 13-68 13-69 H'0080 11AC CAN0 Message Slot 10 Data 6 (COMSL10DT6) CAN0 Message Slot 10 Data 7 13-70 13-70 13-71 H'0080 11AE CAN0 Message Slot 10 Data 6 (COMSL10DT6) CAN0 Message Slot 10 Data 7 13-72 13-72	H'0080 11A4	CAN0 Message Slot 10 Extended ID2	CAN0 Message Slot 10 Data Length Register	13-62
H'0080 11A8 CAN0 Message Slot 10 Data 2 (COMSL10DT2) CAN0 Message Slot 10 Data 3 (COMSL10DT3) 13-66 13-67 H'0080 11AA CAN0 Message Slot 10 Data 4 (COMSL10DT4) CAN0 Message Slot 10 Data 5 (COMSL10DT5) 13-68 13-69 H'0080 11AC CAN0 Message Slot 10 Data 6 (COMSL10DT4) CAN0 Message Slot 10 Data 7 (COMSL10DT6) 13-70 13-70 H'0080 11AE CAN0 Message Slot 10 Data 6 (COMSL10DT6) CAN0 Message Slot 10 Data 7 (3-71 13-70	H'0080 11A6	CAN0 Message Slot 10 Data 0	CAN0 Message Slot 10 Data 1	13-64
H'0080 11AA CAN0 Message Slot 10 Data 4 (COMSL10DT4) CAN0 Message Slot 10 Data 5 (COMSL10DT5) 13-68 13-69 H'0080 11AC CAN0 Message Slot 10 Data 6 (COMSL10DT6) CAN0 Message Slot 10 Data 7 (COMSL10DT6) 13-70 13-71 H'0080 11AE CAN0 Message Slot 10 Data 6 (COMSL10DT6) CAN0 Message Slot 10 Data 7 (COMSL10DT7) 13-70 13-71	H'0080 11A8	CAN0 Message Slot 10 Data 2	CAN0 Message Slot 10 Data 3	13-66
H'0080 11AC CAN0 Message Slot 10 Data 6 (COMSL10DT6) CAN0 Message Slot 10 Data 7 (COMSL10DT7) 13-70 13-71 H'0080 11AE CAN0 Message Slot 10 Timestamp 13-72	H'0080 11AA	CAN0 Message Slot 10 Data 4	CAN0 Message Slot 10 Data 5	13-68
H'0080 11AE CANO Message Slot 10 Timestamp 13-72	H'0080 11AC	CAN0 Message Slot 10 Data 6	CAN0 Message Slot 10 Data 7	13-70
	H'0080 11AE	CAN0 Message S	Slot 10 Timestamp	

CAN Module Related Register Map (5/11)

Address	+0 address	+1 address b8 b15	See pages
H'0080 11B0	CAN0 Message Slot 11 Standard ID0	CAN0 Message Slot 11 Standard ID1	13-58
	(C0MSL11SID0)	(C0MSL11SID1)	13-59
H'0080 11B2	CAN0 Message Slot 11 Extended ID0	CAN0 Message Slot 11 Extended ID1	13-60
	(C0MSL11EID0)	(C0MSL11EID1)	13-61
H'0080 11B4	CAN0 Message Slot 11 Extended ID2	CAN0 Message Slot 11 Data Length Register	13-62
	(C0MSL11EID2)	(C0MSL11DLC)	13-63
H'0080 11B6	CAN0 Message Slot 11 Data 0	CAN0 Message Slot 11 Data 1	13-64
	(C0MSL11DT0)	(C0MSL11DT1)	13-65
H'0080 11B8	CAN0 Message Slot 11 Data 2	CAN0 Message Slot 11 Data 3	13-66
	(C0MSL11DT2)	(C0MSL11DT3)	13-67
H'0080 11BA	CAN0 Message Slot 11 Data 4	CAN0 Message Slot 11 Data 5	13-68
	(C0MSL11DT4)	(C0MSL11DT5)	13-69
H'0080 11BC	CAN0 Message Slot 11 Data 6	CAN0 Message Slot 11 Data 7	13-70
	(C0MSL11DT6)	(C0MSL11DT7)	13-71
H'0080 11BE		Slot 11 Timestamp _11TSP)	13-72
H'0080 11C0	CAN0 Message Slot 12 Standard ID0	CAN0 Message Slot 12 Standard ID1	13-58
	(C0MSL12SID0)	(C0MSL12SID1)	13-59
H'0080 11C2	CAN0 Message Slot 12 Extended ID0	CAN0 Message Slot 12 Extended ID1	13-60
	(C0MSL12EID0)	(C0MSL12EID1)	13-61
H'0080 11C4	CAN0 Message Slot 12 Extended ID2	CAN0 Message Slot 12 Data Length Register	13-62
	(C0MSL12EID2)	(C0MSL12DLC)	13-63
H'0080 11C6	CAN0 Message Slot 12 Data 0	CAN0 Message Slot 12 Data 1	13-64
	(C0MSL12DT0)	(C0MSL12DT1)	13-65
H'0080 11C8	CAN0 Message Slot 12 Data 2	CAN0 Message Slot 12 Data 3	13-66
	(C0MSL12DT2)	(C0MSL12DT3)	13-67
H'0080 11CA	CAN0 Message Slot 12 Data 4	CAN0 Message Slot 12 Data 5	13-68
	(C0MSL12DT4)	(C0MSL12DT5)	13-69
H'0080 11CC	CAN0 Message Slot 12 Data 6	CAN0 Message Slot 12 Data 7	13-70
	(C0MSL12DT6)	(C0MSL12DT7)	13-71
H'0080 11CE	CAN0 Message S	Slot 12 Timestamp _12TSP)	13-72
H'0080 11D0	CAN0 Message Slot 13 Standard ID0	CAN0 Message Slot 13 Standard ID1	13-58
	(C0MSL13SID0)	(C0MSL13SID1)	13-59
H'0080 11D2	CAN0 Message Slot 13 Extended ID0	CAN0 Message Slot 13 Extended ID1	13-60
	(C0MSL13EID0)	(C0MSL13EID1)	13-61
H'0080 11D4	CAN0 Message Slot 13 Extended ID2	CAN0 Message Slot 13 Data Length Register	13-62
	(C0MSL13EID2)	(C0MSL13DLC)	13-63
H'0080 11D6	CAN0 Message Slot 13 Data 0	CAN0 Message Slot 13 Data 1	13-64
	(C0MSL13DT0)	(C0MSL13DT1)	13-65
H'0080 11D8	CAN0 Message Slot 13 Data 2	CAN0 Message Slot 13 Data 3	13-66
	(C0MSL13DT2)	(C0MSL13DT3)	13-67
H'0080 11DA	CAN0 Message Slot 13 Data 4	CAN0 Message Slot 13 Data 5	13-68
	(C0MSL13DT4)	(C0MSL13DT5)	13-69
H'0080 11DC	CAN0 Message Slot 13 Data 6	CAN0 Message Slot 13 Data 7	13-70
	(C0MSL13DT6)	(C0MSL13DT7)	13-71
H'0080 11DE		Slot 13 Timestamp _13TSP)	13-72
H'0080 11E0	CAN0 Message Slot 14 Standard ID0	CAN0 Message Slot 14 Standard ID1	13-58
	(C0MSL14SID0)	(C0MSL14SID1)	13-59
H'0080 11E2	CAN0 Message Slot 14 Extended ID0	CAN0 Message Slot 14 Extended ID1	13-60
	(C0MSL14EID0)	(C0MSL14EID1)	13-61
H'0080 11E4	CAN0 Message Slot 14 Extended ID2	CAN0 Message Slot 14 Data Length Register	13-62
	(C0MSL14EID2)	(C0MSL14DLC)	13-63
H'0080 11E6	CAN0 Message Slot 14 Data 0	CAN0 Message Slot 14 Data 1	13-64
	(C0MSL14DT0)	(C0MSL14DT1)	13-65
H'0080 11E8	CAN0 Message Slot 14 Data 2	CAN0 Message Slot 14 Data 3	13-66
	(C0MSL14DT2)	(C0MSL14DT3)	13-67
H'0080 11EA	CAN0 Message Slot 14 Data 4	CANO Message Slot 14 Data 5	13-68
	(C0MSL14DT4)	(COMSL14DT5)	13-69
H'0080 11EC	CANO Message Slot 14 Data 6	CANO Message Slot 14 Data 7	13-70
	(COMSL14DT6)	(COMSL14DT7)	13-71
H'0080 11EE	CAN0 Message S	Slot 14 Timestamp _14TSP)	13-72
	(001101	/	I

CAN Module Related Register Map (6/11)

Address	+0 address b0 b7	+1 address b8 b15	See pages
H'0080 11F0	CAN0 Message Slot 15 Standard ID0 (C0MSL15SID0)	CAN0 Message Slot 15 Standard ID1 (C0MSL15SID1)	13-58 13-59
H'0080 11F2	CAN0 Message Slot 15 Extended ID0 (C0MSL15EID0)	CAN0 Message Slot 15 Extended ID1 (C0MSL15EID1)	13-60 13-61
H'0080 11F4	CAN0 Message Slot 15 Extended ID2 (C0MSL15EID2)	CAN0 Message Slot 15 Data Length Register (C0MSL15DLC)	13-62 13-63
H'0080 11F6	CAN0 Message Slot 15 Data 0 (C0MSL15DT0)	CAN0 Message Slot 15 Data 1 (C0MSL15DT1)	13-64 13-65
H'0080 11F8	CAN0 Message Slot 15 Data 2 (C0MSL15DT2)	CAN0 Message Slot 15 Data 3 (C0MSL15DT3)	13-66 13-67
H'0080 11FA	CANO Message Slot 15 Data 4 (COMŠL15DT4)	CAN0 Message Slot 15 Data 5 (C0MSL15DT5)	13-68 13-69
H'0080 11FC	CAN0 Message Slot 15 Data 6 (C0MSL15DT6)	CAN0 Message Slot 15 Data 7 (C0MSL15DT7)	13-70 13-71
H'0080 11FE	CAN0 Message S	lot 15 Timestamp 15TSP)	13-72
		ited area)	
H'0080 1400		rol Register 1CNT)	13-15
H'0080 1402	CAN1 State	us Register STAT)	13-18
H'0080 1404	CAN1 Extende	ed ID Register	13-21
H'0080 1406	CAN1 Configu	EXTID) ration Register	13-22
H'0080 1408	CAN1 Timestam	CONF) p Count Register	13-24
H'0080 140A	CAN1 Receive Error Count Register	CAN1 Transmit Error Count Register	13-25
H'0080 140C	(CAN1REC) CAN1 Slot Interrupt R	(CAN1TEC) equest Status Register	13-29
H'0080 140E	(CAN1 (Use inhib	SLIST) ited area)	
H'0080 1410		equest Mask Register	13-30
H'0080 1412	N N N N N N N N N N N N N N N N N N N	SLIMK) ited area)	
H'0080 1414	CAN1 Error Interrupt Request Status Register	CAN1 Error Interrupt Request Mask Register	13-31
H'0080 1416	(CAN1ERIST) CAN1 Baud Rate Prescaler	(CAN1ERIMK) CAN1 Cause of Error Register	13-32 13-26
H'0080 1418	CAN1BRP) CAN1 Mode Register	(CAN1EF) CAN1 DMA Transfer Request Select Register	13-45 13-47
1	(CAN1MOD) (Use inhib	(CAN1DMARQ)	13-48
H'0080 1428	CAN1 Global Mask Register Standard ID0	CAN1 Global Mask Register Standard ID1	13-49
H'0080 142A	(C1GMSKS0) CAN1 Global Mask Register Extended ID0	(C1GMSKS1) CAN1 Global Mask Register Extended ID1	13-50
H'0080 142C	(C1GMSKE0) CAN1 Global Mask Register Extended ID2	(C1GMSKE1) (Use inhibited area)	13-51
H'0080 142E	(C1GMSKE2) (Use inhib	ited area)	
H'0080 1430	CAN1 Local Mask Register A Standard ID0	CAN1 Local Mask Register A Standard ID1	13-49
H'0080 1432	(C1LMSKAS0) CAN1 Local Mask Register A Extended ID0	(C1LMŠKAS1) CAN1 Local Mask Register A Extended ID1	13-50
H'0080 1434	(C1LMŠKAE0) CAN1 Local Mask Register A Extended ID2	(C1LMŠKAE1) (Use inhibited area)	13-51
H'0080 1436	(C1LMŠKAE2) (Use inhit	ited area)	
H'0080 1438	CAN1 Local Mask Register B Standard ID0	CAN1 Local Mask Register B Standard ID1	13-49
H'0080 143A	(C1LMŠKBS0) CAN1 Local Mask Register B Extended ID0	(C1LMŠKBS1) CAN1 Local Mask Register B Extended ID1	13-50
H'0080 143C	(C1LMSKBE0) CAN1 Local Mask Register B Extended ID2	(C1LMSKBE1) (Use inhibited area)	13-51
H'0080 143E	(C1LMŠKBE2)	lited area)	
110000 143E	(Ose innic	neu areaj	

CAN Module Related Register Map (7/11)

Address	+0 address	+1 address b8 b15	See pages
H'0080 1440	CAN1 Single-Shot Mode Control Register (CAN1SSMODE)		
H'0080 1442	(Use inhibited area)		
H'0080 1444	CAN1 Single-Shot Interrupt Request Status Register (CAN1SSIST)		13-33
H'0080 1446	(Use inhibited area)		
H'0080 1448	CAN1 Single-Shot Interrupt Request Mask Register (CAN1SSIMK)		13-34
	(Use inhibited area)		
H'0080 1450	CAN1 Message Slot 0 Control Register (C1MSL0CNT)	CAN1 Message Slot 1 Control Register (C1MSL1CNT)	13-54
H'0080 1452	CAN1 Message Slot 2 Control Register (C1MSL2CNT)	CAN1 Message Slot 3 Control Register (C1MSL3CNT)	13-54
H'0080 1454	CAN1 Message Slot 4 Control Register (C1MSL4CNT)	CAN1 Message Slot 5 Control Register (C1MSL5CNT)	13-54
H'0080 1456	CAN1 Message Slot 6 Control Register (C1MSL6CNT)	CAN1 Message Slot 7 Control Register (C1MSL7CNT)	13-54
H'0080 1458	CAN1 Message Slot 8 Control Register (C1MSL8CNT)	CAN1 Message Slot 9 Control Register (C1MSL9CNT)	13-54
H'0080 145A	CAN1 Message Slot 10 Control Register (C1MSL10CNT)	CAN1 Message Slot 11 Control Register (C1MSL11CNT)	13-54
H'0080 145C	CAN1 Message Slot 12 Control Register (C1MSL12CNT)	CAN1 Message Slot 13 Control Register (C1MSL13CNT)	13-54
H'0080 145E	CAN1 Message Slot 14 Control Register (C1MSL14CNT)	CAN1 Message Slot 15 Control Register (C1MSL15CNT)	13-54
	(Use inhibited area)		
H'0080 1500	CAN1 Message Slot 0 Standard ID0 (C1MSL0SID0)	CAN1 Message Slot 0 Standard ID1 (C1MSL0SID1)	13-58 13-59
H'0080 1502	CAN1 Message Slot 0 Extended ID0 (C1MSL0EID0)	CAN1 Message Slot 0 Extended ID1 (C1MSL0EID1)	13-60 13-61
H'0080 1504	CAN1 Message Slot 0 Extended ID2 (C1MSL0EID2)	CAN1 Message Slot 0 Data Length Register (C1MSL0DLC)	13-62 13-63
H'0080 1506	CAN1 Message Slot 0 Data 0 (C1MSL0DT0)	CAN1 Message Slot 0 Data 1 (C1MSL0DT1)	13-64 13-65
H'0080 1508	CAN1 Message Slot 0 Data 2 (C1MSL0DT2)	CAN1 Message Slot 0 Data 3 (C1MSL0DT3)	13-66 13-67
H'0080 150A	CAN1 Message Slot 0 Data 4 (C1MSL0DT4)	CAN1 Message Slot 0 Data 5 (C1MSL0DT5)	13-68 13-69
H'0080 150C	CAN1 Message Slot 0 Data 6 (C1MSL0DT6)	CAN1 Message Slot 0 Data 7 (C1MSL0DT7)	13-70 13-71
H'0080 150E	CAN1 Message Slot 0 Timestamp (C1MSL0TSP)		13-72
H'0080 1510	CAN1 Message Slot 1 Standard ID0 (C1MSL1SID0)	CAN1 Message Slot 1 Standard ID1 (C1MSL1SID1)	13-58 13-59
H'0080 1512	CAN1 Message Slot 1 Extended ID0 (C1MSL1EID0)	CAN1 Message Slot 1 Extended ID1 (C1MSL1EID1)	13-60 13-61
H'0080 1514	CAN1 Message Slot 1 Extended ID2 (C1MSL1EID2)	CAN1 Message Slot 1 Data Length Register (C1MSL1DLC)	13-62 13-63
H'0080 1516	CAN1 Message Slot 1 Data 0 (C1MSL1DT0)	CAN1 Message Slot 1 Data 1 (C1MSL1DT1)	13-64 13-65
H'0080 1518	CAN1 Message Slot 1 Data 2 (C1MSL1DT2)	CAN1 Message Slot 1 Data 3 (C1MSL1DT3)	13-66 13-67
H'0080 151A	CAN1 Message Slot 1 Data 4 (C1MSL1DT4)	CAN1 Message Slot 1 Data 5 (C1MSL1DT5)	13-68 13-69
H'0080 151C	CAN1 Message Slot 1 Data 6 (C1MSL1DT6)	CAN1 Message Slot 1 Data 7 (C1MSL1DT7)	13-70 13-71
H'0080 151E	CAN1 Message Slot 1 Timestamp (C1MSL1TSP)		13-72

CAN Module Related Register Map (8/11)

	+0 address b0 b7	+1 address b8 b15	See pages
H'0080 1520	CAN1 Message Slot 2 Standard ID0	CAN1 Message Slot 2 Standard ID1	13-58
	(C1MSL2SID0)	(C1MSL2SID1)	13-59
H'0080 1522	CAN1 Message Slot 2 Extended ID0	CAN1 Message Slot 2 Extended ID1	13-60
	(C1MSL2EID0)	(C1MSL2EID1)	13-61
H'0080 1524	CAN1 Message Slot 2 Extended ID2	CAN1 Message Slot 2 Data Length Register	13-62
	(C1MSL2EID2)	(C1MSL2DLC)	13-63
H'0080 1526	CAN1 Message Slot 2 Data 0	CAN1 Message Slot 2 Data 1	13-64
	(C1MSL2DT0)	(C1MSL2DT1)	13-65
H'0080 1528	CAN1 Message Slot 2 Data 2	CAN1 Message Slot 2 Data 3	13-66
	(C1MSL2DT2)	(C1MSL2DT3)	13-67
H'0080 152A	CAN1 Message Slot 2 Data 4	CAN1 Message Slot 2 Data 5	13-68
	(C1MSL2DT4)	(C1MSL2DT5)	13-69
H'0080 152C	CAN1 Message Slot 2 Data 6	CAN1 Message Slot 2 Data 7	13-70
	(C1MSL2DT6)	(C1MSL2DT7)	13-71
H'0080 152E		Slot 2 Timestamp L2TSP)	13-72
H'0080 1530	CAN1 Message Slot 3 Standard ID0	CAN1 Message Slot 3 Standard ID1	13-58
	(C1MSL3SID0)	(C1MSL3SID1)	13-59
H'0080 1532	CAN1 Message Slot 3 Extended ID0	CAN1 Message Slot 3 Extended ID1	13-60
	(C1MSL3EID0)	(C1MSL3EID1)	13-61
H'0080 1534	CAN1 Message Slot 3 Extended ID2	CAN1 Message Slot 3 Data Length Register	13-62
	(C1MSL3EID2)	(C1MSL3DLC)	13-63
H'0080 1536	CAN1 Message Slot 3 Data 0	CAN1 Message Slot 3 Data 1	13-64
	(C1MSL3DT0)	(C1MSL3DT1)	13-65
H'0080 1538	CAN1 Message Slot 3 Data 2	CAN1 Message Slot 3 Data 3	13-66
	(C1MSL3DT2)	(C1MSL3DT3)	13-67
H'0080 153A	CAN1 Message Slot 3 Data 4	CAN1 Message Slot 3 Data 5	13-68
	(C1MSL3DT4)	(C1MSL3DT5)	13-69
H'0080 153C	CAN1 Message Slot 3 Data 6	CAN1 Message Slot 3 Data 7	13-70
	(C1MSL3DT6)	(C1MSL3DT7)	13-71
H'0080 153E		Slot 3 Timestamp L3TSP)	13-72
H'0080 1540	CAN1 Message Slot 4 Standard ID0	CAN1 Message Slot 4 Standard ID1	13-58
	(C1MSL4SID0)	(C1MSL4SID1)	13-59
H'0080 1542	CAN1 Message Slot 4 Extended ID0	CAN1 Message Slot 4 Extended ID1	13-60
	(C1MSL4EID0)	(C1MSL4EID1)	13-61
H'0080 1544	CAN1 Message Slot 4 Extended ID2	CAN1 Message Slot 4 Data Length Register	13-62
	(C1MSL4EID2)	(C1MSL4DLC)	13-63
H'0080 1546	CAN1 Message Slot 4 Data 0	CAN1 Message Slot 4 Data 1	13-64
	(C1MSL4DT0)	(C1MSL4DT1)	13-65
H'0080 1548	CAN1 Message Slot 4 Data 2	CAN1 Message Slot 4 Data 3	13-66
	(C1MSL4DT2)	(C1MSL4DT3)	13-67
H'0080 154A	CAN1 Message Slot 4 Data 4	CAN1 Message Slot 4 Data 5	13-68
	(C1MSL4DT4)	(C1MSL4DT5)	13-69
H'0080 154C	CAN1 Message Slot 4 Data 6	CAN1 Message Slot 4 Data 7	13-70
	(C1MSL4DT6)	(C1MSL4DT7)	13-71
H'0080 154E	CAN1 Message Slot 4 Timestamp (C1MSL4TSP)		13-72
H'0080 1550	CAN1 Message Slot 5 Standard ID0	CAN1 Message Slot 5 Standard ID1	13-58
	(C1MSL5SID0)	(C1MSL5SID1)	13-59
H'0080 1552	CAN1 Message Slot 5 Extended ID0	CAN1 Message Slot 5 Extended ID1	13-60
	(C1MSL5EID0)	(C1MSL5EID1)	13-61
H'0080 1554	CAN1 Message Slot 5 Extended ID2	CAN1 Message Slot 5 Data Length Register	13-62
	(C1MSL5EID2)	(C1MSL5DLC)	13-63
H'0080 1556	CAN1 Message Slot 5 Data 0	CAN1 Message Slot 5 Data 1	13-64
	(C1MSL5DT0)	(C1MSL5DT1)	13-65
H'0080 1558	CAN1 Message Slot 5 Data 2	CAN1 Message Slot 5 Data 3	13-66
	(C1MSL5DT2)	(C1MSL5DT3)	13-67
H'0080 155A	CAN1 Message Slot 5 Data 4	CAN1 Message Slot 5 Data 5	13-68
	(C1MSL5DT4)	(C1MSL5DT5)	13-69
H'0080 155C	CAN1 Message Slot 5 Data 6	CAN1 Message Slot 5 Data 7	13-70
	(C1MSL5DT6)	(C1MSL5DT7)	13-71
H'0080 155E	CAN1 Message	Slot 5 Timestamp L5TSP)	13-72

CAN Module Related Register Map (9/11)

Address	+0 address b0 b7	+1 address b8 b15	See pages
H'0080 1560	CAN1 Message Slot 6 Standard ID0	CAN1 Message Slot 6 Standard ID1	13-58
	(C1MSL6SID0)	(C1MSL6SID1)	13-59
H'0080 1562	CAN1 Message Slot 6 Extended ID0	CAN1 Message Slot 6 Extended ID1	13-60
	(C1MSL6EID0)	(C1MSL6EID1)	13-61
H'0080 1564	CAN1 Message Slot 6 Extended ID2	CAN1 Message Slot 6 Data Length Register	13-62
	(C1MSL6EID2)	(C1MSL6DLC)	13-63
H'0080 1566	CAN1 Message Slot 6 Data 0	CAN1 Message Slot 6 Data 1	13-64
	(C1MSL6DT0)	(C1MSL6DT1)	13-65
H'0080 1568	CAN1 Message Slot 6 Data 2	CAN1 Message Slot 6 Data 3	13-66
	(C1MSL6DT2)	(C1MSL6DT3)	13-67
H'0080 156A	CAN1 Message Slot 6 Data 4	CAN1 Message Slot 6 Data 5	13-68
	(C1MSL6DT4)	(C1MSL6DT5)	13-69
H'0080 156C	CAN1 Message Slot 6 Data 6	CAN1 Message Slot 6 Data 7	13-70
	(C1MSL6DT6)	(C1MSL6DT7)	13-71
H'0080 156E		Slot 6 Timestamp L6TSP)	13-72
H'0080 1570	CAN1 Message Slot 7 Standard ID0	CAN1 Message Slot 7 Standard ID1	13-58
	(C1MSL7SID0)	(C1MSL7SID1)	13-59
H'0080 1572	CAN1 Message Slot 7 Extended ID0	CAN1 Message Slot 7 Extended ID1	13-60
	(C1MSL7EID0)	(C1MSL7EID1)	13-61
H'0080 1574	CAN1 Message Slot 7 Extended ID2	CAN1 Message Slot 7 Data Length Register	13-62
	(C1MSL7EID2)	(C1MSL7DLC)	13-63
H'0080 1576	CAN1 Message Slot 7 Data 0	CAN1 Message Slot 7 Data 1	13-64
	(C1MSL7DT0)	(C1MSL7DT1)	13-65
H'0080 1578	CAN1 Message Slot 7 Data 2	CAN1 Message Slot 7 Data 3	13-66
	(C1MSL7DT2)	(C1MSL7DT3)	13-67
H'0080 157A	CAN1 Message Slot 7 Data 4	CAN1 Message Slot 7 Data 5	13-68
	(C1MSL7DT4)	(C1MSL7DT5)	13-69
H'0080 157C	CAN1 Message Slot 7 Data 6	CAN1 Message Slot 7 Data 7	13-70
	(C1MSL7DT6)	(C1MSL7DT7)	13-71
H'0080 157E	CAN1 Message Slot 7 Timestamp (C1MSL7TSP)		
H'0080 1580	CAN1 Message Slot 8 Standard ID0	CAN1 Message Slot 8 Standard ID1	13-58
	(C1MSL8SID0)	(C1MSL8SID1)	13-59
H'0080 1582	CAN1 Message Slot 8 Extended ID0	CAN1 Message Slot 8 Extended ID1	13-60
	(C1MSL8EID0)	(C1MSL8EID1)	13-61
H'0080 1584	CAN1 Message Slot 8 Extended ID2	CAN1 Message Slot 8 Data Length Register	13-62
	(C1MSL8EID2)	(C1MSL8DLC)	13-63
H'0080 1586	CAN1 Message Slot 8 Data 0	CAN1 Message Slot 8 Data 1	13-64
	(C1MSL8DT0)	(C1MSL8DT1)	13-65
H'0080 1588	CAN1 Message Slot 8 Data 2	CAN1 Message Slot 8 Data 3	13-66
	(C1MSL8DT2)	(C1MSL8DT3)	13-67
H'0080 158A	CAN1 Message Slot 8 Data 4	CAN1 Message Slot 8 Data 5	13-68
	(C1MSL8DT4)	(C1MSL8DT5)	13-69
H'0080 158C	CAN1 Message Slot 8 Data 6	CAN1 Message Slot 8 Data 7	13-70
	(C1MSL8DT6)	(C1MSL8DT7)	13-71
H'0080 158E	CAN1 Message Slot 8 Timestamp (C1MSL8TSP)		13-72
H'0080 1590	CAN1 Message Slot 9 Standard ID0	CAN1 Message Slot 9 Standard ID1	13-58
	(C1MSL9SID0)	(C1MSL9SID1)	13-59
H'0080 1592	CAN1 Message Slot 9 Extended ID0	CAN1 Message Slot 9 Extended ID1	13-60
	(C1MSL9EID0)	(C1MSL9EID1)	13-61
H'0080 1594	CAN1 Message Slot 9 Extended ID2	CAN1 Message Slot 9 Data Length Register	13-62
	(C1MSL9EID2)	(C1MSL9DLC)	13-63
H'0080 1596	CAN1 Message Slot 9 Data 0	CAN1 Message Slot 9 Data 1	13-64
	(C1MSL9DT0)	(C1MSL9DT1)	13-65
H'0080 1598	CAN1 Message Slot 9 Data 2	CAN1 Message Slot 9 Data 3	13-66
	(C1MSL9DT2)	(C1MSL9DT3)	13-67
H'0080 159A	CAN1 Message Slot 9 Data 4	CAN1 Message Slot 9 Data 5	13-68
	(C1MSL9DT4)	(C1MSL9DT5)	13-69
H'0080 159C	CAN1 Message Slot 9 Data 6	CAN1 Message Slot 9 Data 7	13-70
	(C1MSL9DT6)	(C1MSL9DT7)	13-71
H'0080 159E	CAN1 Message	Slot 9 Timestamp L9TSP)	13-72

CAN Module Related Register Map (10/11)

Address	+0 address	+1 address b8 b15	See pages
H'0080 15A0	CAN1 Message Slot 10 Standard ID0	CAN1 Message Slot 10 Standard ID1	13-58
	(C1MSL10SID0)	(C1MSL10SID1)	13-59
H'0080 15A2	CAN1 Message Slot 10 Extended ID0	CAN1 Message Slot 10 Extended ID1	13-60
	(C1MSL10EID0)	(C1MSL10EID1)	13-61
H'0080 15A4	CAN1 Message Slot 10 Extended ID2	CAN1 Message Slot 10 Data Length Register	13-62
	(C1MSL10EID2)	(C1MSL10DLC)	13-63
H'0080 15A6	CAN1 Message Slot 10 Data 0	CAN1 Message Slot 10 Data 1	13-64
	(C1MSL10DT0)	(C1MSL10DT1)	13-65
H'0080 15A8	CAN1 Message Slot 10 Data 2	CAN1 Message Slot 10 Data 3	13-66
	(C1MSL10DT2)	(C1MSL10DT3)	13-67
H'0080 15AA	CAN1 Message Slot 10 Data 4	CAN1 Message Slot 10 Data 5	13-68
	(C1MSL10DT4)	(C1MSL10DT5)	13-69
H'0080 15AC	CAN1 Message Slot 10 Data 6	CAN1 Message Slot 10 Data 7	13-70
	(C1MSL10DT6)	(C1MSL10DT7)	13-71
H'0080 15AE		Slot 10 Timestamp _10TSP)	13-72
H'0080 15B0	CAN1 Message Slot 11 Standard ID0	CAN1 Message Slot 11 Standard ID1	13-58
	(C1MSL11SID0)	(C1MSL11SID1)	13-59
H'0080 15B2	CAN1 Message Slot 11 Extended ID0	CAN1 Message Slot 11 Extended ID1	13-60
	(C1MSL11EID0)	(C1MSL11EID1)	13-61
H'0080 15B4	CAN1 Message Slot 11 Extended ID2	CAN1 Message Slot 11 Data Length Register	13-62
	(C1MSL11EID2)	(C1MSL11DLC)	13-63
H'0080 15B6	CAN1 Message Slot 11 Data 0	CAN1 Message Slot 11 Data 1	13-64
	(C1MSL11DT0)	(C1MSL11DT1)	13-65
H'0080 15B8	CAN1 Message Slot 11 Data 2	CAN1 Message Slot 11 Data 3	13-66
	(C1MSL11DT2)	(C1MSL11DT3)	13-67
H'0080 15BA	CAN1 Message Slot 11 Data 4	CAN1 Message Slot 11 Data 5	13-68
	(C1MSL11DT4)	(C1MSL11DT5)	13-69
H'0080 15BC	CAN1 Message Slot 11 Data 6	CAN1 Message Slot 11 Data 7	13-70
	(C1MSL11DT6)	(C1MSL11DT7)	13-71
H'0080 15BE		lot 11 Timestamp _11TSP)	13-72
H'0080 15C0	CAN1 Message Slot 12 Standard ID0	CAN1 Message Slot 12 Standard ID1	13-58
	(C1MSL12SID0)	(C1MSL12SID1)	13-59
H'0080 15C2	CAN1 Message Slot 12 Extended ID0	CAN1 Message Slot 12 Extended ID1	13-60
	(C1MSL12EID0)	(C1MSL12EID1)	13-61
H'0080 15C4	CAN1 Message Slot 12 Extended ID2	CAN1 Message Slot 12 Data Length Register	13-62
	(C1MSL12EID2)	(C1MSL12DLC)	13-63
H'0080 15C6	CAN1 Message Slot 12 Data 0	CAN1 Message Slot 12 Data 1	13-64
	(C1MSL12DT0)	(C1MSL12DT1)	13-65
H'0080 15C8	CAN1 Message Slot 12 Data 2	CAN1 Message Slot 12 Data 3	13-66
	(C1MSL12DT2)	(C1MSL12DT3)	13-67
H'0080 15CA	CAN1 Message Slot 12 Data 4	CAN1 Message Slot 12 Data 5	13-68
	(C1MSL12DT4)	(C1MSL12DT5)	13-69
H'0080 15CC	CAN1 Message Slot 12 Data 6	CAN1 Message Slot 12 Data 7	13-70
	(C1MSL12DT6)	(C1MSL12DT7)	13-71
H'0080 15CE		Slot 12 Timestamp _12TSP)	13-72
H'0080 15D0	CAN1 Message Slot 13 Standard ID0	CAN1 Message Slot 13 Standard ID1	13-58
	(C1MSL13SID0)	(C1MSL13SID1)	13-59
H'0080 15D2	CAN1 Message Slot 13 Extended ID0	CAN1 Message Slot 13 Extended ID1	13-60
	(C1MSL13EID0)	(C1MSL13EID1)	13-61
H'0080 15D4	CAN1 Message Slot 13 Extended ID2	CAN1 Message Slot 13 Data Length Register	13-62
	(C1MSL13EID2)	(C1MSL13DLC)	13-63
H'0080 15D6	CAN1 Message Slot 13 Data 0	CAN1 Message Slot 13 Data 1	13-64
	(C1MSL13DT0)	(C1MSL13DT1)	13-65
H'0080 15D8	CAN1 Message Slot 13 Data 2	CAN1 Message Slot 13 Data 3	13-66
	(C1MSL13DT2)	(C1MSL13DT3)	13-67
H'0080 15DA	CAN1 Message Slot 13 Data 4	CAN1 Message Slot 13 Data 5	13-68
	(C1MSL13DT4)	(C1MSL13DT5)	13-69
H'0080 15DC	CAN1 Message Slot 13 Data 6	CAN1 Message Slot 13 Data 7	13-70
	(C1MSL13DT6)	(C1MSL13DT7)	13-71
H'0080 15DE		Slot 13 Timestamp _13TSP)	13-72

CAN Module Related Register Map (11/11)

Address	+0 address	+1 address b8 b15	See pages
H'0080 15E0	b0 b7 CAN1 Message Slot 14 Standard ID0 (C1MSL14SID0)	CAN1 Message Slot 14 Standard ID1 (C1MSL14SID1)	13-58 13-59
H'0080 15E2	CAN1 Message Slot 14 Extended ID0	CAN1 Message Slot 14 Extended ID1	13-60
	(C1MSL14EID0)	(C1MSL14EID1)	13-61
H'0080 15E4	CAN1 Message Slot 14 Extended ID2	CAN1 Message Slot 14 Data Length Register	13-62
	(C1MSL14EID2)	(C1MSL14DLC)	13-63
H'0080 15E6	CAN1 Message Slot 14 Data 0	CAN1 Message Slot 14 Data 1	13-64
	(C1MSL14DT0)	(C1MSL14DT1)	13-65
H'0080 15E8	CAN1 Message Slot 14 Data 2	CAN1 Message Slot 14 Data 3	13-66
	(C1MSL14DT2)	(C1MSL14DT3)	13-67
H'0080 15EA	CAN1 Message Slot 14 Data 4	CAN1 Message Slot 14 Data 5	13-68
	(C1MSL14DT4)	(C1MSL14DT5)	13-69
H'0080 15EC	CAN1 Message Slot 14 Data 6	CAN1 Message Slot 14 Data 7	13-70
	(C1MSL14DT6)	(C1MSL14DT7)	13-71
H'0080 15EE	CAN1 Message S (C1MSL		13-72
H'0080 15F0	CAN1 Message Slot 15 Standard ID0	CAN1 Message Slot 15 Standard ID1	13-58
	(C1MSL15SID0)	(C1MSL15SID1)	13-59
H'0080 15F2	CAN1 Message Slot 15 Extended ID0	CAN1 Message Slot 15 Extended ID1	13-60
	(C1MSL15EID0)	(C1MSL15EID1)	13-61
H'0080 15F4	CAN1 Message Slot 15 Extended ID2	CAN1 Message Slot 15 Data Length Register	13-62
	(C1MSL15EID2)	(C1MSL15DLC)	13-63
H'0080 15F6	CAN1 Message Slot 15 Data 0	CAN1 Message Slot 15 Data 1	13-64
	(C1MSL15DT0)	(C1MSL15DT1)	13-65
H'0080 15F8	CAN1 Message Slot 15 Data 2	CAN1 Message Slot 15 Data 3	13-66
	(C1MSL15DT2)	(C1MSL15DT3)	13-67
H'0080 15FA	CAN1 Message Slot 15 Data 4	CAN1 Message Slot 15 Data 5	13-68
	(C1MSL15DT4)	(C1MSL15DT5)	13-69
H'0080 15FC	CAN1 Message Slot 15 Data 6	CAN1 Message Slot 15 Data 7	13-70
	(C1MSL15DT6)	(C1MSL15DT7)	13-71
H'0080 15FE	CAN1 Message S (C1MSL		13-72
I	(Use inhib	ited area)	
H'0080 3FFE	(Use inhib	ited area)	

13.2.1 CAN Control Registers

				9	`		CNT) CNT)													0 1000 0 1400	
b0		1		2		3	4	5	6	7	8		9		10	11	12	13	14	b15	
							RBO	TSR	٦	SP						FRST	BCM		LBM	RST	
0	1	0	1	0	1	0	0	0	0	1 0	0	1	0	1	0	1	0	0	0	1	

<Upon exiting reset: H'0011>

b	Bit Name	Function	R	W
0–3	No function assigned. Fix to "0".		0	0
4	RBO	0: Enable normal operation	R(I	Note 1
	Return bus off bit	1: Request clearing of error counter		
5	TSR	0: Enable count operation	R(I	Note 1
	Timestamp counter reset bit	1: Initialize count (to H'0000)		
6–7	TSP	00: Select CAN bus bit clock	R	W
	Timestamp prescaler bit	01: Select CAN bus bit clock divided by 2		
		10: Select CAN bus bit clock divided by 3		
		11: Select CAN bus bit clock divided by 4		
8-10	No function assigned. Fix to "0".		0	0
11	FRST	0: Negate reset	R	W
	Forcible reset bit	1: Forcibly reset		
12	BCM	0: Disable BasicCAN mode	R	W
	BasicCAN mode bit	1: BasicCAN mode		
13	No function assigned. Fix to "0".		0	0
14	LBM	0: Disable loopback function	R	W
	Loopback mode bit	1: Enable loopback function		
15	RST	0: Negate reset	R	W
	CAN reset bit	1: Request reset		

Note 1: Only writing "1" is effective. Automatically cleared to "0" in hardware.

(1) RBO (Return Bus Off) bit (Bit 4)

Setting this bit to "1" clears the CAN Receive Error Count Register (CANnREC) and CAN Transmit Error Count Register (CANnTEC) to H'00 and forcibly places the CAN module into an error active state. This bit is cleared when the CAN module goes to an error active state.

Note: • Communication becomes possible when 11 consecutive recessive bits are detected on the CAN bus after clearing the error counters.

(2) TSR (Timestamp Counter Reset) bit (Bit 5)

Setting this bit to "1" clears the value of the CAN Timestamp Count Register (CANnTSTMP) to H'0000. This bit is cleared after the value of the CAN Timestamp Count Register (CANnTSTMP) is cleared to H'0000.

(3) TSP (Timestamp Prescaler) bits (Bits 6–7)

These bits select the count clock source for the timestamp counter.

Note: • Do not change settings of the TSP bits while CAN is operating (CAN Status Register CRS bit = "0").

(4) FRST (Forcible Reset) bit (Bit 11)

When the FRST bit is set to "1", the CAN module is separated from the CAN bus and the protocol control unit is reset regardless of whether the CAN module currently is communicating. Up to 5 BCLK periods are required before the protocol control unit is reset after setting the FRST bit.

Notes: • In order for CAN communication to start, the FRST and RST bits must be cleared to "0".

- If the FRST bit is set to "1" during communication, the CTX pin output goes high immediately after that. Therefore, setting the FRST bit to "1" while sending CAN frame may cause a CAN bus error.
- The CAN Message Slot Control Register's transmit/receive requests are not cleared for reasons that the FRST or RST bits are set.
- When the protocol control unit is reset by setting the FRST bit to "1", the CAN Timestamp Count and CAN Transmit/Receive Error Count Registers are initialized to "0".

(5) BCM (BasicCAN Mode) bit (Bit 12)

By setting this bit to "1", the CAN module can be operated in BasicCAN mode.

Operation during BasicCAN mode

During BasicCAN mode, two local slots—slots 14 and 15—are used as dual buffers, and the received frames with matching ID are stored alternately in slots 14 and 15 by acceptance filtering. Used for this acceptance filtering when slot 14 is active (next received frame to be stored in slot 14) are the ID set in slot 14 and local mask A, and those when slot 15 is active are the ID set in slot 15 and local mask B. Two types of frames—data frame and remote frame—can be received in this mode. By setting the same ID and the same mask register value for the two slots, the possibility of loosing messages when, for example, receiving frames which have many IDs may be reduced.

• Procedure for entering BasicCAN mode

Follow the procedure below during initialization:

- 1) Set the ID for slots 14 and 15 and the local mask registers A and B. (We recommend setting the same value.)
- 2) Set the frame types to be handled by slots 14 and 15 (standard or extended) in the CAN Extended ID Register. (We recommend setting the same type.)
- 3) Set the Message Slot Control Registers for slots 14 and 15 for data frame reception.
- 4) Set the BCM bit to "1".

Notes: • Do not change settings of the BCM bit while CAN is operating (CAN Status Register CRS bit = "0").

- The first slot that is active after clearing the RST bit is slot 14.
- Even during BasicCAN mode, slots 0 to 13 can be used the same way as in normal operation.

(6) LBM (Loopback Mode) bit (Bit 14)

When the LBM bit is set to "1", if a receive slot exists whose ID matches that of the frame sent by the CAN module itself, then the frame can be received.

Notes: • ACK is not returned for the transmit frame.

• Do not change settings of the LBM bit while CAN is operating (CAN Status Register CRS bit = "0").

(7) RST (CAN Reset) bit (Bit 15)

When the RST bit is cleared to "0", the CAN module is connected to the CAN bus and becomes ready to communicate after detecting 11 consecutive recessive bits. Also, the CAN Timestamp Count Register thereby starts counting. When the RST bit is set to "1", the bus will enter an idle state after sending frames from the slots which have transmit requests set by that time, then the protocol control unit is reset and the CAN module is disconnected from the CAN bus. Frames received during this time are processed normally.

- Notes: It is inhibited to set a new transmit request until the CAN Status Register CRS bit is set to "1" and the protocol control unit is reset after setting the RST bit to "1".
 - When the protocol control unit is reset by setting the RST bit to "1", the CAN Timestamp Count and CAN Transmit/Receive Error Count Registers are initialized to "0".
 - In order for CAN communication to start, the FRST and RST bits must be cleared to "0".

13.2.2 CAN Status Registers

CAN0 Status Register (CAN0STAT) CAN1 Status Register (CAN1STAT)

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
	BOS	EPS	CBS	BCS		LBS	CRS	RSB	TSB	RSC	TSC		M	SN	
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

b Bit Name Function R W 0 No function assigned. Fix to "0". 0 0 1 BOS 0: Not bus off R Bus off status bit 1: Bus off state EPS 2 0: Not error passive R Error passive status bit 1: Error passive state 3 CBS 0: No error occurred R CAN bus error bit 1: Error occurred BCS 4 0: Normal mode R BasicCAN status bit 1: BasicCAN mode 5 No function assigned. Fix to "0". 0 0 LBS 6 0: Normal mode R Loopback status bit 1: Loopback mode 7 CRS 0: Operating R CAN reset status bit 1: Reset 8 RSB 0: Not receiving R Receive status bit 1: Receiving 9 TSB 0: Not sending R Transmit status bit 1: Sending RSC 10 0: Reception not completed R Reception completed status bit 1: Reception completed 11 TSC 0: Transmission not completed R Transmission completed status bit 1: Transmission completed 12-15 MSN Number of the message slot which has finished R Message slot number bit sending or receiving 0000: Slot 0 0001: Slot 1 0010: Slot 2 0011: Slot 3 0100: Slot 4 0101: Slot 5 0110: Slot 6 0111: Slot 7 1000: Slot 8 1001: Slot 9 1010: Slot 10 1011: Slot 11 1100: Slot 12 1101: Slot 13 1110: Slot 14

<Upon exiting reset: H'0100>

<Address: H'0080 1002> <Address: H'0080 1402>

1111: Slot 15

(1) BOS (Bus Off Status) bit (Bit 1)

When BOS bit = "1", it means that the CAN module is in a bus off state.

[Set condition]

This bit is set to "1" when the transmit error count register value exceeded 255 and a bus off state is entered.

[Clear condition]

This bit is cleared when restored from the bus off state.

(2) EPS (Error Passive Status) bit (Bit 2)

When EPS bit = "1", it means that the CAN module is in an error passive state.

[Set condition]

This bit is set to "1" when the transmit or receive error count register value exceeded 127 and an error passive state is entered.

[Clear condition]

This bit is cleared when restored from the error passive state.

(3) CBS (CAN Bus Error) bit (Bit 3)

[Set condition]

This bit is set to "1" when an error is detected on the CAN bus.

[Clear condition]

This bit is cleared when the CAN module finished sending or receiving normally.

(4) BCS (BasicCAN Status) bit (Bit 4)

When BCS bit = "1", it means that the CAN module is operating in BasicCAN mode.

[Set condition]

This bit is set to "1" when the CAN module is operating in BasicCAN mode. BasicCAN mode is useful when the following conditions are met:

- CAN Control Register BCM bit = "1"
- Slots 14 and 15 both are set for data frame reception

[Clear condition]

This bit is cleared by clearing the BCM bit to "0".

(5) LBS (Loopback Status) bit (Bit 6)

When LBS bit = "1", it means that the CAN module is operating in loopback mode.

[Set condition]

This bit is set to "1" by setting the CAN Control Register LBM (loopback mode) bit to "1".

[Clear condition]

This bit is cleared by clearing the LBM bit to "0".

(6) CRS (CAN Reset Status) bit (Bit 7)

When CRS bit = "1", it means that the protocol control unit is in a reset state.

[Set condition]

This bit is set to "1" when the CAN protocol control unit is in a reset state.

[Clear condition]

This bit is cleared by clearing the CAN Control Register RST (CAN reset) and FRST bits to "0".

(7) RSB (Receive Status) bit (Bit 8)

[Set condition]

This bit is set to "1" when the CAN module is operating as a receive node.

[Clear condition]

This bit is cleared when the CAN module starts operating as a transmit node or enters a bus idle state.

(8) TSB (Transmit Status) bit (Bit 9)

[Set condition]

This bit is set to "1" when the CAN module is operating as a transmit node.

[Clear condition]

This bit is cleared when the CAN module starts operating as a receive node or enters a bus idle state.

(9) RSC (Reception Completed Status) bit (Bit 10)

[Set condition]

This bit is set to "1" when the CAN module has finished receiving normally (regardless of whether there is any slot that meets receive conditions).

[Clear condition]

This bit is cleared when the CAN module has finished sending normally.

(10) TSC (Transmission Completed Status) bit (Bit 11)

[Set condition]

This bit is set to "1" when the CAN module has finished sending normally.

[Clear condition]

This bit is cleared when the CAN module has finished receiving normally.

(11) MSN (Message Slot Number) bits (Bits 12–15)

These bits indicate the relevant slot number when the CAN module has finished sending or finished storing the received data. These bits cannot be cleared to "0" in software.

Note: • When CAN module receives the frame that is transmitted by the CAN module itself during loopback mode, the MSN bits indicate the transmit slot number.

13.2.3 CAN Extended ID Registers

CAN0 Extended ID Register (CAN0EXTID) CAN1 Extended ID Register (CAN1EXTID)

 b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
IDE0	IDE1	IDE2	IDE3	IDE4	IDE5	IDE6	IDE7	IDE8	IDE9	IDE10	IDE11	IDE12	IDE13	IDE14	IDE15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

<Upon exiting reset: H'0000>

<Address: H'0080 1004>

<Address: H'0080 1404>

b	Bit Name	Function	R	W
0	IDE0 (slot 0 extended format bit)	0: Standard ID format	R	W
1	IDE1 (slot 1 extended format bit)	1: Extended ID format		
2	IDE2 (slot 2 extended format bit)			
3	IDE3 (slot 3 extended format bit)			
4	IDE4 (slot 4 extended format bit)			
5	IDE5 (slot 5 extended format bit)			
6	IDE6 (slot 6 extended format bit)			
7	IDE7 (slot 7 extended format bit)			
8	IDE8 (slot 8 extended format bit)			
9	IDE9 (slot 9 extended format bit)			
10	IDE10 (slot 10 extended format bit)			
11	IDE11 (slot 11 extended format bit)			
12	IDE12 (slot 12 extended format bit)			
13	IDE13 (slot 13 extended format bit)			
14	IDE14 (slot 14 extended format bit)			
15	IDE15 (slot 15 extended format bit)			

This register selects the format of frames handled by message slots corresponding to the respective bits in the register. Setting any bit in this register to "0" selects the standard ID format, and setting any bit in this register to "1" selects the extended ID format.

Note: • Settings of any bit in this register can only be changed when the corresponding slot does not have transmit or receive requests set.

0 1 0 1 0

0

0

13.2.4 CAN Configuration Registers

С	AN0 Co	nfigura	ation R	egister	(CAN0	CONF)							<a>	ddress	: H'00	30 1006	>
С	AN1 Co	nfigura	ation R	egister	(CAN1	CONF)							<a>	ddress	: H'00	30 1406	>
b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15																	
	SJ	W		PH2			PH1			PRB		SAM					

b	Bit Name	Function	R	W
0–1	SJW	00: SJW = 1Tg	R	W
	reSynchronization Jump Width setting bit	01: SJW = 2Tq		
	, , , ,	10: SJW = 3Tq		
		11: SJW = 4Tq		
2–4	PH2	000: Phase Segment2 = 1Tq	R	W
	Phase Segment2 setting bit	001: Phase Segment2 = 2Tq		
		010: Phase Segment2 = 3Tq		
		011: Phase Segment2 = 4Tq		
		100: Phase Segment2 = 5Tq		
		101: Phase Segment2 = 6Tq		
		110: Phase Segment2 = 7Tq		
		111: Phase Segment2 = 8Tq		
5–7	PH1	000: Phase Segment1 = 1Tq	R	W
	Phase Segment1 setting bit	001: Phase Segment1 = 2Tq		
		010: Phase Segment1 = 3Tq		
		011: Phase Segment1 = 4Tq		
		100: Phase Segment1 = 5Tq		
		101: Phase Segment1 = 6Tq		
		110: Phase Segment1 = 7Tq		
		111: Phase Segment1 = 8Tq		
8–10	PRB	000: Propagation Segment = 1Tq	R	W
	Propagation Segment setting bit	001: Propagation Segment = 2Tq		
		010: Propagation Segment = 3Tq		
		011: Propagation Segment = 4Tq		
		100: Propagation Segment = 5Tq		
		101: Propagation Segment = 6Tq		
		110: Propagation Segment = 7Tq		
		111: Propagation Segment = 8Tq		
11	SAM	0: Sampled one time	R	W
	Sampling count select bit	1: Sampled three times		
12–15	No function assigned. Fix to "0".		0	0

Notes: • Do not change settings of the CAN Configuration Register (CAN0CONF or CAN1CONF) during CAN operation (CAN Status Register CRS bit = "0").

• When setting the bits in this register, make sure the conditions given below are met:

• Number of Tq's for one bit: 8-25 Tq's

• SJW ≤ min (Phase Segment1, Phase Segment2)

• Phase Segment2 = max (Phase Segment1, IPT) where IPT = 1 for the internal CAN modules of the 32176

min() is the function that returns the smaller of two values; max() is the function that returns the maximum value.

(1) SJW bits (Bits 0-1)

These bits set the reSynchronization Jump Width.

(2) PH2 bits (Bits 2-4)

These bits set the width of Phase Segment2.

(3) PH1 bits (Bits 5-7)

These bits set the width of Phase Segment1.

(4) PRB bits (Bits 8–10)

These bits set the width of Propagation Segment.

(5) SAM bit (Bit 11)

This bit sets the number of times each bit is sampled. When SAM = "0", the value sampled at the end of Phase Segment1 is assumed to be the value of the bit. When SAM = "1", the value of the bit is determined by a majority circuit from three sampled values, each sampled 2 Tq's before, 1 Tq before, and at the end of Phase Segment1.

Baud Rate	BRP Set Value	Tq Period (ns)	No. of Tq's in 1 Bit	PROP + PH1	PH2	Sampling Point
1M bps	1	50	20	13	6	70%
	3	100	10	7	2	80%
	3	100	10	6	3	70%
	3	100	10	5	4	60%
	4	125	8	5	2	75%
	4	125	8	4	3	63%
500K bps	4	125	16	13	2	88%
	4	125	16	12	3	81%
	4	125	16	11	4	75%
	7	200	10	7	2	80%
	7	200	10	6	3	70%
	7	200	10	5	4	60%
	9	250	8	5	2	75%
	9	250	8	4	3	63%

Table 13.2.1 Typical Settings of Bit Timing when CPU Clock = 40 MHz

Table 13.2.2 Typical Settings of Bit Timing when CPU Clock = 32 MHz

	JI	· J				
Baud Rate	BRP Set Value	Tq Period (ns)	No. of Tq's in 1 Bit	PROP + PH1	PH2	Sampling Point
1M bps	1	62.5	16	10	5	69%
	3	125	8	5	2	75%
	3	125	8	4	3	63%
500K bps	3	125	16	13	2	88%
	3	125	16	11	4	75%
	7	250	8	5	2	75%
	7	250	8	4	3	63%

13.2.5 CAN Timestamp Count Registers

		imesta imesta					0	`																				80 10 80 14	
	b0	1		2		3		4		5		6	7		8		9		10		11		12		13		14	b15	
Γ	CANTSTMP																												
	0	0		0		0		0		0		0	0		0		0		0		0		0		0		0	0	
																							<ل	Jpor	n exi	ting	, rese	et: H'00	000>
b		Bit N	ame											F	unc	tion												R	W
0-1	5	CAN	тѕт	MP										1	6-bi	t tim	esta	amp	cou	nt v	alue	;						R	_

The CAN module contains a 16-bit up-count register. The count period can be selected from the CAN bus bit period divided by 1, 2, 3 or 4 by setting the CAN Control Register (CANnCNT) TSP (Timestamp Prescaler) bits.

When the CAN module finishes sending or receiving, it captures the count register value and stores the value in a message slot. The counter is made to start counting by clearing the CAN Control Register (CANnCNT) RST bit to "0".

- Notes: The CAN protocol control unit can be reset and the counter initialized to H'0000 by setting the CAN Control Register (CANnCNT) RST (CAN Reset) bit to "1". Or the counter can be initialized to H'0000 while the CAN module remains operating by setting the TSR (Timestamp Counter Reset) bit to "1".
 - If any slot with the matching ID exists during loopback mode, the CAN module stores the timestamp value in that slot when it finished receiving. (No timestamp values are stored this way when the CAN module finished sending.)
 - The count period of the CAN Timestamp Count Register varies with the CAN resynchronization function.

13.2.6 CAN Error Count Registers

CAN0 Receive Error Count Register (CAN0REC) CAN1 Receive Error Count Register (CAN1REC)

b0		1		2		3		4		5		6		b7	_
	REC														
0		0		0		0		0		0		0		0	
															_

<Address: H'0080 100A> <Address: H'0080 140A>

		<upon e<="" th=""><th>xiting reset: H'</th><th>'00></th></upon>	xiting reset: H'	'00>
b	Bit Name	Function	R	W
0–7	REC	Receive error count value	R	-

During an error active/error passive state, a receive error count value is stored in this register.

The count is decremented when frames are received normally or incremented when an error occurred. If the CAN module finished receiving normally when REC \geq 128 (error passive), REC is set to 127. During a bus off state, an undefined value is stored in this register. The count is reset to H'00 upon returning to an error active state.

CAN0 Transmit Error Count Register (CAN0TEC) CAN1 Transmit Error Count Register (CAN1TEC)

b8	9	10	11	12	13	14	b15						
	TEC												
0	0	0	0	0	0	0	0						

<Address: H'0080 100B> <Address: H'0080 140B>

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
8–15	TEC	Transmit error count value	R	_

During an error active/error passive state, a transmit error count value is stored in this register.

The count is decremented when frames are transmitted normally or incremented when an error occurred. During a bus off state, an undefined value is stored in this register. The count is reset to H'00 upon returning to an error active state.

13.2.7 CAN Baud Rate Prescalers

CAN0 Baud Rate Prescaler (CAN0BRP) CAN1 Baud Rate Prescaler (CAN1BRP)

> b0 1 2 3 4 5 6 b7 BRP 0 0 0 0 0 0 0 0 0 1

<Address: H'0080 1016> <Address: H'0080 1416>

		<upon exiting="" re<="" th=""><th>set: H</th><th>'01></th></upon>	set: H	'01>
b	Bit Name	Function	R	W
0–7	BRP	Baud rate prescaler value	R	W

This register sets the Tq period of CAN. The CAN baud rate is determined by (Tq period × number of Tq's in one bit).

Tq period = (BRP + 1) / (CPU clock)

CAN transfer baud rate = $\frac{1}{\text{Tq period} \times \text{number of Tq's in one bit}}$

Number of Tq's in one bit = Synchronization Segment + Propagation Segment + Phase Segment 1 + Phase Segment 2

Notes: • Setting H'00 (divide by 1) is inhibited.

• Do not change settings of the CAN Baud Rate Prescaler (CANnBRP) during CAN operation (CAN Status Register CRS bit = "0").

13.2.8 CAN Interrupt Related Registers

The CAN interrupt related registers are used to control the interrupt request signals output to the Interrupt Controller by CAN.

(1) Interrupt request status bit

This status bit is used to determine whether an interrupt is requested. When an interrupt request occurs, this bit is set in hardware (cannot be set in software). The status bit is cleared by writing "0". Writing "1" has no effect; the bit retains the status it had before the write. Because this bit is unaffected by the interrupt request enable bit, it can also be used to inspect the operating status of peripheral functions. In interrupt handling, make sure that within the grouped interrupt request status, only the status bit for the interrupt request that has been serviced is cleared. If the status bit for any interrupt request that has not been serviced is cleared, the pending interrupt request is cleared simultaneously with its status bit.

(2) Interrupt request mask bit

This bit is used to disable unnecessary interrupt requests within the grouped interrupt request. Set this bit to "1" to enable interrupt requests or "0" to disable interrupt requests.

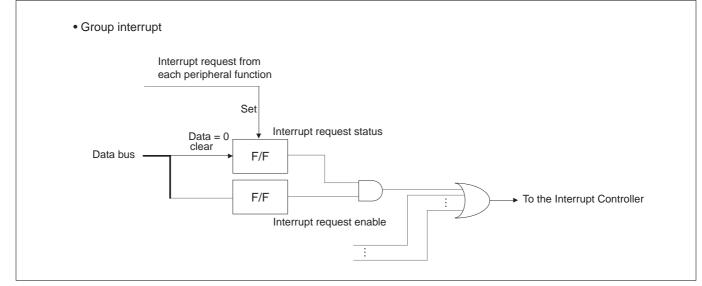
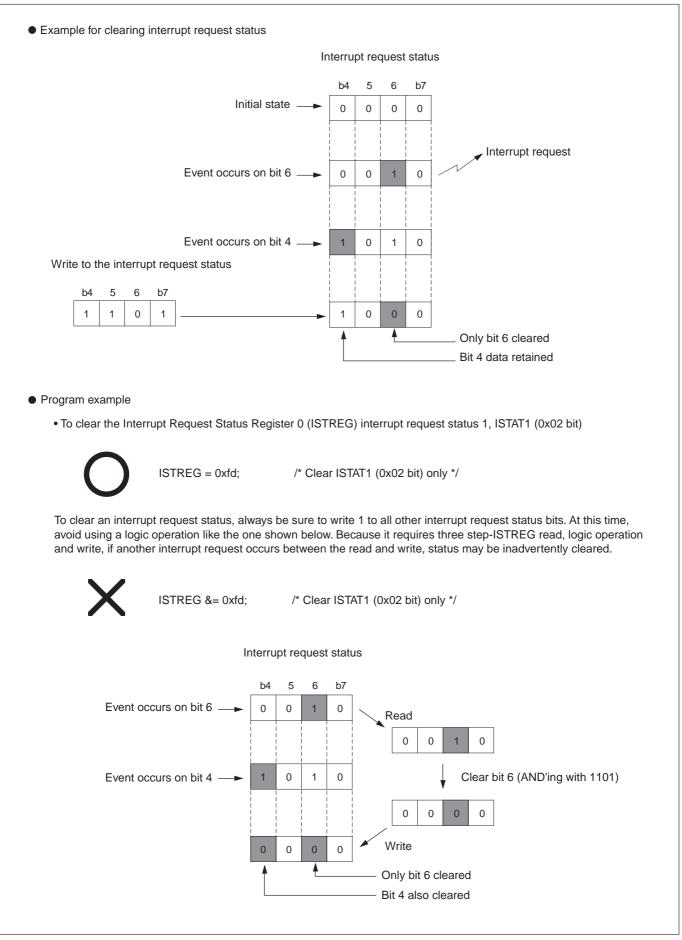



Figure 13.2.1 Interrupt Request Status and Mask Registers

Figure 13.2.2 Example for Clearing Interrupt Request Status

CAN0 Slot Interrupt Request Status Register (CAN0SLIST) CAN1 Slot Interrupt Request Status Register (CAN1SLIST)

<Address: H'0080 100C> <Address: H'0080 140C>

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
SSB0	SSB1	SSB2	SSB3	SSB4	SSB5	SSB6	SSB7	SSB8	SSB9	SSB10	SSB11	SSB12	SSB13	SSB14	SSB15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	27 N	· ·	exiting reset: H'0000>
b	Bit Name	Function	R W
0	SSB0 (slot 0 interrupt request status bit)	0: Interrupt not requested	R(Note 1
1	SSB1 (slot 1 interrupt request status bit)	1: Interrupt requested	
2	SSB2 (slot 2 interrupt request status bit)		
3	SSB3 (slot 3 interrupt request status bit)		
4	SSB4 (slot 4 interrupt request status bit)		
5	SSB5 (slot 5 interrupt request status bit)		
6	SSB6 (slot 6 interrupt request status bit)		
7	SSB7 (slot 7 interrupt request status bit)		
8	SSB8 (slot 8 interrupt request status bit)		
9	SSB9 (slot 9 interrupt request status bit)		
10	SSB10 (slot 10 interrupt request status bit)		
11	SSB11 (slot 11 interrupt request status bit)		
12	SSB12 (slot 12 interrupt request status bit)		
13	SSB13 (slot 13 interrupt request status bit)		
14	SSB14 (slot 14 interrupt request status bit)		
15	SSB15 (slot 15 interrupt request status bit)		

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the status it had before the write.

When using CAN interrupts, this register helps to know which slot requested an interrupt.

Slots set for transmission

The corresponding bit is set to "1" when the CAN module finished sending. This bit is cleared by writing "0" in software.

Slots set for reception

The corresponding bit is set to "1" when the CAN module finished receiving and finished storing the received message in the message slot. This bit is cleared by writing "0" in software.

When writing to the CAN slot interrupt request status, make sure only the bits to be cleared are set to "0" and all other bits are set to "1". Those bits that have been set to "1" are unaffected by writing in software and retain the value they had before the write.

- Notes: If the automatic response function is enabled for remote frame receive slots, the request status is set after the CAN module finished receiving a remote frame and after it finished sending a data frame.
 - For remote frame transmit slots, the request status is set after the CAN module finished sending a remote frame and after it finished receiving a data frame.
 - If the request status is set by an interrupt request at the same time it is cleared in software, the former has priority so that the request status is set.

CAN0 Slot Interrupt Request Mask Register (CAN0SLIMK) CAN1 Slot Interrupt Request Mask Register (CAN1SLIMK)

<Address: H'0080 1010> <Address: H'0080 1410>

	b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
	IRB0	IRB1	IRB2	IRB3	IRB4	IRB5	IRB6	IRB7	IRB8	IRB9	IRB10	IRB11	IRB12	IRB13	IRB14	IRB15
L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		<upon exit<="" th=""><th colspan="5">iting reset: H'0000></th></upon>	iting reset: H'0000>				
b	Bit Name	Function	R	W			
0	IRB0 (slot 0 interrupt request mask bit)	0: Mask (disable) interrupt request	R	W			
1	IRB1 (slot 1 interrupt request mask bit)	1: Enable interrupt request					
2	IRB2 (slot 2 interrupt request mask bit)						
3	IRB3 (slot 3 interrupt request mask bit)						
4	IRB4 (slot 4 interrupt request mask bit)						
5	IRB5 (slot 5 interrupt request mask bit)						
6	IRB6 (slot 6 interrupt request mask bit)						
7	IRB7 (slot 7 interrupt request mask bit)						
8	IRB8 (slot 8 interrupt request mask bit)						
9	IRB9 (slot 9 interrupt request mask bit)						
10	IRB10 (slot 10 interrupt request mask bit)						
11	IRB11 (slot 11 interrupt request mask bit)						
12	IRB12 (slot 12 interrupt request mask bit)						
13	IRB13 (slot 13 interrupt request mask bit)						
14	IRB14 (slot 14 interrupt request mask bit)						
15	IRB15 (slot 15 interrupt request mask bit)						

This register is used to enable or disable the interrupt requests that will be generated when data transmission or reception in each corresponding slot is completed. Setting IRBn (n = 0-15) to "1" enables the interrupt request to be generated when data transmission or reception in the corresponding slot is completed. The CAN Slot Interrupt Request Status Register (CANnSLIST) helps to know which slot requested the interrupt.

CAN0 Error Interrupt Request Status Register (CAN0ERIST) CAN1 Error Interrupt Request Status Register (CAN1ERIST)

2 3 5 6 b7 b0 1 4 EIS PIS OIS 0 0 1 0 0 0 0

<Address: H'0080 1014> <Address: H'0080 1414>

			<upon exiting="" h<="" reset:="" th=""><th>'00></th></upon>	'00>
b	Bit Name	Function	R	W
0–4	No function assigned. Fix to "0".		0	0
5	EIS	0: Interrupt not requested	R(I	Note 1)
	CAN bus error interrupt request status bit	1: Interrupt requested		
6	PIS			
	Error passive interrupt request status bit			
7	OIS			
	Bus off interrupt request status bit			

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the status it had before the write.

When using CAN interrupts, if the interrupt request sources are associated with errors, this register helps to know which source generated the interrupt.

(1) EIS (CAN Bus Error Interrupt Request Status) bit (Bit 5)

The EIS bit is set to "1" when a communication error is detected. This bit is cleared by writing "0" in software.

(2) PIS (Error Passive Interrupt Request Status) bit (Bit 6)

The PIS bit is set to "1" when the CAN module goes to an error passive state. This bit is cleared by writing "0" in software.

(3) OIS (Bus Off Interrupt Request Status) bit (Bit 7)

The OIS bit is set to "1" when the CAN module goes to a bus off passive state. This bit is cleared by writing "0" in software.

When writing to the CAN error interrupt request status, make sure only the bits to be cleared are set to "0" and all other bits are set to "1". Those bits that have been set to "1" are unaffected by writing in software and retain the value they had before the write.

CAN0 Error Interrupt Request Mask Register (CAN0ERIMK) CAN1 Error Interrupt Request Mask Register (CAN1ERIMK)

10 b8 9 11 12 13 14 b15 EIM PIM OIM 0 0 0 0 0 0 0 0 Т

<Address: H'0080 1015> <Address: H'0080 1415>

<Upon exiting reset: H'00>

			-1	
b	Bit Name	Function	R	W
8–12	No function assigned. Fix to "0".		0	0
13	EIM	0: Mask (disable) interrupt request	R	W
	CAN bus error interrupt request mask bit	1: Enable interrupt request		
14	PIM			
	Error passive interrupt request mask bit			
15	OIM			
	Bus off interrupt request mask bit			

(1) EIM (CAN Bus Error Interrupt Request Mask) bit (Bit 13)

The EIM bit enables or disables the interrupt requests to be generated when CAN bus errors occurred. CAN bus error interrupt requests are enabled by setting this bit to "1".

(2) PIM (Error Passive Interrupt Request Mask) bit (Bit 14)

The PIM bit enables or disables the interrupt requests to be generated when the CAN module entered an error passive state. Error passive interrupt requests are enabled by setting this bit to "1".

(3) OIM (Bus Off Interrupt Request Mask) bit (Bit 15)

The OIM bit enables or disables the interrupt requests to be generated when the CAN module entered a bus off state. Bus off interrupt requests are enabled by setting this bit to "1".

	b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15	
	SSIST0	SSIST1	SSIST2	SSIST3	SSIST4	SSIST5	SSIST6	SSIST7	SSIST8	SSIST9	SSIST10	SSIST11	SSIST12	SSIST13	SSIST14	SSIST1	5
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
													<up< td=""><td>on exitir</td><td>ng reset</td><td>: H'000</td><td>)0></td></up<>	on exitir	ng reset	: H'000)0>
b		Bit Nar	ne						Functio	n						R	W
0		SSIST	C						0: No a	rbitratic	on-lost o	r transm	it error			R(N	ote 1
		Slot 0 s	single-sł	not inter	rupt req	uest sta	tus bit		1: Arbit	ration-le	ost or tra	ansmit e	rror occ	urred			
1		SSIST	1														
		Slot 1 s	single-sł	not inter	rupt req	uest sta	tus bit										
2		SSIST	2														
		Slot 2 s	single-sł	not inter	rupt req	uest sta	tus bit										
3		SSIST															
			single-sł	not inter	rupt req	uest sta	tus bit										
4		SSIST															
_			single-sł	not inter	rupt req	uest sta	tus bit										
5		SSIST:		aat intar			tuo hit										
			single-sh	iot inter	rupt req	uest sta	IUS DII										
6		SSIST	o single-sł	not inter	runt roa	upet eta	tue hit										
7		SSIST	-		ruptiloq	0031 310											
1			, single-sł	not inter	rupt rea	uest sta	tus bit										
8		SSIST	-														
0			single-sł	not inter	rupt req	uest sta	tus bit										
9		SSIST	9														
		Slot 9 s	single-sł	not inter	rupt req	uest sta	tus bit										
10		SSIST	10														
		Slot 10	single-s	shot inte	errupt re	quest st	atus bit										
11		SSIST	11														
		Slot 11	single-	shot inte	errupt re	quest st	atus bit										
12		SSIST	12														
		Slot 12	single-	shot inte	errupt re	quest st	atus bit										
13		SSIST	13														
		Slot 13	single-s	shot inte	errupt re	quest st	atus bit										
14		SSIST															
		Slot 14	single-	shot inte	errupt re	quest st	atus bit										
15		SSIST															

CAN0 Single-Shot Interrupt Request Status Register (CAN0SSIST)

<address: H'0080 1044>

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the status it had before the write.

If transmission in any slot failed for reasons of a detection of arbitration-lost or a transmit error, the corresponding bit in this register is set to "1". The bit is cleared by writing "0" in software.

Furthermore, if the corresponding bit in the CAN single-shot interrupt request mask register has been set to "1", an interrupt request can be generated when transmission failed.

When writing to the CAN single-shot interrupt request status, make sure only the bits to be cleared are set to "0" and all other bits are set to "1". Those bits that have been set to "1" are unaffected by writing in software and retain the value they had before the write.

CAN0 Single-Shot Interrupt Request Mask Register (CAN0SSIMK)

<Address: H'0080 1048>

	b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15	
S	SIMK0	SSIMK1	SSIMK2	SSIMK3	SSIMK4	SSIMK5	SSIMK6	SSIMK7	SSIMK8	SSIMK9	SSIMK10	SSIMK11	SSIMK12	SSIMK13	SSIMK14	SSIMK	15
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
													<up< td=""><td>on exitir</td><td>ng reset</td><td>: H'00</td><td>00></td></up<>	on exitir	ng reset	: H'00	00>
C		Bit Nar	ne						Functio	n						R	W
)		SSIMK	0						0: Disa	ble inte	rrupt red	quest				R	W
		Slot 0 s	single-sl	not inter	rupt req	uest ma	sk bit		1: Enal	ole inter	rupt req	uest					
1		SSIMK	1														
		Slot 1 s	single-sl	not inter	rupt req	uest ma	sk bit										
2		SSIMK	2														
		Slot 2 s	single-sl	not inter	rupt req	uest ma	sk bit										
3		SSIMK	3														
		Slot 3 s	single-sl	not inter	rupt req	uest ma	sk bit										
4		SSIMK	4														
		Slot 4 s	single-sl	not inter	rupt req	uest ma	sk bit										
5		SSIMK	5														
		Slot 5 s	single-sl	not inter	rupt req	uest ma	sk bit										
6		SSIMK	6														
		Slot 6 s	single-sl	not inter	rupt req	uest ma	sk bit										
7		SSIMK	7														
		Slot 7 s	single-sl	not inter	rupt req	uest ma	sk bit										
В		SSIMK	8														
		Slot 8 s	single-sl	not inter	rupt req	uest ma	sk bit										
Э		SSIMK	9														
		Slot 9 s	single-sl	not inter	rupt req	uest ma	sk bit										
10		SSIMK	10														
		Slot 10	single-	shot inte	errupt re	quest m	ask bit										
11		SSIMK	11														
		Slot 11	single-	shot inte	errupt re	quest m	ask bit										
12		SSIMK	12														
		Slot 12	single-	shot inte	errupt re	quest m	ask bit										
13		SSIMK	13														
		Slot 13	single-	shot inte	errupt re	quest m	ask bit										
14		SSIMK	14														
		Slot 14	single-	shot inte	errupt re	quest m	ask bit										
15		SSIMK	15														
		Slot 15	single-	shot inte	errupt re	quest m	ask bit										

This register is used to enable or disable the interrupt requests that will be generated when transmission in each corresponding slot has failed. Setting any bit in this register to "1" enables the interrupt request to be generated when transmission in the corresponding slot (in single-shot mode only) has failed. The CAN Single-Shot Interrupt Request Status Register helps to know which slot requested the interrupt.

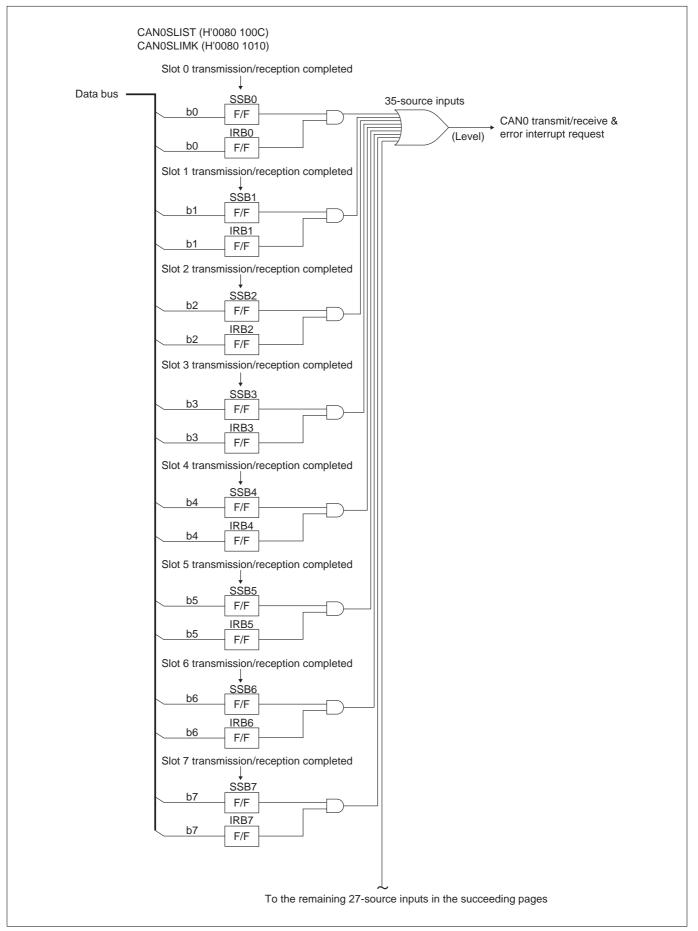


Figure 13.2.3 Block Diagram of CAN0 Transmit/Receive & Error Interrupt Requests (1/5)

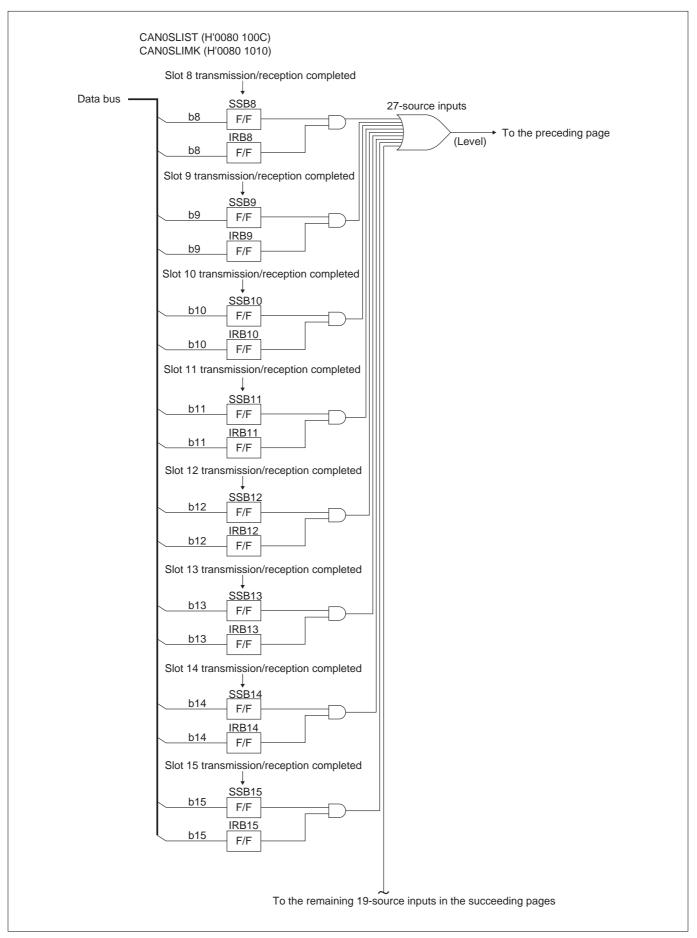


Figure 13.2.4 Block Diagram of CAN0 Transmit/Receive & Error Interrupt Requests (2/5)

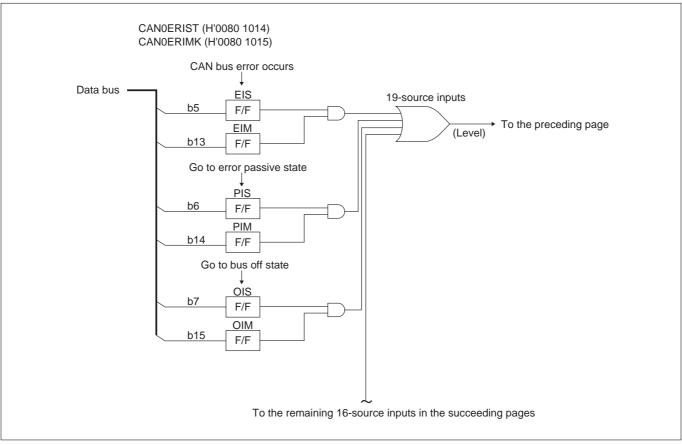


Figure 13.2.5 Block Diagram of CAN0 Transmit/Receive & Error Interrupt Requests (3/5)

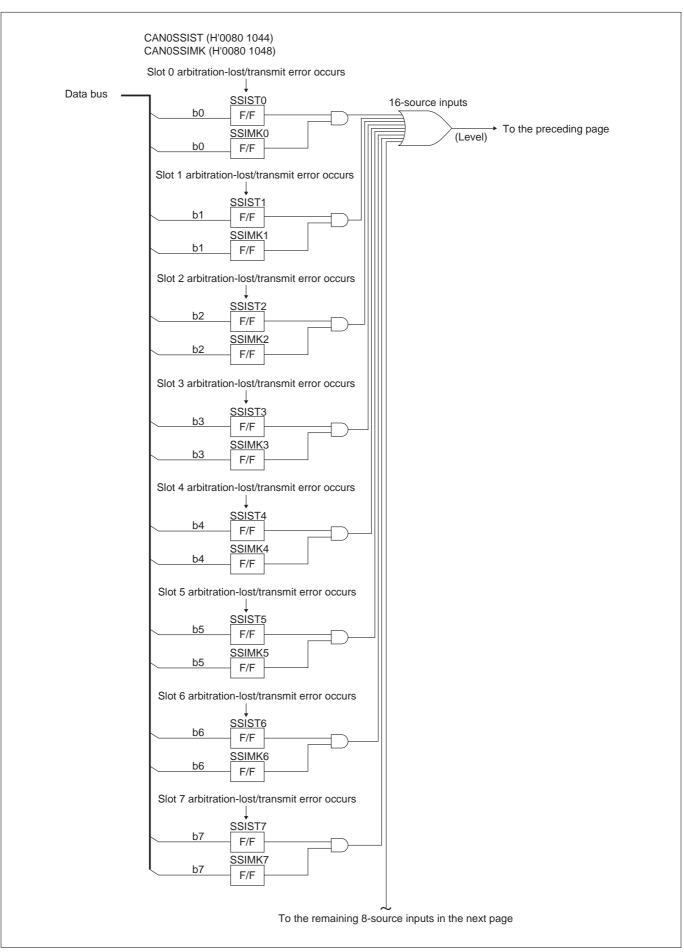


Figure 13.2.6 Block Diagram of CAN0 Transmit/Receive & Error Interrupt Requests (4/5)

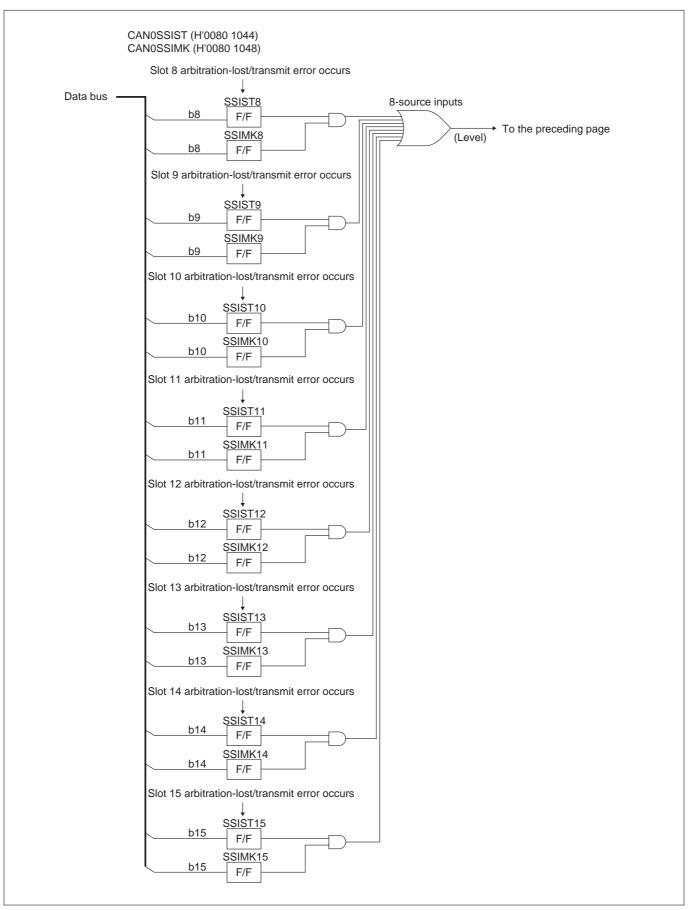


Figure 13.2.7 Block Diagram of CAN0 Transmit/Receive & Error Interrupt Requests (5/5)

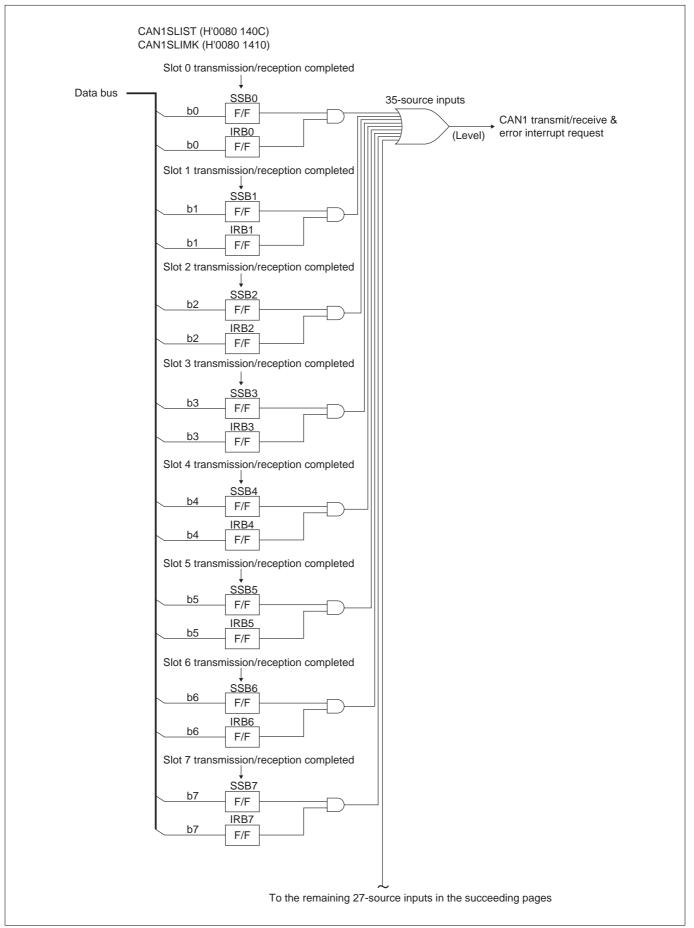


Figure 13.2.8 Block Diagram of CAN1 Transmit/Receive & Error Interrupt Requests (1/5)

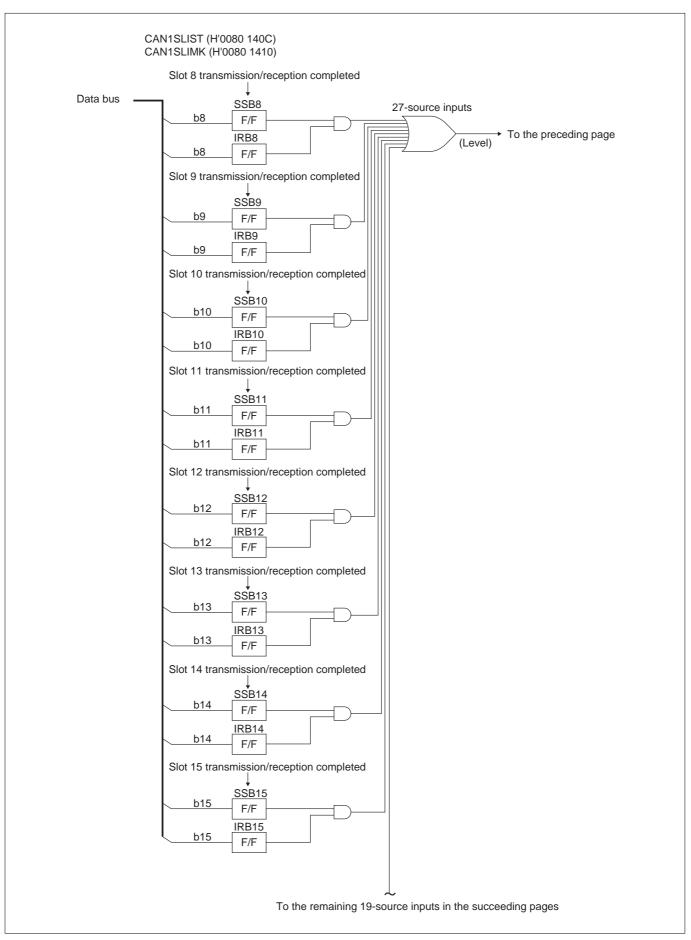


Figure 13.2.9 Block Diagram of CAN1 Transmit/Receive & Error Interrupt Requests (2/5)

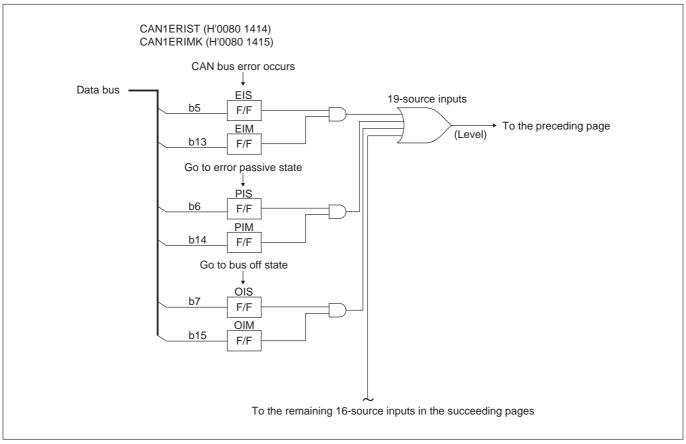
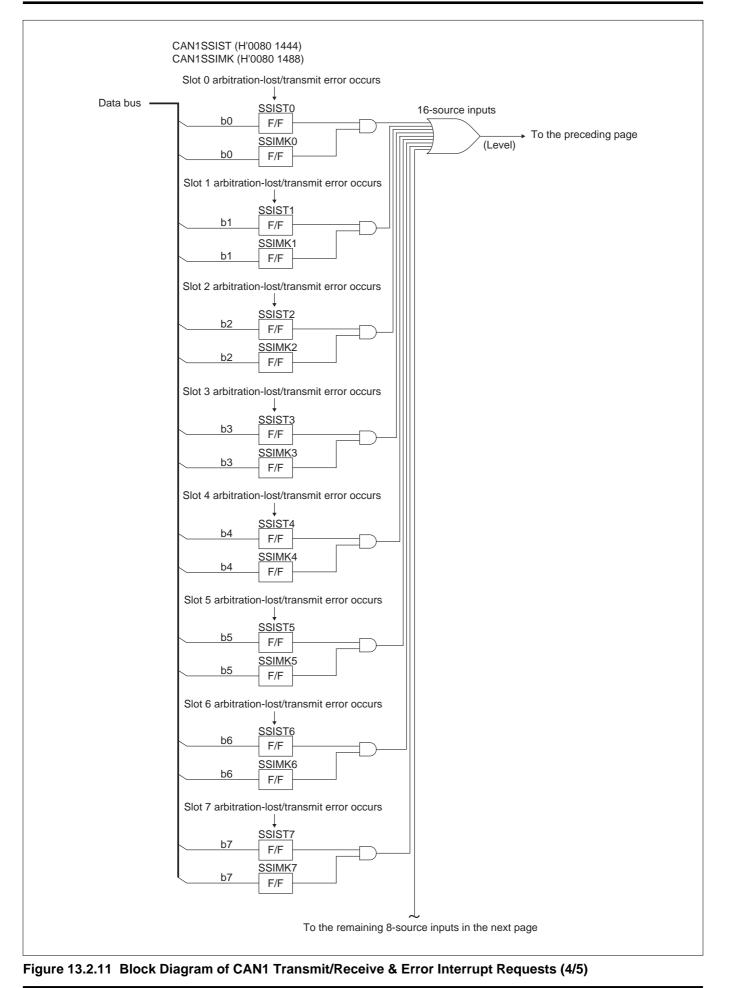



Figure 13.2.10 Block Diagram of CAN1 Transmit/Receive & Error Interrupt Requests (3/5)

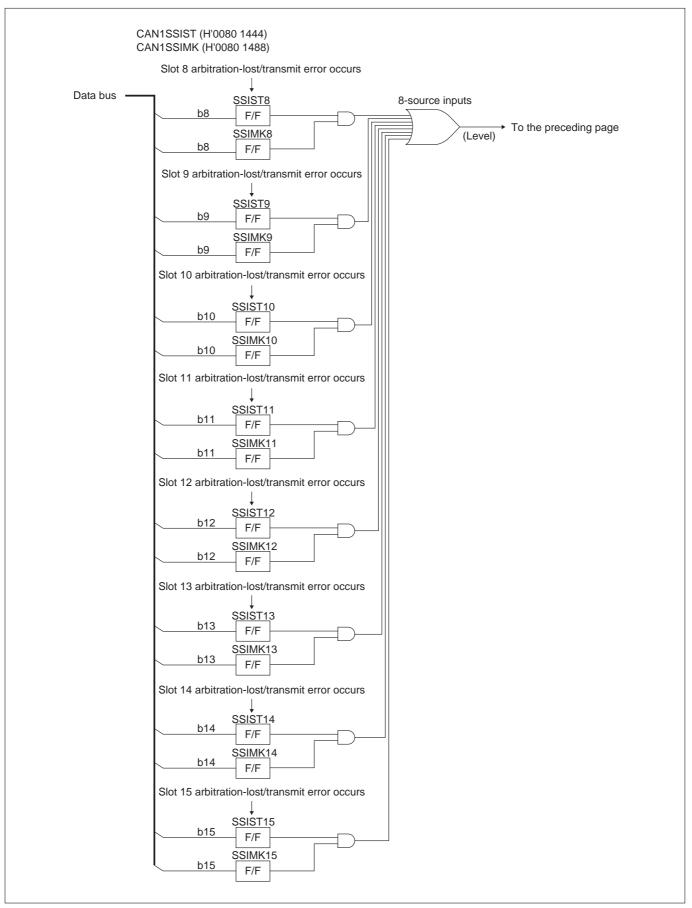


Figure 13.2.12 Block Diagram of CAN1 Transmit/Receive & Error Interrupt Requests (5/5)

13.2.9 CAN Cause of Error Registers

CAN0 Cause of Error Register (CAN0EF) CAN1 Cause of Error Register (CAN1EF)

b8	9	10	11	12	13	14	b15
TRE	RCVE	BITE0	BITE1	STFE	FORME	CRCE	ACKE
0	0	0	0	0	0	0	0

<Address: H'0080 1017> <Address: H'0080 1417>

		<upon exitir<="" th=""><th>ng reset: H'00></th></upon>	ng reset: H'00>
b	Bit Name	Function	R W
8	TRE	0: Error not detected	R (Note 1)
	Transmit error detection bit	1: Transmit error detected	
9	RCVE	0: Error not detected	R (Note 1)
	Receive error detection bit	1: Receive error detected	
10	BITE0	0: No bit error is detected	R (Note 1)
	"0" sending bit error detection bit	1: Bit error is detected when sending a "0"	
11	BITE1	0: No bit error is detected	R (Note 1)
	"1" sending bit error detection bit	1: Bit error is detected when sending a "1"	
12	STFE	0: Error not detected	R (Note 1)
	Stuff error detection bit	1: Stuff error detected	
13	FORME	0: Error not detected	R (Note 1)
	Form error detection bit	1: Form error detected	
14	CRCE	0: Error not detected	R (Note 1)
	CRC error detection bit	1: CRC error detected	
15	ACKE	0: Error not detected	R (Note 1)
	ACK error detection bit	1: ACK error detected	

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the status it had before the write.

This register indicates error information when a communication error occurred. Each bit in this register is set every time a communication error is detected, and is not cleared unless a program writes a "0" to the relevant bit.

(1) TRE (Transmit Error Detection) bit (Bit 8)

This bit is set to "1" when a communication error is detected while operating as a transmit node. The bit is cleared by writing a "0" in software.

(2) RCVE (Receive Error Detection) bit (Bit 9)

This bit is set to "1" when a communication error is detected while operating as a receive node. The bit is cleared by writing a "0" in software.

(3) BITE0 ("0" Sending Bit Error Detection) bit (Bit 10)

This bit is set to "1" when a bit error is detected while sending a "0" from CTX. The bit is cleared by writing a "0" in software.

(4) BITE1 ("1" Sending Bit Error Detection) bit (Bit 11)

This bit is set to "1" when a bit error is detected while sending a "1" from CTX. The bit is cleared by writing a "0" in software.

(5) STFE (Stuff Error Detection) bit (Bit 12)

This bit is set to "1" when a stuff error was detected. The bit is cleared by writing a "0" in software.

(6) FORME (Form Error Detection) bit (Bit 13)

This bit is set to "1" when a form error was detected. The bit is cleared by writing a "0" in software.

(7) CRCE (CRC Error Detection) bit (Bit 14)

This bit is set to "1" when a CRC error was detected. The bit is cleared by writing a "0" in software.

(8) ACKE (ACK Error Detection) bit (Bit 15)

This bit is set to "1" when an ACK error was detected. The bit is cleared by writing a "0" in software

Note: • Depending on the error status, two or more bits may be set at the same time.

13.2.10 CAN Mode Registers

CAN0 Mode Register (CAN0MOD) CAN1 Mode Register (CAN1MOD)

b0	1		2		3		4		5	6	b7		
										CMOD			
0	0	1	0	I	0	1	0	1	0	0	0		

<Address: H'0080 1018> <Address: H'0080 1418>

			<upon exiting="" f<="" reset:="" th=""><th>1'00></th></upon>	1'00>
b	Bit Name	Function	R	W
0–5	No function assigned. Fix to "0".		0	0
6–7	CMOD	00: Normal mode	R	W
	CAN operation mode select bit	01: Bus monitor mode		
		10: Self-diagnostic mode		
		11: Settings inhibited		

(1) CMOD (CAN Operation Mode Select) bits (Bit 6, Bit 7)

These bits select the CAN operation mode.

Normal operation mode

Normal transmit/receive operations can be performed.

• Bus monitor mode

Only receive operation is performed. During bus monitor mode, the CTX output is fixed high and neither ACK nor an error frame can be returned.

Note: • During bus monitor mode, issuing transmit requests is inhibited. The ACK bit is handled as "Don't care" during bus monitor mode. Therefore, if all bits of data including the CRC delimiter are received normally, it is assumed that data has been received normally no matter whether the ACK bit is high.

Self-diagnostic mode

CTX and CRX are connected together internally in the CAN module. When combined with loopback mode, this mode allows communication to be performed within the CAN module alone. During self-diagnostic mode, the CTX pin output is fixed high even when transmitting.

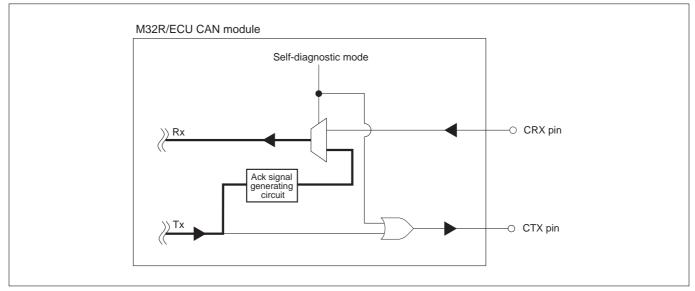


Figure 13.2.13 Conceptual Diagram of Self-Diagnostic Mode

13.2.11 CAN DMA Transfer Request Select Registers

CAN0 DMA Transfer Request Select Register (CAN0DMARQ) CAN1 DMA Transfer Request Select Register (CAN1DMARQ)

 b8
 9
 10
 11
 12
 13
 14
 b15

 0
 0
 0
 0
 0
 0
 0
 0
 0

<Address: H'0080 1019> <Address: H'0080 1419>

	<upon exiting="" r<="" th=""></upon>								
b	Bit Name	Function	R	W					
8–13	No function assigned. Fix to "0".		0	0					
14	CDMSEL1	0: Slot 1 transmission failed	R	W					
	CAN DMA1 transfer request source select bit	1: Slot 14 transmission/reception completed							
15	CDMSEL0	0: Slot 0 transmission failed	R	W					
	CAN DMA0 transfer request source select bit	1: Slot 15 transmission/reception completed							

CAN0 and 1 can generate DMA transfer requests. This register is used to select the cause or source of that request.

(1) CDMSEL1 (CAN DMA1 Transfer Request Source Select) bit (Bit 14)

This bit selects one of the following two as the cause or source of a transfer request to DMA7 and DMA9.

Slot 1 transmission failed

If the CDMSEL1 bit is set to "0", a transfer request is generated when transmission in slot 1 has failed for reasons of arbitration-lost or transmit error.

Slot 14 transmission/reception completed

If the CDMSEL1 bit is set to "1", a transfer request is generated when transmission/reception in slot 14 is completed.

- Notes: If slot 14 has been set for remote frame transmission, a DMA transfer request is generated when remote frame transmission is completed as well as when data frame reception is completed.
 - If slot 14 has been set for remote frame reception (automatic response), a DMA transfer request is generated when remote frame reception is completed as well as when data frame transmission is completed.

(2) CDMSEL0 (CAN DMA0 Transfer Request Source Select) bit (Bit 15)

This bit selects one of the following two as the cause or source of a transfer request to DMA6 and DMA8.

Slot 0 transmission failed

If the CDMSEL0 bit is set to "0", a transfer request is generated when transmission in slot 0 has failed for reasons of arbitration-lost or transmit error.

• Slot 15 transmission/reception completed

If the CDMSEL0 bit is set to "1", a transfer request is generated when transmission/reception in slot 15 is completed.

- Notes: If slot 15 has been set for remote frame transmission, a DMA transfer request is generated when remote frame transmission is completed as well as when data frame reception is completed.
 - If slot 15 has been set for remote frame reception (automatic response), a DMA transfer request is generated when remote frame reception is completed as well as when data frame transmission is completed.

13.2.12 CAN Mask Registers

CAN0 Global Mask Register Standard ID0 (C0GMSKS0) CAN0 Local Mask Register A Standard ID0 (C0LMSKAS0) CAN0 Local Mask Register B Standard ID0 (C0LMSKBS0)

CAN1 Global Mask Register Standard ID0 (C1GMSKS0) CAN1 Local Mask Register A Standard ID0 (C1LMSKAS0) CAN1 Local Mask Register B Standard ID0 (C1LMSKBS0)

b0	1	2	3	4	5	6	b7
			SID0M	SID1M	SID2M	SID3M	SID4M
0	0	0	0	0	0	0	0

<Address: H'0080 1028> <Address: H'0080 1030> <Address: H'0080 1038>

<Address: H'0080 1428> <Address: H'0080 1430> <Address: H'0080 1438>

<Upon exiting reset: H'00>

<Address: H'0080 1029>

<Address: H'0080 1031>

<Address: H'0080 1039>

<Address: H'0080 1429>

<Address: H'0080 1431>

<Address: H'0080 1439>

			Coperie examing recear r	
b	Bit Name	Function	R	W
0–2	No function assigned. Fix to "0".		0	0
3–7	SID0M-SID4M	0: ID not checked	R	W
	(Standard mask ID0-standard mask ID4)	1: ID checked		

CAN0 Global Mask Register Standard ID1 (C0GMSKS1) CAN0 Local Mask Register A Standard ID1 (C0LMSKAS1) CAN0 Local Mask Register B Standard ID1 (C0LMSKBS1)

CAN1 Global Mask Register Standard ID1 (C1GMSKS1) CAN1 Local Mask Register A Standard ID1 (C1LMSKAS1) CAN1 Local Mask Register B Standard ID1 (C1LMSKBS1)

b8	9	10	11	12	13	14	b15
		SID5M	SID6M	SID7M	SID8M	SID9M	SID10M
0	0	0	0	0	0	0	0

<Upon exiting reset: H'00>

				002
b	Bit Name	Function	R	W
8–9	No function assigned. Fix to "0".		0	0
10–15	SID5M–SID10M	0: ID not checked	R	W
	(Standard mask ID5-standard mask ID10)	1: ID checked		

Three mask registers are used in acceptance filtering: global mask register, local mask register A and local mask register B. The global mask register is used for message slots 0-13, while local mask registers A and B are used for message slots 14 and 15, respectively.

- If any bit in this register is set to "0", the corresponding ID bit is masked (assumed to have matched) during acceptance filtering.
- If any bit in this register is set to "1", the corresponding ID bit is compared with the receive ID during acceptance filtering and when it matches the ID set in the message slot, the received data is stored in it.

Notes: • SID0M corresponds to the MSB of the standard ID.

- The global mask register can only be modified when none of slots 0-13 have receive requests set.
- The local mask register A can only be modified when slot 14 does not have a receive request set.
- The local mask register B can only be modified when slot 15 does not have a receive request set.

CAN0 Global Mask Register Extended ID0 (C0GMSKE0) CAN0 Local Mask Register A Extended ID0 (C0LMSKAE0) CAN0 Local Mask Register B Extended ID0 (C0LMSKBE0)

CAN1 Global Mask Register Extended ID0 (C1GMSKE0) CAN1 Local Mask Register A Extended ID0 (C1LMSKAE0) CAN1 Local Mask Register B Extended ID0 (C1LMSKBE0)

b0		1	2	2	3	4	5	6	b7
						EID0M	EID1M	EID2M	EID3M
0	1	0	()	0	0	0	0	0

<Address: H'0080 102A> <Address: H'0080 1032> <Address: H'0080 103A>

<Address: H'0080 142A> <Address: H'0080 1432> <Address: H'0080 143A>

			Copolit exiting reset. I	1002
b	Bit Name	Function	R	W
0–3	No function assigned. Fix to "0".		0	0
4–7	EID0M-EID3M	0: ID not checked	R	W
	(Extended mask ID0-extended mask ID3)	1: ID checked		

CAN0 Global Mask Register Extended ID1 (C0GMSKE1) CAN0 Local Mask Register A Extended ID1 (C0LMSKAE1) CAN0 Local Mask Register B Extended ID1 (C0LMSKBE1)

CAN1 Global Mask Register Extended ID1 (C1GMSKE1) CAN1 Local Mask Register A Extended ID1 (C1LMSKAE1) CAN1 Local Mask Register B Extended ID1 (C1LMSKBE1)

b8	9	10	11	12	13	14	b15
EID4M	EID5M	EID6M	EID7M	EID8M	EID9M	EID10M	EID11M
0	0	0	0	0	0	0	0

<Upon exiting reset: H'00>

<Address: H'0080 102B> <Address: H'0080 1033> <Address: H'0080 103B>

<Address: H'0080 142B> <Address: H'0080 1433> <Address: H'0080 143B>

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
8–15	EID4M–EID11M	0: ID not checked	R	W
	(Extended mask ID4-extended mask ID11)	1: ID checked		

CAN0 Global Mask Register Extended ID2 (C0GMSKE2) CAN0 Local Mask Register A Extended ID2 (C0LMSKAE2) CAN0 Local Mask Register B Extended ID2 (C0LMSKBE2)

CAN1 Global Mask Register Extended ID2 (C1GMSKE2) CAN1 Local Mask Register A Extended ID2 (C1LMSKAE2) CAN1 Local Mask Register B Extended ID2 (C1LMSKBE2)

b0	1	2	3	4	5	6	B7
		EID12M	EID13M	EID14M	EID15M	EID16M	EID17M
0	0	0	0	0	0	0	0

<Address: H'0080 102C> <Address: H'0080 1034> <Address: H'0080 103C>

<Address: H'0080 142C> <Address: H'0080 1434> <Address: H'0080 143C>

<Upon exiting reset: H'00>

			•	0		
b	Bit Name	Function			R	W
0,1	No function assigned. Fix to "0".				0	0
2–7	EID12M-EID17M	0: ID not checked			R	W
	(Extended mask ID12-extended mask ID17)	1: ID checked				

Three mask registers are used in acceptance filtering: global mask register, local mask register A and local mask register B. The global mask register is used for message slots 0-13, while local mask registers A and B are used for message slots 14 and 15, respectively.

- If any bit in this register is set to "0", the corresponding ID bit is masked (assumed to have matched) during acceptance filtering.
- If any bit in this register is set to "1", the corresponding ID bit is compared with the receive ID during acceptance filtering and when it matches the ID set in the message slot, the received data is stored in it.

Notes: • EID0M corresponds to the MSB of the extended ID.

- The global mask register can only be modified when none of slots 0-13 have receive requests set.
- The local mask register A can only be modified when slot 14 does not have a receive request set.
- The local mask register B can only be modified when slot 15 does not have a receive request set.

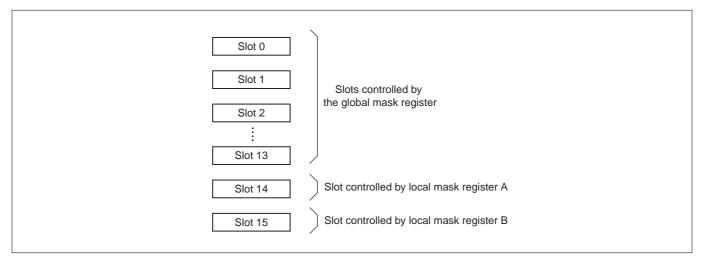


Figure 13.2.14 Relationship between the Mask Registers and the Controlled Slots

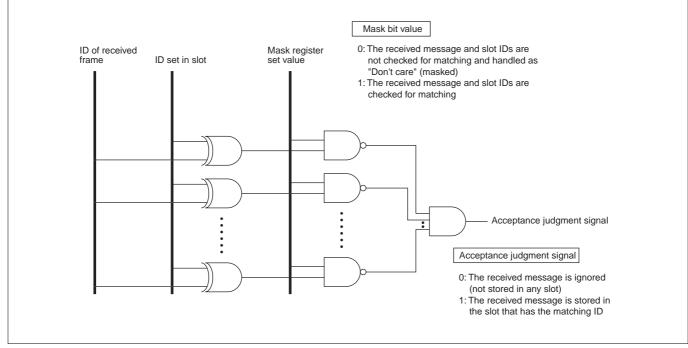


Figure 13.2.15 Concept of Acceptance Filtering

13.2.13 CAN Single-Shot Mode Control Registers

CAN0 Single-Shot Mode Control Register (CAN0SSMODE) CAN1 Single-Shot Mode Control Register (CAN1SSMODE) <Address: H'0080 1040> <Address: H'0080 1440>

b0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	b15
SSCNT0	SSCNT1	SSCNT2	SSCNT3	SSCNT4	SSCNT5	SSCNT6	SSCNT7	SSCNT8	SSCNT9	SSCNT10	SSCNT11	SSCNT12	SSCNT13	SSCNT14	SSCNT15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

<Upon exiting reset: H'0000>

b	Bit Name	Function	R	W
0	SSCNT0 (Slot 0 single-shot mode bit)	0: Normal mode	R	W
1	SSCNT1 (Slot 1 single-shot mode bit)	1: Single-shot mode		
2	SSCNT2 (Slot 2 single-shot mode bit)			
3	SSCNT3 (Slot 3 single-shot mode bit)			
4	SSCNT4 (Slot 4 single-shot mode bit)			
5	SSCNT5 (Slot 5 single-shot mode bit)			
6	SSCNT6 (Slot 6 single-shot mode bit)			
7	SSCNT7 (Slot 7 single-shot mode bit)			
8	SSCNT8 (Slot 8 single-shot mode bit)			
9	SSCNT9 (Slot 9 single-shot mode bit)			
10	SSCNT10 (Slot 10 single-shot mode bit)			
11	SSCNT11 (Slot 11 single-shot mode bit)			
12	SSCNT12 (Slot 12 single-shot mode bit)			
13	SSCNT13 (Slot 13 single-shot mode bit)			
14	SSCNT14 (Slot 14 single-shot mode bit)			
15	SSCNT15 (Slot 15 single-shot mode bit)			

Normally in CAN, if transmission has failed for reasons of arbitration-lost or transmit error, the transmit operation is continued until successfully transmitted. This register is used to specify for each slot whether or not to retry a transmit operation in such a case.

In single-shot mode, if transmission fails for reasons of arbitration-lost or transmit error, the transmit operation is not retried. If any bit in this register is set to "1", the corresponding slot operates in single-shot mode.

Note: • Settings of this register can only be changed when the message slot control register for the slot whose corresponding bit is to be modified is in the H'00 state.

13.2.14 CAN Message Slot Control Registers

CAN0 Message Slot 0 Control Register (C0MSL0CNT) CAN0 Message Slot 1 Control Register (C0MSL1CNT) CAN0 Message Slot 2 Control Register (C0MSL2CNT) CAN0 Message Slot 3 Control Register (C0MSL3CNT) CAN0 Message Slot 4 Control Register (C0MSL4CNT) CAN0 Message Slot 5 Control Register (C0MSL5CNT) CAN0 Message Slot 6 Control Register (C0MSL6CNT) CAN0 Message Slot 7 Control Register (C0MSL7CNT) CAN0 Message Slot 8 Control Register (C0MSL8CNT) CAN0 Message Slot 9 Control Register (C0MSL9CNT) CAN0 Message Slot 10 Control Register (C0MSL10CNT) CAN0 Message Slot 11 Control Register (C0MSL11CNT) CAN0 Message Slot12 Control Register (C0MSL12CNT) CAN0 Message Slot 13 Control Register (C0MSL13CNT) CAN0 Message Slot 14 Control Register (C0MSL14CNT) CAN0 Message Slot 15 Control Register (C0MSL15CNT)

CAN1 Message Slot 0 Control Register (C1MSL0CNT) CAN1 Message Slot 1 Control Register (C1MSL1CNT) CAN1 Message Slot 2 Control Register (C1MSL2CNT) CAN1 Message Slot 3 Control Register (C1MSL3CNT) CAN1 Message Slot 4 Control Register (C1MSL4CNT) CAN1 Message Slot 5 Control Register (C1MSL5CNT) CAN1 Message Slot 6 Control Register (C1MSL6CNT) CAN1 Message Slot 7 Control Register (C1MSL7CNT) CAN1 Message Slot 8 Control Register (C1MSL8CNT) CAN1 Message Slot 9 Control Register (C1MSL9CNT) CAN1 Message Slot 10 Control Register (C1MSL10CNT) CAN1 Message Slot 11 Control Register (C1MSL11CNT) CAN1 Message Slot 12 Control Register (C1MSL12CNT) CAN1 Message Slot 13 Control Register (C1MSL13CNT) CAN1 Message Slot 14 Control Register (C1MSL14CNT) CAN1 Message Slot 15 Control Register (C1MSL15CNT)

<Address: H'0080 1050> <Address: H'0080 1051> <Address: H'0080 1052> <Address: H'0080 1053> <Address: H'0080 1054> <Address: H'0080 1055> <Address: H'0080 1056> <Address: H'0080 1057> <Address: H'0080 1058> <Address: H'0080 1059> <Address: H'0080 105A> <Address: H'0080 105B> <Address: H'0080 105C> <Address: H'0080 105D> <Address: H'0080 105E> <Address: H'0080 105F>

<Address: H'0080 1450> <Address: H'0080 1451> <Address: H'0080 1452> <Address: H'0080 1453> <Address: H'0080 1454> <Address: H'0080 1455> <Address: H'0080 1456> <Address: H'0080 1457> <Address: H'0080 1458> <Address: H'0080 1459> <Address: H'0080 145A> <Address: H'0080 145B> <Address: H'0080 145C> <Address: H'0080 145D> <Address: H'0080 145E> <Address: H'0080 145F>

b0(b8)	1	2	3	4	5	6	b7(b15)
TR	RR	RM	RL	RA	ML	TRSTAT	TRFIN
0	0	0	0	0	0	0	0

b	Bit Name	Function	R	W
0 (8)	TR	0: Do not use the message slot as transmit slot	R	W
	Transmit request bit	1: Use the message slot as transmit slot		
1 (9)	RR	0: Do not use the message slot as receive slot	R	W
	Receive request bit	1: Use the message slot as receive slot		
2 (10)	RM	0: Transmit/receive data frame	R	W
	Remote bit	1: Transmit/receive remote frame		
3 (11)	RL	0: Enable automatic response for remote frame	R	W
	Automatic response inhibit bit	1: Disable automatic response for remote frame		
4 (12)	RA	During BasicCAN mode	R	_
	Remote active bit	0: Receive data frame (status)		
		1: Receive remote frame (status)		
		During normal mode		
		0: Data frame		
		1: Remote frame		
5 (13)	ML	0: No message was lost	R(I	Note 1)
	Message lost bit	1: Message was lost		
6 (14)	TRSTAT	During a transmit slot	R	_
	Transmit/receive status bit	0: Transmission idle		
		1: Transmit request accepted		
		During a receive slot		
		0: Reception idle		
		1: Storing received data		
7 (15)	TRFIN	During a transmit slot	R(I	Note 1)
	Transmission/reception finished bit	0: Not transmitted yet		
		1: Finished transmitting		
		During a receive slot		
		0: Not received yet		
		1: Finished receiving		

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the status it had before the write.

- Notes: If a transmit request is written to this register while the CAN module is reset (CANnCNT FRST or RST bit = "1"), it starts sending upon detecting 11 consecutive recessive bits on the CAN bus after exiting the reset state.
 - If data/remote frame transmit requests are issued for two or more slots, the slot with the smallest slot number sends a frame. If data/remote frame receive requests are issued for two or more slots, the slot with the smallest slot number among the slots satisfying the receive condition receives a frame.
 - If transmission failed when single-shot mode is selected, this register is cleared to H'00.

(1) TR (Transmit Request) bit (Bit 0), (Bit 8)

To use the message slot as a transmit slot, set this bit to "1". To use the message slot as a data frame or remote frame receive slot, set this bit to "0".

(2) RR (Receive Request) bit (Bit 1), (Bit 9)

To use the message slot as a receive slot, set this bit to "1". To use the message slot as a data frame or remote frame transmit slot, set this bit to "0".

If TR (Transmit Request) bit and RR (Receive Request) bit both are set to "1", device operation is undefined.

(3) RM (Remote) bit (Bit 2), (Bit 10)

To handle remote frames in the message slot, set this bit to "1". There are following two methods of settings to handle remote frames:

Set for remote frame transmission

The data set in the message slot is transmitted as a remote frame. When the CAN module finished sending, the slot automatically changes to a data frame receive slot. However, if a data frame is received before the CAN module finished sending a remote frame, the received data is stored in the message slot and the remote frame is not transmitted.

• Set for remote frame reception

Remote frames are received. The processing to be performed after receiving a remote frame is selected by RL (automatic response inhibit) bit.

(4) RL (Automatic Response Inhibit) bit (Bit 3), (Bit 11)

This bit is effective when the message slot has been set as a remote frame receive slot. It selects the processing to be performed after receiving a remote frame. If this bit is set to "0", the message slot automatically changes to a transmit slot after receiving a remote frame and transmits the data set in it as a data frame. If this bit is set to "1", the message slot stops operating after receiving a remote frame.

Note: • Always set this bit to "0" unless the message slot is set for remote frame reception.

(5) RA (Remote Active) bit (Bit 4), (Bit 12)

This bit functions differently for slots 0-13 and slots 14 and 15.

• Slots 0-13

This bit is set to "1" when the message slot is set for remote frame transmission (reception). Then, when remote frame transmission (reception) is completed, the bit is cleared to "0".

• Slots 14 and 15

The function of this bit differs depending on how the CAN Control Register BCM (BasicCAN Mode) bit is set. If BCM = "0" (normal operation), this bit is set to "1" when the message slot is set for remote frame transmission (reception). If BCM = "1" (BasicCAN), this bit indicates which type of frame is received. During BasicCAN mode, the received data is stored in slots 14 and 15 for both data and remote frames. If RA = "0", it means that the frame stored in the slot is a data frame. If RA = "1", it means that the frame stored in the slot is a remote frame.

(6) ML (Message Lost) bit (Bit 5), (Bit 13)

This bit is effective for receive slots. It is set to "1" when unread received data contained in the message slot is overwritten by reception. This bit is cleared by writing "0" in software.

(7) TRSTAT (Transmit/Receive Status) bit (Bit 6), (Bit 14)

This bit indicates that the CAN module is sending or receiving and is accessing the message slot. This bit is set to "1" when the CAN module is accessing, and set to "0" when not accessing.

• During a transmit slot

This bit is set to "1" when a transmit request for the message slot is accepted. It is cleared to "0" when the CAN module lost in bus arbitration, when a CAN bus error occurs, or when transmission is completed.

During a receive slot

This bit is set to "1" while the CAN module is receiving data, with the received data being stored in the message slot. Note that the value read from the message slot while the TRSTAT bit remains set is undefined.

(8) TRFIN (Transmit/Receive Finished) bit (Bit 7), (Bit 15)

This bit indicates that the CAN module finished sending or receiving.

When set for a transmit slot

This bit is set to "1" when the CAN module finished sending the data stored in the message slot. This bit is cleared by writing "0" in software. However, it cannot be cleared when the TRSTAT (Transmit/ Receive Status) bit = "1".

When set for a receive slot

This bit is set to "1" when the CAN module finished receiving normally the data to be stored in the message slot. This bit is cleared by writing "0" in software. However, it cannot be cleared when the TRSTAT (Transmit/Receive Status) bit = "1".

- Notes: Before reading the received data out of the message slot, be sure to clear the TRFIN (Transmit/Receive Finished) bit to "0". If the TRFIN (Transmit/Receive Finished) bit happens to be set to "1" after a read, it means that new received data was stored while reading and the read data contains an undefined value. In that case, discard the read data, clear the TRFIN bit to "0" and read out data again.
 - When sending/receiving remote frames, the TRFIN bit is automatically cleared to "0" by hardware. Therefore, the TRFIN bit cannot be used as a transmission/reception-finished flag.

13.2.15 CAN Message Slots

CAN0 Message Slot 0 Standard ID0 (C0MSL0SID0)
CAN0 Message Slot 1 Standard ID0 (C0MSL1SID0)
CAN0 Message Slot 2 Standard ID0 (C0MSL2SID0)
CAN0 Message Slot 3 Standard ID0 (C0MSL3SID0)
CAN0 Message Slot 4 Standard ID0 (C0MSL4SID0)
CAN0 Message Slot 5 Standard ID0 (C0MSL5SID0)
CAN0 Message Slot 6 Standard ID0 (C0MSL6SID0)
CAN0 Message Slot 7 Standard ID0 (C0MSL7SID0)
CAN0 Message Slot 8 Standard ID0 (C0MSL8SID0)
CAN0 Message Slot 9 Standard ID0 (C0MSL9SID0)
CAN0 Message Slot 10 Standard ID0 (C0MSL10SID0)
CAN0 Message Slot 11 Standard ID0 (C0MSL11SID0)
CAN0 Message Slot 12 Standard ID0 (C0MSL12SID0)
CAN0 Message Slot 13 Standard ID0 (C0MSL13SID0)
CAN0 Message Slot 14 Standard ID0 (C0MSL14SID0)
CAN0 Message Slot 15 Standard ID0 (C0MSL15SID0)

CAN1 Message Slot 0 Standard ID0 (C1MSL0SID0) CAN1 Message Slot 1 Standard ID0 (C1MSL1SID0) CAN1 Message Slot 2 Standard ID0 (C1MSL2SID0) CAN1 Message Slot 3 Standard ID0 (C1MSL3SID0) CAN1 Message Slot 4 Standard ID0 (C1MSL4SID0) CAN1 Message Slot 5 Standard ID0 (C1MSL5SID0) CAN1 Message Slot 6 Standard ID0 (C1MSL6SID0) CAN1 Message Slot 7 Standard ID0 (C1MSL7SID0) CAN1 Message Slot 8 Standard ID0 (C1MSL8SID0) CAN1 Message Slot 9 Standard ID0 (C1MSL9SID0) CAN1 Message Slot 10 Standard ID0 (C1MSL10SID0) CAN1 Message Slot 11 Standard ID0 (C1MSL11SID0) CAN1 Message Slot 12 Standard ID0 (C1MSL12SID0) CAN1 Message Slot 13 Standard ID0 (C1MSL13SID0) CAN1 Message Slot 14 Standard ID0 (C1MSL14SID0) CAN1 Message Slot 15 Standard ID0 (C1MSL15SID0)

b0	1	2	3	4	5	6	b7
			SID0	SID1	SID2	SID3	SID4
?	?	?	?	?	?	?	?

<Address: H'0080 1100> <Address: H'0080 1110> <Address: H'0080 1120> <Address: H'0080 1130> <Address: H'0080 1140> <Address: H'0080 1150> <Address: H'0080 1160> <Address: H'0080 1170> <Address: H'0080 1180> <Address: H'0080 1190> <Address: H'0080 11A0> <Address: H'0080 11B0> <Address: H'0080 11C0> <Address: H'0080 11D0> <Address: H'0080 11E0> <Address: H'0080 11F0> <Address: H'0080 1500>

<Address: H'0080 1510> <Address: H'0080 1520> <Address: H'0080 1530> <Address: H'0080 1540> <Address: H'0080 1540> <Address: H'0080 1560> <Address: H'0080 1570> <Address: H'0080 1580> <Address: H'0080 15A0> <Address: H'0080 15A0> <Address: H'0080 15C0> <Address: H'0080 15D0> <Address: H'0080 15E0> <Address: H'0080 15E0>

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
0–2	No function assigned. Fix to "0".		0	0
3–7	SID0-SID4	Standard ID0-standard ID4	R	W
	(Standard ID0-standard ID4)			

These registers are the memory space for transmit and receive frames.

CAN0 Message Slot 0 Standard ID1 (C0MSL0SID1) CAN0 Message Slot 1 Standard ID1 (C0MSL1SID1) CAN0 Message Slot 2 Standard ID1 (C0MSL2SID1) CAN0 Message Slot 3 Standard ID1 (C0MSL3SID1) CAN0 Message Slot 4 Standard ID1 (C0MSL4SID1) CAN0 Message Slot 5 Standard ID1 (C0MSL5SID1) CAN0 Message Slot 6 Standard ID1 (C0MSL6SID1) CAN0 Message Slot 7 Standard ID1 (C0MSL7SID1) CAN0 Message Slot 8 Standard ID1 (C0MSL8SID1) CAN0 Message Slot 9 Standard ID1 (C0MSL9SID1) CAN0 Message Slot 10 Standard ID1 (C0MSL10SID1) CAN0 Message Slot 11 Standard ID1 (C0MSL11SID1) CAN0 Message Slot 12 Standard ID1 (C0MSL12SID1) CAN0 Message Slot 13 Standard ID1 (C0MSL13SID1) CAN0 Message Slot 14 Standard ID1 (C0MSL14SID1) CAN0 Message Slot 15 Standard ID1 (C0MSL15SID1) CAN1 Message Slot 0 Standard ID1 (C1MSL0SID1) CAN1 Message Slot 1 Standard ID1 (C1MSL1SID1) CAN1 Message Slot 2 Standard ID1 (C1MSL2SID1) CAN1 Message Slot 3 Standard ID1 (C1MSL3SID1) CAN1 Message Slot 4 Standard ID1 (C1MSL4SID1) CAN1 Message Slot 5 Standard ID1 (C1MSL5SID1) CAN1 Message Slot 6 Standard ID1 (C1MSL6SID1) CAN1 Message Slot 7 Standard ID1 (C1MSL7SID1) CAN1 Message Slot 8 Standard ID1 (C1MSL8SID1) CAN1 Message Slot 9 Standard ID1 (C1MSL9SID1) CAN1 Message Slot 10 Standard ID1 (C1MSL10SID1) CAN1 Message Slot 11 Standard ID1 (C1MSL11SID1) CAN1 Message Slot 12 Standard ID1 (C1MSL12SID1)

CAN1 Message Slot 13 Standard ID1 (C1MSL13SID1) CAN1 Message Slot 14 Standard ID1 (C1MSL14SID1) CAN1 Message Slot 15 Standard ID1 (C1MSL15SID1)

b8	9	10	11	12	13	14	b15
		SID5	SID6	SID7	SID8	SID9	SID10
?	?	?	?	?	?	?	?

<Address: H'0080 1101> <Address: H'0080 1111> <Address: H'0080 1121> <Address: H'0080 1131> <Address: H'0080 1141> <Address: H'0080 1151> <Address: H'0080 1161> <Address: H'0080 1171> <Address: H'0080 1181> <Address: H'0080 1191> <Address: H'0080 11A1> <Address: H'0080 11B1> <Address: H'0080 11C1> <Address: H'0080 11D1> <Address: H'0080 11E1> <Address: H'0080 11F1> <Address: H'0080 1501> <Address: H'0080 1511> <Address: H'0080 1521> <Address: H'0080 1531> <Address: H'0080 1541> <Address: H'0080 1551>

<Address: H'0080 1561>

<Address: H'0080 1571> <Address: H'0080 1581>

<Address: H'0080 1591>

<Address: H'0080 15A1>

<Address: H'0080 15B1>

<Address: H'0080 15C1>

<Address: H'0080 15D1>

<Address: H'0080 15E1>

<Address: H'0080 15F1>

<

			g lesel. Onden	leu>
b	Bit Name	Function	R	W
8, 9	No function assigned. Fix to "0".		0	0
10–15	SID5–SID10 (Stee deed JD5, stee deed JD40)	Standard ID5-standard ID10	R	W
	(Standard ID5–standard ID10)			

These registers are the memory space for transmit and receive frames.

CAN0 Message Slot 0 Extended ID0 (C0MSL0EID0) CAN0 Message Slot 1 Extended ID0 (C0MSL1EID0) CAN0 Message Slot 2 Extended ID0 (C0MSL2EID0) CAN0 Message Slot 3 Extended ID0 (C0MSL3EID0) CAN0 Message Slot 4 Extended ID0 (C0MSL4EID0) CAN0 Message Slot 5 Extended ID0 (C0MSL5EID0) CAN0 Message Slot 6 Extended ID0 (C0MSL6EID0) CAN0 Message Slot 7 Extended ID0 (C0MSL7EID0) CAN0 Message Slot 8 Extended ID0 (C0MSL8EID0) CAN0 Message Slot 9 Extended ID0 (C0MSL9EID0) CAN0 Message Slot 10 Extended ID0 (C0MSL10EID0) CAN0 Message Slot 11 Extended ID0 (C0MSL11EID0) CAN0 Message Slot 12 Extended ID0 (C0MSL12EID0) CAN0 Message Slot 13 Extended ID0 (C0MSL13EID0) CAN0 Message Slot 14 Extended ID0 (C0MSL14EID0) CAN0 Message Slot 15 Extended ID0 (C0MSL15EID0)

CAN1 Message Slot 0 Extended ID0 (C1MSL0EID0) CAN1 Message Slot 1 Extended ID0 (C1MSL1EID0) CAN1 Message Slot 2 Extended ID0 (C1MSL2EID0) CAN1 Message Slot 3 Extended ID0 (C1MSL3EID0) CAN1 Message Slot 4 Extended ID0 (C1MSL4EID0) CAN1 Message Slot 5 Extended ID0 (C1MSL5EID0) CAN1 Message Slot 6 Extended ID0 (C1MSL6EID0) CAN1 Message Slot 7 Extended ID0 (C1MSL7EID0) CAN1 Message Slot 8 Extended ID0 (C1MSL8EID0) CAN1 Message Slot 9 Extended ID0 (C1MSL9EID0) CAN1 Message Slot 10 Extended ID0 (C1MSL10EID0) CAN1 Message Slot 11 Extended ID0 (C1MSL11EID0) CAN1 Message Slot 12 Extended ID0 (C1MSL12EID0) CAN1 Message Slot 13 Extended ID0 (C1MSL13EID0) CAN1 Message Slot 14 Extended ID0 (C1MSL14EID0) CAN1 Message Slot 15 Extended ID0 (C1MSL15EID0)

b0	1	2	3	4	5	6	b7
				EID0	EID1	EID2	EID3
?	?	?	?	?	?	?	?

<Address: H'0080 1102> <Address: H'0080 1112> <Address: H'0080 1122> <Address: H'0080 1132> <Address: H'0080 1142> <Address: H'0080 1152> <Address: H'0080 1162> <Address: H'0080 1172> <Address: H'0080 1182> <Address: H'0080 1192> <Address: H'0080 11A2> <Address: H'0080 11B2> <Address: H'0080 11C2> <Address: H'0080 11D2> <Address: H'0080 11E2> <Address: H'0080 11F2> <Address: H'0080 1502> <Address: H'0080 1512> <Address: H'0080 1522>

<Address: H'0080 1512>
<Address: H'0080 1522>
<Address: H'0080 1532>
<Address: H'0080 1542>
<Address: H'0080 1542>
<Address: H'0080 1552>
<Address: H'0080 1562>
<Address: H'0080 1572>
<Address: H'0080 1582>
<Address: H'0080 1592>
<Address: H'0080 1592>
<Address: H'0080 1582>
<Address: H'0080 1582>
<Address: H'0080 1522>

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
0–3	No function assigned. Fix to "0".		0	0
4–7	EID0-EID3	Extended ID0-extended ID3	R	W
	(Extended ID0-extended ID3)			

These registers are the memory space for transmit and receive frames.

Note: • If the message slot is set for the receive slot standard ID format, an undefined value is written to the EID bits when storing received data.

CAN0 Message Slot 0 Extended ID1 (C0MSL0EID1)	<address: 1103="" h'0080=""></address:>
CAN0 Message Slot 1 Extended ID1 (C0MSL1EID1)	<address: 1113="" h'0080=""></address:>
CAN0 Message Slot 2 Extended ID1 (C0MSL2EID1)	<address: 1123="" h'0080=""></address:>
CAN0 Message Slot 3 Extended ID1 (C0MSL3EID1)	<address: 1133="" h'0080=""></address:>
CAN0 Message Slot 4 Extended ID1 (C0MSL4EID1)	<address: 1143="" h'0080=""></address:>
CAN0 Message Slot 5 Extended ID1 (C0MSL5EID1)	<address: 1153="" h'0080=""></address:>
CAN0 Message Slot 6 Extended ID1 (C0MSL6EID1)	<address: 1163="" h'0080=""></address:>
CAN0 Message Slot 7 Extended ID1 (C0MSL7EID1)	<address: 1173="" h'0080=""></address:>
CAN0 Message Slot 8 Extended ID1 (C0MSL8EID1)	<address: 1183="" h'0080=""></address:>
CAN0 Message Slot 9 Extended ID1 (C0MSL9EID1)	<address: 1193="" h'0080=""></address:>
CAN0 Message Slot 10 Extended ID1 (C0MSL10EID1)	<address: 11a3="" h'0080=""></address:>
CAN0 Message Slot 11 Extended ID1 (C0MSL11EID1)	<address: 11b3="" h'0080=""></address:>
CAN0 Message Slot 12 Extended ID1 (C0MSL12EID1)	<address: 11c3="" h'0080=""></address:>
CAN0 Message Slot 13 Extended ID1 (C0MSL13EID1)	<address: 11d3="" h'0080=""></address:>
CAN0 Message Slot 14 Extended ID1 (C0MSL14EID1)	<address: 11e3="" h'0080=""></address:>
CAN0 Message Slot 15 Extended ID1 (C0MSL15EID1)	<address: 11f3="" h'0080=""></address:>
CAN1 Message Slot 0 Extended ID1 (C1MSL0EID1)	<address: 1503="" h'0080=""></address:>
CAN1 Message Slot 1 Extended ID1 (C1MSL1EID1)	<address: 1513="" h'0080=""></address:>
CAN1 Message Slot 2 Extended ID1 (C1MSL2EID1)	<address: 1523="" h'0080=""></address:>
CAN1 Message Slot 3 Extended ID1 (C1MSL3EID1)	<address: 1533="" h'0080=""></address:>
CAN1 Message Slot 4 Extended ID1 (C1MSL4EID1)	<address: 1543="" h'0080=""></address:>
CAN1 Message Slot 5 Extended ID1 (C1MSL5EID1)	<address: 1553="" h'0080=""></address:>
CAN1 Message Slot 6 Extended ID1 (C1MSL6EID1)	<address: 1563="" h'0080=""></address:>
CAN1 Message Slot 7 Extended ID1 (C1MSL7EID1)	<address: 1573="" h'0080=""></address:>
CAN1 Message Slot 8 Extended ID1 (C1MSL8EID1)	<address: 1583="" h'0080=""></address:>
CAN1 Message Slot 9 Extended ID1 (C1MSL9EID1)	<address: 1593="" h'0080=""></address:>
CAN1 Message Slot 10 Extended ID1 (C1MSL10EID1)	<address: 15a3="" h'0080=""></address:>
CAN1 Message Slot 11 Extended ID1 (C1MSL11EID1)	<address: 15b3="" h'0080=""></address:>
CAN1 Message Slot 12 Extended ID1 (C1MSL12EID1)	<address: 15c3="" h'0080=""></address:>
CAN1 Message Slot 13 Extended ID1 (C1MSL13EID1)	<address: 15d3="" h'0080=""></address:>
CAN1 Message Slot 14 Extended ID1 (C1MSL14EID1)	<address: 15e3="" h'0080=""></address:>
CAN1 Message Slot 15 Extended ID1 (C1MSL15EID1)	<address: 15f3="" h'0080=""></address:>

b8	9	10	11	12	13	14	b15
EID4	EID5	EID6	EID7	EID8	EID9	EID10	EID11
?	?	?	?	?	?	?	?

<upon< td=""><td>exiting</td><td>reset:</td><td>Undefined></td></upon<>	exiting	reset:	Undefined>

b	Bit Name	Function	R	W
8–15	EID4–EID11	Extended ID4-extended ID11	R	W
	(Extended ID4-extended ID11)			

These registers are the memory space for transmit and receive frames.

Note: • If the message slot is set for the receive slot standard ID format, an undefined value is written to the EID bits when storing received data.

CAN0 Message Slot 0 Extended ID2 (C0MSL0EID2) CAN0 Message Slot 1 Extended ID2 (C0MSL1EID2) CAN0 Message Slot 2 Extended ID2 (C0MSL2EID2) CAN0 Message Slot 3 Extended ID2 (C0MSL3EID2) CAN0 Message Slot 4 Extended ID2 (C0MSL4EID2) CAN0 Message Slot 5 Extended ID2 (C0MSL5EID2) CAN0 Message Slot 6 Extended ID2 (C0MSL6EID2) CAN0 Message Slot 7 Extended ID2 (C0MSL7EID2) CAN0 Message Slot 8 Extended ID2 (C0MSL8EID2) CAN0 Message Slot 9 Extended ID2 (C0MSL9EID2) CAN0 Message Slot 10 Extended ID2 (C0MSL10EID2) CAN0 Message Slot 11 Extended ID2 (C0MSL11EID2) CAN0 Message Slot 12 Extended ID2 (C0MSL12EID2) CAN0 Message Slot 13 Extended ID2 (C0MSL13EID2) CAN0 Message Slot 14 Extended ID2 (C0MSL14EID2) CAN0 Message Slot 15 Extended ID2 (C0MSL15EID2) CAN1 Message Slot 0 Extended ID2 (C1MSL0EID2) CAN1 Message Slot 1 Extended ID2 (C1MSL1EID2) CAN1 Message Slot 2 Extended ID2 (C1MSL2EID2) CAN1 Message Slot 3 Extended ID2 (C1MSL3EID2)

CAN1 Message Slot 3 Extended ID2 (C1MSL3EID2) CAN1 Message Slot 4 Extended ID2 (C1MSL4EID2) CAN1 Message Slot 5 Extended ID2 (C1MSL5EID2) CAN1 Message Slot 6 Extended ID2 (C1MSL6EID2) CAN1 Message Slot 7 Extended ID2 (C1MSL6EID2) CAN1 Message Slot 8 Extended ID2 (C1MSL8EID2) CAN1 Message Slot 9 Extended ID2 (C1MSL9EID2) CAN1 Message Slot 9 Extended ID2 (C1MSL9EID2) CAN1 Message Slot 10 Extended ID2 (C1MSL10EID2) CAN1 Message Slot 11 Extended ID2 (C1MSL10EID2) CAN1 Message Slot 12 Extended ID2 (C1MSL11EID2) CAN1 Message Slot 13 Extended ID2 (C1MSL12EID2) CAN1 Message Slot 13 Extended ID2 (C1MSL13EID2) CAN1 Message Slot 14 Extended ID2 (C1MSL14EID2) CAN1 Message Slot 15 Extended ID2 (C1MSL15EID2)

b0	1	2	3	4	5	6	b7
		EID12	EID13	EID14	EID15	EID16	EID17
?	?	?	?	?	?	?	?

<Address: H'0080 1104> <Address: H'0080 1114> <Address: H'0080 1124> <Address: H'0080 1134> <Address: H'0080 1144> <Address: H'0080 1154> <Address: H'0080 1164> <Address: H'0080 1174> <Address: H'0080 1184> <Address: H'0080 1194> <Address: H'0080 11A4> <Address: H'0080 11B4> <Address: H'0080 11C4> <Address: H'0080 11D4> <Address: H'0080 11E4> <Address: H'0080 11F4> <Address: H'0080 1504> <Address: H'0080 1514> <Address: H'0080 1524> <Address: H'0080 1534> <Address: H'0080 1544> <Address: H'0080 1554> <Address: H'0080 1564> <Address: H'0080 1574>

<Address: H'0080 1584> <Address: H'0080 1594>

<Address: H'0080 15A4>

<Address: H'0080 15B4>

<Address: H'0080 15C4>

<Address: H'0080 15D4>

<Address: H'0080 15E4>

<Address: H'0080 15F4>

<Upon exiting reset: Undefined>

			grebet. Onden	licu>
b	Bit Name	Function	R	W
0, 1	No function assigned. Fix to "0".		0	0
2–7	EID12–EID17	Extended ID12–extended ID17	R	W
	(Extended ID12-extended ID17)			

These registers are the memory space for transmit and receive frames.

Note: • If the message slot is set for the receive slot standard ID format, an undefined value is written to the EID bits when storing received data.

<Address: H'0080 1105>

CAN0 Message Slot 0 Data Length Register (C0MSL0DLC) CAN0 Message Slot 1 Data Length Register (C0MSL1DLC) CAN0 Message Slot 2 Data Length Register (C0MSL2DLC) CAN0 Message Slot 3 Data Length Register (C0MSL3DLC) CAN0 Message Slot 4 Data Length Register (C0MSL4DLC) CAN0 Message Slot 5 Data Length Register (C0MSL5DLC) CAN0 Message Slot 6 Data Length Register (C0MSL6DLC) CANO Message Slot 7 Data Length Register (COMSL7DLC) CAN0 Message Slot 8 Data Length Register (C0MSL8DLC) CAN0 Message Slot 9 Data Length Register (C0MSL9DLC) CAN0 Message Slot 10 Data Length Register (C0MSL10DLC) CAN0 Message Slot 11 Data Length Register (C0MSL11DLC) CAN0 Message Slot 12 Data Length Register (C0MSL12DLC) CANO Message Slot 13 Data Length Register (COMSL13DLC) CAN0 Message Slot 14 Data Length Register (C0MSL14DLC) CAN0 Message Slot 15 Data Length Register (C0MSL15DLC)

CAN1 Message Slot 0 Data Length Register (C1MSL0DLC) CAN1 Message Slot 1 Data Length Register (C1MSL1DLC) CAN1 Message Slot 2 Data Length Register (C1MSL2DLC) CAN1 Message Slot 3 Data Length Register (C1MSL3DLC) CAN1 Message Slot 4 Data Length Register (C1MSL4DLC) CAN1 Message Slot 5 Data Length Register (C1MSL5DLC) CAN1 Message Slot 6 Data Length Register (C1MSL6DLC) CAN1 Message Slot 7 Data Length Register (C1MSL7DLC) CAN1 Message Slot 8 Data Length Register (C1MSL8DLC) CAN1 Message Slot 9 Data Length Register (C1MSL9DLC) CAN1 Message Slot 10 Data Length Register (C1MSL10DLC) CAN1 Message Slot 11 Data Length Register (C1MSL11DLC) CAN1 Message Slot 12 Data Length Register (C1MSL12DLC) CAN1 Message Slot 13 Data Length Register (C1MSL13DLC) CAN1 Message Slot 14 Data Length Register (C1MSL14DLC) CAN1 Message Slot 15 Data Length Register (C1MSL15DLC)

<address: 1115="" h'0080=""></address:>
<address: 1125="" h'0080=""></address:>
<address: 1135="" h'0080=""></address:>
<address: 1145="" h'0080=""></address:>
<address: 1155="" h'0080=""></address:>
<address: 1165="" h'0080=""></address:>
<address: 1175="" h'0080=""></address:>
<address: 1185="" h'0080=""></address:>
<address: 1195="" h'0080=""></address:>
<address: 11a5="" h'0080=""></address:>
<address: 11b5="" h'0080=""></address:>
<address: 11c5="" h'0080=""></address:>
<address: 11d5="" h'0080=""></address:>
<address: 11e5="" h'0080=""></address:>
<address: 11f5="" h'0080=""></address:>
<address: 1505="" h'0080=""></address:>
<address: 1505="" h'0080=""></address:>
<address: 1505="" h'0080=""> <address: 1515="" h'0080=""></address:></address:>
<address: 1505="" h'0080=""> <address: 1515="" h'0080=""> <address: 1525="" h'0080=""></address:></address:></address:>
<address: 1505="" h'0080=""> <address: 1515="" h'0080=""> <address: 1525="" h'0080=""> <address: 1535="" h'0080=""></address:></address:></address:></address:>
<address: 1505="" h'0080=""> <address: 1515="" h'0080=""> <address: 1525="" h'0080=""> <address: 1535="" h'0080=""> <address: 1535="" h'0080=""></address:></address:></address:></address:></address:>
<address: 1505="" h'0080=""> <address: 1515="" h'0080=""> <address: 1525="" h'0080=""> <address: 1535="" h'0080=""> <address: 1545="" h'0080=""> <address: 1545="" h'0080=""></address:></address:></address:></address:></address:></address:>
<address: 1505="" h'0080=""> <address: 1515="" h'0080=""> <address: 1525="" h'0080=""> <address: 1535="" h'0080=""> <address: 1535="" h'0080=""> <address: 1545="" h'0080=""> <address: 1555="" h'0080=""></address:></address:></address:></address:></address:></address:></address:>
<address: 1505="" h'0080=""> <address: 1515="" h'0080=""> <address: 1525="" h'0080=""> <address: 1535="" h'0080=""> <address: 1545="" h'0080=""> <address: 1555="" h'0080=""> <address: 1565="" h'0080=""> <address: 1575="" h'0080=""></address:></address:></address:></address:></address:></address:></address:></address:>
<address: 1505="" h'0080=""> <address: 1515="" h'0080=""> <address: 1525="" h'0080=""> <address: 1535="" h'0080=""> <address: 1535="" h'0080=""> <address: 1545="" h'0080=""> <address: 1555="" h'0080=""> <address: 1575="" h'0080=""> <address: 1575="" h'0080=""></address:></address:></address:></address:></address:></address:></address:></address:></address:>
<address: 1505="" h'0080=""> <address: 1515="" h'0080=""> <address: 1525="" h'0080=""> <address: 1525="" h'0080=""> <address: 1535="" h'0080=""> <address: 1545="" h'0080=""> <address: 1555="" h'0080=""> <address: 1575="" h'0080=""> <address: 1585="" h'0080=""> <address: 1585="" h'0080=""></address:></address:></address:></address:></address:></address:></address:></address:></address:></address:>
<address: 1505="" h'0080=""> <address: 1515="" h'0080=""> <address: 1525="" h'0080=""> <address: 1535="" h'0080=""> <address: 1545="" h'0080=""> <address: 1545="" h'0080=""> <address: 1555="" h'0080=""> <address: 1575="" h'0080=""> <address: 1575="" h'0080=""> <address: 1595="" h'0080=""> <address: 1595="" h'0080=""></address:></address:></address:></address:></address:></address:></address:></address:></address:></address:></address:>

b8	9	10	11	12	13	14	b15
				DLC0	DLC1	DLC2	DLC3
?	?	?	?	?	?	?	?

<upon exiting="" reset:="" undefined=""></upon>				
	<upon< td=""><td>exitina</td><td>reset:</td><td>Undefined></td></upon<>	exitina	reset:	Undefined>

<Address: H'0080 15E5>

<Address: H'0080 15F5>

b	Bit Name	Function	R	W
8–11	No function assigned. Fix to "0".		0	0
12–15	DLC0–DLC3	0000: 0 bytes	R	W
	Data length setting bit	0001: 1 bytes		
		0010: 2 bytes		
		0011: 3 bytes		
		0100: 4 bytes		
		0101: 5 bytes		
		0110: 6 bytes		
		0111: 7 bytes		
		1000: 8 bytes		
		1111: 8 bytes		

These registers are the memory space for transmit and receive frames. When sending, the register is used to set the transmit data length. When receiving, the register is used to store the receive frame DLC.

CAN0 Message Slot 0 Data 0 (C0MSL0DT0)	<address: 1106="" h'0080=""></address:>
CAN0 Message Slot 1 Data 0 (C0MSL1DT0)	<address: 1116="" h'0080=""></address:>
CAN0 Message Slot 2 Data 0 (C0MSL2DT0)	<address: 1126="" h'0080=""></address:>
CAN0 Message Slot 3 Data 0 (C0MSL3DT0)	<address: 1136="" h'0080=""></address:>
CAN0 Message Slot 4 Data 0 (C0MSL4DT0)	<address: 1146="" h'0080=""></address:>
CAN0 Message Slot 5 Data 0 (C0MSL5DT0)	<address: 1156="" h'0080=""></address:>
CAN0 Message Slot 6 Data 0 (C0MSL6DT0)	<address: 1166="" h'0080=""></address:>
CAN0 Message Slot 7 Data 0 (C0MSL7DT0)	<address: 1176="" h'0080=""></address:>
CAN0 Message Slot 8 Data 0 (C0MSL8DT0)	<address: 1186="" h'0080=""></address:>
CAN0 Message Slot 9 Data 0 (C0MSL9DT0)	<address: 1196="" h'0080=""></address:>
CAN0 Message Slot 10 Data 0 (C0MSL10DT0)	<address: 11a6="" h'0080=""></address:>
CAN0 Message Slot 11 Data 0 (C0MSL11DT0)	<address: 11b6="" h'0080=""></address:>
CAN0 Message Slot 12 Data 0 (C0MSL12DT0)	<address: 11c6="" h'0080=""></address:>
CAN0 Message Slot 13 Data 0 (C0MSL13DT0)	<address: 11d6="" h'0080=""></address:>
CAN0 Message Slot 14 Data 0 (C0MSL14DT0)	<address: 11e6="" h'0080=""></address:>
CAN0 Message Slot 15 Data 0 (C0MSL15DT0)	<address: 11f6="" h'0080=""></address:>
CAN1 Message Slot 0 Data 0 (C1MSL0DT0)	<address: 1506="" h'0080=""></address:>
CAN1 Message Slot 1 Data 0 (C1MSL1DT0)	<address: 1516="" h'0080=""></address:>
CAN1 Message Slot 2 Data 0 (C1MSL2DT0)	<address: 1526="" h'0080=""></address:>
CAN1 Message Slot 3 Data 0 (C1MSL3DT0)	<address: 1536="" h'0080=""></address:>
CAN1 Message Slot 4 Data 0 (C1MSL4DT0)	<address: 1546="" h'0080=""></address:>
CAN1 Message Slot 5 Data 0 (C1MSL5DT0)	<address: 1556="" h'0080=""></address:>
CAN1 Message Slot 6 Data 0 (C1MSL6DT0)	<address: 1566="" h'0080=""></address:>
CAN1 Message Slot 7 Data 0 (C1MSL7DT0)	<address: 1576="" h'0080=""></address:>
CAN1 Message Slot 8 Data 0 (C1MSL8DT0)	<address: 1586="" h'0080=""></address:>
CAN1 Message Slot 9 Data 0 (C1MSL9DT0)	<address: 1596="" h'0080=""></address:>
CAN1 Message Slot 10 Data 0 (C1MSL10DT0)	<address: 15a6="" h'0080=""></address:>
CAN1 Message Slot 11 Data 0 (C1MSL11DT0)	<address: 15b6="" h'0080=""></address:>
CAN1 Message Slot 12 Data 0 (C1MSL12DT0)	<address: 15c6="" h'0080=""></address:>
CAN1 Message Slot 13 Data 0 (C1MSL13DT0)	<address: 15d6="" h'0080=""></address:>
CAN1 Message Slot 14 Data 0 (C1MSL14DT0)	<address: 15e6="" h'0080=""></address:>
CAN1 Message Slot 15 Data 0 (C1MSL15DT0)	<address: 15f6="" h'0080=""></address:>
D0 1 2 3 4 5 6 D7 C0MSL0DT0-C0MSL15DT0. C1MSL0DT0-C1MSL15DT0	

COMSL0DT0-COMSL15DT0, C1MSL0DT0-C1MSL15DT0
? | ? | ? | ? | ? | ? | ? | ?

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
0–7	C0MSL0DT0-C0MSL15DT0,	Message slot data 0	R	W
	C1MSL0DT0-C1MSL15DT0			

These registers are the memory space for transmit and receive frames.

- Notes: During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) = "0".
 - The first byte of the CAN frame data field corresponds to message slot n data 0. Data is transmitted or received beginning with the MSB side of the register.

CAN0 Message Slot 0 Data 1 (C0MSL0DT1)	<address: 1107="" h'0080=""></address:>
CAN0 Message Slot 1 Data 1 (C0MSL1DT1)	<address: 1117="" h'0080=""></address:>
CAN0 Message Slot 2 Data 1 (C0MSL2DT1)	<address: 1127="" h'0080=""></address:>
CAN0 Message Slot 3 Data 1 (C0MSL3DT1)	<address: 1137="" h'0080=""></address:>
CAN0 Message Slot 4 Data 1 (C0MSL4DT1)	<address: 1147="" h'0080=""></address:>
CAN0 Message Slot 5 Data 1 (C0MSL5DT1)	<address: 1157="" h'0080=""></address:>
CAN0 Message Slot 6 Data 1 (C0MSL6DT1)	<address: 1167="" h'0080=""></address:>
CAN0 Message Slot 7 Data 1 (C0MSL7DT1)	<address: 1177="" h'0080=""></address:>
CAN0 Message Slot 8 Data 1 (C0MSL8DT1)	<address: 1187="" h'0080=""></address:>
CAN0 Message Slot 9 Data 1 (C0MSL9DT1)	<address: 1197="" h'0080=""></address:>
CAN0 Message Slot 10 Data 1 (C0MSL10DT1)	<address: 11a7="" h'0080=""></address:>
CAN0 Message Slot 11 Data 1 (C0MSL11DT1)	<address: 11b7="" h'0080=""></address:>
CAN0 Message Slot 12 Data 1 (C0MSL12DT1)	<address: 11c7="" h'0080=""></address:>
CAN0 Message Slot 13 Data 1 (C0MSL13DT1)	<address: 11d7="" h'0080=""></address:>
CAN0 Message Slot 14 Data 1 (C0MSL14DT1)	<address: 11e7="" h'0080=""></address:>
CAN0 Message Slot 15 Data 1 (C0MSL15DT1)	<address: 11f7="" h'0080=""></address:>
CAN1 Message Slot 0 Data 1 (C1MSL0DT1)	<address: 1507="" h'0080=""></address:>
CAN1 Message Slot 1 Data 1 (C1MSL1DT1)	<address: 1517="" h'0080=""></address:>
CAN1 Message Slot 2 Data 1 (C1MSL2DT1)	<address: 1527="" h'0080=""></address:>
CAN1 Message Slot 3 Data 1 (C1MSL3DT1)	<address: 1537="" h'0080=""></address:>
CAN1 Message Slot 4 Data 1 (C1MSL4DT1)	<address: 1547="" h'0080=""></address:>
CAN1 Message Slot 5 Data 1 (C1MSL5DT1)	<address: 1557="" h'0080=""></address:>
CAN1 Message Slot 6 Data 1 (C1MSL6DT1)	<address: 1567="" h'0080=""></address:>
CAN1 Message Slot 7 Data 1 (C1MSL7DT1)	<address: 1577="" h'0080=""></address:>
CAN1 Message Slot 8 Data 1 (C1MSL8DT1)	<address: 1587="" h'0080=""></address:>
CAN1 Message Slot 9 Data 1 (C1MSL9DT1)	<address: 1597="" h'0080=""></address:>
CAN1 Message Slot 10 Data 1 (C1MSL10DT1)	<address: 15a7="" h'0080=""></address:>
CAN1 Message Slot 11 Data 1 (C1MSL11DT1)	<address: 15b7="" h'0080=""></address:>
CAN1 Message Slot 12 Data 1 (C1MSL12DT1)	<address: 15c7="" h'0080=""></address:>
CAN1 Message Slot 13 Data 1 (C1MSL13DT1)	<address: 15d7="" h'0080=""></address:>
CAN1 Message Slot 14 Data 1 (C1MSL14DT1)	<address: 15e7="" h'0080=""></address:>
CAN1 Message Slot 15 Data 1 (C1MSL15DT1)	<address: 15f7="" h'0080=""></address:>
b8 9 10 11 12 13 14 b15	
C0MSL0DT1-C0MSL15DT1, C1MSL0DT1-C1MSL15DT1	

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
8–15	C0MSL0DT1-C0MSL15DT1,	Message slot data 1	R	W
	C1MSL0DT1-C1MSL15DT1			

These registers are the memory space for transmit and receive frames.

? | ? | ? | ? | ? | ? | ?

Note: • During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) is equal to or less than 1.

CAN0 Message Slot 0 Data 2 (C0MSL0DT2)	<address: 1108="" h'0080=""></address:>
CAN0 Message Slot 1 Data 2 (C0MSL1DT2)	<address: 1118="" h'0080=""></address:>
CAN0 Message Slot 2 Data 2 (C0MSL2DT2)	<address: 1128="" h'0080=""></address:>
CAN0 Message Slot 3 Data 2 (C0MSL3DT2)	<address: 1138="" h'0080=""></address:>
CAN0 Message Slot 4 Data 2 (C0MSL4DT2)	<address: 1148="" h'0080=""></address:>
CAN0 Message Slot 5 Data 2 (C0MSL5DT2)	<address: 1158="" h'0080=""></address:>
CAN0 Message Slot 6 Data 2 (C0MSL6DT2)	<address: 1168="" h'0080=""></address:>
CAN0 Message Slot 7 Data 2 (C0MSL7DT2)	<address: 1178="" h'0080=""></address:>
CAN0 Message Slot 8 Data 2 (C0MSL8DT2)	<address: 1188="" h'0080=""></address:>
CAN0 Message Slot 9 Data 2 (C0MSL9DT2)	<address: 1198="" h'0080=""></address:>
CAN0 Message Slot 10 Data 2 (C0MSL10DT2)	<address: 11a8="" h'0080=""></address:>
CAN0 Message Slot 11 Data 2 (C0MSL11DT2)	<address: 11b8="" h'0080=""></address:>
CAN0 Message Slot 12 Data 2 (C0MSL12DT2)	<address: 11c8="" h'0080=""></address:>
CAN0 Message Slot 13 Data 2 (C0MSL13DT2)	<address: 11d8="" h'0080=""></address:>
CAN0 Message Slot 14 Data 2 (C0MSL14DT2)	<address: 11e8="" h'0080=""></address:>
CAN0 Message Slot 15 Data 2 (C0MSL15DT2)	<address: 11f8="" h'0080=""></address:>
CAN1 Message Slot 0 Data 2 (C1MSL0DT2)	<address: 1508="" h'0080=""></address:>
CAN1 Message Slot 1 Data 2 (C1MSL1DT2)	<address: 1518="" h'0080=""></address:>
CAN1 Message Slot 2 Data 2 (C1MSL2DT2)	<address: 1528="" h'0080=""></address:>
CAN1 Message Slot 3 Data 2 (C1MSL3DT2)	<address: 1538="" h'0080=""></address:>
CAN1 Message Slot 4 Data 2 (C1MSL4DT2)	<address: 1548="" h'0080=""></address:>
CAN1 Message Slot 5 Data 2 (C1MSL5DT2)	<address: 1558="" h'0080=""></address:>
CAN1 Message Slot 6 Data 2 (C1MSL6DT2)	<address: 1568="" h'0080=""></address:>
CAN1 Message Slot 7 Data 2 (C1MSL7DT2)	<address: 1578="" h'0080=""></address:>
CAN1 Message Slot 8 Data 2 (C1MSL8DT2)	<address: 1588="" h'0080=""></address:>
CAN1 Message Slot 9 Data 2 (C1MSL9DT2)	<address: 1598="" h'0080=""></address:>
CAN1 Message Slot 10 Data 2 (C1MSL10DT2)	<address: 15a8="" h'0080=""></address:>
CAN1 Message Slot 11 Data 2 (C1MSL11DT2)	<address: 15b8="" h'0080=""></address:>
CAN1 Message Slot 12 Data 2 (C1MSL12DT2)	<address: 15c8="" h'0080=""></address:>
CAN1 Message Slot 13 Data 2 (C1MSL13DT2)	<address: 15d8="" h'0080=""></address:>
CAN1 Message Slot 14 Data 2 (C1MSL14DT2)	<address: 15e8="" h'0080=""></address:>
CAN1 Message Slot 15 Data 2 (C1MSL15DT2)	<address: 15f8="" h'0080=""></address:>
C0MSL0DT2–C0MSL15DT2, C1MSL0DT2–C1MSL15DT2 ? ? ? ? ? ? ?	

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
0–7	C0MSL0DT2-C0MSL15DT2,	Message slot data 2	R	W
	C1MSL0DT2-C1MSL15DT2			

These registers are the memory space for transmit and receive frames.

Note: • During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) is equal to or less than 2.

CAN0 Message Slot 0 Data 3 (C0MSL0DT3)	<address: 1109="" h'0080=""></address:>
CAN0 Message Slot 1 Data 3 (C0MSL1DT3)	<address: 1119="" h'0080=""></address:>
CAN0 Message Slot 2 Data 3 (C0MSL2DT3)	<address: 1129="" h'0080=""></address:>
CAN0 Message Slot 3 Data 3 (C0MSL3DT3)	<address: 1139="" h'0080=""></address:>
CAN0 Message Slot 4 Data 3 (C0MSL4DT3)	<address: 1149="" h'0080=""></address:>
CAN0 Message Slot 5 Data 3 (C0MSL5DT3)	<address: 1159="" h'0080=""></address:>
CAN0 Message Slot 6 Data 3 (C0MSL6DT3)	<address: 1169="" h'0080=""></address:>
CAN0 Message Slot 7 Data 3 (C0MSL7DT3)	<address: 1179="" h'0080=""></address:>
CAN0 Message Slot 8 Data 3 (C0MSL8DT3)	<address: 1189="" h'0080=""></address:>
CAN0 Message Slot 9 Data 3 (C0MSL9DT3)	<address: 1199="" h'0080=""></address:>
CAN0 Message Slot 10 Data 3 (C0MSL10DT3)	<address: 11a9="" h'0080=""></address:>
CAN0 Message Slot 11 Data 3 (C0MSL11DT3)	<address: 11b9="" h'0080=""></address:>
CAN0 Message Slot 12 Data 3 (C0MSL12DT3)	<address: 11c9="" h'0080=""></address:>
CAN0 Message Slot 13 Data 3 (C0MSL13DT3)	<address: 11d9="" h'0080=""></address:>
CAN0 Message Slot 14 Data 3 (C0MSL14DT3)	<address: 11e9="" h'0080=""></address:>
CAN0 Message Slot 15 Data 3 (C0MSL15DT3)	<address: 11f9="" h'0080=""></address:>
CAN1 Message Slot 0 Data 3 (C1MSL0DT3)	<address: 1509="" h'0080=""></address:>
CAN1 Message Slot 1 Data 3 (C1MSL1DT3)	<address: 1519="" h'0080=""></address:>
CAN1 Message Slot 2 Data 3 (C1MSL2DT3)	<address: 1529="" h'0080=""></address:>
CAN1 Message Slot 3 Data 3 (C1MSL3DT3)	<address: 1539="" h'0080=""></address:>
CAN1 Message Slot 4 Data 3 (C1MSL4DT3)	<address: 1549="" h'0080=""></address:>
CAN1 Message Slot 5 Data 3 (C1MSL5DT3)	<address: 1559="" h'0080=""></address:>
CAN1 Message Slot 6 Data 3 (C1MSL6DT3)	<address: 1569="" h'0080=""></address:>
CAN1 Message Slot 7 Data 3 (C1MSL7DT3)	<address: 1579="" h'0080=""></address:>
CAN1 Message Slot 8 Data 3 (C1MSL8DT3)	<address: 1589="" h'0080=""></address:>
CAN1 Message Slot 9 Data 3 (C1MSL9DT3)	<address: 1599="" h'0080=""></address:>
CAN1 Message Slot 10 Data 3 (C1MSL10DT3)	<address: 15a9="" h'0080=""></address:>
CAN1 Message Slot 11 Data 3 (C1MSL11DT3)	<address: 15b9="" h'0080=""></address:>
CAN1 Message Slot 12 Data 3 (C1MSL12DT3)	<address: 15c9="" h'0080=""></address:>
CAN1 Message Slot 13 Data 3 (C1MSL13DT3)	<address: 15d9="" h'0080=""></address:>
CAN1 Message Slot 14 Data 3 (C1MSL14DT3)	<address: 15e9="" h'0080=""></address:>
CAN1 Message Slot 15 Data 3 (C1MSL15DT3)	<address: 15f9="" h'0080=""></address:>
b8 9 10 11 12 13 14 b15	

 COMSLODT3-COMSL15DT3, C1MSL0DT3-C1MSL15DT3

 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
8–15	C0MSL0DT3-C0MSL15DT3,	Message slot data 3	R	W
	C1MSL0DT3-C1MSL15DT3			

These registers are the memory space for transmit and receive frames.

Note: • During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) is equal to or less than 3.

CAN0 Message Slot 0 Data 4 (C0MSL0DT4)	<address: 110a="" h'0080=""></address:>
CAN0 Message Slot 1 Data 4 (C0MSL1DT4)	<address: 111a="" h'0080=""></address:>
CAN0 Message Slot 2 Data 4 (C0MSL2DT4)	<address: 112a="" h'0080=""></address:>
CAN0 Message Slot 3 Data 4 (C0MSL3DT4)	<address: 113a="" h'0080=""></address:>
CAN0 Message Slot 4 Data 4 (C0MSL4DT4)	<address: 114a="" h'0080=""></address:>
CAN0 Message Slot 5 Data 4 (C0MSL5DT4)	<address: 115a="" h'0080=""></address:>
CAN0 Message Slot 6 Data 4 (C0MSL6DT4)	<address: 116a="" h'0080=""></address:>
CAN0 Message Slot 7 Data 4 (C0MSL7DT4)	<address: 117a="" h'0080=""></address:>
CAN0 Message Slot 8 Data 4 (C0MSL8DT4)	<address: 118a="" h'0080=""></address:>
CAN0 Message Slot 9 Data 4 (C0MSL9DT4)	<address: 119a="" h'0080=""></address:>
CAN0 Message Slot 10 Data 4 (C0MSL10DT4)	<address: 11aa="" h'0080=""></address:>
CAN0 Message Slot 11 Data 4 (C0MSL11DT4)	<address: 11ba="" h'0080=""></address:>
CAN0 Message Slot 12 Data 4 (C0MSL12DT4)	<address: 11ca="" h'0080=""></address:>
CAN0 Message Slot 13 Data 4 (C0MSL13DT4)	<address: 11da="" h'0080=""></address:>
CAN0 Message Slot 14 Data 4 (C0MSL14DT4)	<address: 11ea="" h'0080=""></address:>
CAN0 Message Slot 15 Data 4 (C0MSL15DT4)	<address: 11fa="" h'0080=""></address:>
CAN1 Message Slot 0 Data 4 (C1MSL0DT4)	<address: 150a="" h'0080=""></address:>
CAN1 Message Slot 1 Data 4 (C1MSL1DT4)	<address: 151a="" h'0080=""></address:>
CAN1 Message Slot 2 Data 4 (C1MSL2DT4)	<address: 152a="" h'0080=""></address:>
CAN1 Message Slot 3 Data 4 (C1MSL3DT4)	<address: 153a="" h'0080=""></address:>
CAN1 Message Slot 4 Data 4 (C1MSL4DT4)	<address: 154a="" h'0080=""></address:>
CAN1 Message Slot 5 Data 4 (C1MSL5DT4)	<address: 155a="" h'0080=""></address:>
CAN1 Message Slot 6 Data 4 (C1MSL6DT4)	<address: 156a="" h'0080=""></address:>
CAN1 Message Slot 7 Data 4 (C1MSL7DT4)	<address: 157a="" h'0080=""></address:>
CAN1 Message Slot 8 Data 4 (C1MSL8DT4)	<address: 158a="" h'0080=""></address:>
CAN1 Message Slot 9 Data 4 (C1MSL9DT4)	<address: 159a="" h'0080=""></address:>
CAN1 Message Slot 10 Data 4 (C1MSL10DT4)	<address: 15aa="" h'0080=""></address:>
CAN1 Message Slot 11 Data 4 (C1MSL11DT4)	<address: 15ba="" h'0080=""></address:>
CAN1 Message Slot 12 Data 4 (C1MSL12DT4)	<address: 15ca="" h'0080=""></address:>
CAN1 Message Slot 13 Data 4 (C1MSL13DT4)	<address: 15da="" h'0080=""></address:>
CAN1 Message Slot 14 Data 4 (C1MSL14DT4)	<address: 15ea="" h'0080=""></address:>
CAN1 Message Slot 15 Data 4 (C1MSL15DT4)	<address: 15fa="" h'0080=""></address:>
C0MSL0DT4–C0MSL15DT4, C1MSL0DT4–C1MSL15DT4 ? ? ? ? ? ? ? ?	

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
0–7	C0MSL0DT4-C0MSL15DT4,	Message slot data 4	R	W
	C1MSL0DT4-C1MSL15DT4			

These registers are the memory space for transmit and receive frames.

Note: • During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) is equal to or less than 4.

CAN0 Message Slot 0 Data 5 (C0MSL0DT5)	<address: 110b="" h'0080=""></address:>
CAN0 Message Slot 1 Data 5 (C0MSL1DT5)	<address: 111b="" h'0080=""></address:>
CAN0 Message Slot 2 Data 5 (C0MSL2DT5)	<address: 112b="" h'0080=""></address:>
CAN0 Message Slot 3 Data 5 (C0MSL3DT5)	<address: 113b="" h'0080=""></address:>
CAN0 Message Slot 4 Data 5 (C0MSL4DT5)	<address: 114b="" h'0080=""></address:>
CAN0 Message Slot 5 Data 5 (C0MSL5DT5)	<address: 115b="" h'0080=""></address:>
CAN0 Message Slot 6 Data 5 (C0MSL6DT5)	<address: 116b="" h'0080=""></address:>
CAN0 Message Slot 7 Data 5 (C0MSL7DT5)	<address: 117b="" h'0080=""></address:>
CAN0 Message Slot 8 Data 5 (C0MSL8DT5)	<address: 118b="" h'0080=""></address:>
CAN0 Message Slot 9 Data 5 (C0MSL9DT5)	<address: 119b="" h'0080=""></address:>
CAN0 Message Slot 10 Data 5 (C0MSL10DT5)	<address: 11ab="" h'0080=""></address:>
CAN0 Message Slot 11 Data 5 (C0MSL11DT5)	<address: 11bb="" h'0080=""></address:>
CAN0 Message Slot 12 Data 5 (C0MSL12DT5)	<address: 11cb="" h'0080=""></address:>
CAN0 Message Slot 13 Data 5 (C0MSL13DT5)	<address: 11db="" h'0080=""></address:>
CAN0 Message Slot 14 Data 5 (C0MSL14DT5)	<address: 11eb="" h'0080=""></address:>
CAN0 Message Slot 15 Data 5 (C0MSL15DT5)	<address: 11fb="" h'0080=""></address:>
CAN1 Message Slot 0 Data 5 (C1MSL0DT5)	<address: 150b="" h'0080=""></address:>
CAN1 Message Slot 1 Data 5 (C1MSL1DT5)	<address: 151b="" h'0080=""></address:>
CAN1 Message Slot 2 Data 5 (C1MSL2DT5)	<address: 152b="" h'0080=""></address:>
CAN1 Message Slot 3 Data 5 (C1MSL3DT5)	<address: 153b="" h'0080=""></address:>
CAN1 Message Slot 4 Data 5 (C1MSL4DT5)	<address: 154b="" h'0080=""></address:>
CAN1 Message Slot 5 Data 5 (C1MSL5DT5)	<address: 155b="" h'0080=""></address:>
CAN1 Message Slot 6 Data 5 (C1MSL6DT5)	<address: 156b="" h'0080=""></address:>
CAN1 Message Slot 7 Data 5 (C1MSL7DT5)	<address: 157b="" h'0080=""></address:>
CAN1 Message Slot 8 Data 5 (C1MSL8DT5)	<address: 158b="" h'0080=""></address:>
CAN1 Message Slot 9 Data 5 (C1MSL9DT5)	<address: 159b="" h'0080=""></address:>
CAN1 Message Slot 10 Data 5 (C1MSL10DT5)	<address: 15ab="" h'0080=""></address:>
CAN1 Message Slot 11 Data 5 (C1MSL11DT5)	<address: 15bb="" h'0080=""></address:>
CAN1 Message Slot 12 Data 5 (C1MSL12DT5)	<address: 15cb="" h'0080=""></address:>
CAN1 Message Slot 13 Data 5 (C1MSL13DT5)	<address: 15db="" h'0080=""></address:>
CAN1 Message Slot 14 Data 5 (C1MSL14DT5)	<address: 15eb="" h'0080=""></address:>
CAN1 Message Slot 15 Data 5 (C1MSL15DT5)	<address: 15fb="" h'0080=""></address:>
b8 9 10 11 12 13 14 b15	

 COMSLODT5-COMSL15DT5, C1MSL0DT5-C1MSL15DT5

 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
8–15	C0MSL0DT5-C0MSL15DT5,	Message slot data 5	R	W
	C1MSL0DT5-C1MSL15DT5			

These registers are the memory space for transmit and receive frames.

Note: • During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) is equal to or less than 5.

CAN0 Message Slot 0 Data 6 (C0MSL0DT6)	<address: 110c="" h'0080=""></address:>
CAN0 Message Slot 1 Data 6 (C0MSL1DT6)	<address: 111c="" h'0080=""></address:>
CAN0 Message Slot 2 Data 6 (C0MSL2DT6)	<address: 112c="" h'0080=""></address:>
CAN0 Message Slot 3 Data 6 (C0MSL3DT6)	<address: 113c="" h'0080=""></address:>
CAN0 Message Slot 4 Data 6 (C0MSL4DT6)	<address: 114c="" h'0080=""></address:>
CAN0 Message Slot 5 Data 6 (C0MSL5DT6)	<address: 115c="" h'0080=""></address:>
CAN0 Message Slot 6 Data 6 (C0MSL6DT6)	<address: 116c="" h'0080=""></address:>
CAN0 Message Slot 7 Data 6 (C0MSL7DT6)	<address: 117c="" h'0080=""></address:>
CAN0 Message Slot 8 Data 6 (C0MSL8DT6)	<address: 118c="" h'0080=""></address:>
CAN0 Message Slot 9 Data 6 (C0MSL9DT6)	<address: 119c="" h'0080=""></address:>
CAN0 Message Slot 10 Data 6 (C0MSL10DT6)	<address: 11ac="" h'0080=""></address:>
CAN0 Message Slot 11 Data 6 (C0MSL11DT6)	<address: 11bc="" h'0080=""></address:>
CAN0 Message Slot 12 Data 6 (C0MSL12DT6)	<address: 11cc="" h'0080=""></address:>
CAN0 Message Slot 13 Data 6 (C0MSL13DT6)	<address: 11dc="" h'0080=""></address:>
CAN0 Message Slot 14 Data 6 (C0MSL14DT6)	<address: 11ec="" h'0080=""></address:>
CAN0 Message Slot 15 Data 6 (C0MSL15DT6)	<address: 11fc="" h'0080=""></address:>
CAN1 Message Slot 0 Data 6 (C1MSL0DT6)	<address: 150c="" h'0080=""></address:>
CAN1 Message Slot 1 Data 6 (C1MSL1DT6)	<address: 151c="" h'0080=""></address:>
CAN1 Message Slot 2 Data 6 (C1MSL2DT6)	<address: 152c="" h'0080=""></address:>
CAN1 Message Slot 3 Data 6 (C1MSL3DT6)	<address: 153c="" h'0080=""></address:>
CAN1 Message Slot 4 Data 6 (C1MSL4DT6)	<address: 154c="" h'0080=""></address:>
CAN1 Message Slot 5 Data 6 (C1MSL5DT6)	<address: 155c="" h'0080=""></address:>
CAN1 Message Slot 6 Data 6 (C1MSL6DT6)	<address: 156c="" h'0080=""></address:>
CAN1 Message Slot 7 Data 6 (C1MSL7DT6)	<address: 157c="" h'0080=""></address:>
CAN1 Message Slot 8 Data 6 (C1MSL8DT6)	<address: 158c="" h'0080=""></address:>
CAN1 Message Slot 9 Data 6 (C1MSL9DT6)	<address: 159c="" h'0080=""></address:>
CAN1 Message Slot 10 Data 6 (C1MSL10DT6)	<address: 15ac="" h'0080=""></address:>
CAN1 Message Slot 11 Data 6 (C1MSL11DT6)	<address: 15bc="" h'0080=""></address:>
CAN1 Message Slot 12 Data 6 (C1MSL12DT6)	<address: 15cc="" h'0080=""></address:>
CAN1 Message Slot 13 Data 6 (C1MSL13DT6)	<address: 15dc="" h'0080=""></address:>
CAN1 Message Slot 14 Data 6 (C1MSL14DT6)	<address: 15ec="" h'0080=""></address:>
CAN1 Message Slot 15 Data 6 (C1MSL15DT6)	<address: 15fc="" h'0080=""></address:>
b0 1 2 3 4 5 6 b7	

 Comslodte
 <thComslodte</th>
 <thComslodte</th>
 <thC

<Upon exiting reset: Undefined>

b	Bit Name	Function	R	W
0–7	C0MSL0DT6-C0MSL15DT6,	Message slot data 6	R	W
	C1MSL0DT6-C1MSL15DT6			

These registers are the memory space for transmit and receive frames.

Note: • During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) is equal to or less than 6.

CAN0 Message Slot 0 Data 7 (C0MSL0DT7)	<address: 110d="" h'0080=""></address:>
CANO Message Slot 0 Data 7 (COMSL0D17) CANO Message Slot 1 Data 7 (COMSL1DT7)	<address: 110080="" 110d=""></address:>
CANO Message Slot 1 Data 7 (COMSL2DT7) CANO Message Slot 2 Data 7 (COMSL2DT7)	<address: 111d="" h'0080=""></address:>
CANO Message Slot 2 Data 7 (COMSL2D17) CANO Message Slot 3 Data 7 (COMSL3DT7)	<address: 110080="" 112d=""></address:>
CANO Message Slot 4 Data 7 (COMSL4DT7)	<address: 114d="" h'0080=""></address:>
CANO Message Slot 5 Data 7 (COMSL5DT7)	<address: 115d="" h'0080=""></address:>
CANO Message Slot 6 Data 7 (COMSL6DT7)	<address: 116d="" h'0080=""></address:>
CANO Message Slot 7 Data 7 (COMSL7DT7)	<address: 117d="" h'0080=""></address:>
CANO Message Slot 8 Data 7 (COMSL8DT7)	<address: 118d="" h'0080=""></address:>
CAN0 Message Slot 9 Data 7 (C0MSL9DT7)	<address: 119d="" h'0080=""></address:>
CAN0 Message Slot 10 Data 7 (C0MSL10DT7)	<address: 11ad="" h'0080=""></address:>
CAN0 Message Slot 11 Data 7 (C0MSL11DT7)	<address: 11bd="" h'0080=""></address:>
CAN0 Message Slot 12 Data 7 (C0MSL12DT7)	<address: 11cd="" h'0080=""></address:>
CAN0 Message Slot 13 Data 7 (C0MSL13DT7)	<address: 11dd="" h'0080=""></address:>
CAN0 Message Slot 14 Data 7 (C0MSL14DT7)	<address: 11ed="" h'0080=""></address:>
CAN0 Message Slot 15 Data 7 (C0MSL15DT7)	<address: 11fd="" h'0080=""></address:>
CAN1 Message Slot 0 Data 7 (C1MSL0DT7)	<address: 150d="" h'0080=""></address:>
CAN1 Message Slot 1 Data 7 (C1MSL1DT7)	<address: 151d="" h'0080=""></address:>
CAN1 Message Slot 2 Data 7 (C1MSL2DT7)	<address: 152d="" h'0080=""></address:>
CAN1 Message Slot 3 Data 7 (C1MSL3DT7)	<address: 153d="" h'0080=""></address:>
CAN1 Message Slot 4 Data 7 (C1MSL4DT7)	<address: 154d="" h'0080=""></address:>
CAN1 Message Slot 5 Data 7 (C1MSL5DT7)	<address: 155d="" h'0080=""></address:>
CAN1 Message Slot 6 Data 7 (C1MSL6DT7)	<address: 156d="" h'0080=""></address:>
CAN1 Message Slot 7 Data 7 (C1MSL7DT7)	<address: 157d="" h'0080=""></address:>
CAN1 Message Slot 8 Data 7 (C1MSL8DT7)	<address: 158d="" h'0080=""></address:>
CAN1 Message Slot 9 Data 7 (C1MSL9DT7)	<address: 159d="" h'0080=""></address:>
CAN1 Message Slot 10 Data 7 (C1MSL10DT7)	<address: 15ad="" h'0080=""></address:>
CAN1 Message Slot 11 Data 7 (C1MSL11DT7)	<address: 15bd="" h'0080=""></address:>
CAN1 Message Slot 12 Data 7 (C1MSL12DT7)	<address: 15cd="" h'0080=""></address:>
CAN1 Message Slot 13 Data 7 (C1MSL13DT7)	<address: 15dd="" h'0080=""></address:>
CAN1 Message Slot 14 Data 7 (C1MSL14DT7)	<address: 15ed="" h'0080=""></address:>
CAN1 Message Slot 15 Data 7 (C1MSL15DT7)	<address: 15fd="" h'0080=""></address:>
b8 9 10 11 12 13 14 b15	
C0MSL0DT7-C0MSL15DT7, C1MSL0DT7-C1MSL15DT7	

<Upon exiting reset: Undefined>

		· - F - · · · ·		
b	Bit Name	Function	R	W
8–15	C0MSL0DT7-C0MSL15DT7,	Message slot data 7	R	W
	C1MSL0DT7-C1MSL15DT7			

These registers are the memory space for transmit and receive frames.

? | ? | ? | ? | ? | ? | ? | ?

Note: • During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) is equal to or less than 7.

CAN0 Message Slot 0 Timestamp (C0MSL0TSP)	<address: 110e="" h'0080=""></address:>
CAN0 Message Slot 1 Timestamp (C0MSL1TSP)	<address: 111e="" h'0080=""></address:>
CAN0 Message Slot 2 Timestamp (C0MSL2TSP)	<address: 112e="" h'0080=""></address:>
CAN0 Message Slot 3 Timestamp (C0MSL3TSP)	<address: 113e="" h'0080=""></address:>
CAN0 Message Slot 4 Timestamp (C0MSL4TSP)	<address: 114e="" h'0080=""></address:>
CAN0 Message Slot 5 Timestamp (C0MSL5TSP)	<address: 115e="" h'0080=""></address:>
CAN0 Message Slot 6 Timestamp (C0MSL6TSP)	<address: 116e="" h'0080=""></address:>
CAN0 Message Slot 7 Timestamp (C0MSL7TSP)	<address: 117e="" h'0080=""></address:>
CAN0 Message Slot 8 Timestamp (C0MSL8TSP)	<address: 118e="" h'0080=""></address:>
CAN0 Message Slot 9 Timestamp (C0MSL9TSP)	<address: 119e="" h'0080=""></address:>
CAN0 Message Slot 10 Timestamp (C0MSL10TSP)	<address: 11ae="" h'0080=""></address:>
CAN0 Message Slot 11 Timestamp (C0MSL11TSP)	<address: 11be="" h'0080=""></address:>
CAN0 Message Slot 12 Timestamp (C0MSL12TSP)	<address: 11ce="" h'0080=""></address:>
CAN0 Message Slot 13 Timestamp (C0MSL13TSP)	<address: 11de="" h'0080=""></address:>
CAN0 Message Slot 14 Timestamp (C0MSL14TSP)	<address: 11ee="" h'0080=""></address:>
CAN0 Message Slot 15 Timestamp (C0MSL15TSP)	<address: 11fe="" h'0080=""></address:>
CAN1 Message Slot 0 Timestamp (C1MSL0TSP)	<address: 150e="" h'0080=""></address:>
CAN1 Message Slot 1 Timestamp (C1MSL1TSP)	<address: 151e="" h'0080=""></address:>
CAN1 Message Slot 2 Timestamp (C1MSL2TSP)	<address: 152e="" h'0080=""></address:>
CAN1 Message Slot 3 Timestamp (C1MSL3TSP)	<address: 153e="" h'0080=""></address:>
CAN1 Message Slot 4 Timestamp (C1MSL4TSP)	<address: 154e="" h'0080=""></address:>
CAN1 Message Slot 5 Timestamp (C1MSL5TSP)	<address: 155e="" h'0080=""></address:>
CAN1 Message Slot 6 Timestamp (C1MSL6TSP)	<address: 156e="" h'0080=""></address:>
CAN1 Message Slot 7 Timestamp (C1MSL7TSP)	<address: 157e="" h'0080=""></address:>
CAN1 Message Slot 8 Timestamp (C1MSL8TSP)	<address: 158e="" h'0080=""></address:>
CAN1 Message Slot 9 Timestamp (C1MSL9TSP)	<address: 159e="" h'0080=""></address:>
CAN1 Message Slot 10 Timestamp (C1MSL10TSP)	<address: 15ae="" h'0080=""></address:>
CAN1 Message Slot 11 Timestamp (C1MSL11TSP)	<address: 15be="" h'0080=""></address:>
CAN1 Message Slot 12 Timestamp (C1MSL12TSP)	<address: 15ce="" h'0080=""></address:>
CAN1 Message Slot 13 Timestamp (C1MSL13TSP)	<address: 15de="" h'0080=""></address:>
CAN1 Message Slot 14 Timestamp (C1MSL14TSP)	<address: 15ee="" h'0080=""></address:>
CAN1 Message Slot 15 Timestamp (C1MSL15TSP)	<address: 15fe="" h'0080=""></address:>
b0 1 2 3 4 5 6 7 8 9 10 11	12 13 14 b15
COMSLOTSP-COMSL15TSP, C1MSL0TSP-C1MSL15TSP	12 10 14 010
	<upon exiting="" reset:="" undefined=""></upon>
– Bit Name Eunction	 <upon exiting="" reset:="" undefined=""></upon> R W/
	R W

b	Bit Name	Function	R	W
0–15	COMSLOTSP-COMSL15TSP,	Message slot timestamp	R	W
	C1MSL0TSP-C1MSL15TSP			

These registers are the memory space for transmit and receive frames. When transmission/reception has finished, the CAN timestamp count register value is written to the register.

13.3 CAN Protocol

13.3.1 CAN Protocol Frames

There are four types of frames that are handled by CAN protocol:

- (1) Data frame
- (2) Remote frame
- (3) Error frame
- (4) Overload frame

Frames are separated from each other by an interframe space.

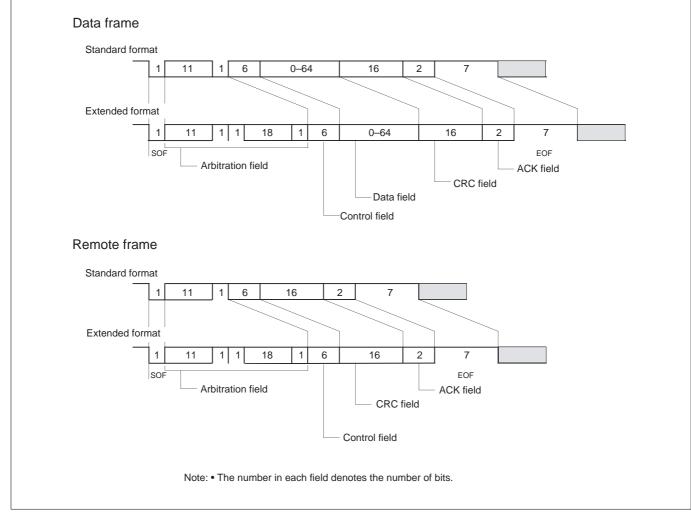


Figure 13.3.1 CAN Protocol Frames (1)

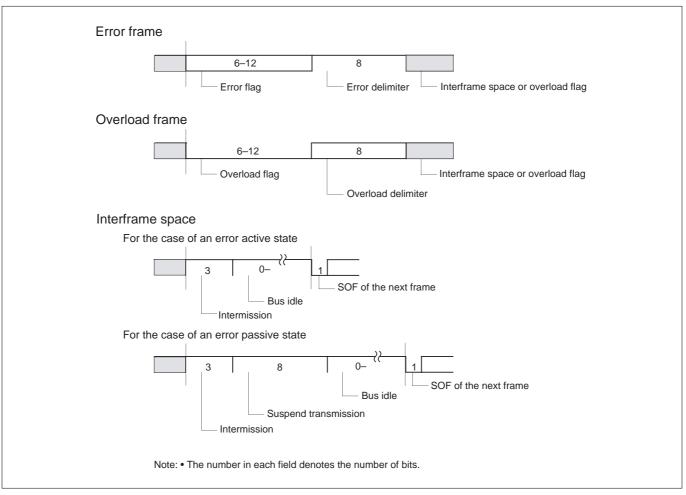


Figure 13.3.2 CAN Protocol Frames (2)

13.3.2 Data Formats during CAN Transmission/Reception

Figure 13.3.3 shows an example of the transmit/receive transfer data format that can be used in CAN. Data is transmitted/received sequentially beginning with the MSB side of the CAN message slot (C0MSLnSID0-C0MSLnDT7 and C1MSLnSID0-C1MSLnDT7).

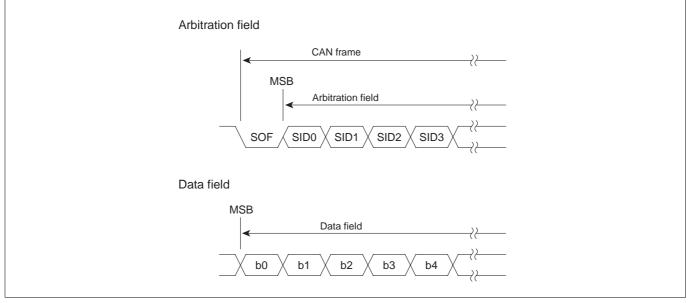


Figure 13.3.3 Example of CAN Transmit/Receive Transfer Data Format

13.3.3 CAN Controller Error States

The CAN controller assumes one of the following three error states depending on the transmit error and receive error counter values.

(1) Error active state

- This is a state where almost no errors have occurred.
- When an error is detected, an active error flag is transmitted.
- The CAN controller is in the state immediately after being initialized.

(2) Error passive state

- This is a state where many errors have occurred.
- When an error is detected, a passive error flag is transmitted.

(3) Bus off state

- This is a state where a very large number of errors have occurred.
- CAN communication with other nodes cannot be performed until the CAN module returns to an error active state.

Error Status of the Unit	Transmit Error Counter		Receive Error Counter
Error active state	0–127	AND	0–127
Error passive state	128–255	OR	128 and over
Bus off state	256 and over		-

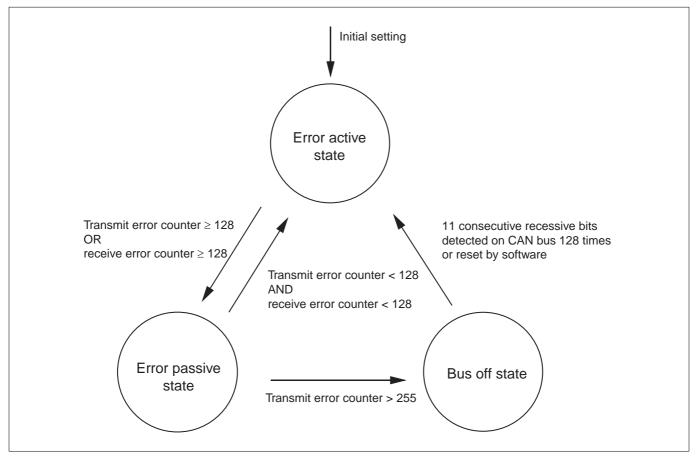


Figure 13.3.4 CAN Controller Error States

CAN MODULE 13.4 Initializing the CAN Module

13.4 Initializing the CAN Module

13.4.1 Initializing the CAN Module

Before performing communication, set up the CAN module as described below.

(1) Selecting pin functions

The CAN transmit data output pin (CTX) and CAN receive data input pin (CRX) are shared with input/output ports. Be sure to select the functions of these pins. (See Chapter 8, "Input/Output Ports and Pin Functions."

(2) Setting the Interrupt Controller (ICU)

To use CAN module interrupts, set their interrupt priority levels.

(3) Setting CAN Error, CAN Single-Shot and CAN Slot Interrupt Request Mask Registers

To use CAN bus error, CAN error passive, CAN error bus off, CAN single-shot or CAN slot interrupts, set each corresponding bit to "1" to enable the interrupt request.

(4) Setting DMAC

To use DMA transfers by CAN, be sure to set the DMAC.

(5) Setting CAN DMA transfer request select register

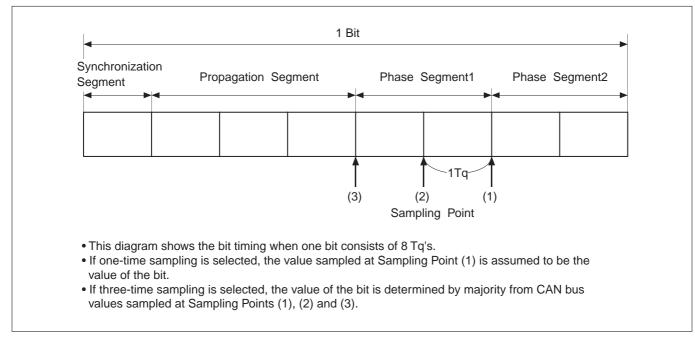
To use DMA transfers by CAN, set the CAN DMA transfer request select register to choose the cause of transfer request.

(6) Setting the bit timing and the number of times sampled

Using the CAN Configuration Register and CAN Baud Rate Prescaler, set the bit timing and the number of times the CAN bus is sampled.

1) Setting the bit timing

Determine the period Tq that is the base of bit timing, the configuration of Propagation Segment, Phase Segment1 and Phase Segment2, and reSynchronization Jump Width. The equation to calculate Tq is given below.


Tq = (BRP + 1) / (CPU clock)

The baud rate is determined by the number of Tq's that comprise one bit. The equation to calculate the baud rate is given below.

Baud rate (bps) = $\frac{1}{\text{Tq period} \times \text{number of Tq's in one bit}}$

Number of Tq's in one bit = Synchronization Segment + Propagation Segment + Phase Segment 1 + Phase Segment 2

Note: • The maximum baud rate for communication depends on the system configuration (e.g., bus length, clock error, CAN bus transceiver, sampling position and bit configuration). Consider the system configuration when setting the baud rate and number of Tq's.

Figure 13.4.1 Example of Bit Timing

2) Setting the number of times sampled

Select the number of times the CAN bus is sampled from "one time" and "three times."

- If one-time sampling is selected, the value sampled at only the end of Phase Segment1 is assumed to be the value of the bit.
- If three-time sampling is selected, the value of the bit is determined by majority from three sampled values, one sampled at the end of Phase Segment1 and the other sampled 1 Tq before and 2 Tq's before that.

(7) Setting the ID mask registers

Set the values of ID mask registers (Global Mask Register, Local Mask Register A and Local Mask Register B) that are used in acceptance filtering of received messages.

(8) Settings for use in BasicCAN mode

- Set the CAN Extended ID Register IDE14 and IDE15 bits. (We recommend setting the same value in these bits.)
- Set IDs in message slots 14 and 15.
- Set the Message Control Registers 14 and 15 for data frame reception (H'40).

(9) Settings for use in single-shot mode

Using the CAN Mode Register (CANnMODE) and CAN Control Register (CANnCNT), select CAN module operation mode (BasicCAN, loopback mode) and the clock source for the timestamp counter.

(10) Setting CAN module operation mode

In the CAN Single-Shot Mode Control Register, set the slot that is to be operated in single-shot mode.

(11) Releasing CAN module from reset

When settings (1) through (10) above are finished, clear the CAN Control Register (CANnCNT)'s forcible reset (FRST) and reset (RST) bits to "0". Then, after detecting 11 consecutive recessive bits on the CAN bus, the CAN module becomes ready to communicate.

CAN MODULE 13.4 Initializing the CAN Module

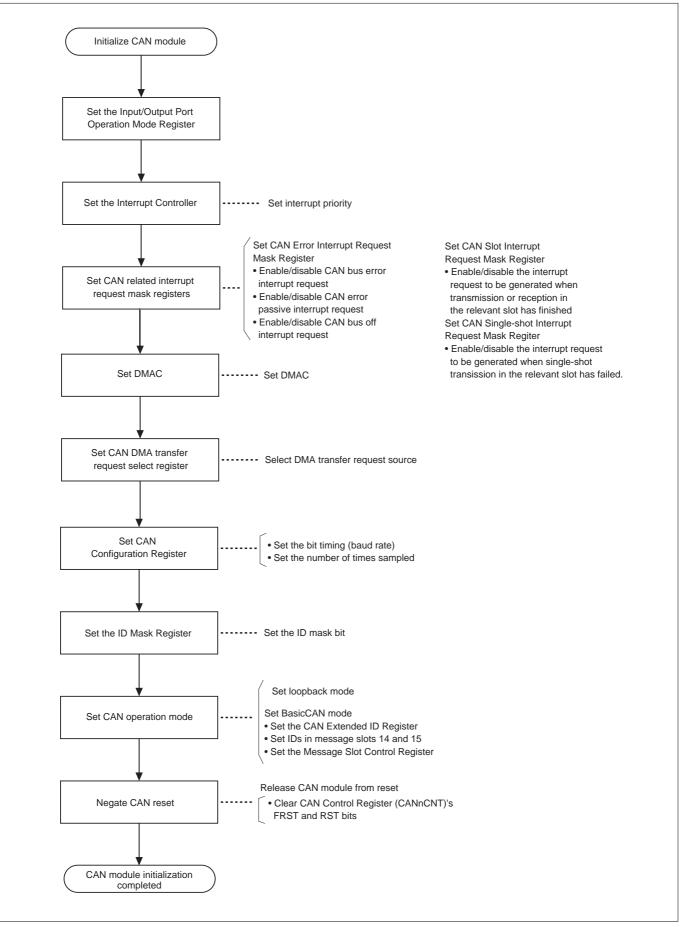


Figure 13.4.2 Initializing CAN Module

CAN MODULE 13.5 Transmitting Data Frames

13.5 Transmitting Data Frames

13.5.1 Data Frame Transmit Procedure

The following describes the procedure for transmitting data frames.

(1) Initializing CAN Message Slot Control Register

Initialize the CAN Message Slot Control Register for the slot to be transmitted by writing H'00 to the register.

(2) Confirming that transmission is idle

Read the CAN Message Slot Control Register that has been initialized and check the TRSTAT (Transmit/ Receive Status) bit to see that transmission/reception has stopped and remains idle. If this bit = "1", it means that the CAN module is accessing the message slot. Therefore, wait until the bit is cleared to "0".

(3) Setting transmit data

Set the transmit ID and transmit data in the message slot.

(4) Setting the Extended ID Register

Set the corresponding bit in the Extended ID Register to "0" if the data is to be transmitted as a standard frame, or "1" if the data is to be transmitted as an extended frame.

(5) Setting CAN Message Slot Control Register

Write H'80 (Note 1) to the CAN Message Slot Control Register to set the TR (Transmit Request) bit to "1".

Note 1: Always be sure to write H'80 when transmitting data frames.

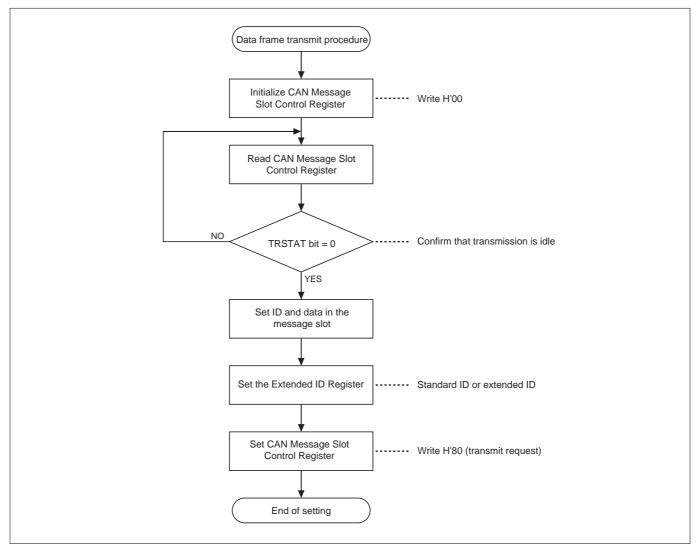


Figure 13.5.1 Data Frame Transmit Procedure

13.5.2 Data Frame Transmit Operation

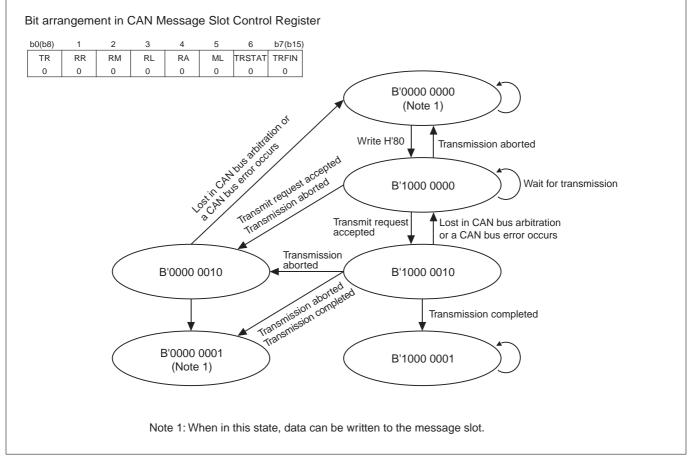
The following describes data frame transmit operation. The operations described below are automatically performed in hardware.

(1) Selecting a transmit frame

The CAN module checks slots which have transmit requests (including remote frame transmit slots) every intermission to determine the frame to transmit. If two or more transmit slots exist, frames are transmitted in order of slot numbers beginning with the smallest.

(2) Transmitting a data frame

After determining the transmit slot, the CAN module sets the corresponding CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit to "1" and starts transmitting.


(3) If lost in CAN bus arbitration or a CAN bus error occurs

If the CAN module lost in CAN bus arbitration or a CAN bus error occurs in the middle of transmission, the CAN module clears the CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit to "0". If the CAN module requested a transmit abort, the transmit abort is accepted and the message slot is enabled for write.

(4) Completion of data frame transmission

When data frame transmission has finished, the CAN Message Slot Control Register's TRFIN (Transmit/ Receive Finished) bit and the CAN Slot Interrupt Request Status Register are set to "1". Also, a timestamp count value at which transmission has finished is written to the CAN Message Slot Timestamp (C0MSLnTSP, C1MSLnTSP), and the transmit operation is thereby completed.

If the CAN slot interrupt request has been enabled, an interrupt request is generated at completion of transmit operation. The slot which has had transmission completed goes to an inactive state and remains inactive (neither transmit nor receive) until it is newly set in software.

13.5.3 Transmit Abort Function

The transmit abort function is used to cancel a transmit request that has once been set. This is accomplished by writing H'0F to the CAN Message Slot Control Register for the slot to be canceled. When transmit abort is accepted, the CAN module clears the CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit to "0", allowing for data to be written to the message slot. The following shows the conditions under which transmit abort is accepted.

[Conditions]

- When the target message is waiting for transmission
- When a CAN bus error occurs during transmission
- When lost in CAN bus arbitration

13.6 Receiving Data Frames

13.6.1 Data Frame Receive Procedure

The following describes the procedure for receiving data frames.

(1) Initializing CAN Message Slot Control Register

Initialize the CAN Message Slot Control Register for the slot to be received by writing H'00 to the register.

(2) Confirming that reception is idle

Read the CAN Message Slot Control Register that has been initialized and check the TRSTAT (Transmit/ Receive Status) bit to see that reception has stopped and remains idle. If this bit = "1", it means that the CAN module is accessing the message slot. Therefore, wait until the bit is cleared to "0".

(3) Setting the receive ID

Set the desired receive ID in the message slot.

(4) Setting the Extended ID Register

Set the corresponding bit in the Extended ID Register to "0" if a standard frame is to be received, or "1" if an extended frame is to be received.

(5) Setting CAN Message Slot Control Register

Write H'40 to the CAN Message Slot Control Register to set the RR (Receive Request) bit to "1".

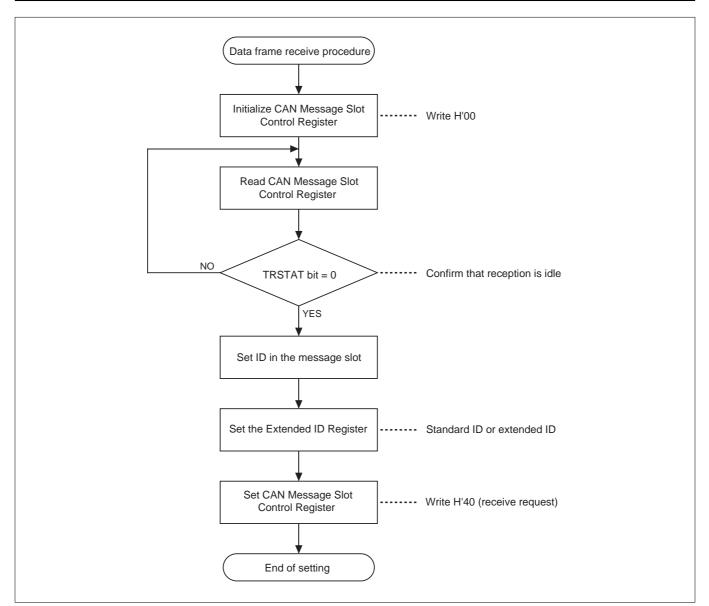


Figure 13.6.1 Data Frame Receive Procedure

13.6.2 Data Frame Receive Operation

The following describes data frame receive operation. The operations described below are automatically performed in hardware.

(1) Acceptance filtering

When the CAN module finished receiving data, it starts searching for the slot that satisfies the conditions for receiving the received message, sequentially from slot 0 (up to slot 15). The following shows receive conditions for the slots that have been set for data frame reception.

[Conditions]

- The received frame is a data frame.
- The receive ID and the slot ID are identical, assuming the ID Mask Register bits set to "0" are "Don't care."
- The standard and extended frame types are the same.

Note: • In BasicCAN mode, slots 14 and 15 while being set for data frame reception can also receive remote frames.

(2) When the receive conditions are met

When the receive conditions in (1) above are met, the CAN module sets the CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit and TRFIN (Transmit/Receive Finished) bit to "1" while at the same time writing the received data to the message slot. If the TRFIN (Transmit/Receive Finished) bit is already set to "1" at this time, the CAN module also sets the ML (Message Lost) bit to "1", indicating that the message slot has been overwritten. The message slot has both of its ID and DLC fields entirely overwritten and has an undefined value written in its unused area (e.g., extended ID field during standard frame reception and an unused data field).

Furthermore, a timestamp count value at which the message was received is written to the CAN Message Slot Timestamp (C0MSLnTSP, C1MSLnTSP) along with the received data. When the CAN module finished writing to the message slot, it sets the CAN Slot Interrupt Request Status bit to "1". If the interrupt request for the slot has been enabled, the CAN module generates an interrupt request and enters a wait state for the next reception.

(3) When the receive conditions are not met

The received frame is discarded, and the CAN module goes to the next transmit/receive operation without writing to the message slot.

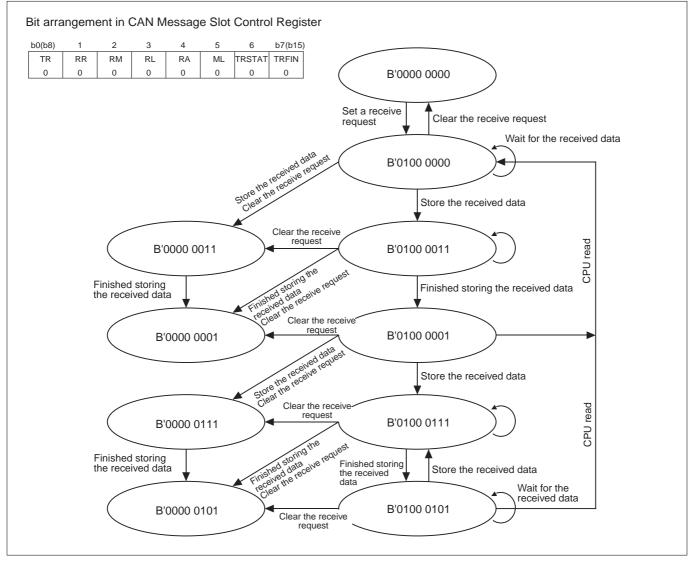


Figure 13.6.2 Operation of CAN Message Slot Control Register during Data Frame Reception

13.6.3 Reading Out Received Data Frames

The following shows the procedure for reading out received data frames from the slot.

(1) Clearing TRFIN (Transmit/Receive Finished) bit

Write H'4E, H'40 or H'00 to the CAN Message Slot Control Register (C0MSLnCNT, C1MSLnCNT) to clear the TRFIN bit to "0". After this write, the slot operates as follows:

Values Written to	Slot Operation after Write
C0MSLnCNT, C1MSLnCNT	
H'4E	Operates as a data frame receive slot. Whether overwritten can be verified by ML bit.
H'40	Operates as a data frame receive slot. Whether overwritten cannot be verified by ML bit.
H'00	The slot stops transmit/receive operation.

Notes: • If message-lost check by the ML bit is needed, write H'4E to clear the TRFIN bit.

• If the TRFIN bit was cleared by writing H'4E, H'40 or H'00, it is possible that new data will be stored in the slot while still reading out a message from it.

(2) Reading out from the message slot

Read out a message from the message slot.

(3) Checking TRFIN (Transmit/Receive Finished) bit

Read the CAN Message Slot Control Register to check the TRFIN (Transmit/Receive Finished) bit.

1) If TRFIN (Transmit/Receive Finished) bit = "1"

It means that new data was stored in the slot while still reading out a message from it in (2) above. In this case, the data read out in (2) may contain an undefined value. Therefore, reexecute the above procedure beginning with clearing of the TRFIN (Transmit/Receive Finished) bit in (1).

2) If TRFIN (Transmit/Receive Finished) bit = "0"

It means that the CAN module finished reading out from the slot normally.

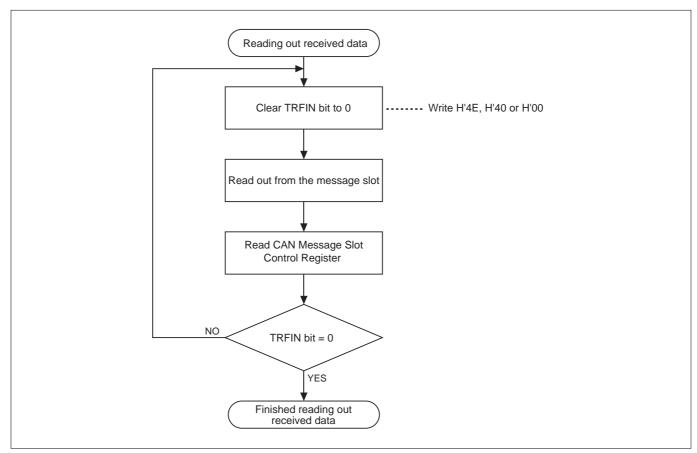


Figure 13.6.3 Procedure for Reading Out Received Data

CAN MODULE 13.7 Transmitting Remote Frames

13.7 Transmitting Remote Frames

13.7.1 Remote Frame Transmit Procedure

The following describes the procedure for transmitting remote frames.

(1) Initializing CAN Message Slot Control Register

Initialize the CAN Message Slot Control Register for the slot to be transmitted by writing H'00 to the register.

(2) Confirming that transmission is idle

Read the CAN Message Slot Control Register that has been initialized and check the TRSTAT (Transmit/ Receive Status) bit to see that transmission/reception has stopped and remains idle. If this bit = "1", it means that the CAN module is accessing the message slot. Therefore, wait until the bit is cleared to "0".

(3) Setting transmit ID

Set the ID to be transmitted in the message slot.

(4) Setting the Extended ID Register

Set the corresponding bit in the Extended ID Register to "0" if the data is to be transmitted as a standard frame, or "1" if the data is to be transmitted as an extended frame.

(5) Setting CAN Message Slot Control Register

Write H'A0 to the CAN Message Slot Control Register to set the TR (Transmit Request) bit and RM (Remote) bit to "1".

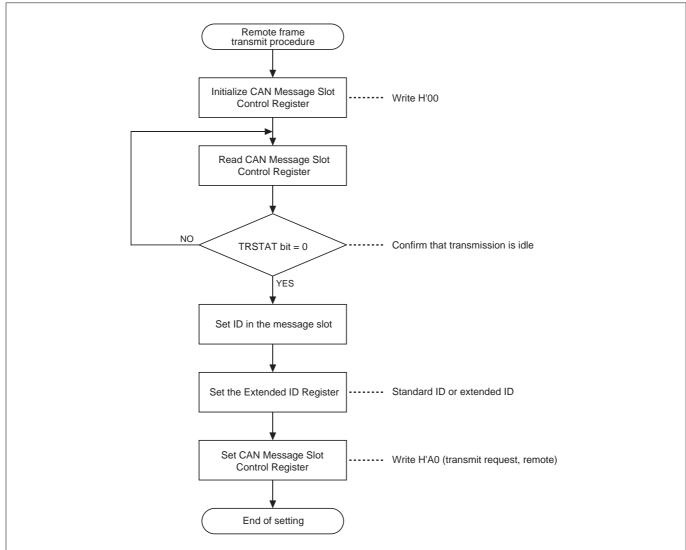


Figure 13.7.1 Remote Frame Transmit Procedure

13.7.2 Remote Frame Transmit Operation

The following describes remote frame transmit operation. The operations described below are automatically performed in hardware.

(1) Setting RA (Remote Active) bit

The RA (Remote Active) bit is set to "1" at the same time H'A0 (Transmit Request, Remote) is written to the CAN Message Slot Control Register, indicating that the corresponding slot is to handle remote frames.

(2) Selecting a transmit frame

The CAN module checks slots which have transmit requests (including data frame transmit slots) every intermission to determine the frame to transmit. If two or more transmit slots exist, frames are transmitted in order of slot numbers beginning with the smallest.

(3) Transmitting a remote frame

After determining the transmit slot, the CAN module sets the corresponding CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit to "1" and starts transmitting.

(4) If lost in CAN bus arbitration or a CAN bus error occurs

If the CAN module lost in CAN bus arbitration or a CAN bus error occurs in the middle of transmission, the CAN module clears the CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit to "0". If the CAN module requested a transmit abort, the transmit abort is accepted and the message slot is enabled for write.

(5) Completion of remote frame transmission

When remote frame transmission finishes, the timestamp count value at which transmission finished is written to the CAN Message Slot Timestamp (COMSLnTSP, C1MSLnTSP) and the CAN Message Slot Control Register's RA (Remote Active) bit is cleared to "0". In addition, the CAN Slot Interrupt Request Status bit is set to "1" by completion of transmission, but the CAN Message Slot Control Register's TRFIN (Transmit/ Receive Finished) bit is not set to "1". If the CAN slot interrupt request has been enabled, an interrupt request is generated when transmission has finished.

(6) Receiving a data frame

When remote frame transmission finishes, the slot automatically starts functioning as a data frame receive slot.

(7) Acceptance filtering

When the CAN module finished receiving data, it starts searching for the slot that satisfies the conditions for receiving the received message, sequentially from slot 0 (up to slot 15). The following shows receive conditions for the slots that have been set for data frame reception.

[Conditions]

- The received frame is a data frame.
- The receive ID and the slot ID are identical, assuming the ID Mask Register bits set to "0" are "Don't care."
- The standard and extended frame types are the same.

Note: • In BasicCAN mode, slots 14 and 15 cannot be used as a transmit slot.

(8) When the receive conditions are met

When the receive conditions in (7) above are met, the CAN module sets the CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit and TRFIN (Transmit/Receive Finished) bit to "1" while at the same time writing the received data to the message slot. If the TRFIN (Transmit/Receive Finished) bit is already set to "1" at this time, the CAN module also sets the ML (Message Lost) bit to "1", indicating that the message slot has been overwritten. The message slot has both of its ID and DLC fields entirely overwritten and has an undefined value written in its unused area (e.g., extended ID field during standard frame reception and an unused data field).

Furthermore, a timestamp count value at which the message was received is written to the CAN Message Slot Timestamp (C0MSLnTSP, C1MSLnTSP) along with the received data. When the CAN module finished writing to the message slot, it sets the CAN Slot Interrupt Request Status bit to "1". If the interrupt request for the slot has been enabled, the CAN module generates an interrupt request and enters a wait state for the next reception.

Note: • If the CAN module receives a corresponding data frame before sending a remote frame, it stores the received data frame in the slot and does not transmit the remote frame.

(9) When the receive conditions are not met

The received frame is discarded, and the CAN module goes to the next transmit/receive operation without writing to the message slot.

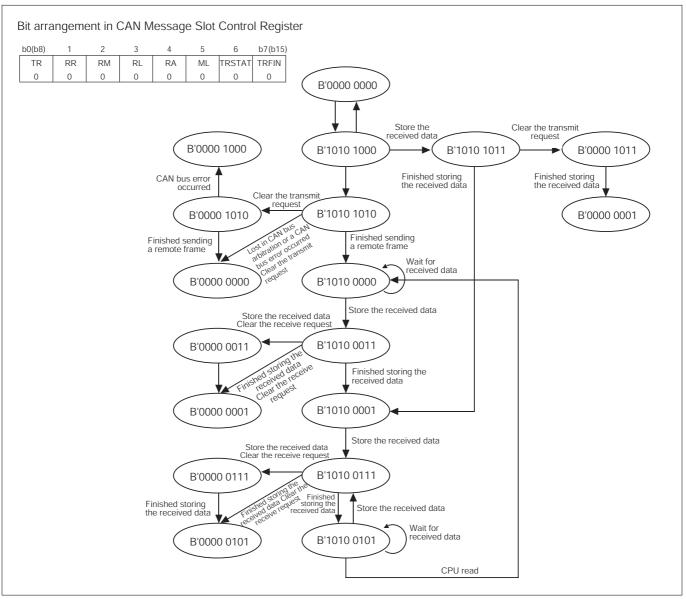


Figure 13.7.2 Operation of the CAN Message Slot Control Register during Remote Frame Transmission

13.7.3 Reading Out Received Data Frames when Set for Remote Frame Transmission

The following shows the procedure for reading out the data frames that have been received in the slot when it is set for remote frame transmission.

(1) Clearing TRFIN (Transmit/Receive Finished) bit

Write H'AE or H'00 to the CAN Message Slot Control Register (C0MSLnCNT, C1MSLnCNT) to clear the TRFIN bit to "0". After this write, the slot operates as follows:

Values Written to	Slot Operation after Write				
C0MSLnCNT, C1MSLnCNT					
H'AE	Operates as a data frame receive slot. Whether overwritten can be verified by ML bit.				
H'00 The slot stops transmit/receive operation.					
Notoo: • If magazaga last shock by	w the ML bit is peeded write H'AE to clear the TREIN bit				

Notes: • If message-lost check by the ML bit is needed, write H'AE to clear the TRFIN bit.

• If the TRFIN bit was cleared by writing H'AE or H'00, it is possible that new data will be stored in the slot while still reading out a message from it.

• The received data frame cannot be read out by writing H'A0 to the register. If the TRFIN bit is cleared by writing

(2) Reading out from the message slot

Read out a message from the message slot.

(3) Checking TRFIN (Transmit/Receive Finished) bit

Read the CAN Message Slot Control Register to check the TRFIN (Transmit/Receive Finished) bit.

1) If TRFIN (Transmit/Receive Finished) bit = "1"

It means that new data was stored in the slot while still reading out a message from it in (2) above. In this case, the data read out in (2) may contain an undefined value. Therefore, reexecute the above procedure beginning with clearing of the TRFIN (Transmit/Receive Finished) bit in (1).

2) If TRFIN (Transmit/Receive Finished) bit = "0"

It means that the CAN module finished reading out from the slot normally.

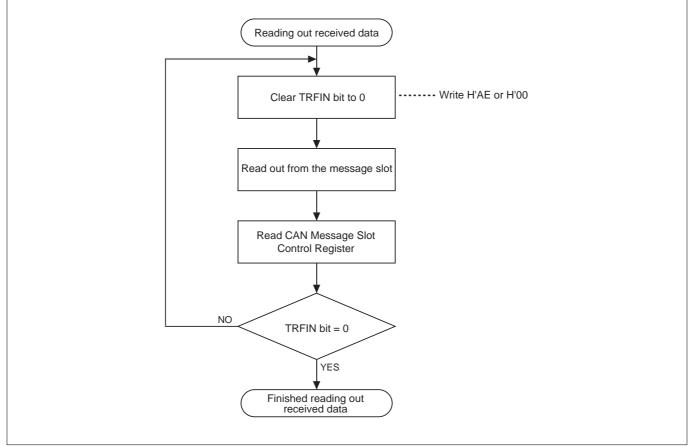


Figure 13.7.3 Procedure for Reading Out Received Data when Set for Remote Frame Transmission

CAN MODULE 13.8 Receiving Remote Frames

13.8 Receiving Remote Frames

13.8.1 Remote Frame Receive Procedure

The following describes the procedure for receiving remote frames.

(1) Initializing CAN Message Slot Control Register

Initialize the CAN Message Slot Control Register for the slot to be received by writing H'00 to the register.

(2) Confirming that reception is idle

Read the CAN Message Slot Control Register that has been initialized and check the TRSTAT (Transmit/ Receive Status) bit to see that reception has stopped and remains idle. If this bit = "1", it means that the CAN module is accessing the message slot. Therefore, wait until the bit is cleared to "0".

(3) Setting the receive ID

Set the desired receive ID in the message slot.

(4) Setting the Extended ID Register

Set the corresponding bit in the Extended ID Register to "0" if a standard frame is to be received, or "1" if an extended frame is to be received.

(5) Setting CAN Message Slot Control Register

- 1) When automatic response (data frame transmission) for remote frame reception is desired Write H'60 to the CAN Message Slot Control Register to set the RR (Receive Request) bit and RM (Remote) bit to "1".
- 2) When automatic response (data frame transmission) for remote frame reception is to be disabled Write H'70 to the CAN Message Slot Control Register to set the RR (Receive Request) bit, RM (Remote) bit and RL (Automatic Response Enable) bit to "1".
 - Note: During BasicCAN mode, slots 14 and 15, although capable of receiving remote frames, cannot automatically respond to remote frame reception.

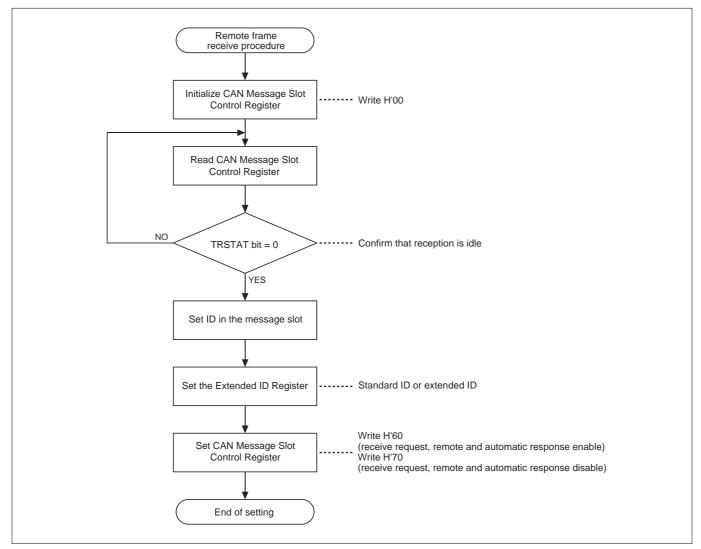


Figure 13.8.1 Remote Frame Receive Procedure

13.8.2 Remote Frame Receive Operation

The following describes remote frame receive operation. The operations described below are automatically performed in hardware.

(1) Setting RA (Remote Active) bit

The RA (Remote Active) bit indicating that the corresponding slot is to handle remote frames is set to "1" at the same time H'60 (Receive Request, Remote, Automatic Response Enable) or H'70 (Receive Request, Remote, Automatic Response Disable) is written to the CAN Message Slot Control Register.

(2) Acceptance filtering

When the CAN module finished receiving data, it starts searching for the slot that satisfies the conditions for receiving the received message, sequentially from slot 0 (up to slot 15). The following shows receive conditions for the slots that have been set for data frame reception.

[Conditions]

- The received frame is a remote frame.
- The receive ID and the slot ID are identical, assuming the ID Mask Register bits set to "0" are "Don't care."
- The standard and extended frame types are the same.

(3) When the receive conditions are met

When the receive conditions in (2) above are met, the CAN module sets the CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit and TRFIN (Transmit/Receive Finished) bit to "1" while at the same time writing the received data to the message slot. In addition, a timestamp count value at which the message was received is written to the CAN Message Slot Timestamp (C0MSLnTSP, C1MSLnTSP) along with the received data. When the CAN module finished writing to the message slot, it sets the CAN Slot Interrupt Request Status bit to "1". If the interrupt request for the slot has been enabled, the CAN module generates an interrupt request.

Notes: • The ID field and DLC value are written to the message slot.

- An undefined value is written to the extended ID area when receiving standard format frames.
- The data field is not written to.
- The RA and TRFIN bits are cleared to "0" after writing the received remote frame data.

(4) When the receive conditions are not met

The received data is discarded, and the CAN module waits for the next receive frame. No data is written to the message slot.

(5) Operation after receiving a remote frame

The operation performed after receiving a remote frame differs depending on how automatic response is set.

1) When automatic response is disabled

The slot which has had reception completed goes to an inactive state and remains inactive (neither transmit nor receive) until it is newly set in software.

2) When automatic response is enabled

After receiving a remote frame, the slot automatically changes to a data frame transmit slot and performs the transmit operation described below. In this case, the transmitted data conforms to the ID and DLC of the received remote frame.

Selecting a transmit frame

The CAN module checks slots which have transmit requests (including remote frame transmit slots) every intermission to determine the frame to transmit. If two or more transmit slots exist, frames are transmitted in order of slot numbers beginning with the smallest.

• Transmitting a data frame

After determining the transmit slot, the CAN module sets the corresponding CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit to "1" and starts transmitting.

• If lost in CAN bus arbitration or a CAN bus error occurs

If the CAN module lost in CAN bus arbitration or a CAN bus error occurs in the middle of transmission, the CAN module clears the CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit to "0". If the CAN module requested a transmit abort, the transmit abort is accepted and the message slot is enabled for write.

Completion of data frame transmission

When data frame transmission has finished, the CAN Message Slot Control Register's TRFIN (Transmit/Receive Finished) bit and the CAN Slot Interrupt Request Status Register are set to "1". Also, a timestamp count value at which transmission has finished is written to the CAN Message Slot Timestamp (C0MSLnTSP, C1MSLnTSP), and the transmit operation is thereby completed.

If the CAN slot interrupt request has been enabled, an interrupt request is generated at completion of transmit operation. The slot which has had transmission completed goes to an inactive state and remains inactive (neither transmit nor receive) until it is newly set in software.

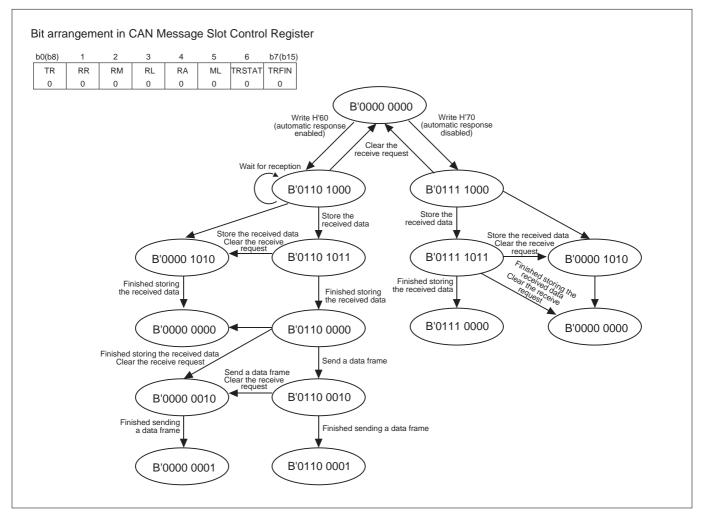


Figure 13.8.2 Operation of CAN Message Slot Control Register during Remote Frame Reception

13.9 Precautions about CAN Module

• Note for cancelation of transmit and receive CAN remote frame

When aborting remote frame transmission or canceling remote frame receiving, make sure that the RA (Remote Active) bit is cleared to "0" after writing "H'00" or "H'0F" to the CAN Message Slot Control Register.

(1) When aborting remote frame transmission

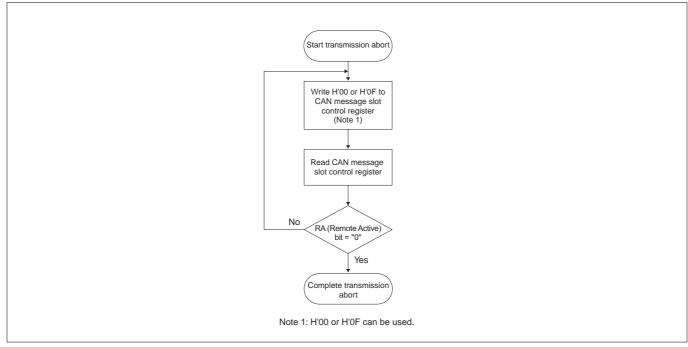


Figure 13.9.1 Opertion Flow when Aborting Remote Frame Transmission

(2) When canceling remote frame receiving

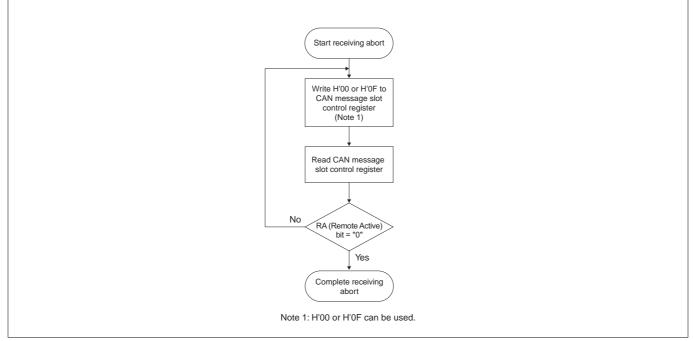


Figure 13.9.2 Opertion Flow when Canceling Remote Frame Receiving

CHAPTER 14

REAL TIME DEBUGGER (RTD)

- 14.1 Outline of the Real-Time Debugger (RTD)
- 14.2 Pin Functions of RTD
- 14.3 RTD Related Register
- 14.4 Functional Description of RTD
- 14.5 Typical Connection with the Host

14.1 Outline of the Real-Time Debugger (RTD)

The Real-Time Debugger (RTD) is a serial I/O through which to read or write to any location in the entire area of the internal RAM by using commands from outside the microcomputer. Because data transfers between the RTD and internal RAM are performed via a dedicated internal bus independently of the M32R, RTD operation can be controlled without the need to stop the M32R.

Item	Description
Transfer method	Clock-synchronous serial I/O
Generation of transfer clock	Generated by external host
RAM access area	Entire area of the internal RAM (controlled by A16–A29)
Transmit/receive data length	32 bits (fixed)
Bit transfer sequence	LSB first
Maximum transfer rate	2 Mbits/second
Input/output pins	4 pins (RTDTXD, RTDRXD, RTDACK, RTDCLK)
Number of commands	Following five functions
	Monitor continuously
	Output real-time RAM content
	 Forcibly rewrite RAM content (with verify)
	 Recover from runaway condition
	Request RTD interrupt

Table 14.1.1	Outline of the Real-Time Debugger (RTD)
--------------	--	---

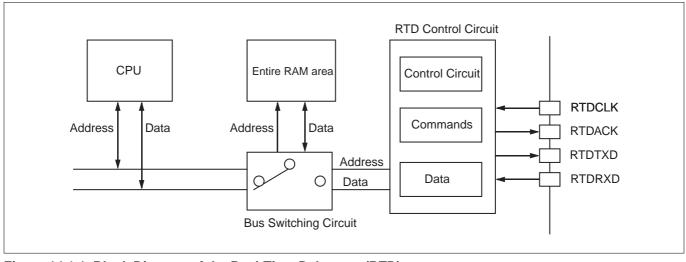
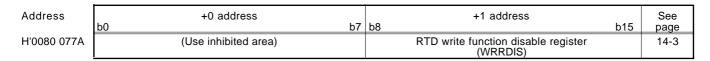


Figure 14.1.1 Block Diagram of the Real-Time Debugger (RTD)

14.2 Pin Functions of RTD

Pin Functions of the RTD are shown below.


Table 14.2.1 Pin Functions of RTE	Table 14.2.1
-----------------------------------	--------------

Pin Name	Туре	Function
RTDTXD	Output	RTD serial data output
RTDRXD	Input	RTD serial data input
RTDACK	Output	Output a low-level pulse synchronously with the beginning clock edge of the output data word.
		The width of this pulse indicates the type of instruction or data the RTD has received.
		1 clock period: VER (continuous monitor) command
		1 clock period: VEI (RTD interrupt request) command
		2 clock periods: RDR (real-time RAM content output) command
		3 clock periods: WRR (RAM content forcible rewrite) command or the data to rewrite
		4 clock periods or more: RCV (recover from runaway) command
RTDCLK	Input	RTD transfer clock input

14.3 RTD Related Register

The following shows an RTD related register map.

RTD Related Register Map

14.3.1 RTD Write Function Disable Register

RTD Write Function Disable Register (WRRDIS)

b8	9		10		11		12		13		14	b15
0	J 0	1	0	I	0	1	0	I	0	1	0	RTDWR DIS 0

<Address: H'0080 077B>

<Upon exiting reset: H'00>

b	Bit Name	Function	R	W
8–14	No function assigned. Fix to "0"		0	0
15	RTDWRDIS	0: Write to RAM by RTD enabled	R	W
	Write to RAM by RTD disable bit	1: Write to RAM by RTD disabled		

This register is used to select whether to enable or disable a write to RAM by the RTD.

Setting the RTDWRDIS bit disables a write to RAM by the RTD, so that even when the RTD receives a command for write to RAM, the command is ignored and no write operation to RAM is executed.

Notes • Do not alter settings while using the RTD.

14.4 Functional Description of RTD

14.4.1 Outline of RTD Operation

Operation of the RTD is specified by a command entered from devices external to the chip. A command is indicated by bits 16–19 (Note 1) of the RTD received data.

Table 14.4.1 RTD Commands

RTD R	eceive	d Data	l	Command				
b19	b18	b17	b16	Mnemonic	RTD Function			
0	0	0	0	VER (VERify)	Continuous monitor			
0	1	0	0					
0	1	0	1					
0	1	1	0	VEI (VErify Interrupt request)	RTD interrupt request			
0	0	1	0	RDR (ReaD RAM)	Real-time RAM content output			
0	0	1	1	WRR (WRite RAM)	RAM content forcible rewrite (with verify)			
1	1	1	1	RCV (ReCoVer)	Recover from runaway condition (Note 2), (Note 3)			
0	0	0	1	System reserved (use inhibited)				

↑ (Note 1)

Note 1: The RTD received data bit 19 actually is not stored in the command register, and except for the RCV command, handled as a "Don't care" bit. (Bits 16–18 are effective for the command specified.)

Note 2: The RCV command must always be transmitted twice in succession.

Note 3: For the RCV command, all bits, not just 16-19, (i.e., bits 0-15 and bits 20-31) must be set to "1".

14.4.2 Operation of RDR (Real-time RAM Content Output)

When the RDR (real-time RAM content output) command is issued, the RTD is enabled to transfer the contents of the internal RAM to external devices without causing the CPU's internal bus to stop. Because the RTD reads data from the internal RAM while there are no transfers performed between the CPU and internal RAM, no extra CPU load is incurred.

Only the 32-bit word-aligned addresses can be specified for read from the internal RAM. (The two low-order address bits specified by a command are ignored.) Data are read out and transferred from the internal RAM in 32-bit units.

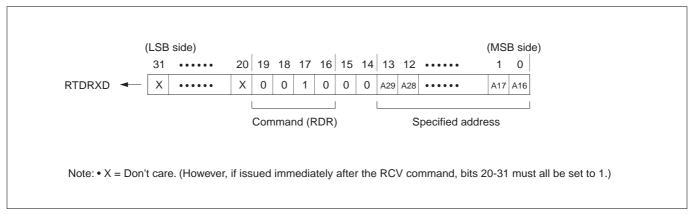


Figure 14.4.1 RDR Command Data Format

REAL TIME DEBUGGER (RTD)

14.4 Functional Description of RTD

Figure 14.4.2 Operation of RDR Command

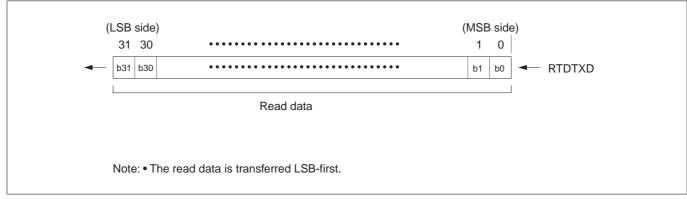


Figure 14.4.3 Read Data Transfer Format

14.4.3 Operation of WRR (RAM Content Forcible Rewrite)

When the WRR (RAM content forcible rewrite) command is issued, the RTD forcibly rewrites the contents of the internal RAM without causing the CPU's internal bus to stop. Because the RTD writes data to the internal RAM while there are no transfers performed between the CPU and internal RAM, no extra CPU load is incurred. Only the 32-bit word-aligned addresses can be specified for read from the internal RAM. (The two low-order address bits specified by a command are ignored.) Data are written to the internal RAM in 32-bit units. The external host should transmit the command and address in the first frame and then the write data in the second frame. The RTD writes to the internal RAM in the third frame after receiving the write data.

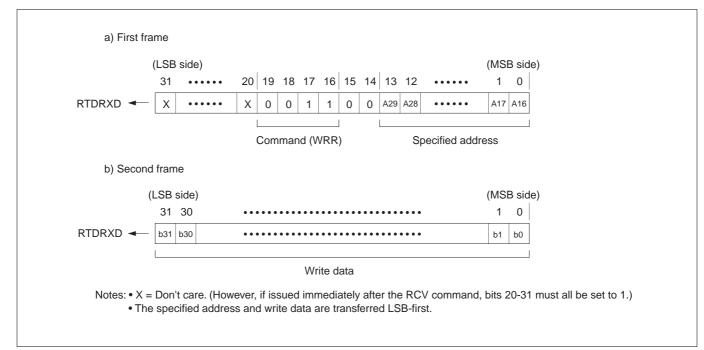


Figure 14.4.4 WRR Command Data Format

The RTD reads out data from the specified address before writing to the internal RAM and again reads out data from the same address immediately after writing to the internal RAM (this helps to verify the data written to the internal RAM). The read data is output at the timing shown below.

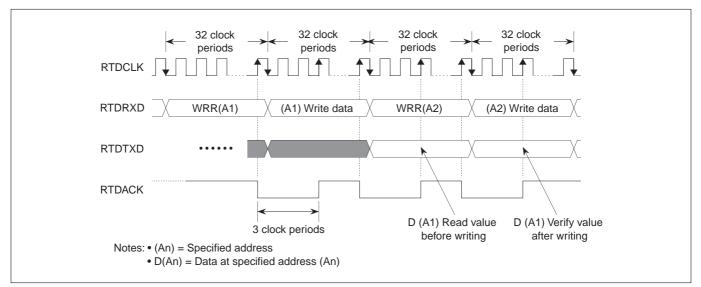


Figure 14.4.5 Operation of WRR Command

14.4.4 Operation of VER (Continuous Monitor)

When the VER (continuous monitor) command is issued, the RTD outputs the data from the address that has been accessed by an instruction (either read or write) immediately before receiving the VER command.

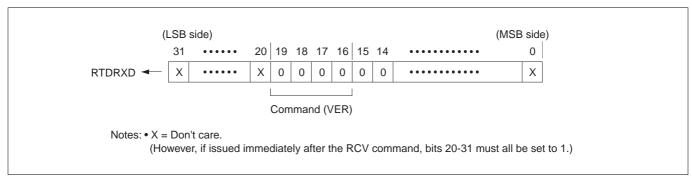


Figure 14.4.6 VER (Continuous Monitor) Command Data Format

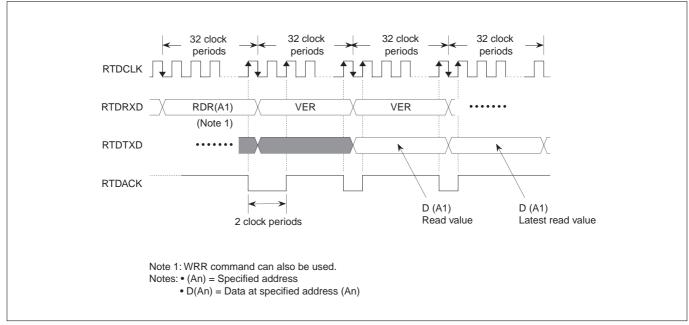


Figure 14.4.7 Operation of VER (Continuous Monitor) Command

14.4.5 Operation of VEI (Interrupt Request)

When the VEI (interrupt request) command is issued, an RTD interrupt request is generated. Furthermore, the RTD outputs the data from the address that has been accessed by an instruction (either read or write) immediately before receiving the VEI command.

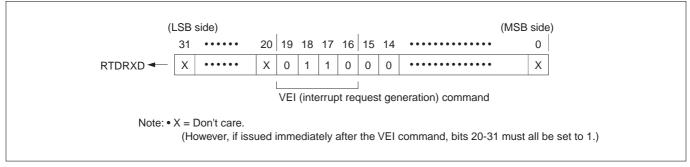


Figure 14.4.8 VEI (Interrupt Request) Command Data Format

REAL TIME DEBUGGER (RTD)

14.4 Functional Description of RTD

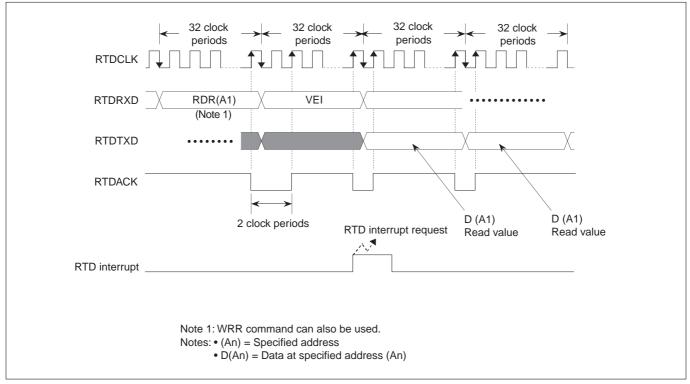


Figure 14.4.9 Operation of VEI (Interrupt Request) Command

14.4.6 Operation of RCV (Recover from Runaway)

If the RTD runs out of control, the RCV (recover from runaway) command may be issued to recover from the runaway condition without the need to reset the system. The RCV command must always be issued twice in succession. Also, any command issued immediately following the RCV command must have all of its bits 20–31 set to "1".

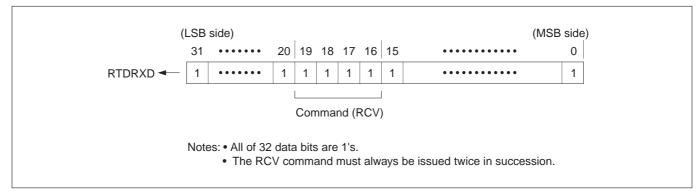


Figure 14.4.10 RCV Command Data Format

REAL TIME DEBUGGER (RTD)

14.4 Functional Description of RTD

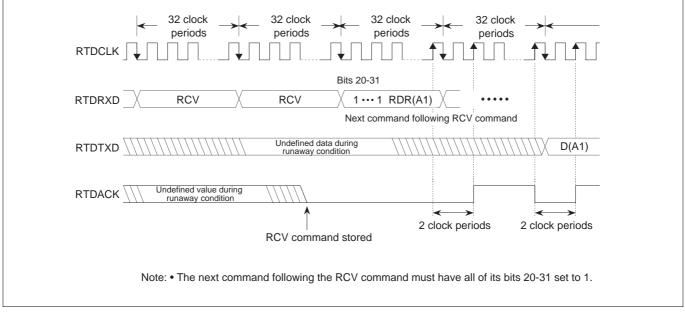


Figure 14.4.11 Operation of RCV Command

14.4.7 Method for Setting a Specified Address when Using RTD

In the Real-Time Debugger (RTD), the low-order 16-bit addresses of the internal RAM can be specified. Because the internal RAM is located in a 24-KB area ranging from H'0080 4000 to H'0080 9FFF, the low-order 16-bit address of that area (H'4000 to H'FFFF) can be set. However, to access any area other than RAM is inhibited. Note also that two least significant address bits, A31 and A30, area always 0 because data are read and written to and from the internal RAM in a fixed length of 32 bits.

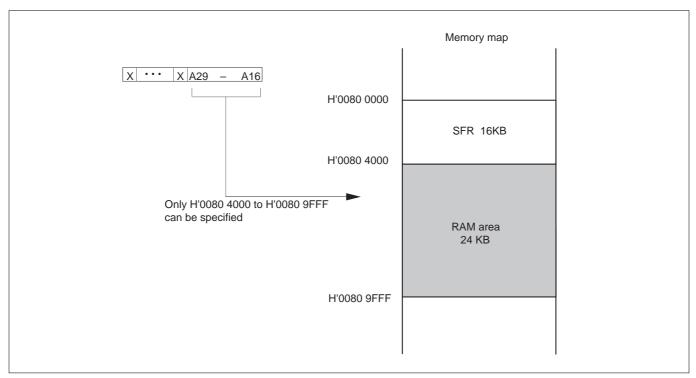


Figure 14.4.12 Setting Addresses in the Real-Time Debugger

14.4.8 Resetting RTD

The RTD is reset by applying a system reset (i.e., RESET# signal input). The status of the RTD related output pins after a system reset are shown below.

	Table 14.4.2	RTD Pin	Status	after	System	Reset
--	--------------	----------------	--------	-------	--------	-------

Pin Name	Status	
RTDACK	High-level output	
RTDTXD	High-level output	

The first command transfer to the RTD after being reset is initiated by transferring data to the RTDRXD pin synchronously with the falling edge of RTDCLK.

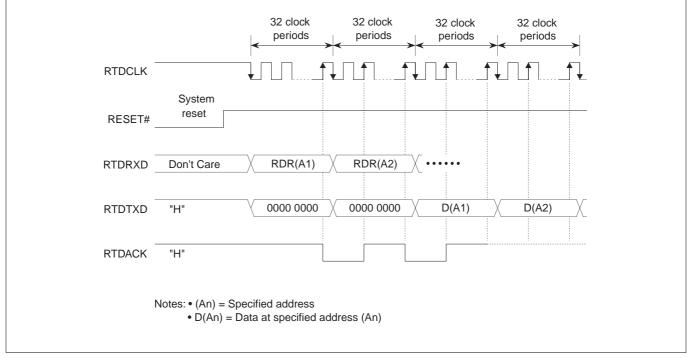


Figure 14.4.13 Command Transfer to RTD after System Reset

14.5 Typical Connection with the Host

The host uses a serial synchronous interface to transfer data. The clock for synchronous communication should be generated by the host. An example for connecting the RTD and host is shown below.

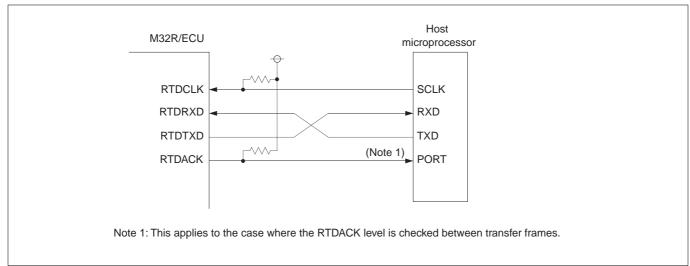


Figure 14.5.1 Connecting the RTD and Host

The RTD communication is performed in a fixed length of 32 bits per frame. Because serial interfaces generally handle data in 8-bit units, data is transferred separately in four operations, 8 bits at a time. The RTDACK signal is used to verify that communication is performed normally.

The RTDACK signal goes low after a command is sent, providing a means of verifying the communication status. When issuing the VER command, the RTDACK signal is pulled low for only one clock period. Therefore, after sending 32 bits in one frame via a serial interface, turn off RTDCLK output and check that RTDACK is low. That way, it is possible to know whether the RTD is communicating normally.

If it is desirable to identify the type of transmitted command by the width of RTDACK, use the microcomputer's internal measurement timer (to count RTDCLK pulses while RTDACK is low), or design a dedicated circuit.

	Transfer of the next frame
Transfer of one frame (32 bits)	→ ←
RTDRXD (8 bits) (8 bits) (8 bits)	
RTDTXD ······	
RTDACK	
Check that the R	/ FDACK signal is low.

Figure 14.5.2 Example of Communication with the Host (when Using VER Command)

This page is blank for reasons of layout.

CHAPTER 15

EXTERNAL BUS INTERFACE

- 15.1 External Bus Interface Related Signals
- 15.2 External Bus Interface Related Registers
- 15.3 Read/Write Operations
- 15.4 Bus Arbitration
- 15.5 Typical Connection of External Extension Memory

15.1 External Bus Interface Related Signals

The 32176 has the external bus interface related signals described below. These signals can be used in external extension and processor modes.

The symbol "#" suffixed to the signal names (or pin names) means that the signals (or pins) are active-low.

(1) Address

The 32176 outputs a 19-bit address (A12–A30) for addressing any location in a 1-Mbyte space. The least significant A31 is not output.

(2) Chip select (CS0#, CS1#)

The CS0# and CS1# signals are output for external extension areas divided in 2-Mbyte units. The CS0# signal points to a 2-Mbyte area during processor mode or a 1-Mbyte area during external extension mode. (For details, see Chapter 3, "Address Space.")

(3) Read strobe (RD#)

Output during an external read cycle, this signal indicates the timing at which to read data from the bus. This signal is driven high when writing to the bus or accessing the internal area.

(4) Byte High Write/Byte High Enable (BHW#/BHE#)

The pin function changes depending on the Bus Mode Control Register (BUSMODC).

When BUSMOD = "0" and this signal is Byte High Write (BHW#), during external write access it indicates that the upper byte (DB0–DB7) of the data bus is the valid data transferred. During external read and when accessing the internal area it outputs a high.

When BUSMOD = "1" and this signal is Byte High Enable (BHE#), during external access (for read or write) it indicates that the upper byte (DB0–DB7) of the data bus is the valid data transferred. When accessing the internal area it outputs a high.

(5) Byte Low Write/Byte Low Enable (BLW#/BLE#)

The pin function changes depending on the Bus Mode Control Register (BUSMODC).

When BUSMOD = "0" and this signal is Byte Low Write (BLW#), during external write access it indicates that the lower byte (DB8–DB15) of the data bus is the valid data transferred. During external read and when accessing the internal area it outputs a high.

When BUSMOD = "1" and this signal is Byte Low Enable (BLE#), during external access (for read or write) it indicates that the lower byte (DB8–DB15) of the data bus is the valid data transferred. When accessing the internal area it outputs a high.

(6) Data bus (DB0–DB15)

This is the 16-bit data bus used to access external devices. During external read access, data is latched from the bus synchronously with the rising edge of the read strobe. Even during 8-bit read, the microcomputer always reads in 16 bits of data, with only the valid byte part of data transferred into the internal circuit. During external write access, data is output from the bus. During 8-bit write, the microcomputer outputs the valid byte part of data to be written as BHW#/BLW#. When accessing the internal area, the bus functions as an input bus.

EXTERNAL BUS INTERFACE 15.1 Outline of the External Bus Interface

(7) System clock/write (BCLK/WR#)

The pin function changes depending on the Bus Mode Control Register (BUSMODC).

When BUSMOD = "0" and this signal is System Clock (BCLK), it outputs the system clock necessary to synchronize operations in an external system. When the CPU clock = 40 MHz, a 20 MHz clock is output from BCLK. When not using the BCLK/WR function, this pin can be used as P70 by clearing the P7 Operation Mode Register P70MOD bit to "0".

When BUSMOD = "1" and this signal is Write (WR#), during external write access it indicates the valid data transferred on the data bus. During external read cycle and when accessing the internal area it outputs a high.

(8) Wait (WAIT#)

When the 32176 started an external bus cycle, it automatically inserts wait states while the WAIT# input signal is asserted. For details, see Chapter 16, "Wait Controller." When not using the WAIT function, this pin can be used as P71 by clearing the P7 Operation Mode Register P71MOD bit to "0".

For external access, one or more wait cycles always need to be inserted. Therefore, the shortest possible access to an external device is equal to one wait cycle (2 BCLK periods).

(9) Hold control (HREQ#, HACK#)

The hold state refers to a state in which the microcomputer has stopped accessing the bus and the bus interface related pins are tristated (high impedance). While the microcomputer is in a hold state, any bus master external to the chip can use the system bus to transfer data.

A low signal input on the HREQ# pin places the microcomputer into a hold state. While the microcomputer remains in a hold state after accepting the hold request and during a transition to the hold state, the HACK# pin outputs a low-level signal. To exit the hold state and return to normal operating state, release the HREQ# signal back high. Furthermore, when not using the HREQ and HACK functions, these pins can be used as P72 and P73 by clearing P72MOD and P73MOD in the P7 Operation Mode Register to 0.

The status of each pin during hold are shown below.

Table 15.1.1	Pin State during	Hold Period
--------------	------------------	-------------

Pin Name	Pin State or Operation
A12-A30, DB0-DB15, CS0#, CS1#, RD#, BHW#, BLW#, BHE#, BLE#, WR#	High impedance
HACK#	Output a low
Other pins (e.g., ports and timer output)	Normal operation

15.2 External Bus Interface Related Registers

The following describes the external bus interface related registers.

15.2.1 Port Operation Mode Register

Ports P70–P73 can be switched for external access signal pins at any time irrespective of the CPU operation mode.

P7 Operation Mode Register (P7MOD)

<Address: H'0080 0747>

b8	9	10	11	12	13	14	b15
P70MOD	P71MOD	P72MOD	P73MOD	P74MOD	P75MOD	P76MOD	P77MOD
0	0	0	0	0	0	0	0

			<upon exiting="" h<="" reset:="" th=""><th>l'00></th></upon>	l'00>
b	Bit Name	Function	R	W
8	P70MOD	0: P70	R	W
	Port P70 operation mode bit	1: BCLK/WR#		
9	P71MOD	0: P71	R	W
	Port P71 operation mode bit	1: WAIT#		
10	P72MOD	0: P72	R	W
	Port P72 operation mode bit	1: HREQ#		
11	P73MOD	0: P73	R	W
	Port P73 operation mode bit	1: HACK#		
12	P74MOD	0: P74	R	W
	Port P74 operation mode bit	1: RTDTXD/TXD3 (Note 1)		
13	P75MOD	0: P75	R	W
	Port P75 operation mode bit	1: RTDRXD/RXD3 (Note 1)		
14	P76MOD	0: P76	R	W
	Port P76 operation mode bit	1: RTDACK/CTX1 (Note 1)		
15	P77MOD	0: P77	R	W
	Port P77 operation mode bit	1: RTDCLK/CRX1 (Note 1)		

15.2.2 Bus Mode Control Register

Bus Mode Control Register (BUSMODC) <address: 0<="" h'0080="" th=""><th colspan="2">)77F></th></address:>)77F>	
b8	9	10	11	12	13	14	b15			
							BUSMOD			
0	0	0	0	0	0	0	0			
								<upon exiting="" h'<="" reset:="" td=""><td>00></td></upon>	00>	
b	Bit Name Function						R	W		
8–14	14 No function assigned. Fix to "0".					0	0			
15	BUSMOD					0: WR sig	nal separate mode	R	W	
	Bus mode	control bit				1: Byte er	hable separate mod	le		

This register is used to facilitate memory connections during processor mode and external extension mode.

When the Bus Mode Control bit (BUSMOD) = "0", the WR# signal is output separately for each byte area. Signals RD#, BHW#, BLW#, BCLK# and WAIT# can be used. For memory connection in boot mode, the Bus Mode Control Register has no effect, and the microcomputer operates in the same way as when the Bus Mode Control bit (BUSMOD) is cleared to "0".

When the Bus Mode Control bit (BUSMOD) = "1", the byte enable signal is output separately for each byte area. Signals RD#, BHE#, BLE#, WR# and WAIT# can be used. In a WAIT control circuit configuration, because BCLK output is not available, timing must be controlled external to the chip.

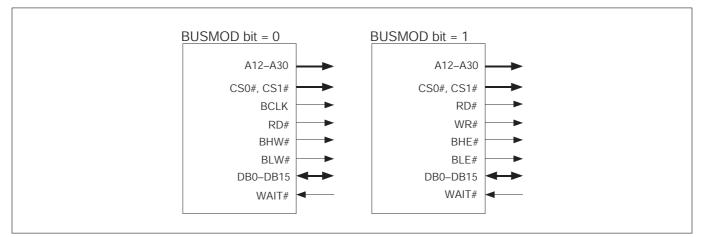


Figure 15.2.1 Pin Functions when External Bus Modes are Changed

15.3 Read/Write Operations

(1) When the Bus Mode Control Register is set to "0"

External read/write operations are performed using the address bus, data bus and the signals CS0#,CS1#, RD#, BHW#, BLW#, WAIT# and BCLK. In the external read cycle, the RD# signal is low while BHW# and BLW# both are high, with data read in from only the necessary byte position. In the external write cycle, the BHW# or BLW# signal output for the byte position to write is asserted low as data is written to the bus.

When an external bus cycle starts, wait states are inserted as long as the WAIT# signal is low. Unless necessary, the WAIT# signal must always be held high. One wait cycle always need to be inserted even for the shortest external access. (The shortest possible bus cycle is 2 BCLK periods).

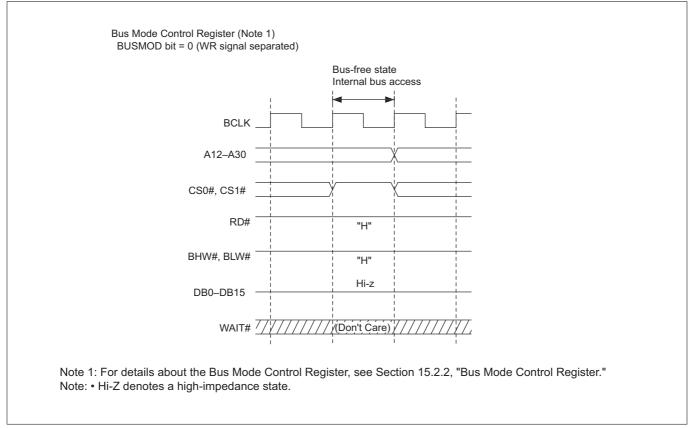


Figure 15.3.1 Internal Bus Access during Bus Free State

EXTERNAL BUS INTERFACE

15.3 Read/Write Operations

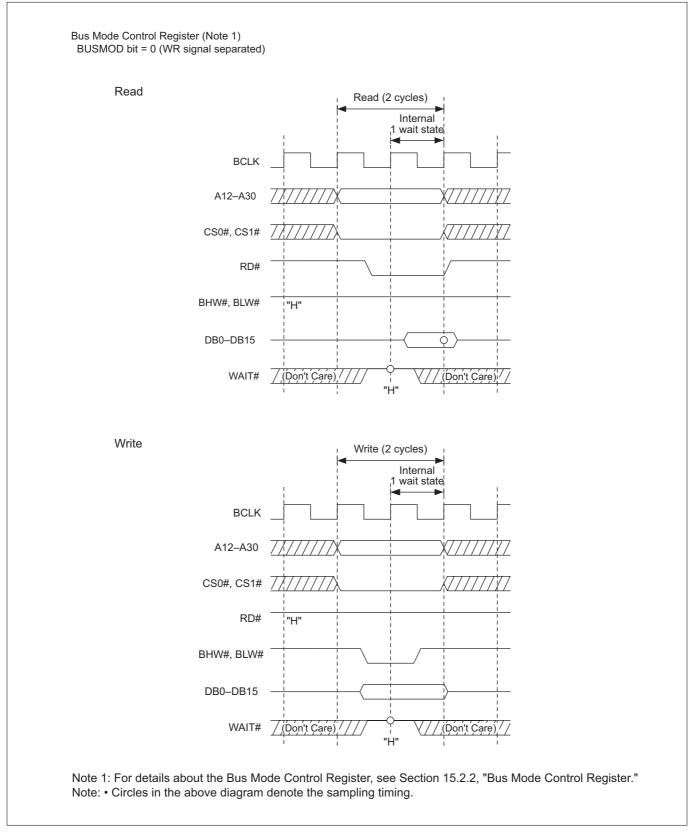


Figure 15.3.2 Read/Write Timing (for Shortest External Access)

EXTERNAL BUS INTERFACE

15.3 Read/Write Operations

Figure 15.3.3 Read/Write Timing (for Access with Internal 2 and External 1 Wait States)

(2) When the Bus Mode Control Register is set to "1"

External read/write operations are performed using the address bus, data bus and the signals CS0#, CS1#, RD#, BHE#, BLE#, WAIT# and WR#. In the external read cycle, the RD# signal is low and the BHE# or BLE# signal output for the byte position from which to read is asserted low, with data read in from only the necessary byte position of the bus. In the external write cycle, the WR# signal goes low and the BHE# or BLE# signal output for the byte position to write is asserted low, with data written to the necessary byte position.

When an external bus cycle starts, wait states are inserted as long as the WAIT# signal is low. Unless necessary, the WAIT# signal must always be held high. One wait cycle always need to be inserted even for the shortest external access. (The shortest possible bus cycle is 2 BCLK periods). When not using the WAIT function, this pin can be used as P71 by clearing the P7 Operation Mode Register P71MOD bit to "0".

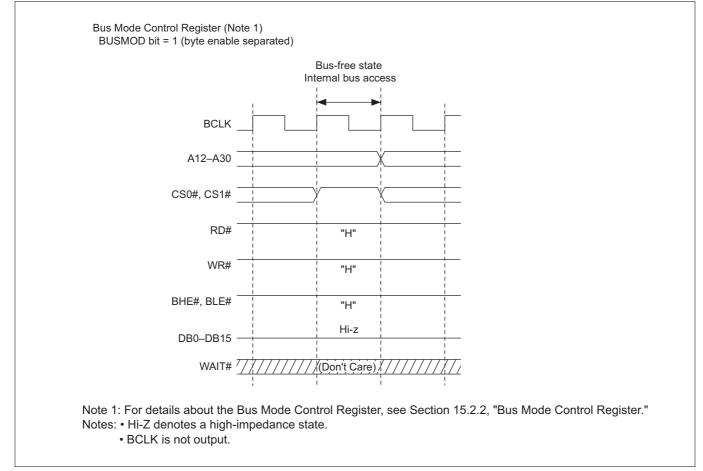


Figure 15.3.4 Internal Bus Access during Bus Free State

EXTERNAL BUS INTERFACE

15.3 Read/Write Operations

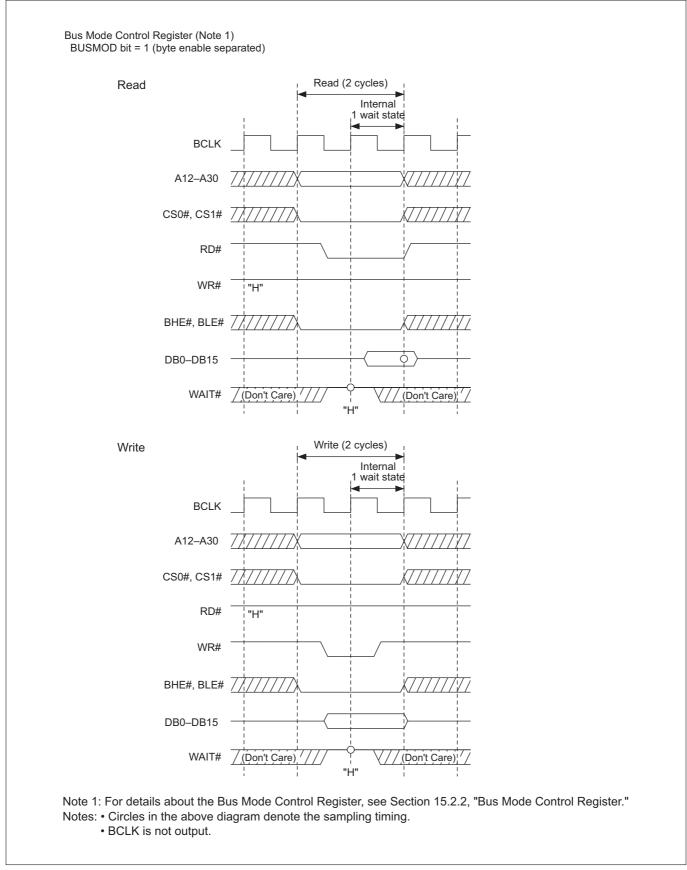


Figure 15.3.5 Read/Write Timing (for Shortest External Access)

EXTERNAL BUS INTERFACE

15.3 Read/Write Operations

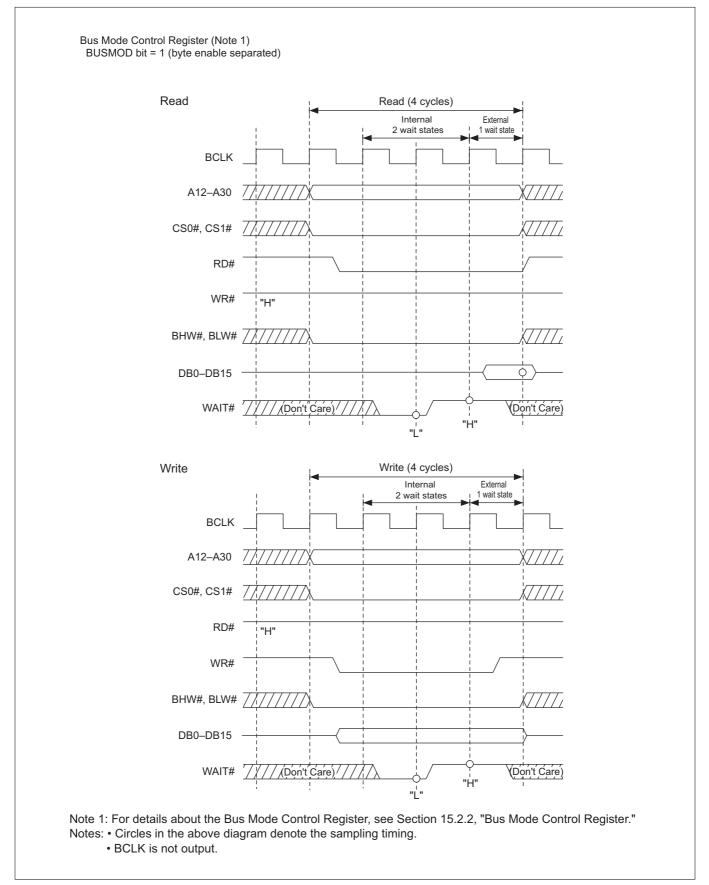


Figure 15.3.6 Read/Write Timing (for Access with Internal 2 and External 1 Wait States)

EXTERNAL BUS INTERFACE 15.4 Bus Arbitration

15.4 Bus Arbitration

(1) When the Bus Mode Control Register is set to "0"

When the input signal on the HREQ# pin is pulled low and the hold request is accepted, the microcomputer goes to a hold state and outputs a low from the HACK# pin. During hold state, all bus related pins are placed in the high-impedance state, allowing data to be transferred on the system bus. To exit the hold state and return to normal operating state, release the HREQ# signal back high.

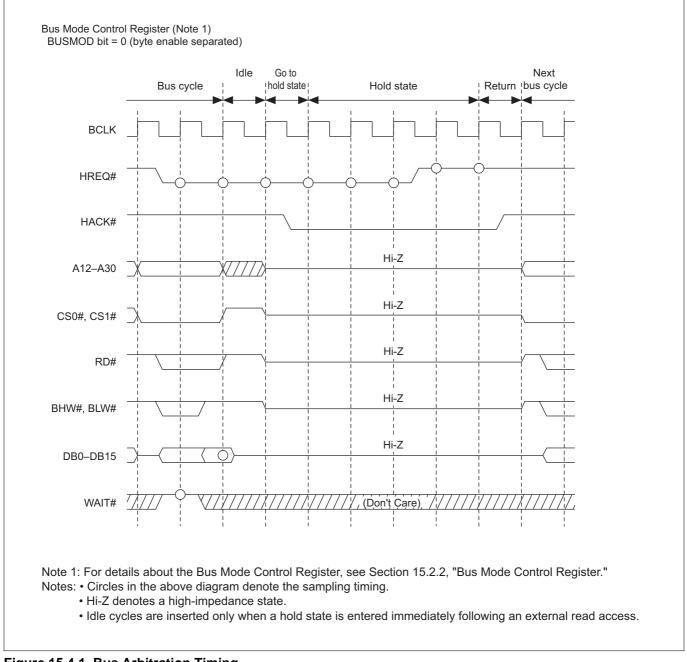


Figure 15.4.1 Bus Arbitration Timing

(2) When the Bus Mode Control Register is set to "1"

When the input signal on the HREQ# pin is pulled low and the hold request is accepted, the microcomputer goes to a hold state and outputs a low from the HACK# pin. During hold state, all bus related pins are placed in the high-impedance state, allowing data to be transferred on the system bus. To exit the hold state and return to normal operating state, release the HREQ# signal back high.



Figure 15.4.2 Bus Arbitration Timing

15.5 Typical Connection of External Extension Memory

(1) When the Bus Mode Control Register is set to "0"

A typical memory connection when using external extension memory is shown in Figure 15.5.1. (External extension memory can only be used in external extension mode and processor mode.)

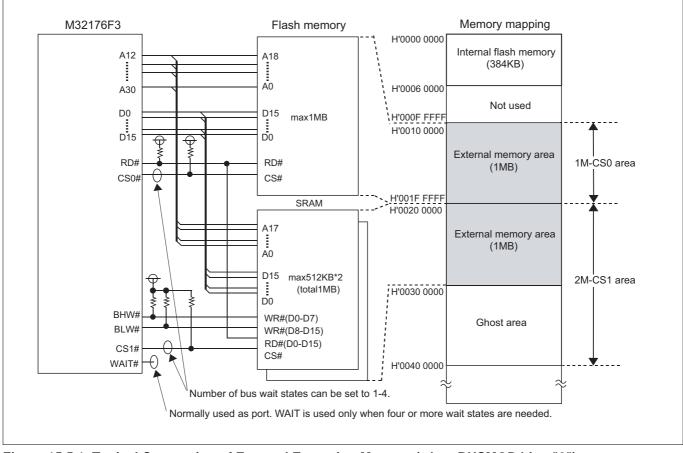


Figure 15.5.1 Typical Connection of External Extension Memory (when BUSMOD bit = "0")

Note: • The address and data are connected in such a way that pin 0 is the MSB and pin 15 is the LSB. When connecting external extension memory, connections of the MSB and LSB sides must be reversed.

(2) When the Bus Mode Control Register is set to "1"

A typical memory connection when using external extension memory is shown in Figure 15.5.2. (External extension memory can only be used in external extension mode and processor mode.)

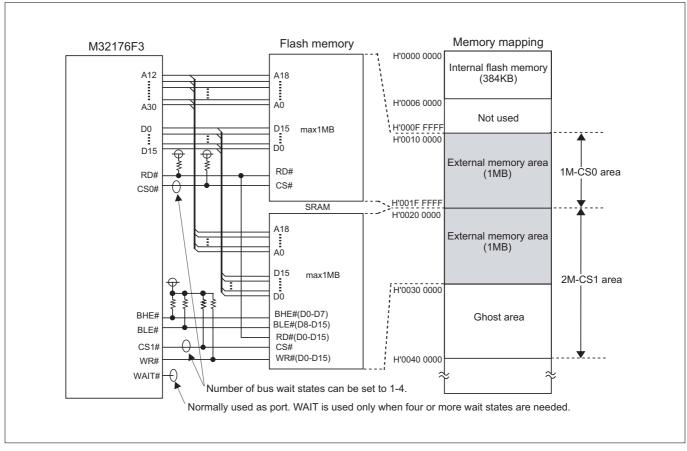
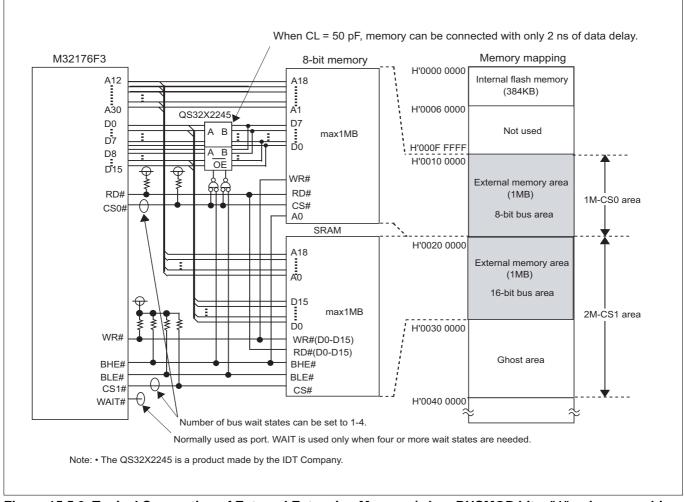



Figure 15.5.2 Typical Connection of External Extension Memory (when BUSMOD bit = "1")

Note: • The address and data are connected in such a way that pin 0 is the MSB and pin 15 is the LSB. When connecting external extension memory, connections of the MSB and LSB sides must be reversed.

(3) When the Bus Mode Control Register is set to "1" using a combination of 8/16-bit data bus memories

The diagram below shows a typical connection of external extension memory, with an 8-bit data bus memory located in the CS0 area, and a 16-bit data bus memory located in the CS1 area. (External extension memory can only be used in external extension mode and processor mode.)

Figure 15.5.3 Typical Connection of External Extension Memory (when BUSMOD bit = "1" using a combination of 8/16-Bit Memories)

Note: • The address and data are connected in such a way that pin 0 is the MSB and pin 15 is the LSB. When connecting external extension memory, connections of the MSB and LSB sides must be reversed.

CHAPTER 16

WAIT CONTROLLER

- 16.1 Outline of the Wait Controller
- 16.2 Wait Controller Related Register
- 16.3 Typical Operation of the Wait Controller

16.1 Outline of the Wait Controller

The Wait Controller controls the number of wait states inserted in bus cycles when accessing an external extension area. The Wait Controller is outlined in the table below.

Item	Description					
Target space	Control is applied to the following address spaces depending on operation mode:					
	Single-chip mode: No target space (Settings of the Wait Controller have no effect)					
	External extension mode: CS0 area (1 Mbyte), CS1 area (1 Mbyte),					
	Processor mode: CS0 area (1 Mbyte), CS1 area (1 Mbyte)					
Number of wait states	1–4 wait states set by software + any number of wait states set from the WAIT# pin					
that can be inserted	(The shortest possible bus cycle during external access is equal to one wait cycle inserted					

During external extension and processor modes, two chip select signals (CS0#, CS1#) are output, each corresponding to one of the two external extension areas referred to as CS0 and CS1.

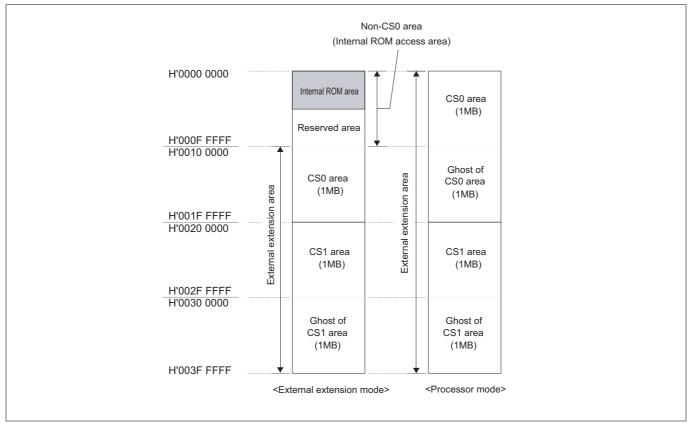


Figure 16.1.1 CS0 and CS1 Area Address Map

When accessing the external extension area, the Wait Controller controls the number of wait states inserted in bus cycles based on the number of wait states set by software and those entered from the WAIT# pin.

The number of wait states that can be controlled in software is 1 to 4. (The shortest possible bus cycle during external access is equal to one wait cycle inserted.)

When the input signal on the WAIT# pin is sampled low in the last cycle of internal wait state, the wait state is extended as long as the WAIT# input signal is held low. Then when the WAIT# input signal is released back high, the wait state is terminated and the next new bus cycle is entered into.

WAIT CONTROLLER 16.1 Outline of the Wait Controller

External Extension Area	Address	Number of Wait States Inserted
CS0 area	H'0010 0000 to H'001F FFFF	1 to 4 wait states set by software
	(external extension mode)	+ any number of wait states entered from the WAIT# pin
	H'0000 0000 to H'001F FFFF	(However, software settings have priority.)
	(processor mode)	
CS1 area	H'0020 0000 to H'002F FFFF	1 to 4 wait states set by software
	(external extension and	+ any number of wait states entered from the WAIT# pin
	processor modes)	(However, software settings have priority.)

Table 16.1.2 Number of Wait States that Can Be Set by the Wait Controller

Note 1: During processor mode, a ghost of the CS0 area (1 Mbytes) will appear in the H'0010 0000–H'001F FFFF area. Note 2: A ghost of the CS1 area (1 Mbytes) will appear in the H'0030 0000–H'003F FFFF area.

16.2 Wait Controller Related Register

Shown below is a Wait Controller related register map.

Wait Controller Related Register Map

Address	+0 address	+1 address	See
	b0 b7	b8 b15	page
H'0080 0180	Wait Cycles Control Register (WTCCR)	(Use inhibited area)	16-4

16.2.1 Wait Cycles Control Register

b0	1	2	3	4	5	6	b7			
		CS0	WTC			CS	1WTC			
0	0	0	0	0	0	0	0			
								<upon ex<="" th=""><th>iting reset: H</th><th>ł'00></th></upon>	iting reset: H	ł'00>
b	Bit Name							Function	R	W
0, 1	No function assigned. Fix to "0".								0	0
2, 3	3 CS0WTC							00: 4 wait states (Upon exiting reset)	R	W
	CS0	CS0 wait cycles select bit						01: 3 wait states		
								10: 2 wait states		
								11: 1 wait state		
4, 5	No function assigned. Fix to "0".								0	0
6, 7	CS1WTC				00: 4 wait states (Upon exiting reset)	R	W			
	CS1	wait cy	cles sel	ect bit				01: 3 wait states		
								10: 2 wait states		
								11: 1 wait state		

16.3 Typical Operation of the Wait Controller

The following shows a typical operation of the Wait Controller. The Wait Controller can control bus access in 2 to 5 cycles. If more access cycles than that are needed, use the WAIT function in combination with the Wait Controller.

(1) When the Bus Mode Control Register is set to 0

External read/write operations are performed using the address bus, data bus and the signals CS0#, CS1#, RD#, BHW#, BLW#, WAIT# and BCLK.

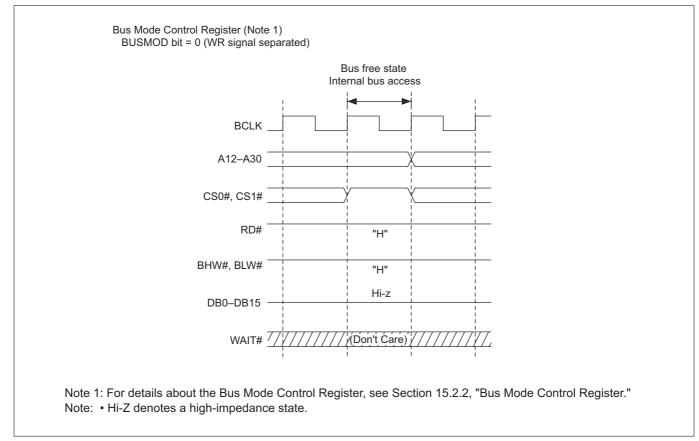


Figure 16.3.1 Internal Bus Access during Bus Free State

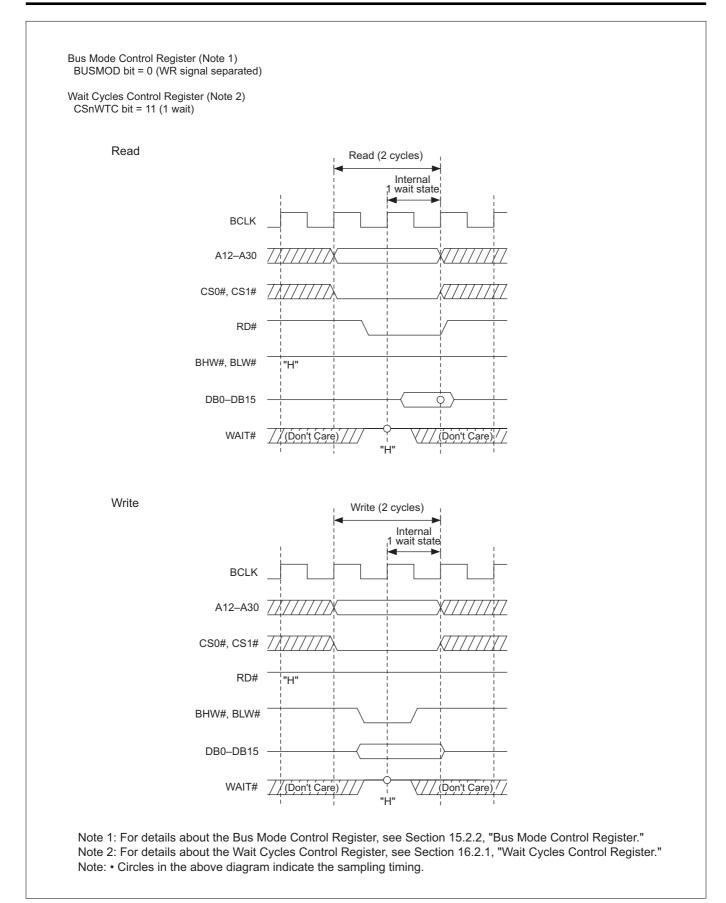


Figure 16.3.2 Read/Write Timing (for Access with Internal 1 Wait State)

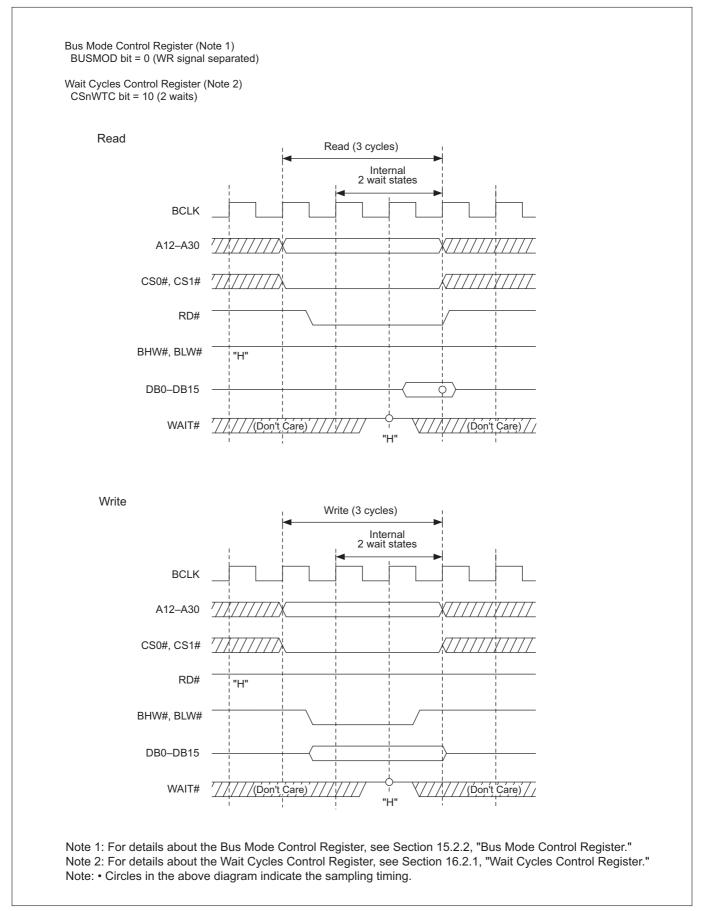


Figure 16.3.3 Read/Write Timing (for Access with Internal 2 Wait States)

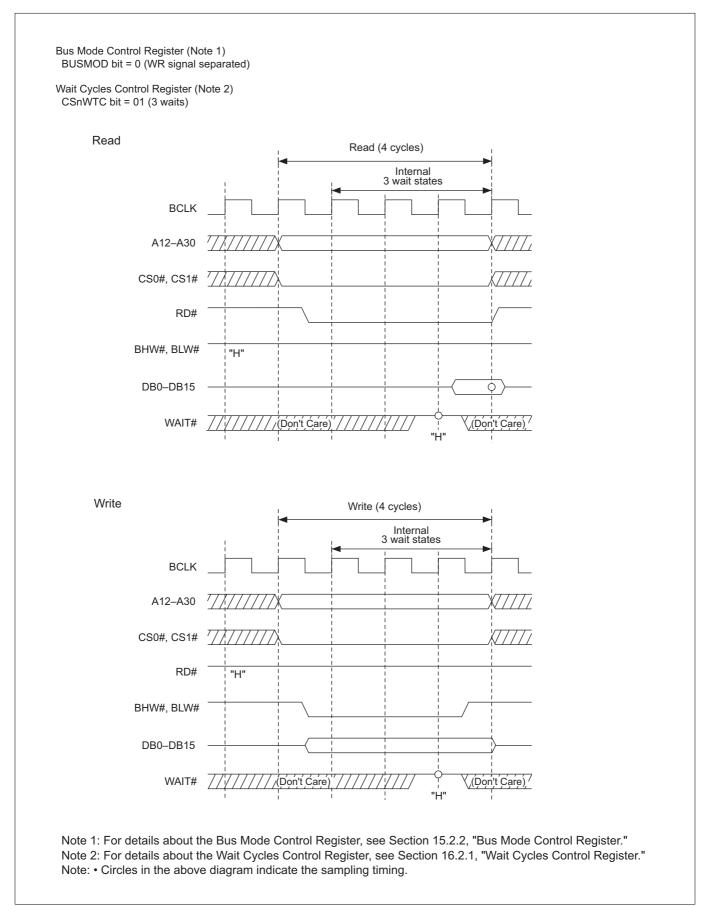


Figure 16.3.4 Read/Write Timing (for Access with Internal 3 Wait States)

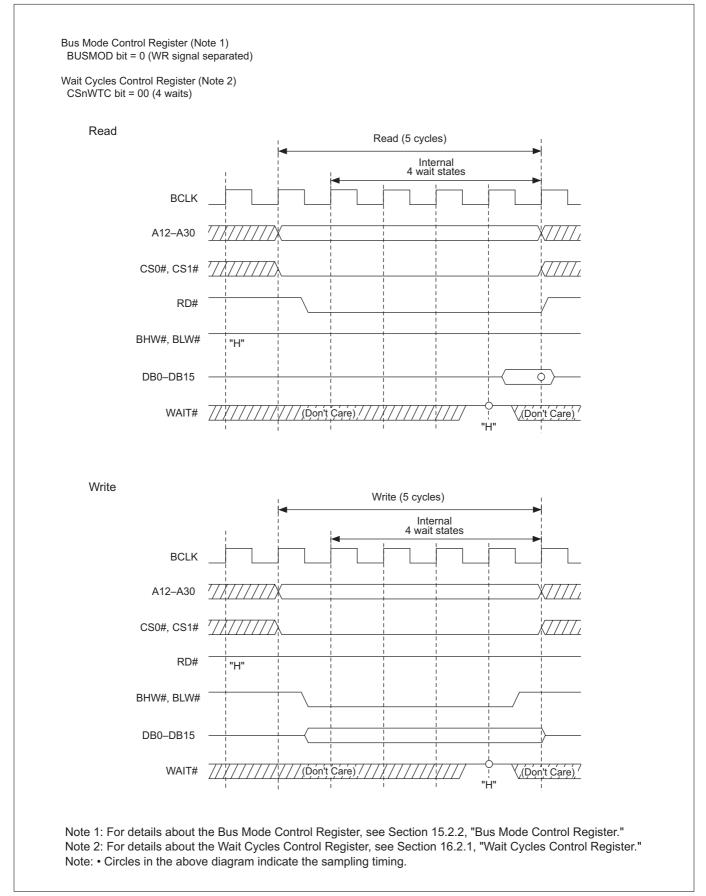
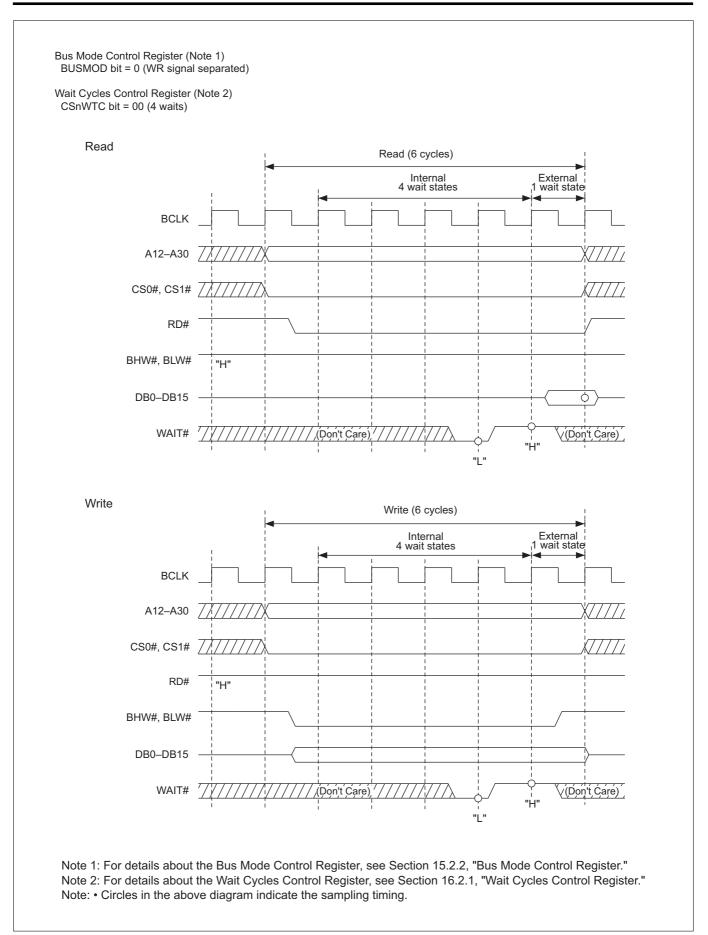
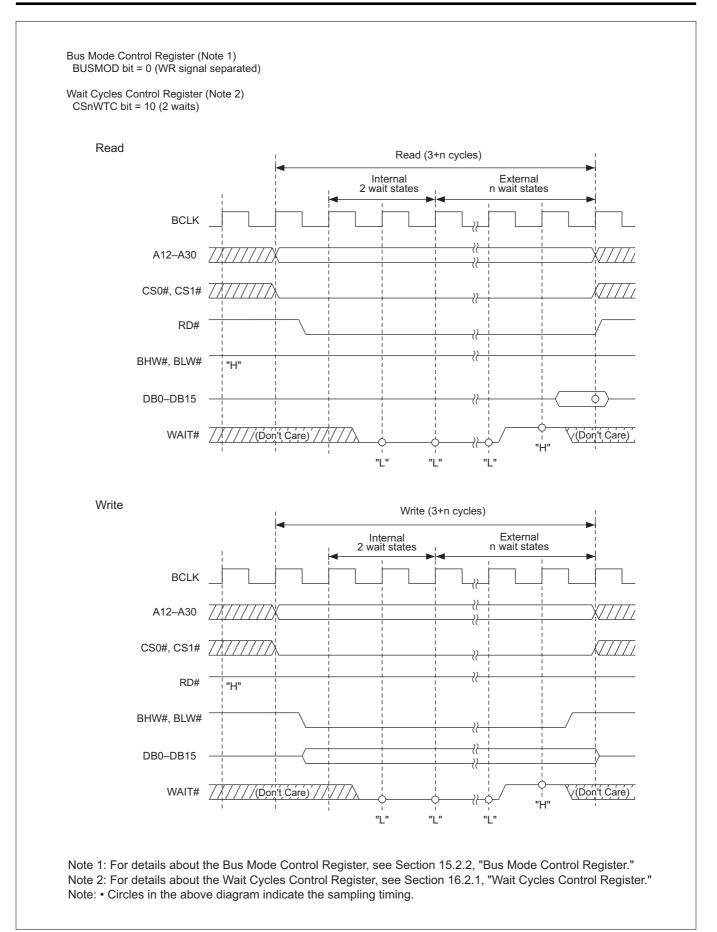
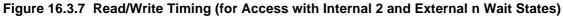





Figure 16.3.5 Read/Write Timing (for Access with Internal 4 Wait States)

(2) When the Bus Mode Control Register is set to 1

External read/write operations are performed using the address bus, data bus and the signals CS0#, CS1#, RD#, BHE#, BLE#, WAIT# and WR#.

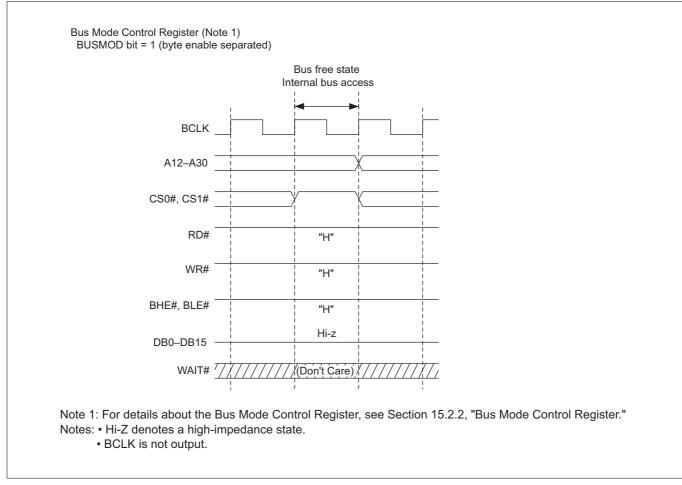


Figure 16.3.8 Internal Bus Access during Bus Free State

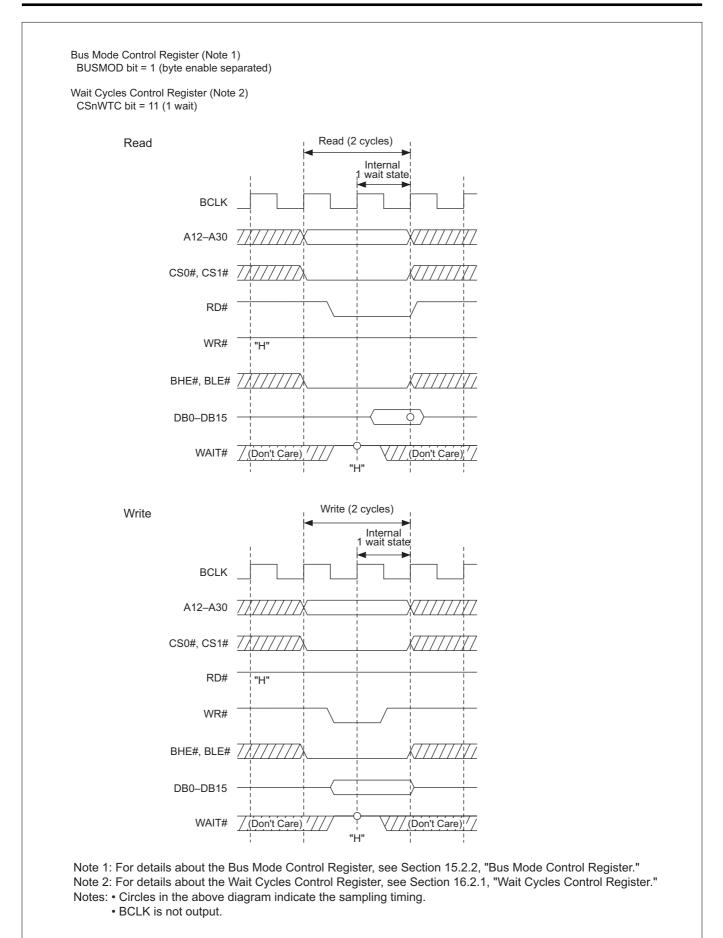


Figure 16.3.9 Read/Write Timing (for Access with Internal 1 Wait State)

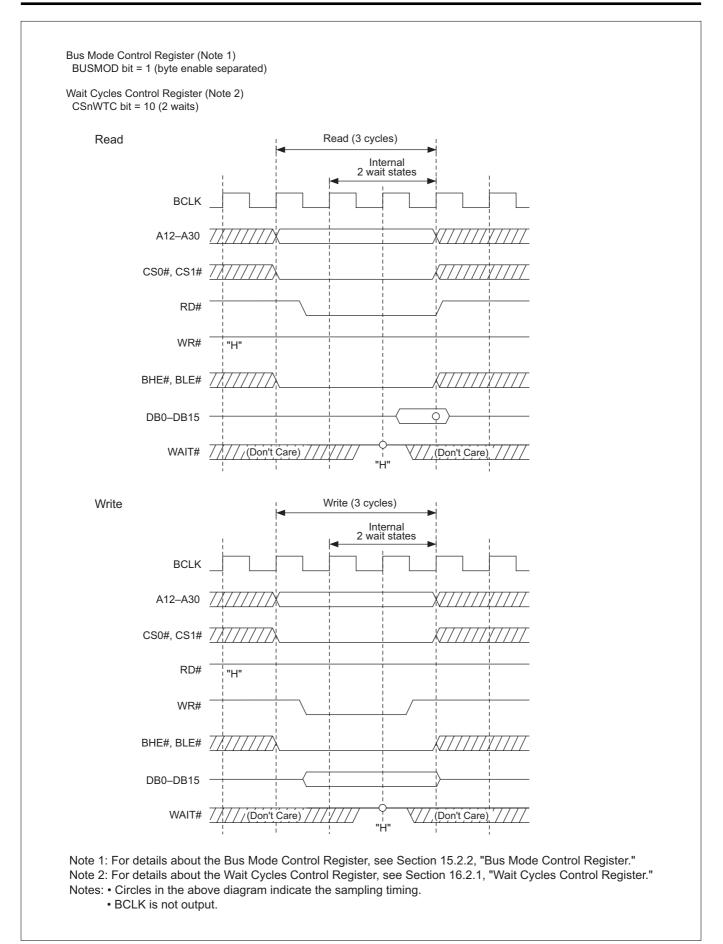


Figure 16.3.10 Read/Write Timing (for Access with Internal 2 Wait States)

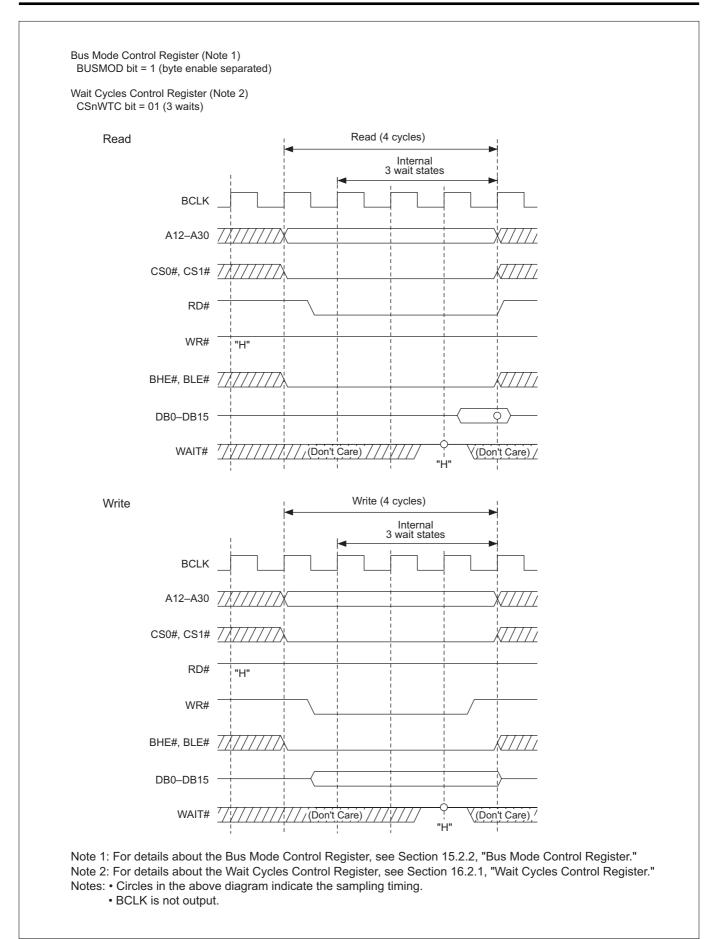


Figure 16.3.11 Read/Write Timing (for Access with Internal 3 Wait States)

Figure 16.3.12 Read/Write Timing (for Access with Internal 4 Wait States)

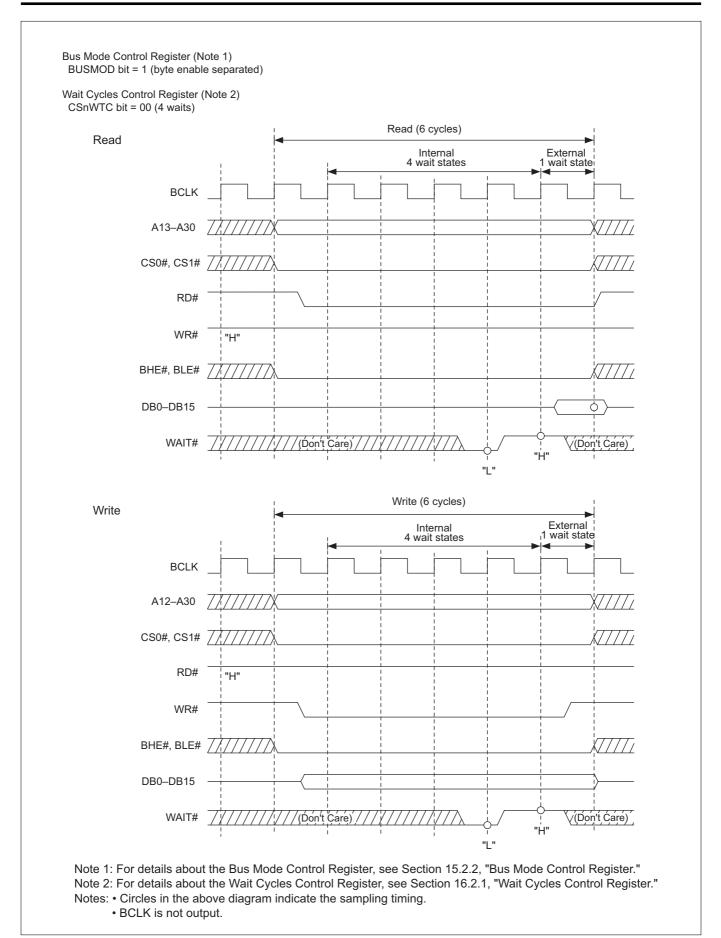


Figure 16.3.13 Read/Write Timing (for Access with Internal 4 and External 1 Wait States)

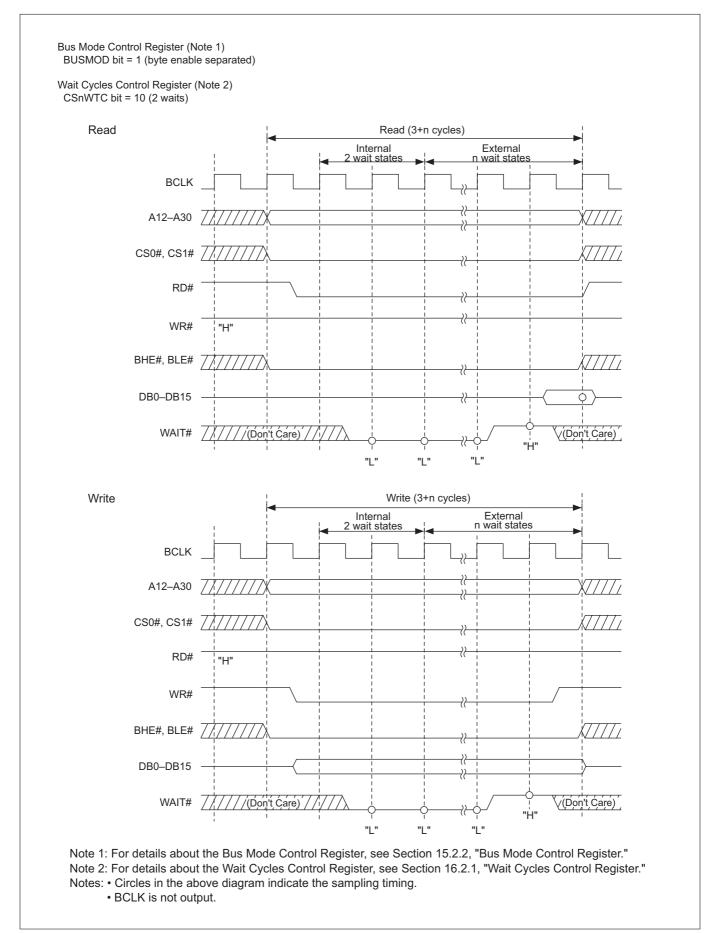


Figure 16.3.14 Read/Write Timing (for Access with Internal 2 and External n Wait States)

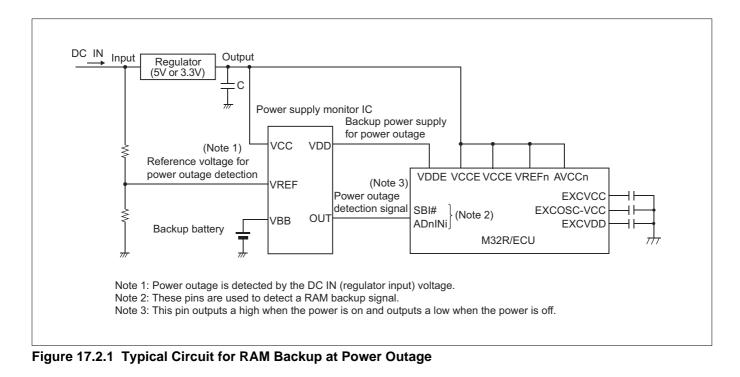
CHAPTER 17

RAM BACKUP MODE

- 17.1 Outline of RAM Backup Mode
- 17.2 Example of RAM Backup when Power is Off
- 17.3 Example of RAM Backup for Saving Power Consumption
- 17.4 Exiting RAM Backup Mode (Wakeup)

17.1 Outline of RAM Backup Mode

In RAM backup mode, the contents of the internal RAM are retained while the power is turned off. RAM backup mode is used for the following two purposes:


- Back up the internal RAM data when the power is forcibly turned off from the outside (RAM backup when the power is off)
- For the M32R/ECU to turn off the power to the CPU at any time as needed to reduce the system's power consumption while retaining the internal RAM data (RAM backup for saving the power consumption)

The M32R/ECU is placed in RAM backup mode by applying a voltage of 3.0–5.5 V to the VDDE pin (provided for RAM backup) and 0 V to all other pins.

During RAM backup mode, the contents of the internal RAM are retained, while the CPU and internal peripheral I/O remain idle. Because all pins except VDDE are held low during RAM backup mode, the power consumption in the system can effectively be reduced.

17.2 Example of RAM Backup when Power is Off

A typical circuit for RAM backup at power outage is shown in Figure 17.2.1. The following explains how the RAM can be backed up by using this circuit as an example.

17.2.1 Normal Operating State

Figure 17.2.2 shows the normal operating state of the M32R/ECU. During normal operation, input on the SBI# pin or ADnINi (i = 0-15) pin which is used to detect a RAM backup signal remains high.

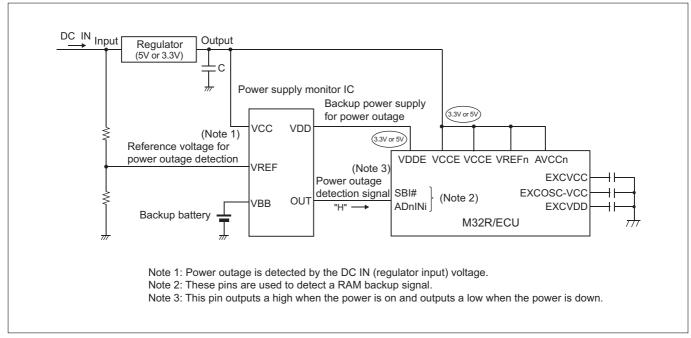


Figure 17.2.2 Normal Operating State

17.2.2 RAM Backup State

Figure 17.2.3 shows the power outage RAM backup state of the M32R/ECU. When the power supply goes off, the power supply monitor IC starts feeding current from the backup battery to the M32R/ECU. Also, the power supply monitor IC's power outage detection pin outputs a low, causing the SBI# pin or ADnINi pin to go low, which generates a RAM backup signal ((a) in Figure 17.2.3). Determination of whether the power is off must be made with respect to the DC IN (regulator input) voltage in order to allow for a software processing time at power outage.

To enable RAM backup mode, make the following setting:

(1) Create data for RAM check to verify whether the RAM data has been retained normally after returning from RAM backup mode to normal mode ((b) in Figure 17.2.3).

If the power supply to VCCE goes off after making above setting, the VDDE pin voltage goes to 3.0–3.3 V and all other pin voltages drop to 0 V, and the M32R/ECU is thereby placed in RAM backup mode ((c) in Figure 17.2.3).

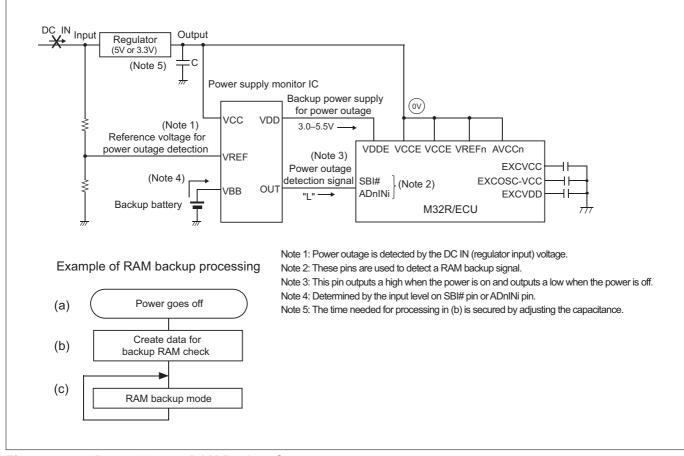


Figure 17.2.3 Power Outage RAM Backup State

17.3 Example of RAM Backup for Saving Power Consumption

A typical RAM backup circuit for saving the microcomputer's power consumption is shown in Figure 17.3.1. The following explains how the RAM is backed up for the purpose of low-power operation by using this circuit as an example.

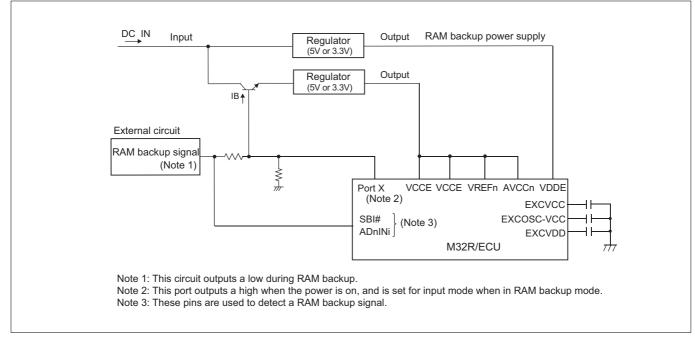


Figure 17.3.1 Typical RAM Backup Circuit for Saving Power Consumption

17

17.3.1 Normal Operating State

Figure 17.3.2 shows the normal operating state of the M32R/ECU. During normal operation, the RAM backup signal output by the external circuit is high. Also, input on the SBI# pin or ADnINi (i = 0-15) pin which is used to detect a RAM backup signal remains high.

Port X, which connects to the transistor's base, should output a high. This causes the transistor's base voltage, IB, to go high so that current is fed from the power supply to the VCCE pin via the transistor.

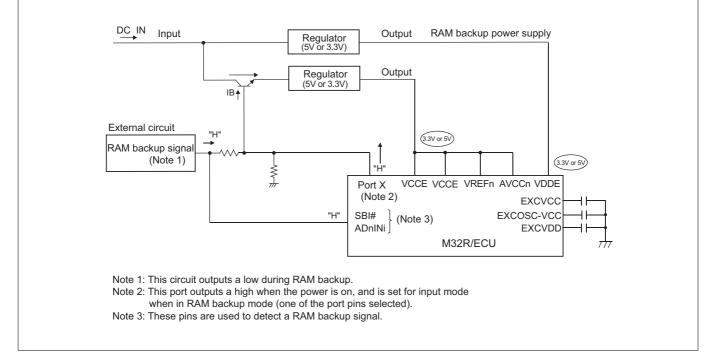


Figure 17.3.2 Normal Operating State

17.3.2 RAM Backup State

Figure 17.3.3 shows the RAM backup state of the M32R/ECU. Figure 17.3.4 shows a RAM backup sequence. When the external circuit outputs a low, input on the SBI# or ADnINi pin is pulled low. A low on these input pins generates a RAM backup signal (A and (a) in Figure 17.3.3). To enable RAM backup mode, make the following settings:

- (1) Create data for RAM check to verify after returning from RAM backup mode to normal mode whether the RAM data has been retained normally ((b) in Figure 17.3.3).
- (2) To materialize low-power operation, set all programmable input/output pins except port X for input mode (or for output mode, with the output level fixed low) ((c) in Figure 17.3.3).
- (3) Set port X for input mode (B and (d) in Figure 17.3.3). This causes the transistor's base voltage, IB, to go low, so that the power to all power supply pins except VDDE is shut off (C and D in Figure 17.3.3).

By settings in (1) to (3), the VDDE pin voltage goes to 3.0–5.5 V and all other pin voltages drop to 0 V, and the M32R/ECU is thereby placed in RAM backup mode ((d) in Figure 17.3.3).

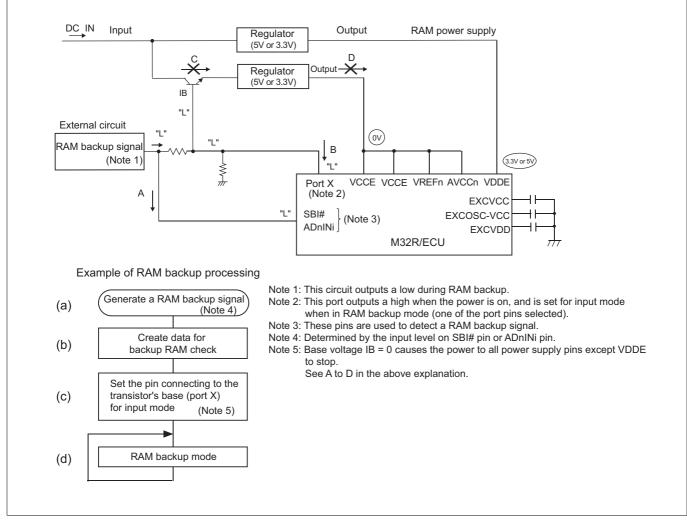


Figure 17.3.3 RAM Backup State for Low Power Operation

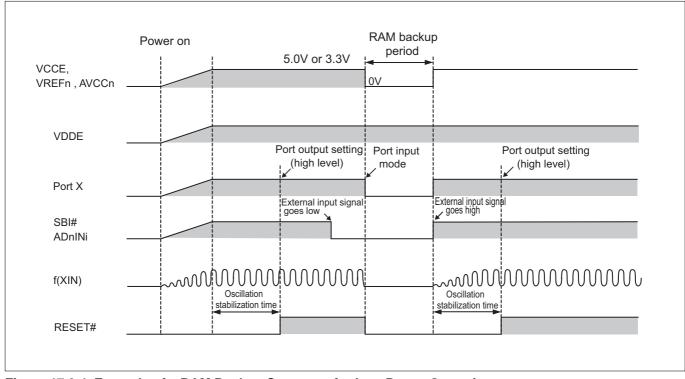


Figure 17.3.4 Example of a RAM Backup Sequence for Low Power Operation

17.3.3 Precautions to Be Observed at Power-On

When changing port X from input mode to output mode after power-on, pay attention to the following.

If port X is set for output mode while no data is set in the Port X Data Register, the port's initial output level is instable. Therefore, before changing port X for output mode, make sure the Port X Data Register is set to output a high.

Unless this precaution is followed, port output may go low at the same time the port is set for output after the oscillation has stabilized, causing the microcomputer to enter RAM backup mode.

17.4 Exiting RAM Backup Mode (Wakeup)

The processing to place the M32R/ECU out of RAM backup mode and return it to normal operation mode is referred to as "wakeup" processing. Figure 17.4.1 shows an example of wakeup processing. Wakeup processing is initiated by applying a reset. The following shows how to execute wakeup processing.

- (1) Reset the microcomputer ((a) in Figure 17.4.1).
- (2) Set port X for output mode and output a high from the port ((b) in Figure 17.4.1) (Note 1)
- (3) Compare the RAM content against the RAM check data created before entering RAM backup mode ((c) in Figure 17.4.1).
- (4) If the comparison in (3) did not match, initialize the RAM ((d) in Figure 17.4.1).
- If the comparison in (3) matched, use the retained data in the program.
- (5) Initialize each internal circuit ((e) in Figure 17.4.1) before returning to the main routine ((f) in Figure 17.4.1).

Note 1: For wakeup from power outage RAM backup mode, port X settings are unnecessary.

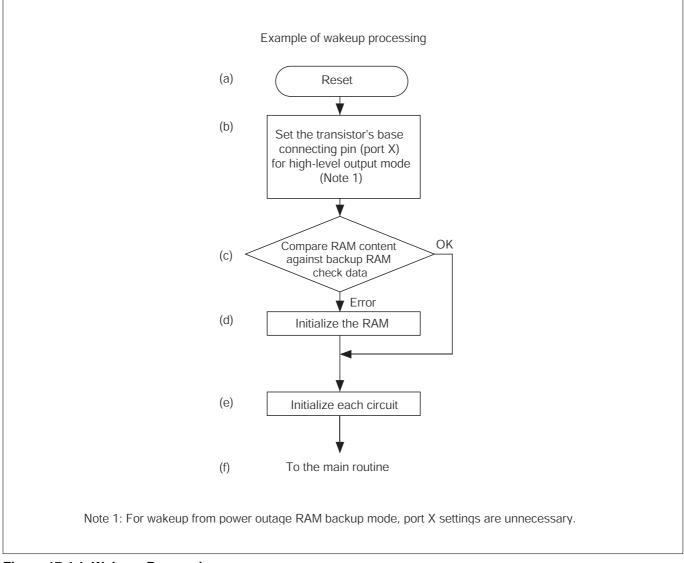


Figure 17.4.1 Wakeup Processing

This page is blank for reasons of layout.

CHAPTER 18

OSCILLATOR CIRCUIT

18.1 Oscillator Circuit18.2 Clock Generator Circuit

18.1 Oscillator Circuit

The 32176 contains an oscillator circuit that supplies operating clocks for the CPU core, internal peripheral I/O and internal memory. The frequency supplied to the clock input pin (XIN) is multiplied by 4 by an internal PLL circuit to produce the CPU clock, which is the operating clock for the CPU core and internal memory. The frequency of this clock is divided by 2 in the subsequent circuit to produce the peripheral clock, which is the operating clock for the internal peripheral clock, which is the operating clock for the internal peripheral clock.

18.1.1 Example of an Oscillator Circuit

An oscillator circuit can be configured by connecting a ceramic (or crystal) resonator between the XIN and XOUT pins external to the chip. Figure 18.1.1 shows an example of a system clock generating circuit illustrating a resonator connected external to the chip. For the constants Rf, Cin, Cout and Rd, the resonator manufacturer should be consulted to determine the appropriate values.

To use an externally sourced clock signal without using an internal oscillator circuit, connect the external clock signal to the XIN pin and leave the XOUT pin open.

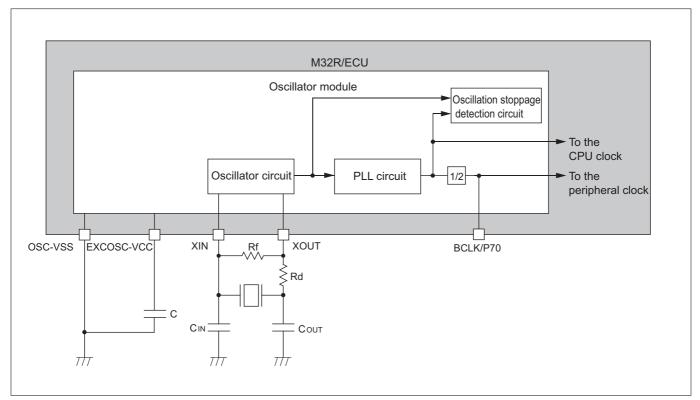


Figure 18.1.1 Example of an Oscillator Circuit

18.1.2 XIN Oscillation Stoppage Detection Function

The 32176 contains a detection circuit to find whether oscillation input to the PLL circuit has stopped. The PLL circuit oscillates with the frequency of its normal mode of vibration in the absence of the reference oscillation input. The XIN oscillation input is sampled at the multiply-by-n frequency of the PLL circuit and when the XIN oscillation is found to be at the same level, the XSTAT bit is set. Because the CPU continues operating with the PLL circuit's natural frequency even when the XIN oscillation has stopped, error handling for the stoppage of XIN oscillation can be accomplished by inspecting XSTAT in software.

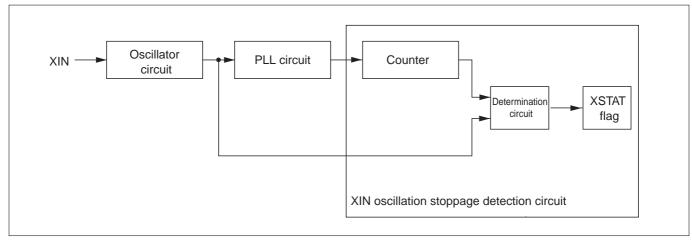


Figure 18.1.2 Block Diagram of the XIN Oscillation Stoppage Detection Circuit

Port Input Special Function Control Register (PICNT)

<Address: H'0080 0745>

b8	9	10	11	12	13	14	b15
			XSTAT			PISEL	PIEN0
0	0	0	0	0	0	0	0

			<upon exiting="" h<="" reset:="" th=""><th>l'00></th></upon>	l'00>
b	Bit Name	Function	R	W
8–10	No function assigned. Fix to "0".		0	0
11	XSTAT	0: XIN oscillating	R	(Note1
_	XIN oscillation status bit	1: XIN inactive		
12–13	No function assigned. Fix to "0".		0	0
14	PISEL	0: Content of port output latch	R	W
	Port input data select bit	1: Port pin level		
15	PIEN0	0: Disable input	R	W
	Port input enable bit	1: Enable input		

Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write.

For details about the function of the port input data select bit (PISEL) and port input enable bit (PIEN0), see Section 8.3.5, "Port Input Special Function Control Register."

(1) XSTAT (XIN oscillation status) bit (Bit 11)

1) Conditions under which XSTAT is set to "1"

XSTAT is set to "1" upon detecting that XIN oscillation has stopped. When XIN remains at the same level for a predetermined time (3 BCLK periods up to 4 BCLK periods), XIN oscillation is assumed to have stopped. When operating normally, XIN changes state (high or low) once every BCLK period.

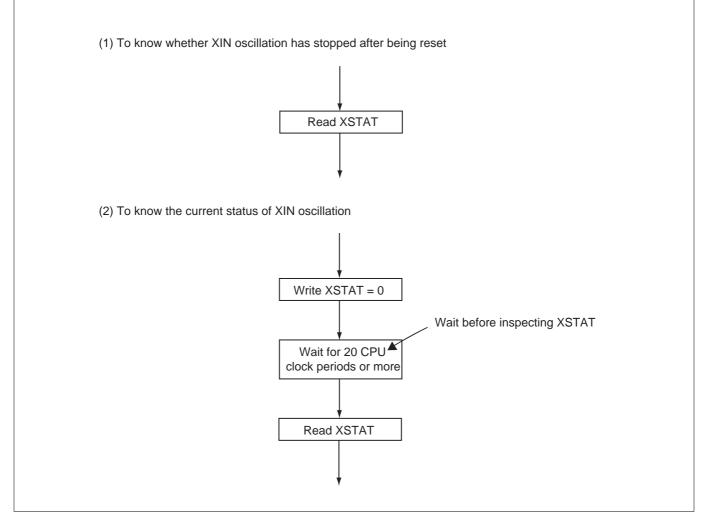
2) Conditions under which XSTAT is cleared to "0"

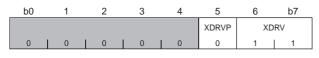
XSTAT is cleared to "0" by a system reset or by writing "0". If XSTAT is cleared at the same time it is set to "1" in 1) above, the former has priority so that XSTAT is cleared. Writing "1" to XSTAT is ignored.

3) Method for detecting XIN oscillation stoppage by using XSTAT

Because the M32R/ECU internally contains a PLL, the internal clock remains active even when XIN oscillation has stopped.

By reading XSTAT without clearing it after exiting the reset state, it is possible to know whether XIN has stopped since the reset signal was deasserted. Similarly, by reading XSTAT after clearing it by writing 0, it is possible to know the current oscillating status of XIN. (However, there must be an interval of at least 10 BCLK periods (20 CPU clock periods) between read and write.)




Figure 18.1.3 Procedure for Setting XSTAT

18.1.3 Oscillation Drive Capability Select Function

The microcomputer incorporates a four-stage oscillation drive capability select function. Once the oscillation of the oscillator circuit has stabilized, the XIN-XOUT drive capability can be lowered. The lower the drive capability, the smaller the amount of power consumption.

Clock Control Register (CLKCR)

<Address. F

			<upon exiting<="" th=""><th>reset: ⊢</th><th>ł'03></th></upon>	reset: ⊢	ł'03>
b	Bit Name	Function		R	W
0–4	No function assigned. Fix to "0".			0	0
5	XDRVP			0	W
	XDRV write control bit				
6–7	XDRV	XIN-XOUT drive of	apability (performance ratio)	R	W
	XIN-XOUT drive capability select bit	00: Low	0.25		
		01: 🕈	0.50		
		10: 🚽	0.75		
		11: High	1.00		

(1) XDRV write control bit (XDRVP) (Bit 5)

This bit controls writing to the XIN-XOUT drive capability select bits.

(2) XIN-XOUT drive capability select bits (Bits 6, 7)

The following shows the procedure for writing to these bits.

- 1. Set the write control bit (XDRVP) to "1".
- 2. Immediately following the above, reset the write control bit (XDRVP) to "0" and write the appropriate value to the XIN-XOUT drive capability select bits.
 - Note: If a write cycle to any other area occurs between 1 and 2, write to XDRV has no effect and the written value is not reflected. Therefore, disable interrupts and DMA transfers before setting the drive capability control bits. Note that a pair of two consecutive writes comprise a write operation.

<Address: H'0080 0786>

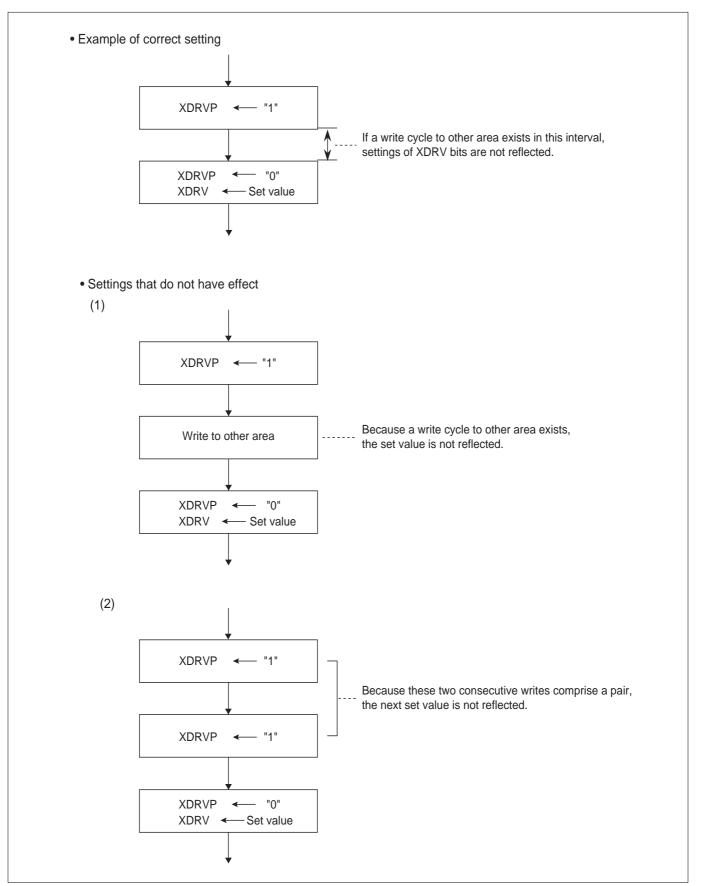


Figure 18.1.4 Procedure for Setting the Oscillation Drive Capability

18.1.4 System Clock Output Function

A clock whose frequency is twice that of the input clock (i.e., the peripheral clock) can be output from the BCLK pin. The BCLK pin is shared with port P70. To use this pin to output the peripheral clock, set the P7 Operation Mode Register (P7MOD) bit 8 to "1".

Configuration of the P7 Operation Mode Register is shown below.

P7 Operation Mode Register (P7MOD)

<Address: H'0080 0747>

b8	9	10	11	12	13	14	b15
P70MD	P71MD	P72MD	P73MD	P74MD	P75MD	P76MD	P77MD
0	0	0	0	0	0	0	0

			<upon exiting="" h'00="" reset:=""></upon>
b	Bit Name	Function	R W
8	P70MD	0:P70	R W
	Port P70 operation mode bit	1:BCLK	
9	P71MD	0:P71	R W
	Port P71 operation mode bit	1:WAIT#	
10	P72MD	0:P72	R W
	Port P72 operation mode bit	1:HREQ#	
11	P73MD	0:P73	R W
	Port P73 operation mode bit	1:HACK#	
12	P74MD	0:P74	R W
	Port P74 operation mode bit	1:RTDTXD	
13	P75MD	0:P75	R W
	Port P75 operation mode bit	1:RTDRXD	
14	P76MD	0:P76	R W
	Port P76 operation mode bit	1:RTDACK	
15	P77MD	0:P77	R W
	Port P77 operation mode bit	1:RTDCLK	

18.1.5 Oscillation Stabilization Time at Power-On

The oscillator circuit comprised of a ceramic (or crystal) resonator requires a finite time before its oscillation stabilizes after being powered on. Therefore, there must be a certain amount of oscillation stabilization time that suits the oscillator circuit used.

Figure 18.1.5 shows an oscillation stabilization time required at power-on.

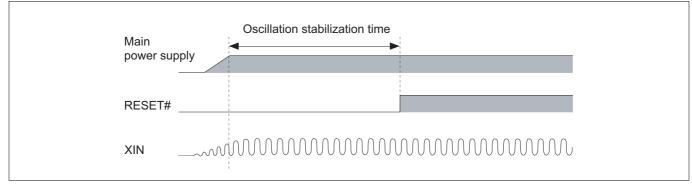


Figure 18.1.5 Oscillation Stabilization Time at Power-On

18.2 Clock Generator Circuit

Supply independent clocks to the CPU and the internal peripheral circuit.

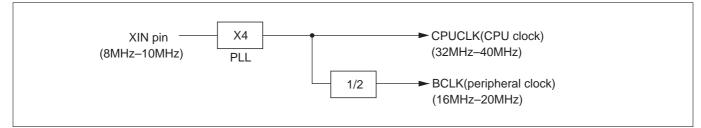


Figure 18.2.1 Conceptual Diagram of Clock Generation

CHAPTER 19

JTAG

- 19.1 Outline of JTAG
- 19.2 Configuration of JTAG Circuit
- 19.3 JTAG Registers
- 19.4 Basic Operation of JTAG
- 19.5 Boundary Scan Description Language
- 19.6 Notes on Board Design when Connecting JTAG
- 19.7 Processing Pins when Not Using JTAG

19.1 Outline of JTAG

The M32R/ECU contains a JTAG (Joint Test Action Group) interface compliant with IEEE Standard Test Access Port and Boundary-Scan Architecture (IEEE Std. 1149.1a-1993). This JTAG interface can be used as an input/ output path for boundary-scan test (boundary-scan path). For details about IEEE 1149.1 JTAG test access ports, see IEEE Std. 1149.1a-1993 documentation.

Note: • The JTAG interface in the M32R/ECU is used to connect a JTAG emulator during debugging as well. In this chapter, the JTAG interface is explained assuming its use as an input/output path for boundaryscan test.

Functions of the JTAG interface-related pins mounted on the M32R/ECU are shown below.

Туре	Pin Name	Signal Name	I/O	Function
TAP	JTCK	Test clock	Input	Clock input to the test circuit.
(Note 1)	JTDI	Test data Input	Input	Synchronous serial data input pin used to supply the test instruction code and test data. This input is sampled on the rising edge of JTCK.
	JTDO	Test data Output	Output	Synchronous serial data output pin used to output the test instruction code and test data. This signal changes state on the falling edge of JTCK, and is output in only the Shift-IR or Shift-DR state. Otherwise, it goes to a high-impedance state.
	JTMS	Test mode select	Input	Test mode select input to control the test circuit's state transition. This input is sampled on the rising edge of JTCK.
	JTRST	Test reset	Input	Active-low test reset input to initialize the test circuit asynchronously. To ensure that the test circuit is reset without fail, JTMS input signal must be held high while this signal changes state from low to high.

Table 19.1.1 JTAG Pin Functions

Note: TAP stands for Test Access Port (JTAG interface specified in IEEE 1149.1).

19.2 Configuration of JTAG Circuit

The JTAG circuit consists of the following circuit blocks.

- Instruction register to hold the instruction code that is fetched through the boundary-scan path
- A set of registers which are accessed through the boundary-scan path
- Test access port (abbreviated TAP) controller to control the JTAG unit's state transition
- Control logic to select input, output, etc.

The figure below shows the configuration of the JTAG circuit.

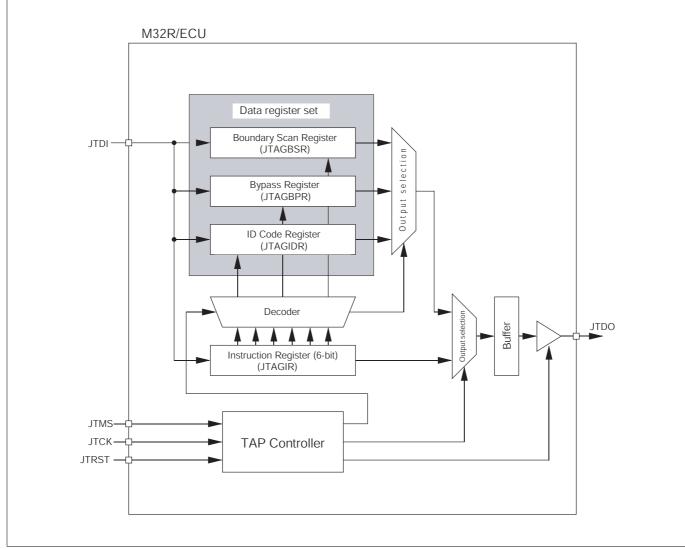


Figure 19.2.1 Configuration of the JTAG Circuit

19.3 JTAG Registers

19.3.1 Instruction Register (JTAGIR)

The Instruction Register is a 6-bit register to hold instruction code. This register is set in the IR path sequence. The instructions set in this register determine the data register to be selected in the subsequent DR path sequence.

The initial value of this register after test is reset (to initialize the test circuit) is b'000010 (IDCODE instruction). After a test reset, the ID Code Register is selected as the data register until instruction code is set by an external device. In the Capture-IR state, this register always has b'110001 (fixed value) loaded into it. Therefore, when in the Shift-IR state, no matter what value was set in this register, the value b'110001 is always output from the JTDO pin (sequentially beginning with the LSB). However, this value normally is not handled as instruction code.

Shown below is outside the scope of guaranteed operations. If this operation is attempted, the microcomputer may handle b'110001 as instruction code, which makes the microcomputer unable to operate normally.

 $\text{Capture-IR} \rightarrow \text{Exit1-IR} \rightarrow \text{Update-IR}$

Following instructions are supported for the JTAG interface of the M32R/ECU:

- Three instructions specified as essential in IEEE 1149.1 (EXTEST, SAMPLE/PRELOAD, BYPASS)
- Device identification register access instruction (IDCODE)

Instruction Code	Abbreviation	Operation
b'000000	EXTEST	Test the circuit/board-level connections external to the chip.
b'000001	SAMPLE/PRELOAD	Sample the operating status of the circuit and output the sampled status from the JTDO pin, while at the same time supplying the data used for boundary-scan test from the JTDI pin and preset it in the Boundary Scan Register.
b'000010	IDCODE	Select the ID Code Register to output the device and manufacturer identification data from the JTDO pin.
b'111111	BYPASS	Select the Bypass Register to inspect or set data.

Table 19.3.1 JTAG Instruction List

Notes: • Do not set any other instruction code.

• For details about the IR path sequence, DR path sequence, test reset, Capture-IR state, Shift-IR state, Exit1-IR state and Update-IR state, see Section 19.4, "Basic Operation of JTAG."

19.3.2 Data Register

(1) Boundary Scan Register (JTAGBSR)

The Boundary Scan Register is a 475-bit register used to perform boundary-scan test. The bits in this register are assigned to each pin on the microcomputer.

Connected between the JTDI and JTDO pins, this register is selected when issuing EXTEST or SAMPLE/ PRELOAD instruction. In the Capture-DR state, this register captures the status of input pins or internal logic outputs. In the Shift-DR state, while outputting the sampled value, this register receives the input data for boundary-scan test to set pin functions (direction of input/output and tristate output pins) and output values.

(2) Bypass Register (JTAGBPR)

The Bypass Register is a 1-bit register used to bypass the boundary-scan path when the microcomputer is not the target of boundary-scan test. Connected between the JTDI and JTDO pins, this register is selected when issuing BYPASS instruction. This register is loaded with b'0 (fixed value) in the Capture-DR state.

(3) ID Code Register (JTAGIDR)

The ID Code Register is a 32-bit register used to identify the device and manufacturer. It holds the following information:

 Version information (4 bits) 	: b'0000
 Part number (16 bits) 	: b'0011 0010 0010 0100
 Manufacturer ID (11 bits) 	: b'000 0001 1100

This register is connected between the JTDI and JTDO pins, and is selected when issuing IDCODE instruction. This register is loaded with said IDCODE data in the Capture-DR state, and outputs it from the JTDO pin in the Shift-DR state.

The ID Code Register is a read-only register. Because the data written from the JTDI pin during DR path sequence is ignored, make sure JTDI input = low while in the Shift-DR state.

(D 3	4 19	20 30	31
	Version	Part number	Manufacturer ID	1
	4 bits	16 bits	11 bits	

Note: • For details about the Capture-DR and Shift-DR states, see Section 19.4, "Basic Operation of JTAG."

19.4 Basic Operation of JTAG

19.4.1 Outline of JTAG Operation

The instruction and data registers basically are accessed in conjunction with the following three operations, which are performed based on the TAP Controller's state transition. The TAP Controller changes state according to JTMS input, and generates control signals required for operation in each state.

Capture operation

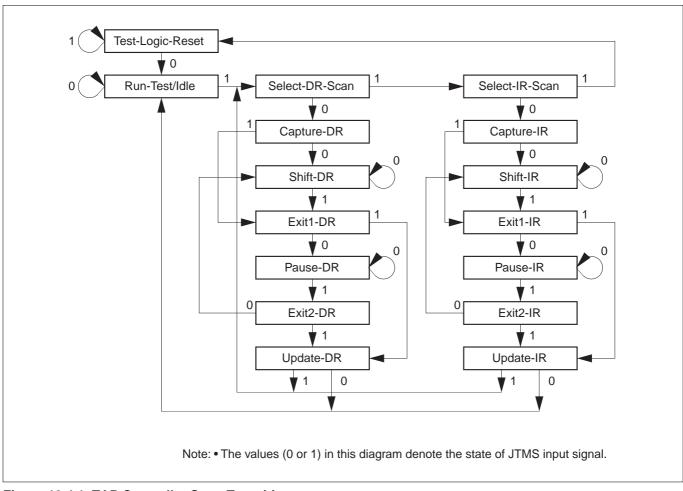
The result of boundary-scan test or the fixed data defined for each register is sampled. As a register operation, data input is latched into the shift register stage.

Shift operation

The register is accessed from outside through the boundary-scan path. The sample value is output to the outside at the same time data is set from the outside. As a register operation, the bits are shifted right between each shift register stage.

Update operation

The data set from the outside during shifting is driven. As a register operation, the value set in the shift register stage is transferred to the parallel output stage.


The JTAG interface undergoes transition of the internal state depending on JTMS input and on such state transition, it performs the following two operations. In either case, the operation basically is performed in order of Capture \rightarrow Shift \rightarrow Update.

• IR path sequence

Instruction code is set in the instruction register to select the data register to be operated on in the subsequent DR path sequence.

• DR path sequence

Data inspection or setting is performed for the selected data register.

The state transition of the TAP Controller and the basic configuration of the JTAG related registers are shown below.

Figure 19.4.1 TAP Controller State Transition

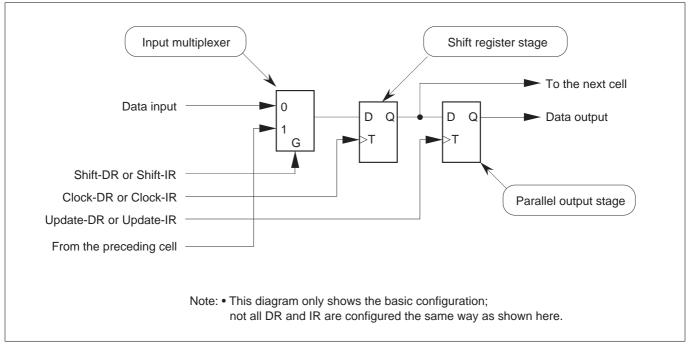


Figure 19.4.2 Basic Configuration of the JTAG Related Registers

19.4.2 IR Path Sequence

Instruction code is set in the Instruction Register (JTAGIR) to select the data register to be accessed in the subsequent DR path sequence. The IR path sequence is performed following the procedure described below.

- (1) From the Run-Test/Idle state, apply JTMS = high for a period of 2 JTCK cycles to enter the Select-IR-Scan state.
- (2) Apply JTMS = low to enter the Capture-IR state. At this time, b'110001 (fixed value) is set in the Instruction Register's shift register stage.
- (3) Proceed and apply JTMS = low to enter the Shift-IR state. In the Shift-IR state, the value of the shift register stage is shifted right one bit every cycle, and the data b'110001 (fixed value) that was set in (2) is serially output from the JTDO pin. At the same time, instruction code is set in the shift register stage bit by bit as it is serially fed from the JTDI pin. Because the instruction code is set in the Instruction Register that consists of 6 bits, the Shift-IR state must be continued for a period of 6 JTCK cycles. To stop the shift operation in the middle of the execution, enter the Pause-IR state via the Exit1-IR state (by setting JTMS input from high to low). To return from the Pause-IR state, enter the Shift-IR state via the Exit2-IR state (by setting JTMS input from high to low).
- (4) Apply JTMS = high to move from the Shift-IR state to the Exit1-IR state. This completes the shift operation.
- (5) Proceed and apply JTMS = high to enter the Update-IR state. In the Update-IR state, the instruction code that was set in the Instruction Register's shift register stage is transferred to the Instruction Register's parallel output stage, and decoding of JTAG instruction is thereby started.
- (6) Proceed and apply JTMS = high to enter the Select-DR-Scan state or JTMS = low to enter the Run-Test/ Idle state.

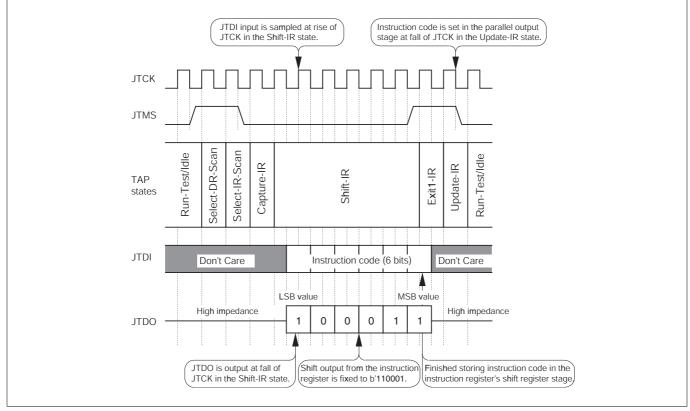
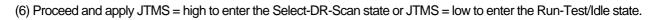



Figure 19.4.3 IR Path Sequence

19.4.3 DR Path Sequence

Data inspection or setting is performed for the data register selected in the IR path sequence prior to the DR path sequence. The DR path sequence is performed following the procedure described below.

- (1) From the Run-Test/Idle state, apply JTMS = high for a period of 1 JTCK cycle to enter the Select-DR-Scan state. Which data register will be selected at this time depends on the instruction that was set during the IR path sequence performed prior to the DR path sequence.
- (2) Apply JTMS = low to enter the Capture-DR state. At this time, the result of boundary-scan test or the fixed data defined for each register is set in the data register's shift register stage.
- (3) Proceed and apply JTMS = low to enter the Shift-DR state. In the Shift-DR state, the DR value is shifted right one bit every cycle, and the data that was set in (2) is serially output from the JTDO pin. At the same time, setup data is set in the data register's shift register stage bit by bit as it is serially fed from the JTDI pin. By continuing the Shift-IR state as long as the number of bits that comprise the selected data register (by applying JTMS = low), all bits of data can be set in and read out from the shift register stage. To stop the shift operation in the middle of the execution, enter the Pause-DR state via the Exit1-DR state (by setting JTMS input from high to low). To return from the Pause-DR state, enter the Shift-DR state via the Exit2-DR state (by setting JTMS input from high to low).
- (4) Apply JTMS = high to move from the Shift-DR state to the Exit1-DR state. This completes the shift operation.
- (5) Proceed and apply JTMS = high to enter the Update-DR state. In the Update-DR state, the data that was set in the data register's shift register stage is transferred to the parallel output stage, and the setup data is thereby made ready for use.

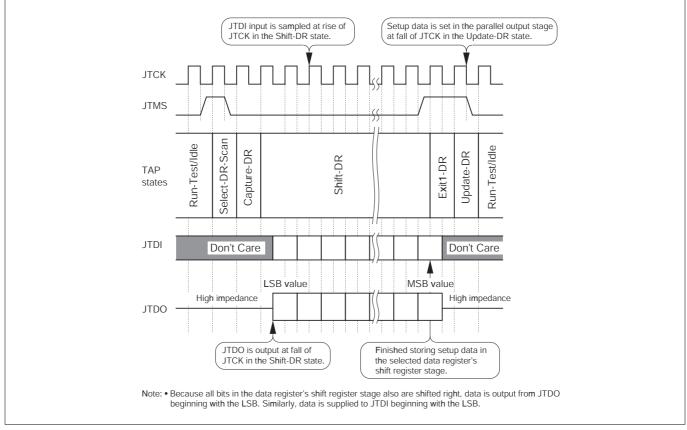


Figure 19.4.4 DR Path Sequence

19.4.4 Inspecting and Setting Data Registers

To inspect or set the data register, follow the procedure described below.

- (1) To access the test access port (JTAG) for the first time, apply a test reset (to initialize the test circuit). One of the following two methods may be used to apply a test reset:
 - Pull the JTRST pin low.
 - Drive the JTMS pin high to apply 5 or more JTCK cycles
- (2) Apply JTMS = low to enter the Run-Test/Idle state. To continue the idle state, hold JTMS input low.
- (3) Apply JTMS = high to exit the Run-Test/Idle state and perform IR path sequence. In the IR path sequence, specify the data register to inspect or set.
- (4) Proceed to perform DR path sequence. Feed setup data from the JTDI pin into the data register specified in the IR path sequence, and read out reference data from the JTDO pin.
- (5) To proceed to perform IR path or DR path sequence after the DR path sequence is completed, apply JTMS = high to return to the Select-DR-Scan state.

To wait for the next processing after a series of IR and DR sequence processing is completed, apply JTMS = low to enter the Run-Test/Idle state and keep that state.

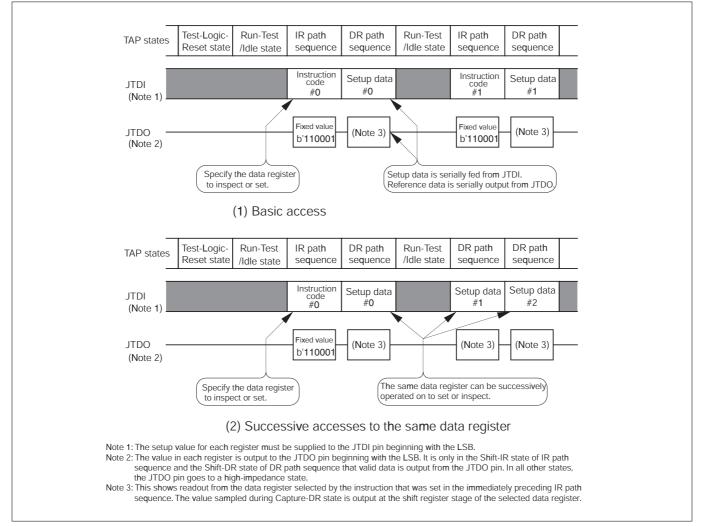


Figure 19.4.5 Successive JTAG Access

19.5 Boundary Scan Description Language

The Boundary Scan Description Language (abbreviated BSDL) is described in the supplements to the Standard Test Access Port and Boundary-Scan Architecture of IEEE 1149.1-1990 and IEEE 1149.1a-1993. BSDL is a subset of IEEE 1076-1993 Standard VHSIC Hardware Description Language (VHDL). BSDL allows to precisely describe the functions of conforming components to be tested. For package connection test, this language is used by Automated Test Pattern Generation tools, and for synthesized test logic and verification, this language is used by Electronic Design Automation tools. BSDL provides powerful extended functions usable in internal test generation and necessary to write hardware debug and diagnostics software.

The primary section of BSDL has statements of logical port description, physical pin map, instruction set and boundary register description.

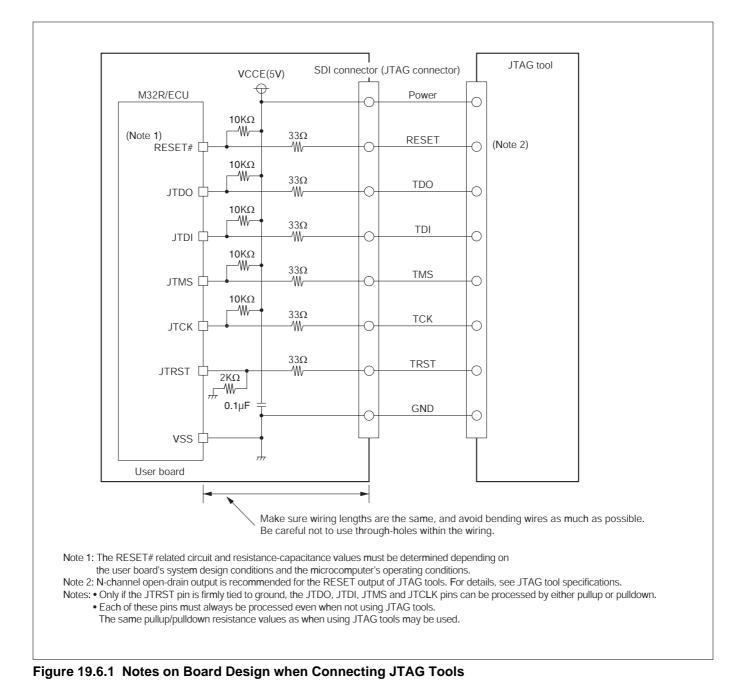
Logical port description

The logical port description assigns meaningful symbol names to each pin on the chip. The logic type of each pin, whether input, output, input/output, buffer or link, that defines the logical direction of signal flow is determined here.

Physical pin map

The physical pin map correlates the chip's logical ports to the physical pins on each package. By using separate names for each map, it is possible to define two or more physical pin maps in one BSDL description.

Instruction set statement


The instruction set statement writes bit patterns to be shifted in into the chip's instruction register. This bit pattern is necessary to place the chip into each test mode defined in standards. Instructions exclusive to the chip can also be written.

Boundary register description

The boundary register description is a list of boundary register cells or shift stages. Each cell is assigned a separate number. The cell with number 0 is located nearest to the test data output (JTDO) pin, and the cell with the largest number is located nearest to the test data input (JTDI) pin. Cells also contain related other information which includes cell type, logical port corresponding to the cell, logical function of the cell, safety value, control cell number, disable value and result value.

19.6 Notes on Board Design when Connecting JTAG

To materialize fast and highly reliable communication with JTAG tools, make sure wiring lengths of JTAG pins are matched during board design.

19.7 Processing Pins when Not Using JTAG

The following shows how the pins on the chip should be processed when not using JTAG tools.

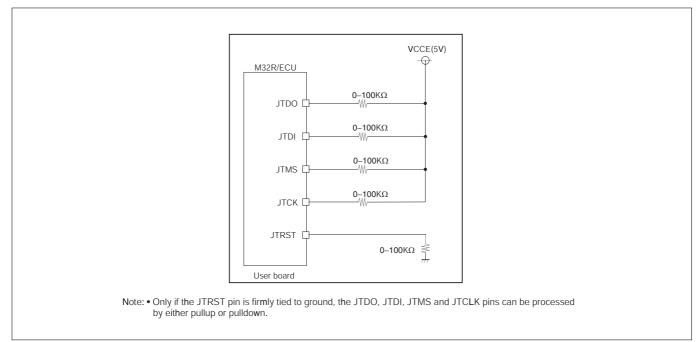


Figure 19.7.1 Processing Pins when Not Using JTAG

This page is blank for reasons of layout.

CHAPTER 20

POWER SUPPLY CIRCUIT

- 20.1 Configuration of the Power Supply Circuit
- 20.2 Power-On Sequence
- 20.3 Power-Off Sequence

20.1 Configuration of the Power Supply Circuit

The 32176 operates with a single 5 V \pm 0.5 V or 3.3 V \pm 0.3 V single power supply. Unless otherwise noted, 5 V \pm 0.5 V and 3.3 V \pm 0.3 V in this chapter are referred to simply by 5 V and 3.3 V, respectively.

Table 20.1.1 Power Supply Functions

Power Supply Type	Pin Name	Function		
5.0V or 3.3V	VCCE	Main power supply		
	AVCC0	Power supply for the A-D converter		
	VREF0	Reference voltage for the A-D converter		
	VDDE	Power supply for the internal RAM backup		
	EXCVCC	External capacitor connection pin		
	EXCVDD	External capacitor connection pin		
	EXCOSC-VCC	External capacitor connection pin		

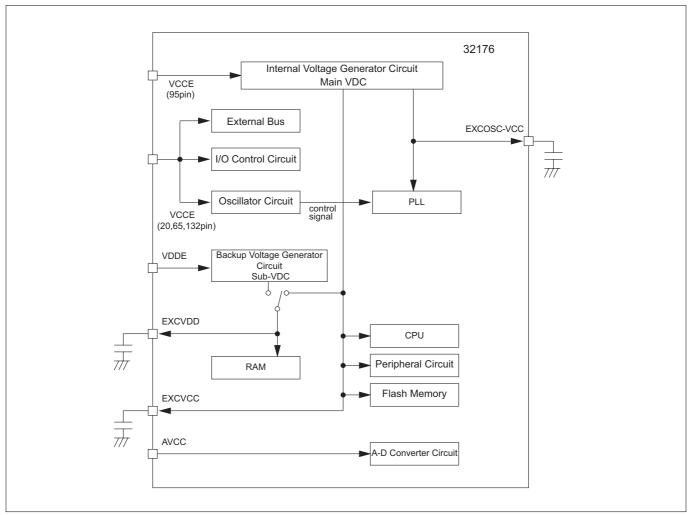


Figure 20.1.1 Configuration of the Power Supply Circuit (VCCE = 5.0 V or 3.3 V)

20.2 Power-On Sequence

20.2.1 Power-On Sequence when Not Using RAM Backup

The diagram below shows a turn-on sequence of the power supply (5.0 V or 3.3 V) when not using RAM backup.

VCCE,VDDE	0V
AVCC .	0V
VREF	0V (Note 1)
RESET#	0V
relea Notes: • Pow VE • How in or For	turning on all power supplies and holding the RESET# pin low for an oscillation stabilization time, ase the RESET# pin back high (to exit the reset state). ver-on limitation DDE \geq VCCE vever, if the above power-on limitation cannot be met, sufficient evaluation must be made during system design der to ensure that no power will be applied to the microcomputer with a potential difference of 1 V or more. potential differences 0 V to 0.6 V, there is almost no in-flow current. The amount of in-flow current begins to increase n the potential difference exceeds 0.6 V.

Figure 20.2.1 Power-On Sequence when Not Using RAM Backup

20.2.2 Power-On Sequence when Using RAM Backup

The diagram below shows a turn-on sequence of the power supply (5.0 V or 3.3 V) when using RAM backup.

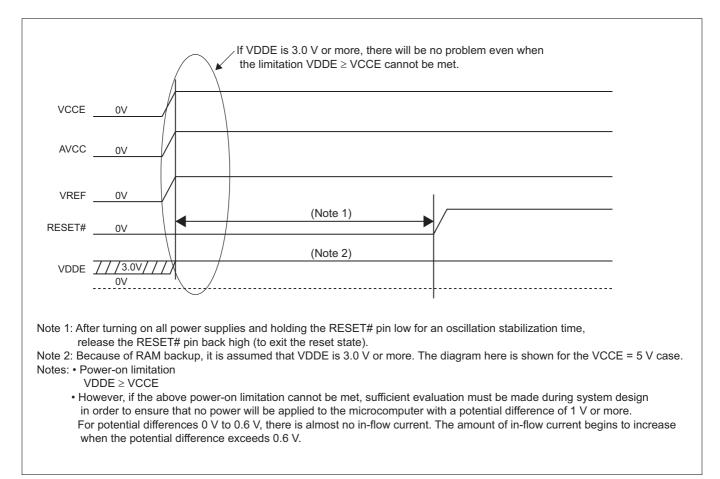


Figure 20.2.2 Power-On Sequence when Using RAM Backup

20.3 Power-Off Sequence

20.3.1 Power-Off Sequence when Not Using RAM Backup

The diagram below shows a turn-off sequence of the power supply (5.0 V or 3.3 V) when not using RAM backup.

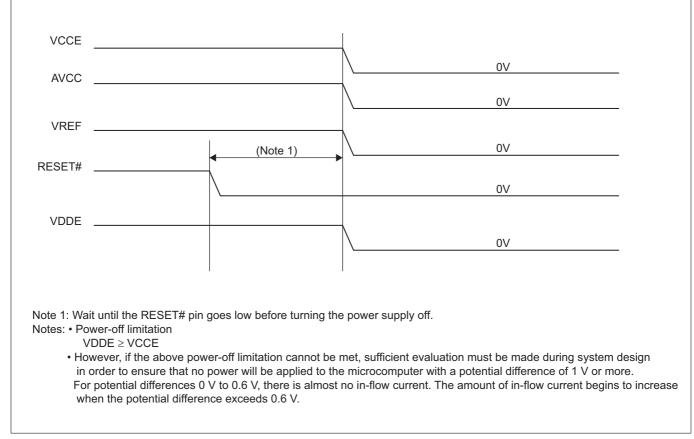
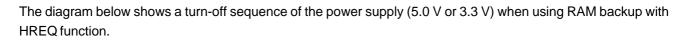



Figure 20.3.1 Power-Off Sequence when Not Using RAM Backup

20.3.2 Power-Off Sequence when Using RAM Backup

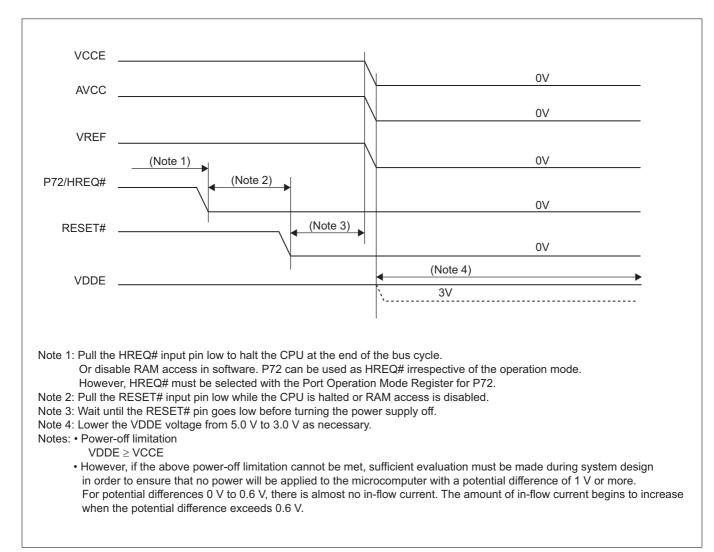


Figure 20.3.2 Power-Off Sequence when Using RAM Backup (VCCE = 5.0 V or 3.3 V)

POWER SUPPLY CIRCUIT

20.3 Power-Off Sequence

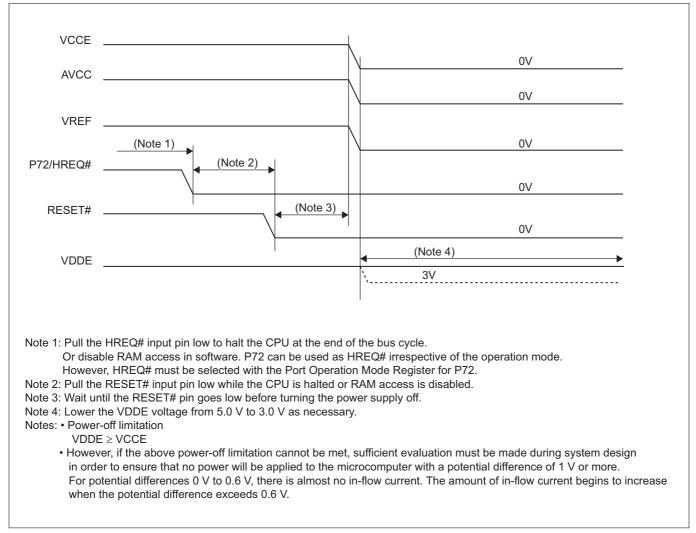
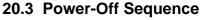



Figure 20.3.3 Power-Off Sequence when Using RAM Backup (VCCE = 5.0 V, VDDE = 3.3 V)

POWER SUPPLY CIRCUIT

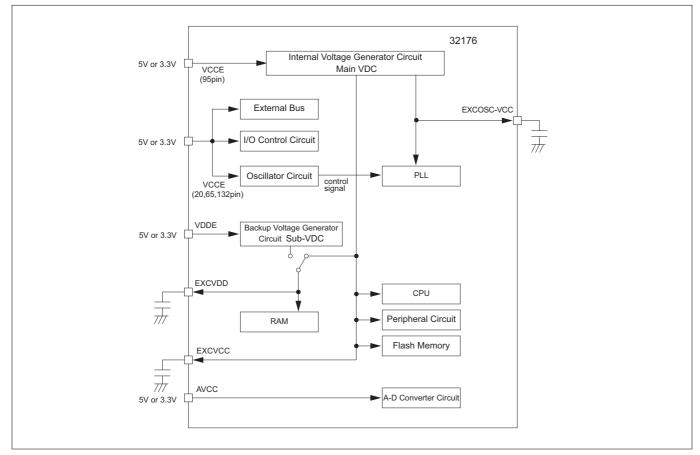


Figure 20.3.4 Microcomputer Ready to Operate State (VCCE = 5.0 V or 3.3 V)

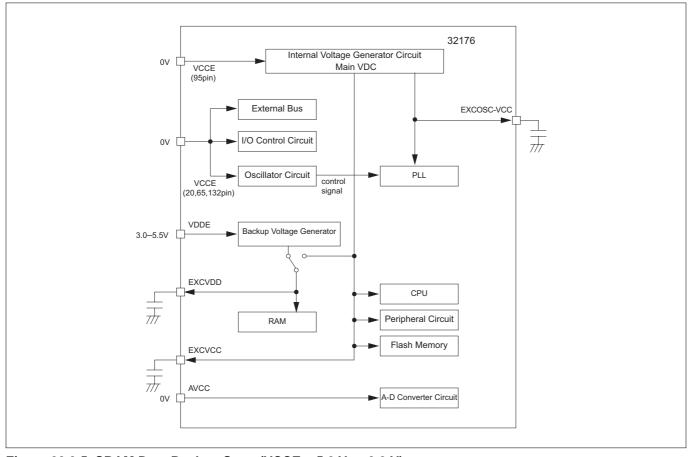


Figure 20.3.5 SRAM Data Backup State (VCCE = 5.0 V or 3.3 V)

CHAPTER 21

ELECTRICAL CHARACTERISTICS

- 21.1 Absolute Maximum Ratings
- 21.2 Electrical Characteristics when VCCE = 5 V, f(XIN) = 10 MHz
- 21.3 Electrical Characteristics when VCCE = 5 V, f(XIN) = 8 MHz
- 21.4 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 10 MHz
- 21.5 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 8 MHz
- 21.6 Flash Memory Related Characteristics
- 21.7 External Capacitance for Power Supply
- 21.8 A.C. Characteristics (when VCCE = 5 V)
- 21.9 A.C. Characteristics (when VCCE = 3.3 V)

21.1 Absolute Maximum Ratings

Absolute Maximum Ratings

Symbol	Parameter	Test Condition	Rated Value	Unit
VCCE	Main Power Supply		-0.3–6.5	V
VDDE	RAM Power Supply		-0.3–6.5	V
AVCC	Analog Power Supply	VCCE≥AVCC≥VREF	-0.3–6.5	V
VREF	Reference Voltage Input	VCCE≥AVCC≥VREF	-0.3–6.5	V
VI	Xin		-0.3-VCCE+0.3	V
	Other		-0.3-VCCE+0.3	V
VO	Xout		-0.3-VCCE+0.3	V
	Other		-0.3-VCCE+0.3	V
Pd	Power Dissipation	Ta=-40-85°C	500	mW
		Ta=-40–125°C	400	mW
TOPR	Operating Ambient Temperature (Note 1)		-40–125	°C
Tstg	Storage Temperature		-65–150	°C

Note 1: This does not guarantee that the microcomputer can operate continuously at 125°C. Consult Renesas if the microcomputer is going to be used for 125°C applications.

21.2 Electrical Characteristics when VCCE = 5 V, f(XIN) = 10 MHz

21.2.1 Recommended Operating Conditions (when VCCE = 5 V, f(XIN) = 10 MHz)

Recommended Operating Conditions (Referenced to VCCE, VDDE = 5 V \pm 0.5 V, Ta = -40°C to 85°C Unless Otherwise Noted)

Symbol		F	Parameter		F	Rated Valu	е	Unit
					MIN	TYP	MAX	
VCCE	Main Powe	er Supply (Note	e 1)		4.5	5.0	5.5	V
VDDE	RAM Powe	er Supply (Note	upply (Note 1)			5.0	5.5	V
AVCC	Analog Po	wer Supply (N	ote 1)		4.5	5.0	5.5	V
VREF	Reference	Voltage Input	oltage Input (Note 1)			5.0	5.5	V
VIH	Input High Voltage	When threshold	When CMOS input	Threshold selection : 0.35 VCCE	0.45VCCE		VCCE	V
		switching function is	is selected	Threshold selection : 0.5VCCE	0.6VCCE		VCCE	V
		used		Threshold selection : 0.7VCCE	0.8VCCE		VCCE	V
			When Schmitt input	VT+/VT- : 0.5VCCE/0.35VCCE	0.6VCCE		VCCE	V
			is selected	VT+/VT- : 0.7VCCE/0.35VCCE	0.8VCCE		VCCE	V
				VT+/VT- : 0.7VCCE/0.5VCCE	0.8VCCE		VCCE	V
		FP, MOD0, 1	, JTMS, JTRST,	JTDI, RESET#	0.8VCCE		VCCE	V
		-		ring pins: , 1, RXD0–3, TCLK0–3,	0.8VCCE		VCCE	V
		Standard inpu	ut for the followir	ng pins: DB0–15, WAIT#	0.43VCCE		VCCE	V
		Standard inpu	ut for the followir	ng pins: SBI#, HREQ#	0.6VCCE		VCCE	V
VIL	Input Low Voltage	When threshold	When CMOS input	Threshold selection : 0.35VCCE	0		0.25VCCE	V
		switching function	is selected	Threshold selection : 0.5VCCE	0		0.4VCCE	V
		is used		Threshold selection : 0.7VCCE	0		0.6VCCE	V
			When Schmitt input	VT+/VT- : 0.5VCCE/0.35VCCE	0		0.25VCCE	V
			is selected	VT+/VT- : 0.7VCCE/0.35VCCE	0		0.25VCCE	V
				VT+/VT- : 0.7VCCE/0.5VCCE	0		0.4VCCE	V

ELECTRICAL CHARACTERISTICS 21.2 Electrical Characteristics when VCCE = 5 V, f(XIN) = 10 MHz

Symbol		Parameter		Rated Valu	e	Unit
			MIN	TYP	MAX	
VIL	Input Low	FP, MOD0, 1, JTMS, JTRST, JTDI, RESET#	0		0.2VCCE	V
	Voltage	Standard input for the following pins: RTDCLK, RTDRXD, SCLKI0, 1, RXD0–3, TCLK0–3, TIN0, 3, 16–23, CRX0, 1	0		0.25VCCE	V
		Standard input for the following pins: DB0–15, WAIT#	0		0.16VCCE	V
		Standard input for the following pins: SBI#, HREQ#	0		0.25VCCE	V
IOH(peak)	High State F	Peak Output Current P0-P22 (Note 2)			-10	mA
IOH(avg)	High State A	Average Output Current P0-P22 (Note 3)			-5	mA
IOL(peak)	Low State P	eak Output Current P0-P22 (Note 2)			10	mA
IOL(avg)	Low State A	verage Output Current P0–P22 (Note 3)			5	mA
CL	Output Load	JTDO, JTMS			80	pF
	Capacitance	Other than above	15		50	pF
f(XIN)	External Clo	ck Input Frequency	5		10	MHz

Note 1: Subject to conditions VCCE \geq AVCC \geq VREF

Note 2: Make sure the total output current (peak) of ports is

| ports P0 + P1 + P2 | ≤ 80 mA

| ports P3 + P4 + P13 + P15 + P22 | ≤ 80 mA

| ports P6 + P7 + P8 + P9 + P17 | \leq 80 mA

| ports P10 + P11 + P12 | \leq 80 mA

Note 3: The average output current is a value averaged during a 100 ms period.

21.2.2 D.C. Characteristics (when VCCE = 5 V, f(XIN) = 10 MHz)

Electrical Characteristics (Referenced to VCCE, VDDE = 5 V \pm 0.5 V, Ta = -40°C to 85°C Unless Otherwise Noted)

Symbol	Parameter		Test Condition	F	Rated Value	;	Unit
				MIN	TYP	MAX]
VOH	Output High Voltage		IOH≥-5mA	VCCE+0.165 ×IOH(mA)		VCCE	V
VOL	Output Low Voltage		IOL≤5mA	0		0.15×IOL (mA)	V
VDDE	RAM Retention Power	Supply Voltage	When operating	4.5		5.5	V
			During backup	3.0		5.5	V
IIH	High State Input Curre	nt	VI=VCCE	-5		5	μA
IIL	Low State Input Currer	nt	VI=0V	-5		5	μA
ICC	Total Power Supply Cu	irrent (Note 1)	f(XIN)=10.0MHz, When reset			50	mA
			f(XIN)=10.0MHz, When operating		65	90	
IDDEhold	RAM Retention	VDDE=5.5V	Ta=25C°		0.1	2	μA
	Power Supply Current		Ta=85C°			50	
		VDDE=3.0V	Ta=25C°		0.05	1	
			Ta=85C°			25	
VT+-	FP, MOD0, 1, JTMS, JT	RST, JTDI, RESET#		1.0			V
VT-	Standard input for the RTDCLK, RTDRXD, SCI TCLK0–3, TIN0, 3, 16-	_KI0, 1, RXD0–3,		1.0			
	Standard input for the follo	wing pins: SBI#, HREQ#		0.3			
	When threshold	0.7VCCE/0.35VCCE		1.0			1
	switching function	0.7VCCE/0.5VCCE		0.3			1
	is used (VT+ / VT–)	0.5VCCE/0.35VCCE		0.3]

Note 1: Total amount of current when VCCE = VDDE = AVCC = VREF in single-chip mode

Electrical Characteristics of Each Power Supply Pin

Symbol	Parameter	Test Condition		Unit		
			MIN	TYP	MAX	
ICCE	VCCE Power Supply Current When Operating	f(XIN)=10.0MHz			90	mA
IDDE	VDDE Power Supply Current When Operating	f(XIN)=10.0MHz			1	mA
IAVCC	AVCC Power Supply Current When Operating	f(XIN)=10.0MHz			3	mA
IVREF	VREF Power Supply Current When Operating	f(XIN)=10.0MHz			1	mA

21.2.3 A-D Conversion Characteristics (when VCCE = 5 V, f(XIN) = 10 MHz)

A-D Conversion Characteristics (Referenced to VCCE, VDDE = 5.12 V, Ta = -40°C to 85°C Unless Otherwise
Noted)

Symbol	Parameter			Test Condition	Rated Value			Unit	
					MIN	TYP	MAX		
_	Resolution				VREF=VCCE=AVCC			10	bits
_	Absolute	Without sample-	Slow mode	Normal speed				±2	LSB
	Accuracy	and-hold or		Double speed				±2	
	(Note 1)	during normal	Fast mode	Normal speed				±3]
		sample-and-hold		Double speed				±3	
		During fast	Slow mode	Normal speed				±3	
		sample-and		Double speed				±3	
		-hold	Fast mode	Normal speed				±3	
				Double speed				±8]
TCONV	Conversion	Without sample-	Slow mode	Normal speed		14.95			μs
	Time	and-hold or		Double speed		8.65			
		during normal	Fast mode	Normal speed		6.55			
		sample-and-hold		Double speed		4.45			
		During fast	Slow mode	Normal speed		9.55			
		sample-and		Double speed		5.05			
		-hold	Fast mode	Normal speed		4.75			
				Double speed		2.65			
IIAN	Analog Inp	Analog Input Leakage Current (Note 2)			AVSS≤ANi≤AVCC	-5		5	μA

Note 1: Absolute accuracy refers to the accuracy of output code relative to the analog input including all error sources (including quantization error) in an A-D converter, and is calculated using the equation below.

Absolute accuracy = output code - (analog input voltage Ani / 1 LSB)

When AVCC = AVREF = 5.12 V, 1 LSB = 5 mV.

Note 2: This refers to the input leakage current on ANi while the A-D converter remains idle.

21.3 Electrical Characteristics when VCCE = 5 V, f(XIN) = 8 MHz

21.3.1 Recommended Operating Conditions (when VCCE = 5 V, f(XIN) = 8 MHz)

Recommended Operating Conditions (Referenced to VCCE, VDDE = 5 V \pm 0.5 V, Ta = -40°C to 125°C Unless Otherwise Noted)

Symbol			Parameter			Rated Valu	e	Unit
					MIN	TYP	MAX	
VCCE	Main Powe	er Supply (Note 1)			4.5	5.0	5.5	V
VDDE	RAM Powe	r Supply (Note	r Supply (Note 1)			5.0	5.5	V
AVCC	Analog Pov	wer Supply (No	te 1)		4.5	5.0	5.5	V
VREF	Reference	Voltage Input (Note 1)		4.5	5.0	5.5	V
VIH	Input High Voltage	•	When CMOS input	Threshold selection : 0.35VCCE	0.45VCCE		VCCE	V
		switching function is	is selected	Threshold selection : 0.5VCCE	0.6VCCE		VCCE	V
		used		Threshold selection : 0.7VCCE	0.8VCCE		VCCE	V
			When Schmitt input	VT+/VT- : 0.5VCCE/0.35VCCE	0.6VCCE		VCCE	V
			is selected	VT+/VT- : 0.7VCCE/0.35VCCE	0.8VCCE		VCCE	V
				VT+/VT- : 0.7VCCE/0.5VCCE	0.8VCCE		VCCE	V
		FP, MOD0, 1,	JTMS, JTRST,	JTDI, RESET#	0.8VCCE		VCCE	V
		Standard input for the following pins: RTDCLK, RTDRXD, SCLKI0, 1, RXD0–3, TCLK0–3, TIN0, 3, 16–23, CRX0, 1			0.8VCCE		VCCE	V
		Standard inpu	t for the followin	g pins: DB0–15, WAIT#	0.43VCCE		VCCE	V
		Standard input for the following pins: SBI#, HREQ#			0.6VCCE		VCCE	V
VIL		-	Threshold selection : 0.35VCCE	0		0.25VCCE	V	
		switching function	is selected	Threshold selection : 0.5VCCE	0		0.4VCCE	V
		is used	Threshold selection : 0.7VCCE	0		0.6VCCE	V	
			When Schmitt input	VT+/VT- : 0.5VCCE/0.35VCCE	0		0.25VCCE	V
			is selected	VT+/VT- : 0.7VCCE/0.35VCCE	0		0.25VCCE	V
				VT+/VT- : 0.7VCCE/0.5VCCE	0		0.4VCCE	V

ELECTRICAL CHARACTERISTICS 21.3 Electrical Characteristics when VCCE = 5 V, f(XIN) = 8 MHz

Symbol			Unit			
			MIN	TYP	MAX	
VIL	Input Low	FP, MOD0, 1, JTMS, JTRST, JTDI, RESET#	0		0.2VCCE	V
Voltage		Standard input for the following pins: RTDCLK, RTDRXD, SCLKI0, 1, RXD0–3, TCLK0–3, TIN0, 3, 16–23, CRX0, 1	0		0.25VCCE	V
		Standard input for the following pins: DB0–15, WAIT#	0		0.16VCCE	V
		Standard input for the following pins: SBI#, HREQ#	0		0.25VCCE	V
IOH(peak)	High State F	Peak Output Current P0–P22 (Note 2)			-10	mA
IOH(avg)	High State A	Average Output Current P0–P22 (Note 3)			-5	mA
IOL(peak)	Low State P	eak Output Current P0-P22 (Note 2)			10	mA
IOL(avg)	Low State A	verage Output Current P0–P22 (Note 3)			5	mA
CL	Output Load	JTDO, JTMS			80	pF
	Capacitance	Other than above	15		50	pF
f(XIN)	External Clo	ck Input Frequency	5		8	MHz

Note 1: Subject to conditions VCCE \geq AVCC \geq VREF

Note 2: Make sure the total output current (peak) of ports is

| ports P0 + P1 + P2 | ≤ 80 mA

| ports P3 + P4 + P13 + P15 + P22 | ≤ 80 mA

| ports P6 + P7 + P8 + P9 + P17 | \leq 80 mA

| ports P10 + P11 + P12 | \leq 80 mA

Note 3: The average output current is a value averaged during a 100 ms period.

21.3.2 D.C. Characteristics (when VCCE = 5 V, f(XIN) = 8 MHz)

Electrical Characteristics (Referenced to VCCE, VDDE = 5 V \pm 0.5 V, Ta = -40°C to 125°C Unless Otherwise Noted)

Symbol	Parameter		Test Condition		Rated Value	•	Unit
				MIN	TYP	MAX	1
VOH	Output High Voltage		IOH≥-5mA	VCCE+0.165 ×IOH(mA)		VCCE	V
VOL	Output Low Voltage		IOL≤5mA	0		0.15×IOL (mA)	V
VDDE	RAM Retention Power	Supply Voltage	When operating	4.5		5.5	V
			During backup	3.0		5.5	V
IIH	High State Input Curre	nt	VI=VCCE	-5		5	μA
IIL	Low State Input Currer	nt	VI=0V	-5		5	μA
ICC	Total Power Supply Cu	rrent (Note 1)	f(XIN)=8.0MHz, When reset			40	mA
			f(XIN)=8.0MHz, When operating		55	70	
IDDEhold	RAM Retention	VDDE=5.5V	Ta=25°C		0.1	2	μA
	Power Supply Current		Ta=125°C			200]
		VDDE=3.0V	Ta=25°C		0.05	1	7
			Ta=125°C			100	7
VT+-	FP, MOD0, 1, JTMS, JT	RST, JTDI, RESET#		1.0			V
VT-	Standard input for the RTDCLK, RTDRXD, SCI TCLK0–3, TIN0, 3, 16–	_KI0, 1, RXD0–3,		1.0			
	Standard input for the follo	wing pins: SBI#, HREQ#		0.3			1
	When threshold	0.7VCCE/0.35VCCE		1.0			1
	switching function	0.7VCCE/0.5VCCE		0.3			1
	is used (VT+ / VT–)	0.5VCCE/0.35VCCE		0.3			7

Note 1: Total amount of current when VCCE = VDDE = AVCC = VREF in single-chip mode

Electrical Characteristics of Each Power Supply Pin

Symbol	Parameter	Test Condition		Unit		
			MIN	TYP	MAX	
ICCE	VCCE Power Supply Current When Operating	f(XIN)=8.0MHz			70	mA
IDDE	VDDE Power Supply Current When Operating	f(XIN)=8.0MHz			1	mA
IAVCC	AVCC Power Supply Current When Operating	f(XIN)=8.0MHz			3	mA
IVREF	VREF Power Supply Current When Operating	f(XIN)=8.0MHz			1	mA

21.3.3 A-D Conversion Characteristics (when VCCE = 5 V, f(XIN) = 8 MHz)

A-D Conversion Characteristics (Referenced to VCCE, VDDE = 5.12 V, Ta = -40° C to 125° C Unless Otherwise Noted)

Symbol	Parameter			Test Condition	Rated Value			Unit	
						MIN	TYP	MAX	
_	Resolution	Resolution			VREF=VCCE=AVCC			10	bits
_	Absolute	Without sample-	Slow mode	Normal speed				±2	LSB
	Accuracy	and-hold or		Double speed				±2	
	(Note 1)	during normal	Fast mode	Normal speed				±3	
		sample-and-hold		Double speed				±3	
		During fast	Slow mode	Normal speed				±3	
		sample-and		Double speed				±3	
		-hold	Fast mode	Normal speed				±3	
				Double speed				±8	
TCONV	Conversion	Without sample-	Slow mode	Normal speed		18.6875			μs
	Time	and-hold or		Double speed		10.8125			
		during normal	Fast mode	Normal speed		8.1875			
		sample-and-hold		Double speed		5.5625			
		During fast	Slow mode	Normal speed		11.9375			
		sample-and		Double speed		6.3125			
		-hold	Fast mode	Normal speed		5.9375			
				Double speed		3.3125			
IIAN	Analog Inp	Analog Input Leakage Current (Note 2)			AVSS≤ANi≤AVCC	-5		5	μA

Note 1: Absolute accuracy refers to the accuracy of output code relative to the analog input including all error sources (including quantization error) in an A-D converter, and is calculated using the equation below.

Absolute accuracy = output code - (analog input voltage Ani / 1 LSB)

When AVCC = AVREF = 5.12 V, 1 LSB = 5 mV.

Note 2: This refers to the input leakage current on ANi while the A-D converter remains idle.

21.4 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 10 MHz

21.4.1 Recommended Operating Conditions (when VCCE = $3.3 \text{ V} \pm 0.3 \text{ V}$, f(XIN) = 10 MHz)

Recommended Operating Conditions (Referenced to VCCE, VDDE = $3.3 \text{ V} \pm 0.3 \text{ V}$, Ta = -40° C to 85° C Unless Otherwise Noted)

Symbol			Parameter			Rated Value	9	Unit
					MIN	TYP	MAX	
VCCE	Main Powe	er Supply (Not	e 1)		3.0	3.3	3.6	V
VDDE	RAM Powe	er Supply (Note	e 1)		3.0	VCCE	3.6	V
AVCC	Analog Po	wer Supply (N	ote 1)		3.0	VCCE	3.6	V
VREF	Reference	Voltage Input	(Note 1)		3.0	VCCE	3.6	V
VIH	Input High Voltage	When threshold	When CMOS input	Threshold selection : 0.35VCCE	0.5VCCE		VCCE	V
		switching function is	is selected	Threshold selection : 0.5VCCE	0.65VCCE		VCCE	V
		used		Threshold selection : 0.7VCCE	0.8VCCE		VCCE	V
			When Schmitt input	VT+/VT- : 0.5VCCE/0.35VCCE	0.65VCCE		VCCE	V
			is selected	VT+/VT- : 0.7VCCE/0.35VCCE	0.8VCCE		VCCE	V
				VT+/VT- : 0.7VCCE/0.5VCCE	0.8VCCE		VCCE	V
		FP, MOD0, 1	, JTMS, JTRST,	JTDI, RESET#	0.8VCCE		VCCE	V
		RTDCLK, RT	ut for the follow DRXD, SCLKI0 N0, 3, 16–23, C	, 1, RXD0–3,	0.8VCCE		VCCE	V
		Standard inpu	ut for the followin	ng pins: DB0–15, WAIT#	0.5VCCE		VCCE	V
		Standard inpu	ut for the followin	ng pins: SBI#, HREQ#	0.65VCCE		VCCE	V
VIL	Input Low Voltage	When threshold	When CMOS input	Threshold selection : 0.35VCCE	0		0.2VCCE	V
		switching function	is selected	Threshold selection : 0.5VCCE	0		0.35VCCE	V
		is used		Threshold selection : 0.7VCCE	0		0.5VCCE	V
			When Schmitt input	VT+/VT- : 0.5VCCE/0.35VCCE	0		0.2VCCE	V
			is selected	VT+/VT- : 0.7VCCE/0.35VCCE	0		0.2VCCE	V
				VT+/VT- : 0.7VCCE/0.5VCCE	0		0.35VCCE	V

ELECTRICAL CHARACTERISTICS 21.4 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 10 MHz

Symbol		Parameter		Rated Value	Э	Unit
			MIN	TYP	MAX	
VIL	Input Low	FP, MOD0, 1, JTMS, JTRST, JTDI, RESET#	0		0.2VCCE	V
	Voltage	age Standard input for the following pins: RTDCLK, RTDRXD, SCLKI0, 1, RXD0–3, TCLK0–3, TIN0, 1, 16–23, CRX0, 1			0.2VCCE	V
		Standard input for the following pins: DB0–15, WAIT#	0		0.2VCCE	V
		Standard input for the following pins: SBI#, HREQ#	0		0.2VCCE	V
IOH(peak)	High State F	Peak Output Current P0–P22 (Note 2)			-10	mA
IOH(avg)	High State A	Average Output Current P0–P22 (Note 3)			-5	mA
IOL(peak)	Low State P	Peak Output Current P0-P22 (Note 2)			10	mA
IOL(avg)	Low State A	verage Output Current P0-P22 (Note 3)			5	mA
CL	Output Load	Load JTDO, JTMS			80	pF
	Capacitance	Other than above	15		50	pF
f(XIN)	External Clo	ock Input Frequency	5		10	MHz

Note 1: Subject to conditions VCCE \geq AVCC \geq VREF

Note 2: Make sure the total output current (peak) of ports is

| ports P0 + P1 + P2 | ≤ 80 mA

| ports P3 + P4 + P13 + P15 + P22 | ≤ 80 mA

| ports P6 + P7 + P8 + P9 + P17 | \leq 80 mA

| ports P10 + P11 + P12 | \leq 80 mA

Note 3: The average output current is a value averaged during a 100 ms period.

21.4.2 D.C. Characteristics (when VCCE = 3.3 V \pm 0.3 V, f(XIN) = 10 MHz)

Electrical Characteristics (Referenced to VCCE, VDDE = $3.3 \text{ V} \pm 0.3 \text{ V}$, Ta = -40° C to 85° C Unless Otherwise Noted)

Symbol	Param	eter	Test Condition		Rated Value	е —	Unit
				MIN	TYP	MAX	1
VOH	Output High Voltage		IOH≥-2mA	VCCE+0.5 ×IOH(mA)		VCCE	V
VOL	Output Low Voltage		IOL≤2mA	0		0.225×IOL (mA)	V
VDDE	RAM Retention Powe	r Supply Voltage	When operating	3.0		3.6	V
			During backup	3.0		3.6	V
IIH	High State Input Curr	ent	VI=VCCE	-5		5	μA
IIL	Low State Input Curre	ent	VI=0V	-5		5	μA
ICC	Total Power Supply C	Current (Note 1)	f(XIN)=10.0MHz, When reset			50	mA
			f(XIN)=10.0MHz, When operating		65	90	
IDDEhold	RAM Retention Powe	r Supply Current	Ta=25°C		0.05	1	μA
			Ta=85°C			25	1
VT+-	FP, MOD0, 1, JTMS, J	JTRST, JTDI, RESET#		0.65			V
VT-	Standard input for the RTDCLK, RTDRXD, SC TCLK0–3, TIN0, 3, 16	CLKI0, 1, RXD0–3,		0.5			
	Standard input for the fol	lowing pins: SBI#, HREQ#		0.2			1
	When threshold	0.7VCCE/0.35VCCE		0.45			1
	switching function	0.7VCCE/0.5VCCE		0.2			1
	is used (VT+ / VT–)	0.5VCCE/0.35VCCE		0.15			1

Note 1: Total amount of current when VCCE = VDDE = AVCC = VREF in single-chip mode

Electrical Characteristics of Each Power Supply Pin

Symbol	Parameter	Test Condition	Rated Value			Unit
			MIN	TYP	MAX	
ICCE	VCCE Power Supply Current When Operating	f(XIN)=10.0MHz			90	mA
IDDE	VDDE Power Supply Current When Operating	f(XIN)=10.0MHz			1	mA
IAVCC	AVCC Power Supply Current When Operating	f(XIN)=10.0MHz			2	mA
IVREF	VREF Power Supply Current When Operating	f(XIN)=10.0MHz			1	mA

21.4.3 A-D Conversion Characteristics (when VCCE = 3.3 V \pm 0.3 V, f(XIN) = 10 MHz)

A-D Conversion Characteristics (Referenced to VCCE, VDDE = 3.3 V, Ta = -40° C to 85° C Unless Otherwise Noted)

Symbol		Parar	neter		Test Condition	Ra	ated Valu	е	Unit
						MIN	TYP	MAX	
-	Resolutior	ו			VREF=VCCE=AVCC			10	bits
_	Absolute	Without sample-	Slow mode	Normal speed				±4	LSB
	Accuracy	and-hold or		Double speed				±4	
	(Note 1)	during normal	Fast mode	Normal speed				±6	
		sample-and-hold		Double speed				±6	
		During fast	Slow mode	Normal speed				±4	1
		sample-and		Double speed				±4	
		-hold	Fast mode	Normal speed				±6	1
				Double speed				±16	1
TCONV	Conversion	Without sample-	Slow mode	Normal speed		14.95			μs
	Time	and-hold or		Double speed		8.65			
		during normal	Fast mode	Normal speed		6.55			
		sample-and-hold		Double speed		4.45			1
		During fast	Slow mode	Normal speed		9.55			1
		sample-and		Double speed		5.05			1
		-hold	Fast mode	Normal speed		4.75			1
				Double speed		2.65			1
IIAN	Analog Inp	ut Leakage Curre	nt (Note 2)		AVSS≤ANi≤AVCC	-5		5	μA

Note 1: Absolute accuracy refers to the accuracy of output code relative to the analog input including all error sources (including quantization error) in an A-D converter, and is calculated using the equation below.

Absolute accuracy = output code - (analog input voltage Ani / 1 LSB)

Note 2: This refers to the input leakage current on ANi while the A-D converter remains idle.

21.5 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 8 MHz

21.5.1 Recommended Operating Conditions (when VCCE = $3.3 \text{ V} \pm 0.3 \text{ V} \text{ f}(\text{XIN}) = 8 \text{ MHz}$)

Recommended Operating Conditions (Referenced to VCCE, VDDE = $3.3 \text{ V} \pm 0.3 \text{ V}$, Ta = -40° C to 125° C Unless Otherwise Noted)

Symbol			Parameter			Rated Value	e	Unit
					MIN	TYP	MAX	
VCCE	Main Powe	er Supply (Note	e 1)		3.0	3.3	3.6	V
VDDE	RAM Powe	er Supply (Note	e 1)		3.0	VCCE	3.6	V
AVCC	Analog Po	wer Supply (N	ote 1)		3.0	VCCE	3.6	V
VREF	Reference	Voltage Input	(Note 1)		3.0	VCCE	3.6	V
VIH	Input High Voltage	When threshold	When CMOS input	Threshold selection : 0.35VCCE	0.5VCCE		VCCE	V
		switching function is	is selected	Threshold selection : 0.5VCCE	0.65VCCE		VCCE	V
		used		Threshold selection : 0.7VCCE	0.8VCCE		VCCE	V
			When Schmitt input	VT+/VT- : 0.5VCCE/0.35VCCE	0.65VCCE		VCCE	V
			is selected	VT+/VT- : 0.7VCCE/0.35VCCE	0.8VCCE		VCCE	V
	FP, MOD			VT+/VT- : 0.7VCCE/0.5VCCE	0.8VCCE		VCCE	V
		FP, MOD0, 1,	1, JTMS, JTRST, JTDI, RESET#		0.8VCCE		VCCE	V
		RTDCLK, RT	ut for the follow DRXD, SCLKI0 N0, 3, 16–23, C	, 1, RXD0–3,	0.8VCCE		VCCE	V
				ig pins: DB0–15, WAIT#	0.5VCCE		VCCE	V
		Standard inpu	ut for the followir	ig pins: SBI#, HREQ#	0.65VCCE		VCCE	V
VIL	Input Low Voltage	When threshold	When CMOS input	Threshold selection : 0.35VCCE	0		0.2VCCE	V
		switching function	is selected	Threshold selection : 0.5VCCE	0		0.35VCCE	V
		is used		Threshold selection : 0.7VCCE	0		0.5VCCE	V
			When Schmitt input	VT+/VT- : 0.5VCCE/0.35VCCE	0		0.2VCCE	V
			is selected	VT+/VT- : 0.7VCCE/0.35VCCE	0		0.2VCCE	V
				VT+/VT- : 0.7VCCE/0.5VCCE	0		0.35VCCE	V

ELECTRICAL CHARACTERISTICS 21.5 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 8 MHz

Symbol		Parameter		Rated Value	e	Unit
			MIN	TYP	MAX	
VIL	Input Low	FP, MOD0, 1, JTMS, JTRST, JTDI, RESET#	0		0.2VCCE	V
	Voltage	Standard input for the following pins: RTDCLK, RTDRXD, SCLKI0, 1, RXD0–3, TCLK0–3, TIN0, 3, 16–23, CRX0, 1	0		0.2VCCE	V
		Standard input for the following pins: DB0–15, WAIT#	0		0.2VCCE	V
		Standard input for the following pins: SBI#, HREQ#	0		0.2VCCE	V
IOH(peak)	High State F	Peak Output Current P0-P22 (Note 2)			-10	mA
IOH(avg)	High State A	Average Output Current P0–P22 (Note 3)			-5	mA
IOL(peak)	Low State P	eak Output Current P0-P22 (Note 2)			10	mA
IOL(avg)	Low State A	verage Output Current P0-P22 (Note 3)			5	mA
CL	Output Load	put Load JTDO, JTMS			80	pF
	Capacitance	Other than above	15		50	pF
f(XIN)	External Clo	ck Input Frequency	5		8	MHz

Note 1: Subject to conditions VCCE \geq AVCC \geq VREF

Note 2: Make sure the total output current (peak) of ports is

| ports P0 + P1 + P2 | \leq 80 mA

| ports P3 + P4 + P13 + P15 + P22 | ≤ 80 mA

| ports P6 + P7 + P8 + P9 + P17 | \leq 80 mA

| ports P10 + P11 + P12 | \leq 80 mA

Note 3: The average output current is a value averaged during a 100 ms period.

21.5.2 D.C. Characteristics (when VCCE = 3.3 V \pm 0.3 V, f(XIN) = 8 MHz)

Electrical Characteristics (Referenced to VCCE, VDDE = $3.3 V \pm 0.3 V$, Ta = -40°C to 125°C Unless Otherwise Noted)

Symbol	Param	neter	Test Condition		Rated Value	Э	Unit
				MIN	TYP	MAX	
VOH	Output High Voltage		IOH≥-2mA	VCCE+0.5		VCCE	V
				×IOH(mA)			
VOL	Output Low Voltage		IOL≤2mA	0		0.225×IOL	V
						(mA)	
VDDE	RAM Retention Power	r Supply Voltage	When operating	3.0		3.6	V
			During backup	3.0		3.6	V
IIH	High State Input Curre	ent	VI=VCCE	-5		5	μA
IIL	Low State Input Curre	ent	VI=0V	-5		5	μΑ
ICC	Total Power Supply C	urrent (Note 1)	f(XIN)=8.0MHz,			40	mA
			When reset				
			f(XIN)=8.0MHz,		55	70	
			When operating				
IDDEhold	RAM Retention Powe	r Supply Current	Ta=25C°		0.05	1	μA
			Ta=125C°			100	
VT+-	FP, MOD0, 1, JTMS, J	TRST, JTDI, RESET#		0.65			V
VT-	Standard input for the	e following pins:		0.5			
	RTDCLK, RTDRXD, SC	CLKI0, 1, RXD0–3,					
	TCLK0–3, TIN0, 3, 16	–23, CRX0, 1					
	Standard input for the foll	owing pins: SBI#, HREQ#		0.2			
	When threshold	0.7VCCE/0.35VCCE		0.45			
	switching function	0.7VCCE/0.5VCCE		0.2			
	is used (VT+ / VT–)	0.5VCCE/0.35VCCE		0.15			

Note 1: Total amount of current when VCCE = VDDE = AVCC = VREF in single-chip mode

Electrical Characteristics of Each Power Supply Pin

Symbol	Parameter	Test Condition		Rated Value		Unit
			MIN	TYP	MAX	
ICCE	VCCE Power Supply Current When Operating	f(XIN)=8.0MHz			70	mA
IDDE	VDDE Power Supply Current When Operating	f(XIN)=8.0MHz			1	mA
IAVCC	AVCC Power Supply Current When Operating	f(XIN)=8.0MHz			2	mA
IVREF	VREF Power Supply Current When Operating	f(XIN)=8.0MHz			1	mA

21.5.3 A-D Conversion Characteristics (when VCCE = 3.3 V \pm 0.3 V, f(XIN) = 8 MHz)

A-D Conversion Characteristics (Referenced to VCCE, VDDE = 3.3 V, Ta = -40° C to 125° C Unless Otherwise Noted)

Symbol		Param	eter		Test Condition	Ra	ated Valu	е	Unit
						MIN	TYP	MAX	
_	Resolutior	ו			VREF=VCCE=AVCC			10	bits
_	Absolute	Without sample-	Slow mode	Normal speed				±4	LSB
	Accuracy	and-hold or		Double speed				±4	
	(Note 1)	during normal	Fast mode	Normal speed				±6	
		sample-and-hold		Double speed				±6	
		During fast	Slow mode	Normal speed				±4	
		sample-and		Double speed				±4	1
		-hold	Fast mode	Normal speed				±6	
				Double speed				±16	
TCONV	Conversion	Without sample-	Slow mode	Normal speed		18.6875			μs
	Time	and-hold or		Double speed		10.8125			
		during normal	Fast mode	Normal speed		8.1875]
		sample-and-hold		Double speed		5.5625			
		During fast	Slow mode	Normal speed		11.9375			1
		sample-and		Double speed		6.3125			
		-hold	Fast mode	Normal speed		5.9375			1
				Double speed		3.3125			
IIAN	Analog Inp	ut Leakage Curre	nt (Note 2)		AVSS≤ANi≤AVCC	-5		5	μA

Note 1: Absolute accuracy refers to the accuracy of output code relative to the analog input including all error sources (including quantization error) in an A-D converter, and is calculated using the equation below.

Absolute accuracy = output code - (analog input voltage Ani / 1 LSB)

Note 2: This refers to the input leakage current on ANi while the A-D converter remains idle.

21.6 Flash Memory Related Characteristics

Symbol	Param	eter	Test Condition		Rated Value		Unit
				MIN	TYP	MAX	
Topr	Flash Rewrite Ambient Temperature		T version	-40		85	°C
			V version	-40		125	°C
cycle	Flash Rewrite	Standard product		100			times
	Durability (Note 1)	10000 (10k)	4-Kbyte block (Note 3)	10000			
		times rewritable	(Block 1, 2)	(10k)			times
		product (Note 2)	Other than 4-Kbyte block	1000 (1k)			times
VCCE	VCCE power supply	y voltage	Within the range of recom-	3.0	3.3	3.6	V
	(when reprogramm	iing)	mended power supply voltage	4.5	5.0	5.5	
ICCE	VCCE power supply cu	rrent (when programming)	When using boot program			90	mA
ICCE	VCCE power supply of	current (When erasing)	When using boot program			90	mA

Note 1: The rewrite durability indicates the number of erase times for each block.

Note that more than one write operations (overwrite) on the same address cannot be performed. In that case, erase the old data before writing new.

Note 2: The 10000 (10k) times rewritable product is offered as an optional item. For details about it, please contact your nearest office of Renesas or its distributor. Please note that the standard product will be shipped if not consulted.

Note 3: Block 1: H'0000 2000 to H'0000 2FFF

Block 2: H'0000 3000 to H'0000 3FFF

Note 4: Do not rewrite within the voltage range from 3.6V to 4.5V.

(1) Standard product (Flash rewrite durability: 100 times)

Symbol	Parameter	Test	F	Э	Unit		
			MIN	TYP	MAX		
tPRG	Program time (Note 1)	All blocks	up to 100 times		25	200	μs
TBERS	Block erase time	4-Kbyte block up to 100 times			0.3	6	s
		8-Kbyte block	up to 100 times		0.3	6	s
		32-Kbyte block	up to 100 times		0.5	6	s
		64-Kbyte block	up to 100 times		0.8	6	s

Note 1: It indicates a write time per halfword.

(2) 10000 (10k) times rewritable product (Note 1)

Symbol	Parameter	-	Test Condition	F	Rated Value	Э	Unit
				MIN	TYP	MAX	
tPRG	Program time (Note 2)	All blocks	up to 1000 (1k) times		25	200	μs
		4-Kbyte block	up to 10000 (10k) times			600	μs
TBERS	Block erase time	4-Kbyte block	up to 1000 (1k) times		0.3	6	S
			up to 10000 (10k) times			8	s
		8-Kbyte block	up to 1000 (1k) times		0.3	6	S
		32-Kbyte block	up to 1000 (1k) times		0.5	6	s
		64-Kbyte block	up to 1000 (1k) times		0.8	6	s

Note 1: The 10000 (10k) times rewritable product is offered as an optional item. For details about it, please contact your nearest office of Renesas or its distributor. Please note that the standard product will be shipped if not consulted. Note 2: It indicates a write time per halfword.

21.7 External Capacitance for Power Supply

Symbol	Parameter	Rated Value			Unit
		MIN	TYP	MAX	
EXCVCC	External capacitance connecting pin	1		10	μF
EXCVDD	External capacitance connecting pin for the internal power supply of the built in RAM	1		10	μF
EXCOSC-VCC	External capacitance connecting pin for the internal power supply of the clock	1		10	μF

21.8 A.C. Characteristics (when VCCE = 5 V)

- The timing conditions are referenced to VCCE, VDDE = 5 V \pm 0.5 V, Ta = -40°C to 125°C unless otherwise noted.
- The rated values below are guaranteed for the case where the output load capacitance of the measured pins are 15 pF to 50 pF (for JTAG related values, a concentrated capacitance of 80 pF).

21.8.1 Timing Requirements

(1) Input/output ports

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN MAX			21.8.1
tsu(P-E)	Port Input Setup Time	100		ns	[1]
th(E-P)	Port Input Hold Time	0		ns	[2]

(2) Serial I/O

a) CSIO mode, with internal clock selected

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.8.2
tsu(D-CLK)	RXD Input Setup Time	150		ns	[4]
th(CLK-D)	RXD Input Hold Time	50		ns	[5]

b) CSIO mode, with external clock selected

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.8.2
tc(CLK)	CLK Input Cycle Time	640		ns	[7]
tw(CLKH)	CLK Input High Pulse Width	300		ns	[8]
tw(CLKL)	CLK Input Low Pulse Width	300		ns	[9]
tsu(D-CLK)	RXD Input Setup Time	60		ns	[10]
th(CLK-D)	RXD Input Hold Time	100		ns	[11]

(3) SBI

Symbol	Parameter	Rated	Value	Unit	See Fig.
		MIN MAX			21.8.3
tw(SBIL)	SBI# Input Pulse Width	$5 \times \frac{tc(BCLK)}{2}$		ns	[13]

(4) TIN

Symbol	Parameter	Rated	Value	Unit	See Fig.
		MIN MAX			21.8.5
tw(TIN)	TIN Input Pulse Width	$7 \times \frac{\text{tc(BCLK)}}{2}$		ns	[14]

(5) TCLK

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.8.6
tw(TCLKH)	TCLK Input High Pulse Width	$7 \times \frac{\text{tc(BCLK)}}{2}$		ns	[99]
tw(TCLKL)	TCLK Input Low Pulse Width	$7 \times \frac{\text{tc(BCLK)}}{2}$		ns	[100]

(6) Read and write timing

Symbol	Parameter	Rated	Value	Unit	See Figs. 21.8.7 21.8.8 21.8.8
		MIN	MAX		21.8.9 21.8.10 21.8.11
tsu(D-BCLKH)	Data Input Setup Time before BCLK	26		ns	[31]
th(BCLKH-D)	Data Input Hold Time after BCLK	0		ns	[32]
tsu(WAITL-BCLKH)	WAIT# Input Setup Time before BCLK	26		ns	[33]
th(BCLKH-WAITL)	WAIT# Input Hold Time after BCLK	0		ns	[34]
tsu(WAITH-BCLKH)	WAIT# Input Setup Time before BCLK	26		ns	[78]
th(BCLKH-WAITH)	WAIT# Input Hold Time after BCLK	0		ns	[79]
tw(RDL)	Read Low Pulse Width	$3 \times \frac{tc(BCLK)}{2}$ -23		ns	[43]
tsu(D-RDH)	Data Input Setup Time before Read	30		ns	[44]
th(RDH-D)	Data Input Hold Time after Read	0		ns	[45]
tw(BLWL) tw(BHWL)	Write Low Pulse Width (byte write mode)	<u>tc(BCLK)</u> -25		ns	[51]
td(RDH-BLWL) td(RDH-BHWL)	Write Delay Time after Read	$\frac{\text{tc(BCLK)}}{2}$ -10		ns	[56]
td(BLWH-RDL) td(BHWH-RDL)	Read Delay Time after Write	$\frac{\text{tc(BCLK)}}{2}$ -10		ns	[57]
tw(WRL)	Write Low Pulse Width (byte enable mode)	tc(BCLK) -25		ns	[68]
td(RDH-WRL)	Write Delay Time after Read (byte enable mode)	$\frac{\text{tc}(\text{BCLK})}{2}$ -10		ns	[80]
td(WRH-RDL)	Read Delay Time after Write (byte enable mode)	<u>tc(BCLK)</u> -10		ns	[81]

(7) Bus arbitration timing

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN MAX			21.8.12
tsu(HREQL-BCLKH)	HREQ# Input Setup Time before BCLK	27		ns	[35]
th(BCLKH-HREQL)	HREQ# Input Hold Time after BCLK	0		ns	[36]

(8) Input transition time of JTAG pins

Symbol		Parameter		Rated	Value	Unit	See Fig.
				MIN	MAX		21.8.13
tr	High-going Transition Time	Other than (JTCK, JTD	JTRST pin I, JTMS, JTDO)		10	ns	[58]
	of Input	JTRST pin	When using TAP		10	ns	
			When not using TAP		2	ms	
tf	Low-going Transition Time	Other than (JTCK, JTD	JTRST pin I, JTMS, JTDO)		10	ns	[59]
	of Input	JTRST pin	When using TAP		10	ns	
			When not using TAP		2	ms	

Note: • The rated values here are guaranteed for the case where the measured pin load capacitance CL = 80 pF.

(9) JTAG interface timing

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.8.14
tc(JTCK)	JTCK Input Cycle Time	100		ns	[60]
tw(JTCKH)	JTCK Input High Pulse Width	40		ns	[61]
tw(JTCKL)	JTCK Input Low Pulse Width	40		ns	[62]
tsu(JTDI-JTCK)	JTDI, JTMS Input Setup Time	15		ns	[63]
th(JTCK-JTDI)	JTDI, JTMS Input Hold Time	20		ns	[64]
td(JTCK-JTDOV)	JTDO Output Delay Time after JTCK Fall		40	ns	[65]
td(JTCK-JTDOX)	JTDO Output Hi-Z Delay Time after JTCK Fall		40	ns	[66]
tw(JTRST)	JTRST Input Low Pulse Width	tc(JTCK)		ns	[67]

Note: • The rated values here are guaranteed for the case where the measured pin load capacitance CL = 80 pF.

(10) RTD timing

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.8.15
tc(RTDCLK)	RTDCLK Input Cycle Time	500		ns	[90]
tw(RTDCLKH)	RTDCLK Input High Pulse Width	230		ns	[83]
tw(RTDCLKL)	RTDCLK Input Low Pulse Width	230		ns	[84]
td(RTDCLKH-RTDACK)	RTDACK Delay Time after RTDCLK Input		160	ns	[85]
tv(RTDCLKL-RTDACK)	RTDACK Valid Time after RTDCLK Input		160	ns	[86]
td(RTDCLKH-RTDTXD)	RTDTXD Delay Time after RTDCLK Input		tw(RTDCLKH)+160	ns	[87]
th(RTDCLKH-RTDRXD)	RTDRXD Input Hold Time	50		ns	[88]
tsu(RTDRXD-RTDCLKL)	RTDRXD Input Setup Time	60		ns	[89]

21.8.2 Switching Characteristics

(1) Input/output ports

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.8.1
td(E-P)	Port Data Output Delay Time		100	ns	[3]

(2) Serial I/O

a) CSIO mode, with internal clock selected

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.8.2
td(CLK-D)	TXD Output Delay Time		60	ns	[6]
th(CLK-D)	TXD Hold Time	0		ns	[82]

b) CSIO mode, with external clock selected

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.8.2
td(CLK-D)	TXD Output Delay Time		160	ns	[12]

(3)TO

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.8.4
td(BCLK-TO)	TO Output Delay Time		100	ns	[15]

(4) Read and write timing

Symbol	Parameter	Rated	Value	Unit	See Figs 21.8.7
		MIN	MAX		21.8.8 21.8.9 21.8.10
tc(BCLK)	BCLK Output Cycle Time		<u>tc(Xin)</u> 2	ns	[16]
tw(BCLKH)	BCLK Output High Pulse Width	$\frac{\text{tc(BCLK)}}{2}$ -5		ns	[17]
tw(BCLKL)	BCLK Output Low Pulse Width	$\frac{\text{tc(BCLK)}}{2}$ -5		ns	[18]
td(BCLKH-A)	Address Delay Time after BCLK		24	ns	[19]
td(BCLKH-CS)	Chip Select Delay Time after BCLK		24	ns	[20]
tv(BCLKH-A)	Address Valid Time after BCLK	-11		ns	[21]
tv(BCLKH-CS)	Chip Select Valid Time after BCLK	-11		ns	[22]
td(BCLKL-RDL)	Read Delay Time after BCLK		10	ns	[23]
tv(BCLKH-RDL)	Read Valid Time after BCLK	-12		ns	[24]
td(BCLKL-BLWL) td(BCLKL-BHWL)	Write Delay Time after BCLK		11	ns	[25]
tv(BCLKL-BLWL) tv(BCLKL-BHWL)	Write Valid Time after BCLK	-12		ns	[26]
td(BCLKL-D)	Data Output Delay Time after BCLK		18	ns	[27]
tv(BCLKH-D)	Data Output Valid Time after BCLK	-16		ns	[28]
tpzx(BCLKL-DZ)	Data Output Enable Time after BCLK	-19		ns	[29]
tpxz(BCLKH-DZ)	Data Output Disable Time after BCLK		5	ns	[30]
td(A-RDL)	Address Delay Time before Read	$\frac{\text{tc(BCLK)}}{2}$ -15		ns	[39]
td(CS-RDL)	Chip Select Delay Time before Read	$\frac{\text{tc}(\text{BCLK})}{2}$ -15		ns	[40]
tv(RDH-A)	Address Valid Time after Read	0		ns	[41]
tv(RDH-CS)	Chip Select Valid Time after Read	0		ns	[42]
tpzx(RDH-DZ)	Data Output Enable Time after Read	tc(BCLK) 2		ns	[46]
td(A-BLWL) td(A-BHWL)	Address Delay Time before Write (byte write mode)	tc(<u>BCLK)</u> 2-15		ns	[47]
td(CS-BLWL) td(CS-BHWL)	Chip Select Delay Time before Write (byte write mode)	<u>tc(BCLK)</u> -15		ns	[48]
tv(BLWH-A) tv(BHWH-A)	Address Valid Time after Write (byte write mode)	<u>tc(BCLK)</u> -15		ns	[49]
tv(BLWH-CS) tv(BHWH-CS)	Chip Select Valid Time after Write (byte write mode)	<u>tc(BCLK)</u> -15 2		ns	[50]

Read and write timing (continued from the preceding page)

Symbol	Parameter	Rated	l Value	Unit	See Figs.
		MIN	MAX		21.8.9 21.8.10 21.8.11
td(BLWL-D) td(BHWL-D)	Data Output Delay Time after Write (byte write mode)		15	ns	[52]
tv(BLWH-D) tv(BHWH-D)	Data Output Valid Time after Write (byte write mode)	<u>tc(BCLK)</u> -13		ns	[53]
tpxz(BLWH-DZ) tpxz(BHWH-DZ)	Data Output Disable Time after Write (byte write mode)		$\frac{\text{tc(BCLK)}}{2}$ +5	ns	[54]
td(A-WRL)	Address Delay Time before Write (byte enable mode)	<u>tc(BCLK)</u> -15		ns	[69]
td(CS-WRL)	Chip Select Delay Time before Write (byte enable mode)	$\frac{\text{tc}(\text{BCLK})}{2}$ -15		ns	[70]
tv(WRH-A)	Address Valid Time after Write (byte enable mode)	<u>tc(BCLK)</u> -15		ns	[71]
tv(WRH-CS)	Chip Select Valid Time after Write (byte enable mode)	<u>tc(BCLK)</u> -15		ns	[72]
td(BLE-WRL) td(BHE-WRL)	Byte Enable Delay Time before Write (byte enable mode)	$\frac{\text{tc}(\text{BCLK})}{2}$ -15		ns	[73]
tv(WRH-BLE) tv(WRH-BHE)	Byte Enable Valid Time after Write (byte enable mode)	<u>tc(BCLK)</u> -15		ns	[74]
td(WRL-D)	Data Output Delay Time after Write (byte enable mode)		15	ns	[75]
tv(WRH-D)	Data Output Valid Time after Write (byte enable mode)	$\frac{\text{tc(BCLK)}}{2}$ -13		ns	[76]
tpxz(WRH-DZ)	Data Output Disable Time after Write (byte enable mode)		$\frac{\text{tc}(\text{BCLK})}{2}$ +5	ns	[77]
tw(RDH)	Read High Pulse Width	$\frac{\text{tc}(\text{BCLK})}{2}$ -3		ns	[55]

(5) Bus arbitration

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.8.12
td(BCLKL-HACKL)	HACK# Delay Time after BCLK		29	ns	[37]
tv(BCLKL-HACKL)	HACK# Valid Time after BCLK	-11		ns	[38]

21.8.3 A.C. Characteristics

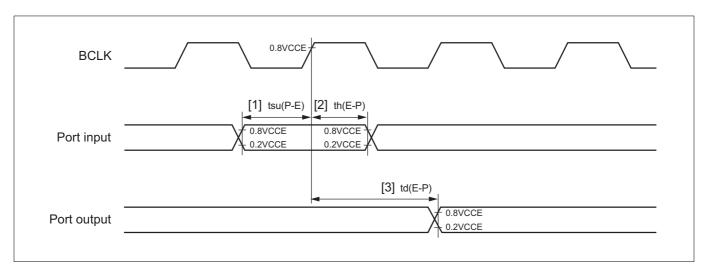


Figure 21.8.1 Input/Output Port Timing

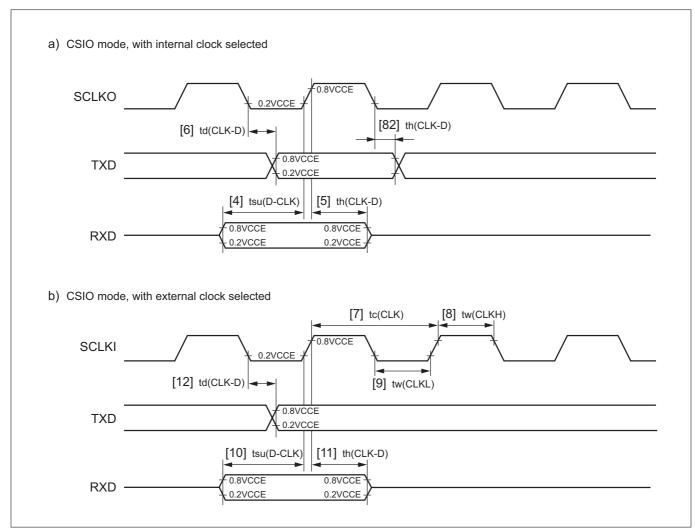
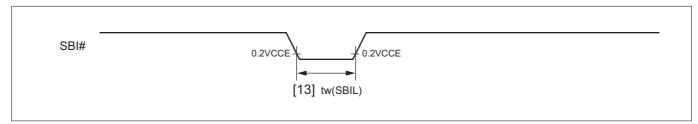
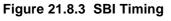
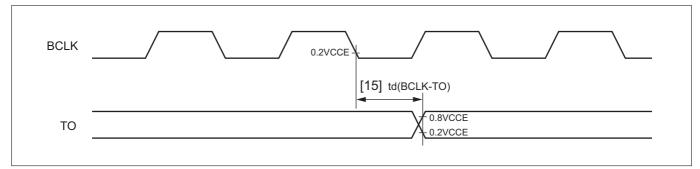
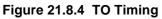






Figure 21.8.2 Serial I/O Timing

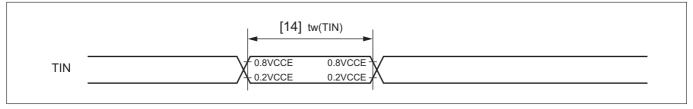


Figure 21.8.5 TIN Timing

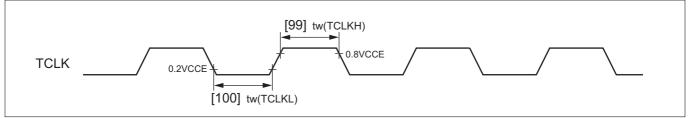


Figure 21.8.6 TCLK Timing

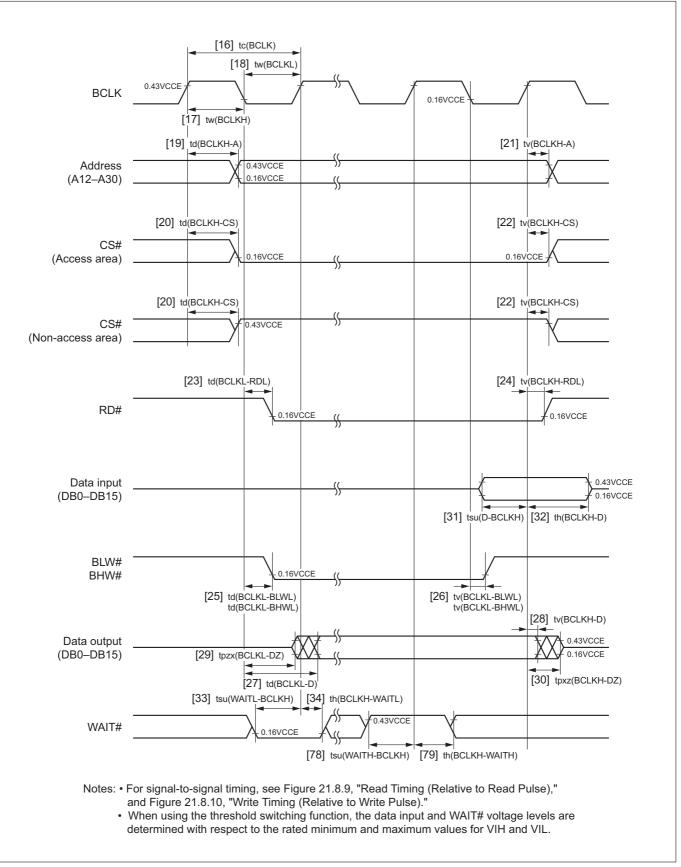


Figure 21.8.7 Read and Write Timing (Relative to BCLK) with One or More External Wait State(s)

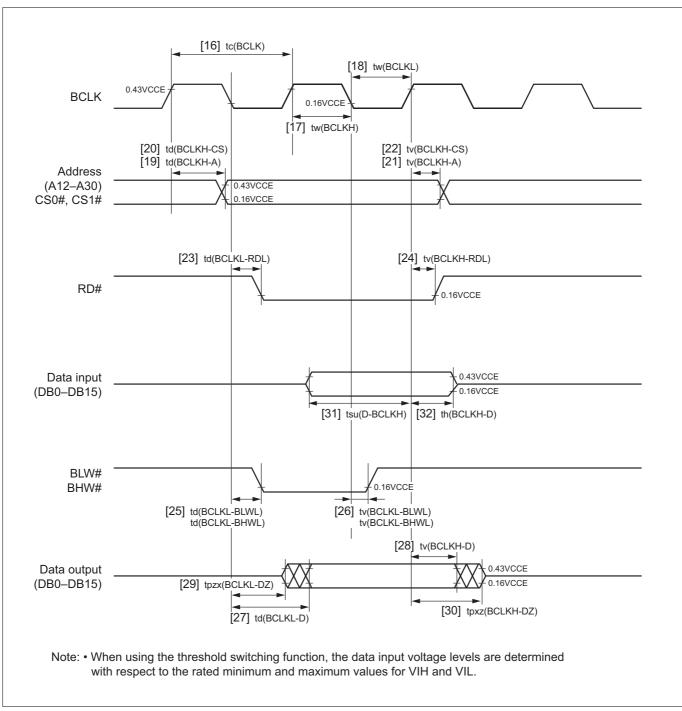


Figure 21.8.8 Read and Write Timing (Relative to BCLK) with One Wait State

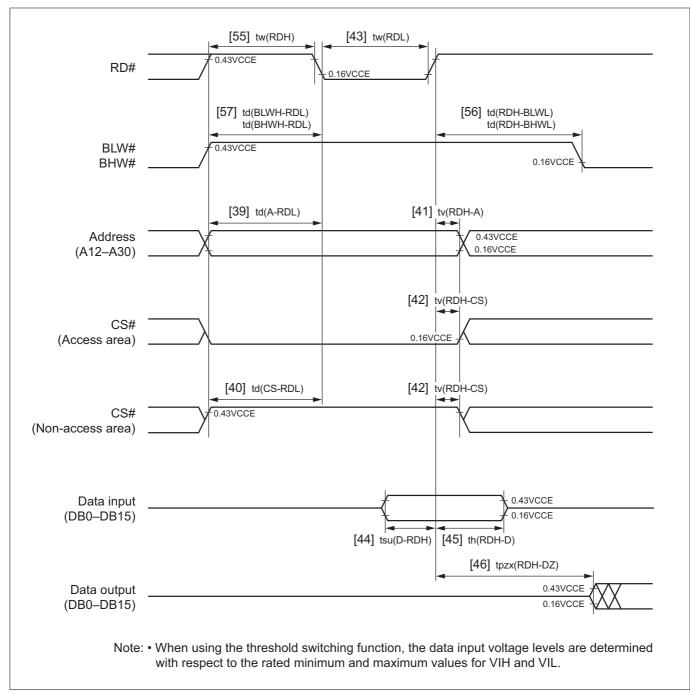


Figure 21.8.9 Read Timing (Relative to Read Pulse)

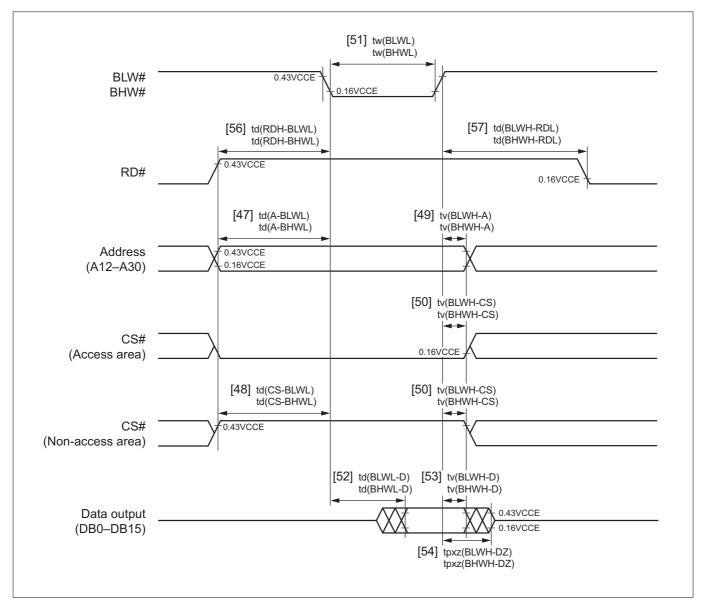


Figure 21.8.10 Write Timing (Relative to Write Pulse)

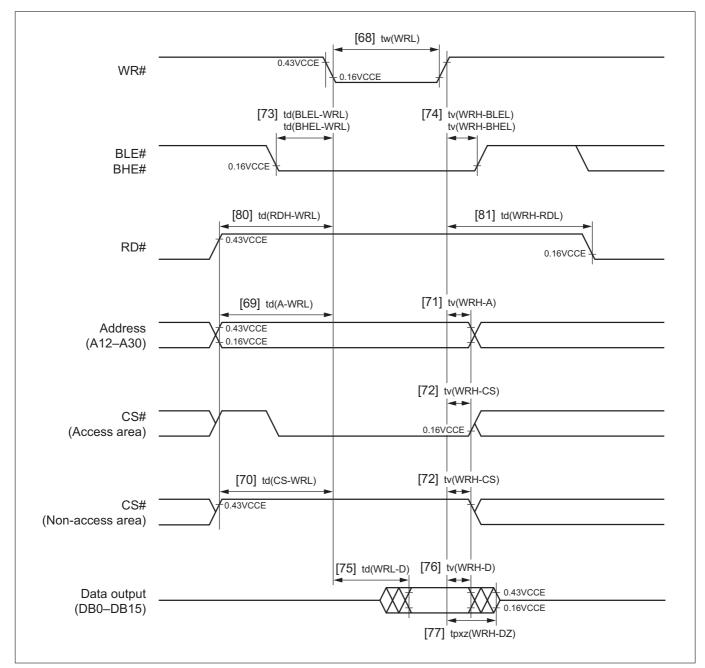


Figure 21.8.11 Write Timing (Byte Enable Mode)

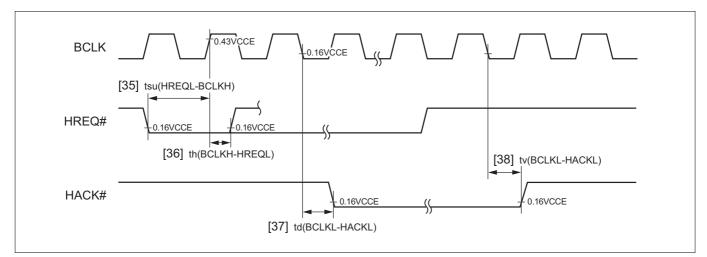
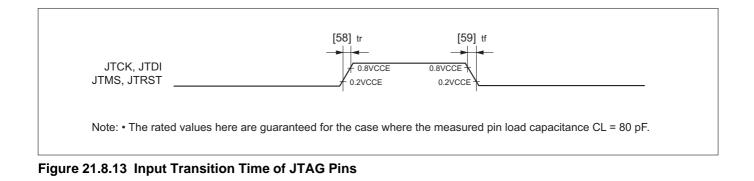



Figure 21.8.12 Bus Arbitration Timing

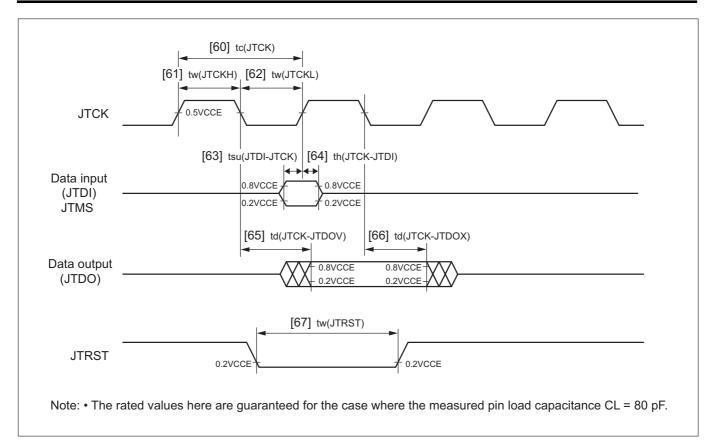


Figure 21.8.14 JTAG Interface Timing

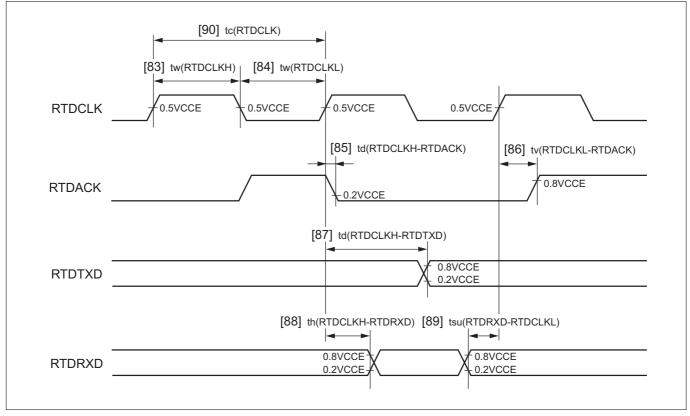


Figure 21.8.15 RTD Timing

21.9 A.C. Characteristics (when VCCE = 3.3 V)

- The timing conditions are referenced to VCCE, VDDE = $3.3V \pm 0.3 V$, Ta = $-40^{\circ}C$ to $125^{\circ}C$ unless otherwise noted.
- The rated values below are guaranteed for the case where the output load capacitance of the measured pins are 15 pF to 50 pF (for JTAG related values, a concentrated capacitance of 80 pF).

21.9.1 Timing Requirements

(1) Input/output ports

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.9.1
tsu(P-E)	Port Input Setup Time	100		ns	[1]
th(E-P)	Port Input Hold Time	0		ns	[2]

(2) Serial I/O

a) CSIO mode, with internal clock selected

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.9.2
tsu(D-CLK)	RXD Input Setup Time	150		ns	[4]
th(CLK-D)	RXD Input Hold Time	50		ns	[5]

b) CSIO mode, with external clock selected

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.9.2
tc(CLK)	CLK Input Cycle Time	640		ns	[7]
tw(CLKH)	CLK Input High Pulse Width	300		ns	[8]
tw(CLKL)	CLK Input Low Pulse Width	300		ns	[9]
tsu(D-CLK)	RXD Input Setup Time	60		ns	[10]
th(CLK-D)	RXD Input Hold Time	100		ns	[11]

(3) SBI

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.9.3
tw(SBIL)	SBI# Input Pulse Width	$5 \times \frac{\text{tc(BCLK)}}{2}$		ns	[13]

(4) TIN

Symbol	Parameter	Rated	Value	Unit	See Fig.
		MIN	MAX		21.9.5
tw(TIN)	TIN Input Pulse Width	$7 \times \frac{\text{tc(BCLK)}}{2}$		ns	[14]

(5) TCLK

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.9.6
tw(TCLKH)	TCLK Input High Pulse Width	$7 \times \frac{\text{tc(BCLK)}}{2}$		ns	[99]
tw(TCLKL)	TCLK Input Low Pulse Width	$7 \times \frac{\text{tc(BCLK)}}{2}$		ns	[100]

(6) Read and write timing

Symbol	Parameter	Rated V	/alue	Unit	See Figs. 21.9.7 21.9.8
		MIN	MAX		21.9.9 21.9.10 21.9.11
tsu(D-BCLKH)	Data Input Setup Time before BCLK	26		ns	[31]
th(BCLKH-D)	Data Input Hold Time after BCLK	0		ns	[32]
tsu(WAITL-BCLKH)	WAIT# Input Setup Time before BCLK	26		ns	[33]
th(BCLKH-WAITL)	WAIT# Input Hold Time after BCLK	0		ns	[34]
tsu(WAITH-BCLKH)	WAIT# Input Setup Time before BCLK	26		ns	[78]
th(BCLKH-WAITH)	WAIT# Input Hold Time after BCLK	0		ns	[79]
tw(RDL)	Read Low Pulse Width	$3x \frac{tc(BCLK)}{2}$ -23		ns	[43]
tsu(D-RDH)	Data Input Setup Time before Read	30		ns	[44]
th(RDH-D)	Data Input Hold Time after Read	0		ns	[45]
tw(BLWL) tw(BHWL)	Write Low Pulse Width (byte write mode)	$\frac{tc(BCLK)}{2}$ -25		ns	[51]
td(RDH-BLWL) td(RDH-BHWL)	Write Delay Time after Read	$\frac{\text{tc(BCLK)}}{2} - 10$		ns	[56]
td(BLWH-RDL) td(BHWH-RDL)	Read Delay Time after Write	$\frac{\text{tc}(\text{BCLK})}{2}$ -10		ns	[57]
tw(WRL)	Write Low Pulse Width (byte enable mode)	tc(BCLK) -25		ns	[68]
td(RDH-WRL)	Write Delay Time after Read (byte enable mode)	$\frac{\text{tc}(\text{BCLK})}{2}$ -10		ns	[80]
td(WRH-RDL)	Read Delay Time after Write (byte enable mode)	<u>tc(BCLK)</u> -10		ns	[81]

(7) Bus arbitration timing

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.9.12
tsu(HREQL-BCLKH)	HREQ# Input Setup Time before BCLK	27		ns	[35]
th(BCLKH-HREQL)	HREQ# Input Hold Time after BCLK	0		ns	[36]

(8) Input transition time of JTAG pins

Symbol		Parameter		Rated	Value	Unit	See Fig.
				MIN	MAX		21.9.13
tr	tr High-going Transition Time		JTRST pin I, JTMS, JTDO)		10	ns	[58]
	of Input	JTRST pin	When using TAP		10	ns	
			When not using TAP		2	ms	
tf	Low-going Transition Time	Other than (JTCK, JTD	JTRST pin I, JTMS, JTDO)		10	ns	[59]
	of Input	JTRST pin	When using TAP		10	ns	
			When not using TAP		2	ms	

Note: • The rated values here are guaranteed for the case where the measured pin load capacitance CL = 80 pF.

(9) JTAG interface timing

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.9.14
tc(JTCK)	JTCK Input Cycle Time	100		ns	[60]
tw(JTCKH)	JTCK Input High Pulse Width	40		ns	[61]
tw(JTCKL)	JTCK Input Low Pulse Width	40		ns	[62]
tsu(JTDI-JTCK)	JTDI, JTMS Input Setup Time	15		ns	[63]
th(JTCK-JTDI)	JTDI, JTMS Input Hold Time	20		ns	[64]
td(JTCK-JTDOV)	JTDO Output Delay Time after JTCK Fall		40	ns	[65]
td(JTCK-JTDOX)	JTDO Output Hi-Z Delay Time after JTCK Fall		40	ns	[66]
tw(JTRST)	JTRST Input Low Pulse Width	tc(JTCK)		ns	[67]

Note: • The rated values here are guaranteed for the case where the measured pin load capacitance CL = 80 pF.

(10) RTD timing

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.9.15
tc(RTDCLK)	RTDCLK Input Cycle Time	500		ns	[90]
tw(RTDCLKH)	RTDCLK Input High Pulse Width	230		ns	[83]
tw(RTDCLKL)	RTDCLK Input Low Pulse Width	230		ns	[84]
td(RTDCLKH-RTDACK)	RTDACK Delay Time after RTDCLK Input		160	ns	[85]
tv(RTDCLKL-RTDACK)	RTDACK Valid Time after RTDCLK Input		160	ns	[86]
td(RTDCLKH-RTDTXD)	RTDTXD Delay Time after RTDCLK Input		tw(RTDCLKH)+160	ns	[87]
th(RTDCLKH-RTDRXD)	RTDRXD Input Hold Time	50		ns	[88]
tsu(RTDRXD-RTDCLKL)	RTDRXD Input Setup Time	60		ns	[89]

21.9.2 Switching Characteristics

(1) Input/output ports

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.9.1
td(E-P)	Port Data Output Delay Time		100	ns	[3]

(2) Serial I/O

a) CSIO mode, with internal clock selected

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.9.2
td(CLK-D)	TXD Output Delay Time		60	ns	[6]
th(CLK-D)	TXD Hold Time	0		ns	[82]

b) CSIO mode, with external clock selected

Symbol	Parameter	Rated	Value	Unit	See Fig.
		MIN	MAX		21.9.2
td(CLK-D)	TXD Output Delay Time		160	ns	[12]

(3)TO

Symbol	Parameter	Rated	Value	Unit	See Fig.
		MIN	MAX		21.9.4
td(BCLK-TO)	TO Output Delay Time		100	ns	[15]

(4) Read and write timing

Symbol	Parameter	Rated	Value	Unit	See Figs. 21.9.7
		MIN	MAX		21.9.8 21.9.9 21.9.10
tc(BCLK)	BCLK Output Cycle Time		2	ns	[16]
tw(BCLKH)	BCLK Output High Pulse Width	$\frac{\text{tc(BCLK)}}{2}$ -5		ns	[17]
tw(BCLKL)	BCLK Output Low Pulse Width	$\frac{\text{tc(BCLK)}}{2}$ -5		ns	[18]
td(BCLKH-A)	Address Delay Time after BCLK		29	ns	[19]
td(BCLKH-CS)	Chip Select Delay Time after BCLK		30	ns	[20]
tv(BCLKH-A)	Address Valid Time after BCLK	-11		ns	[21]
tv(BCLKH-CS)	Chip Select Valid Time after BCLK	-11		ns	[22]
td(BCLKL-RDL)	Read Delay Time after BCLK		14	ns	[23]
tv(BCLKH-RDL)	Read Valid Time after BCLK	-12		ns	[24]
td(BCLKL-BLWL)	Write Delay Time after BCLK		14	ns	[25]
td(BCLKL-BHWL)	-				
tv(BCLKL-BLWL)	Write Valid Time after BCLK	-12		ns	[26]
tv(BCLKL-BHWL)					
td(BCLKL-D)	Data Output Delay Time after BCLK		18	ns	[27]
tv(BCLKH-D)	Data Output Valid Time after BCLK	-16		ns	[28]
tpzx(BCLKL-DZ)	Data Output Enable Time after BCLK	-19		ns	[29]
tpxz(BCLKH-DZ)	Data Output Disable Time after BCLK		5	ns	[30]
td(A-RDL)	Address Delay Time before Read	<u>tc(BCLK)</u> -15		ns	[39]
td(CS-RDL)	Chip Select Delay Time before Read	<u>tc(BCLK)</u> -15		ns	[40]
tv(RDH-A)	Address Valid Time after Read	0		ns	[41]
tv(RDH-CS)	Chip Select Valid Time after Read	0		ns	[42]
tpzx(RDH-DZ)	Data Output Enable Time after Read	tc(BCLK) 2		ns	[46]
td(A-BLWL)	Address Delay Time before Write	<u>tc(BCLK)</u> -15		ns	[47]
td(A-BHWL)	(byte write mode)				
td(CS-BLWL)	Chip Select Delay Time before Write	<u>tc(BCLK)</u> -15		ns	[48]
td(CS-BHWL)	(byte write mode)				
tv(BLWH-A)	Address Valid Time after Write	<u>tc(BCLK)</u> -15		ns	[49]
tv(BHWH-A)	(byte write mode)	£			
tv(BLWH-CS)	Chip Select Valid Time after Write	<u>tc(BCLK)</u> -15		ns	[50]
tv(BHWH-CS)	(byte write mode)				

Read and write timing (continued from the preceding page)

Symbol	Parameter	Rated Value			See Figs.
		MIN	MAX		21.9.9 21.9.10 21.9.11
td(BLWL-D) td(BHWL-D)	Data Output Delay Time after Write (byte write mode)		15	ns	[52]
tv(BLWH-D) tv(BHWH-D)	Data Output Valid Time after Write (byte write mode)	<u>tc(BCLK)</u> -13 2		ns	[53]
tpxz(BLWH-DZ) tpxz(BHWH-DZ)	Data Output Disable Time after Write (byte write mode)		$\frac{\text{tc(BCLK)}}{2}$ +5	ns	[54]
td(A-WRL)	Address Delay Time before Write (byte enable mode)	<u>tc(BCLK)</u> -15 2		ns	[69]
td(CS-WRL)	Chip Select Delay Time before Write (byte enable mode)	<u>tc(BCLK)</u> -15 2		ns	[70]
tv(WRH-A)	Address Valid Time after Write (byte enable mode)	<u>tc(BCLK)</u> -15 2		ns	[71]
tv(WRH-CS)	Chip Select Valid Time after Write (byte enable mode)	<u>tc(BCLK)</u> -15 2		ns	[72]
td(BLE-WRL) td(BHE-WRL)	Byte Enable Delay Time before Write (byte enable mode)	$\frac{\text{tc}(\text{BCLK})}{2}$ -15		ns	[73]
tv(WRH-BLE) tv(WRH-BHE)	Byte Enable Valid Time after Write (byte enable mode)	$\frac{tc(BCLK)}{2} - 15$		ns	[74]
td(WRL-D)	Data Output Delay Time after Write (byte enable mode)		15	ns	[75]
tv(WRH-D)	Data Output Valid Time after Write (byte enable mode)	$\frac{\text{tc}(\text{BCLK})}{2}$ -13		ns	[76]
tpxz(WRH-DZ)	Data Output Disable Time after Write (byte enable mode)		$\frac{\text{tc(BCLK)}}{2}$ +5	ns	[77]
tw(RDH)	Read High Pulse Width	$\frac{\text{tc}(\text{BCLK})}{2}$ -3		ns	[55]

(5) Bus arbitration

Symbol	Parameter	Rated Value		Unit	See Fig.
		MIN	MAX		21.9.12
td(BCLKL-HACKL)	HACK# Delay Time after BCLK		29	ns	[37]
tv(BCLKL-HACKL)	HACK# Valid Time after BCLK	-11		ns	[38]

21.9.3 A.C. Characteristics

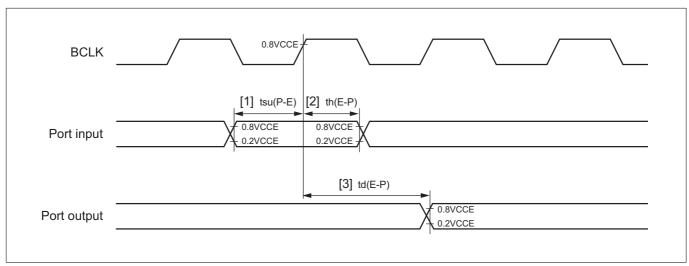
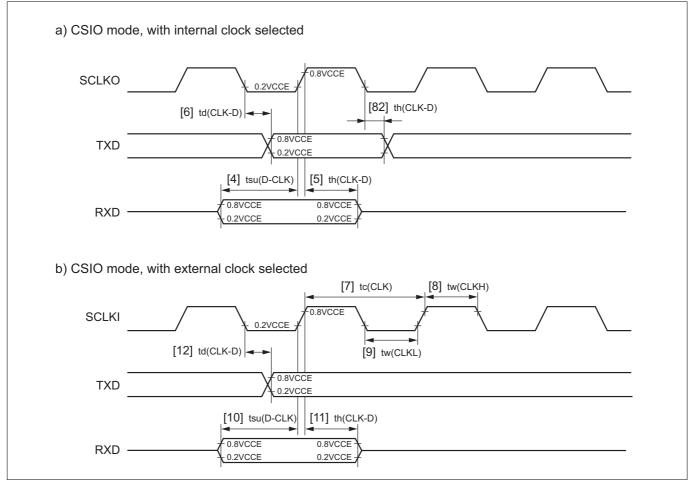
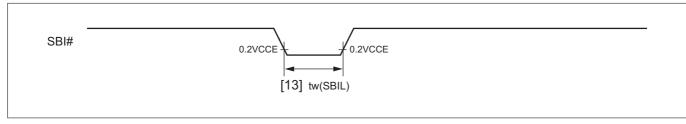
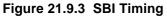
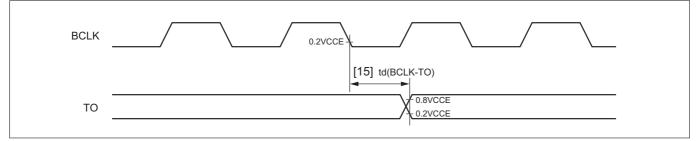


Figure 21.9.1 Input/Output Port Timing


Figure 21.9.2 Serial I/O Timing

ELECTRICAL CHARACTERISTICS

21.9 A.C. Characteristics (when VCCE = 3.3 V)

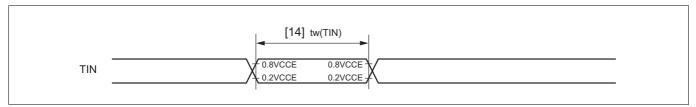


Figure 21.9.5 TIN Timing

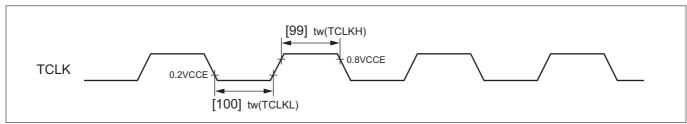


Figure 21.9.6 TCLK Timing

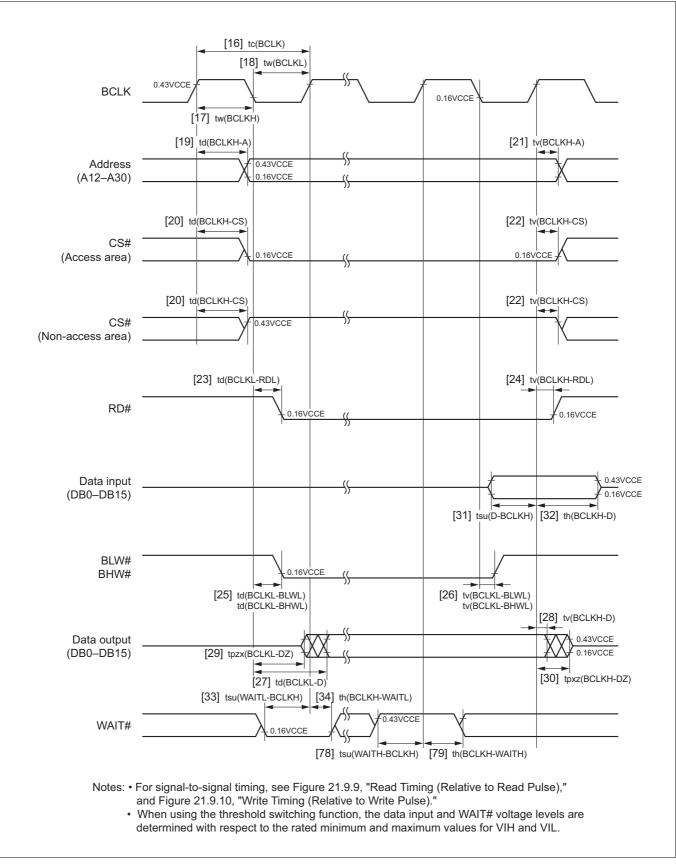


Figure 21.9.7 Read and Write Timing (Relative to BCLK) with One or More External Wait State(s)

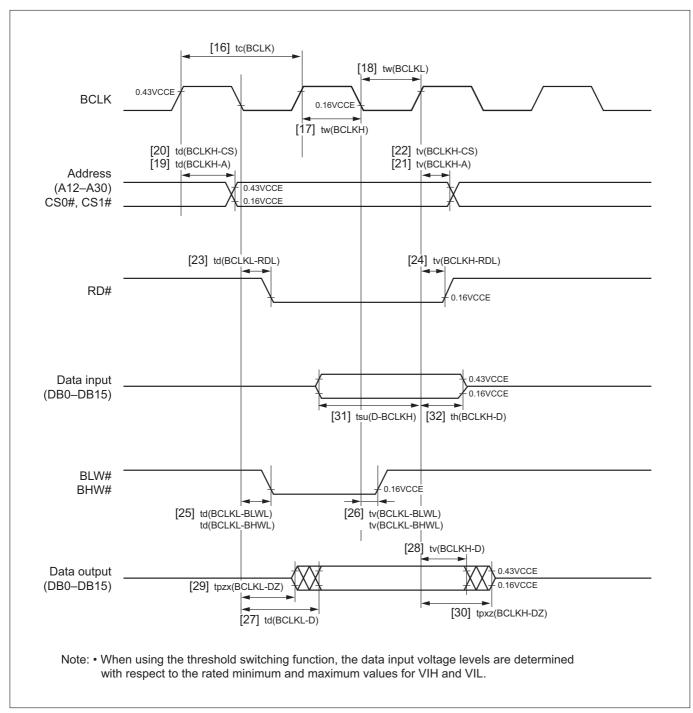


Figure 21.9.8 Read and Write Timing (Relative to BCLK) with One Wait State

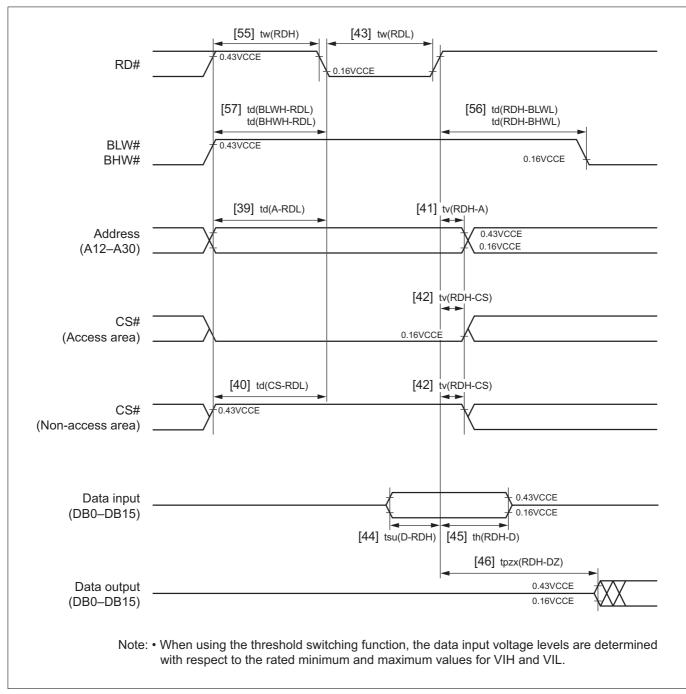


Figure 21.9.9 Read Timing (Relative to Read Pulse)

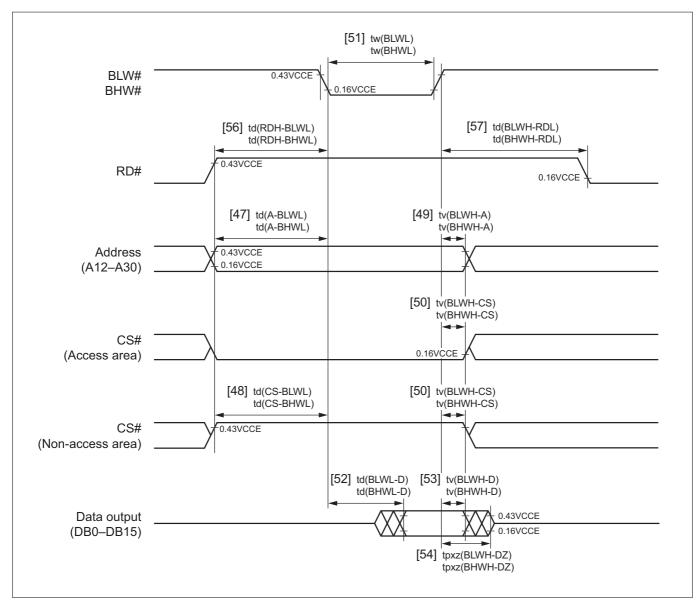


Figure 21.9.10 Write Timing (Relative to Write Pulse)

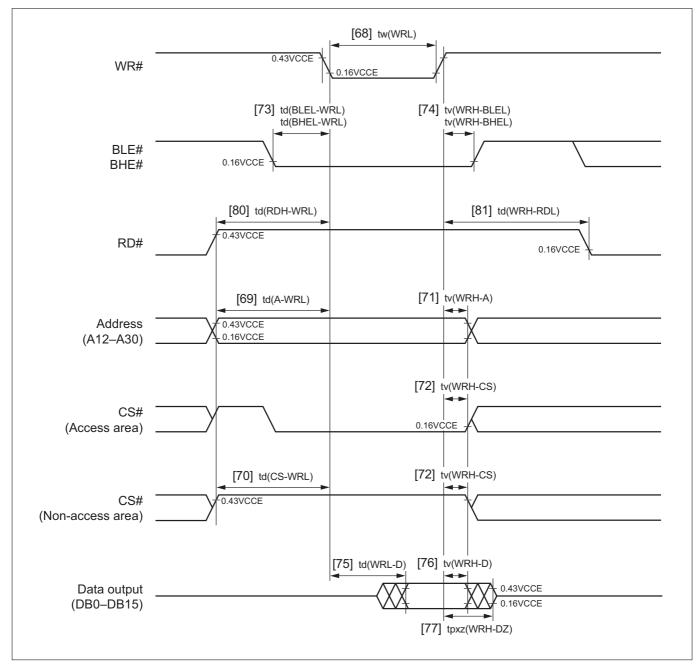


Figure 21.9.11 Write Timing (Byte Enable Mode)

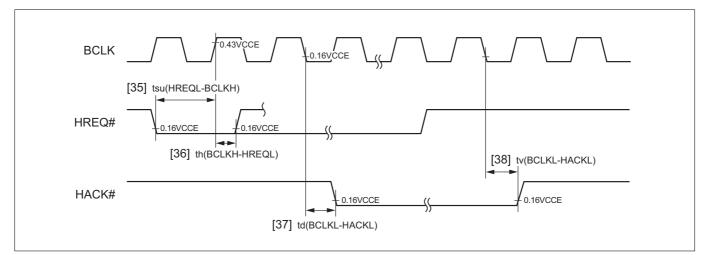
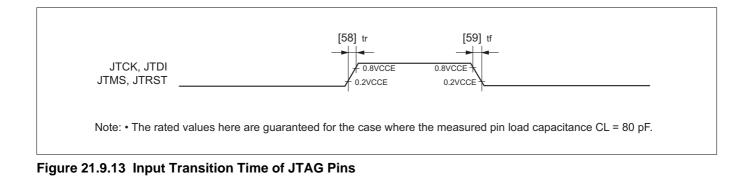



Figure 21.9.12 Bus Arbitration Timing

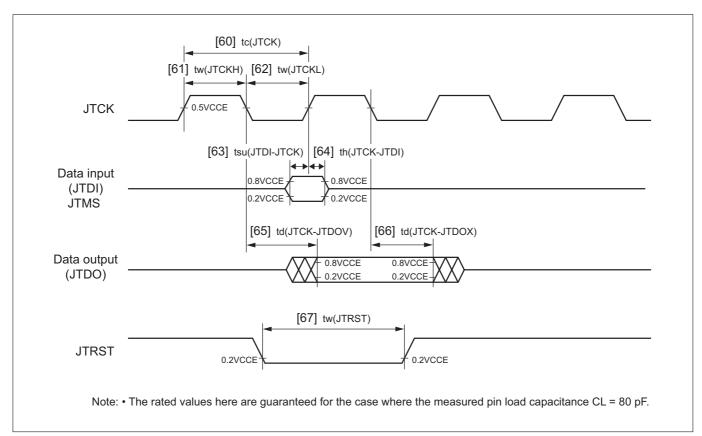


Figure 21.9.14 JTAG Interface Timing

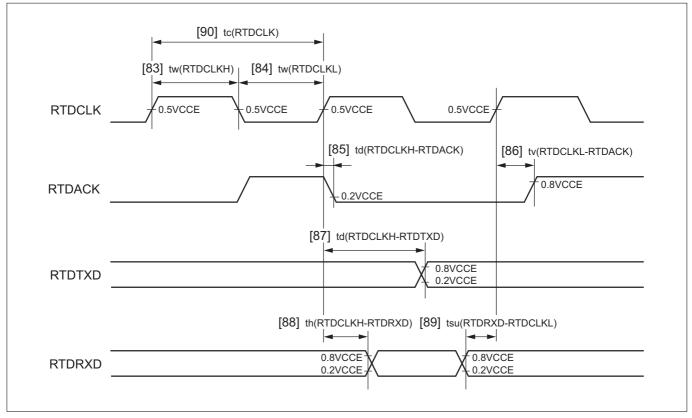


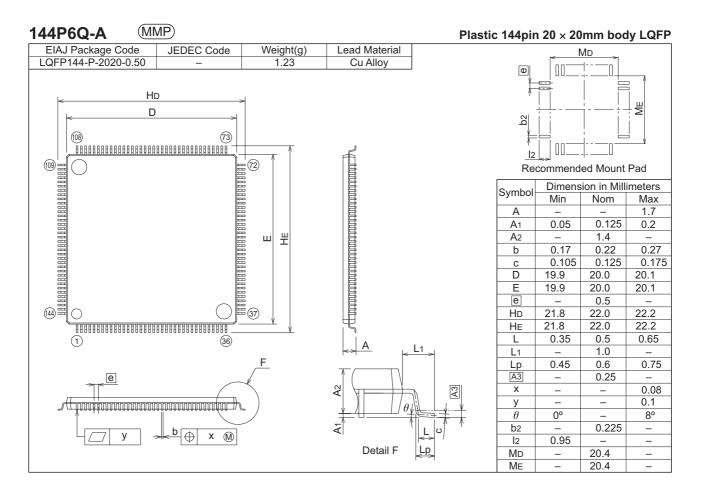
Figure 21.9.15 RTD Timing

This page is blank for reasons of layout.

CHAPTER 22

TYPICAL CHARACTERISTICS

To be written at a later time.


APPENDIX 1

MECHANICAL SPECIFICAITONS

Appendix 1.1 Dimensional Outline Drawing

Appendix 1.1 Dimensional Outline Drawing

(1) 144-pin LQFP

APPENDIX 2

INSTRUCTION PROCESSING TIME

Appendix 2.1 M32R/ECU Instruction Processing Time

Appendix 2.1 M32R/ECU Instruction Processing Time

For microcomputers, the number of instruction execution cycles in the E stage normally represents their instruction processing time. However, depending on pipeline operation, other stages may affect the instruction processing time. Especially when a branch instruction is executed, the processing time in each of the IF (Instruction Fetch), D (Decode) and E (Execution) stages of the next instruction must be taken into account.

The tables below show the instruction processing time in each pipelined stage of the M32R/ECU.

	Number of Execution Cycles in Each Stage				
Instruction	IF	D	Е	MEM	WB
Load instructions (LD, LDB, LDUB, LDH, LDUH, LOCK)	R	1	1	R	1
Store instructions (ST, STB, STH, UNLOCK)	R	1	1	W	_
Multiply instructions (MUL)	R	1	3	_	1
Divide/remainder instructions (DIV, DIVU, REM, REMU)	R	1	37	_	1
Other instructions (including DSP function instructions)	R	1	1	_	1

Appendix Table 2.1.1 Instruction Processing Time in Each Pipelined Stage

The following shows the number of memory access cycles in the IF and MEM stages. Shown here are the minimum number of cycles required for memory access. Therefore, these values do not always reflect the number of cycles actually required for memory or bus access.

In write access, for example, although the CPU finishes the MEM stage by only writing to the write buffer, this operation actually is followed by a write to memory. Depending on the memory or bus state before or after the CPU requests a memory access, the instruction processing may take more time than the calculated value.

R (read cycle)

When existing in the instruction queue	1 CPUCLK cycle
When reading the internal resource (ROM, RAM)	1 CPUCLK cycle
When reading the internal resource (SFR) (byte or halfword)	2 CPUCLK cycles
When reading the internal resource (SFR) (word)	4 CPUCLK cycles
When reading external memory (byte or halfword)	1 CPUCLK + 2 BCLK cycles (Note 1)
When reading external memory (word)	1 CPUCLK + 4 BCLK cycles (Note 1)
When successively fetching instructions from external memory	4 BCLK cycles (Note 1)

W (write cycle)

When writing to the internal resource (RAM)	1 CPUCLK cycle
When writing to the internal resource (SFR) (byte or halfword)	2 CPUCLK cycles
When writing to the internal resource (SFR) (word)	4 CPUCLK cycles
When writing to external memory (byte or halfword)	2 BCLK cycles (Note 1)
When writing to external memory (word)	4 BCLK cycles (Note 1)

Note 1: This applies to the case where external access = one wait cycle. (When the M32R/ECU performs an external access, at least one wait cycle is inserted.) Note: • BCLK and CPUCLK have the relationship 1 BCLK = 2 CPUCLK.

APPENDIX 3

PROCESSING OF UNUSED PINS

Appendix 3.1 Example Processing of Unused Pins

Appendix 3.1 Example Processing of Unused Pins

An example of how to process the unused pins of the microcomputer is shown below.

(1) When operating in single-chip mode

Appendix Table 3.1.1 Example Processing of Unused Pins during Single-Chip Mode (Note 1)

Pin Name	Processing	
Input/output ports (Note 2)		
P00–P07, P10–P17, P20–P27, P30–P37, P41–P47, P61–P63, P70–P77, P82–P87, P93–P97, P100–P107, P110–P117, P124–P127, P130–P137, P150, P153, P174, P175, P220, P221, P225	Set the port for input mode and pull each pin low to VSS or pull high to VCCE via a 1 k Ω –10 k Ω resistor. Or set the port for output mode and leave the pin open.	
SBI# (Note 3)	Pull low to VSS via a 1 k Ω –10 k Ω resistor.	
XOUT (Note 4)	Leave open	
A-D converter		
AD0IN0-AD0IN15, AVREF0, AVSS0	Connect to VSS	
AVCC0	Connect to VCCE	
JTAG		
JTDO, JTMS, JTDI, JTCK	Pull high to VCCE or low to VSS via a 0–100 k Ω resistor	
JTRST	Pull low to VSS via a 0–100 k Ω resistor	

Note 1: Process the unused pins in the shortest wiring length possible (within 20 mm) from the microcomputer pins.

Note 2: If any port is set for output mode and left open, care should be taken because the port remains set for input before it is changed for output in a program after being reset. Therefore, the voltage level at the pin is instable, and the power supply current tends to increase while the port remains set for input. Because it is possible that the content of the port direction register will inadvertently be altered by noise or noise-induced runaway, higher reliability may be obtained by periodically setting the port direction register back again in a program. Note, however, that P221 is input-only port and does not work as an output port.

Note 3: Make sure that unintended falling edges due to noise, etc. will be not applied. (A falling edge at the SBI# input causes a system break interrupt to occur.)

Note 4: This is necessary when an external clock is connected to XIN.

(2) When operating in external extension/processor mode

Appendix Table 3.1.2 Example Processing of Unused Pins during External Extension/Processor Mode (Note 1)

Pin Name	Processing	
Input/output ports (Note 2)		
P61–P63, P70–P77, P82–P87, P93–P97, P100–P107, P110–P117, P124–P127, P130–P137, P150, P153, P174, P175, P220, P221	Set the port for input mode and pull each pin low to VSS or pull high to VCCE via a 1 k Ω -10 k Ω resistor. Or set the port for output mode and leave the pin open.	
A12–A30, DB0–DB15, BLW#/BLE#, BHW#/BHE#, RD#, CS#0, CS#1	Leave open	
SBI# (Note 3)	Pull low to VSS via a 1 k Ω –10 k Ω resistor	
XOUT (Note 4)	Leave open	
A-D converter		
AD0IN0-AD0IN15, AVREF0, AVSS0	Connect to VSS	
AVCC0	Connect to VCCE	
JTAG		
JTDO, JTMS, JTDI, JTCK	Pull high to VCCE or low to VSS via a $0k\Omega$ –100 $k\Omega$ resistor	
JTRST	Pull low to VSS via a 0–100 k Ω resistor	

Note 1: Process the unused pins in the shortest wiring length possible (within 20 mm) from the microcomputer pins.

Note 2: If any port is set for output mode and left open, care should be taken because the port remains set for input before it is changed for output in a program after being reset. Therefore, the voltage level at the pin is instable, and the power supply current tends to increase while the port remains set for input. Because it is possible that the content of the port direction register will inadvertently be altered by noise or noise-induced runaway, higher reliability may be obtained by periodically setting the port direction register back again in a program. Note, however, that P221 is input-only port and does not work as an output port.

Note 3: Make sure that unintended falling edges due to noise, etc. will be not applied. (A falling edge at the SBI# input causes a system break interrupt to occur.)

Note 4: This is necessary when an external clock is connected to XIN.

This page is blank for reasons of layout.

APPENDIX 4

SUMMARY OF PRECAUTIONS

Appendix 4.1	Precautions about the CPU
Appendix 4.2	Precautions about the Address Space
Appendix 4.3	Precautions about EIT
Appendix 4.4	Precautions To Be Observed when
	Programming Internal Flash Memory
Appendix 4.5	Precautions to Be Observed after
	Exiting Reset
Appendix 4.6	Precautions about Input/Output Ports
Appendix 4.7	Precautions about the DMAC
Appendix 4.8	Precautions about the Multijunction
	Timers
Appendix 4.9	Precautions about the A-D Converter
Appendix 4.10	Precautions about Serial I/O
Appendix 4.11	Precautions about CAN Module
Appendix 4.12	Precautions about RAM Backup Mode
Appendix 4.13	Precautions about JTAG
Appendix 4.14	Precautions about Noise

Appendix 4.1 Precautions about the CPU

• Precautions Regarding Data Transfer

When transferring data, be aware that data arrangements in registers and memory are different.

Data in registers	Data in memory
• Word data (32 bits) (R0–R15) HH HL LH LL b0 b31	+0 +1 +2 +3 HH HL LH LL b0 b31
• Halfword data (16 bits) (R0–R15) L H L b0 b31	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(R0–R15) H_L b0 b31	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
• Byte data (8 bits)	
(R0–R15)	+0 +1 +2 +3 b0 b7
(R0–R15)	+0 +1 +2 +3 b8 b15
(R0–R15)	+0 +1 +2 +3 b16 b23
(R0–R15) b0 b31	+0 +1 +2 +3 b24 b31

Appendix Figure 4.1.1 Difference in Data Arrangements

Appendix 4.2 Precautions about the Address Space

Virtual flash emulation function

The microcomputer has the function to map up to two 8-kbyte memory blocks of the internal RAM into areas of the internal flash memory (L banks) that are divided in 8-kbyte units, as well as to map up to two 4-kbyte memory blocks of the internal RAM into areas of the internal flash memory (S banks) that are divided in 4-kbyte units. This function is referred to as the virtual flash emulation function. For details about this function, refer to Section 6.6, "Virtual Flash Emulation Function."

Appendix 4.3 Precautions about EIT

The Address Exception (AE) requires caution because if one of the instructions that use "register indirect + register update" addressing mode (following three) generates an address exception when it is executed, the values of the registers to be automatically updated (Rsrc and Rsrc2) become undefined.

Except that the values of Rsrc and Rsrc2 become undefined, these instructions behave the same way as when used in other addressing modes.

Applicable instructions

- LD Rdest, @Rsrc+
- ST Rsrc1, @-Rsrc2
- ST Rsrc1, @+Rsrc2

If the above case applies, consider the fact that the register values become undefined when you design the processing to be performed after executing said instructions. (If an address exception occurs, it means that the system has some fatal fault already existing in it. Therefore, address exceptions must be used on condition that control will not be returned from the address exception handler to the program that was being executed when the exception occurred.)

Appendix 4.4 Precautions To Be Observed when Programming Internal Flash Memory

The following describes precautions to be taken when programming/erasing the internal flash memory.

- When the internal flash memory is programmed or erased, a high voltage is generated internally. Because mode transitions during programming/erase operation may cause the chip to break down, make sure the mode setting pin/power supply voltages do not fluctuate to prevent unintended changes of modes.
- If the system uses any pins that are to be used by a general-purpose programming/erase tool, care must be taken to prevent adverse effects on the system when the tool is connected.
- If the internal flash memory needs to be protected while using a general-purpose programming/erase tool, set any ID in the flash memory protect ID verification area (H'0000 0084 to H'0000 0093).
- If the internal flash memory does not need to be protected while using a general-purpose programming/erase tool, fill the entire flash memory protect ID verification area (H'0000 0084 to H'0000 0093) with H'FF.
- If the Flash Status Register (FSTAT)'s each error status is to be cleared (initialized to H'80) by resetting the Flash Control Register 4 (FCNT4) FRESET bit, check to see that the Flash Status Register (FSTAT) FBUSY bit = "1" (ready) before clearing the error status.
- Before resetting the Flash Control Register 1 (FCNT1) FENTRY bit from "1" to "0", check to see that the Flash Status Register (FSTAT) FBUSY bit = "1" (ready).

- Do not clear the FENTRY bit if the Flash Control Register 1 (FCNT1) FENTRY bit = "1" and the Flash Status Register (FSTAT) FBUSY bit = "0" (being programmed or erased).
- When programming/erasing via JTAG, the flash memory can be programmed or erased regardless of the pin state because the FP pin is controlled internally within the chip.Appendix 4.5 Precautions To Be Observed after Reset

Appendix 4.5 Precautions To Be Observed after Exiting Reset

Input/output ports

After exiting the reset state, the microcomputer's input/output ports are disabled against input in order to prevent current from flowing through the port. To use any ports in input mode, set the Port Input Special Function Control Register (PICNT) PIEN0 bit to enable them for input. For details, see Section 8.3, "Input/Output Port Related Registers."

Appendix 4.6 Precautions about Input/Output Ports

• When using input/output ports in output mode

Because the value of the Port Data Register is undefined when exiting the reset state, the Port Data Register must have its initial value set in it before the Port Direction Register can be set for output. Conversely, if the Port Direction Register is set for output before setting data in the Port Data Register, the Port Data Register outputs an undefined value until any data is written into it.

About the port input disable function

Because the input/output ports are disabled against input after reset, they must be enabled for input by setting the Port Input Enable (PIEN0) bit to "1" before their input functions can be used.

When disabled against input, the input/output ports are in a state equivalent to a situation where the pin has a lowlevel input applied. Consequently, if a peripheral input function is selected for any port while disabled against input by using the Port Operation Mode Register, the port may operate unexpectedly due to the low-level input on it.

Appendix 4.7 Precautions about the DMAC

• About writing to the DMAC related registers

Because DMA transfer involves exchanging data via the internal bus, the DMAC related registers basically can only be accessed for write immediately after reset or when transfer is disabled (transfer enable bit = "0"). When transfer is enabled, do not write to the DMAC related registers, except the DMA transfer enable bit, the transfer request flag and the DMA Transfer Count Register that is protected in hardware. This is a precaution necessary to ensure stable DMA operation.

The table below lists the registers that can or cannot be accessed for write.

Appendix Table 4.7.1 DMAC Related Registers That Can or Cannot Be Accessed for Write

Status	Transfer enable bit	Transfer request flag	Other DMAC related registers
Transfer enabled	Can be accessed	Can be accessed	Cannot be accessed
Transfer disabled	Can be accessed	Can be accessed	Can be accessed

Even for registers that can exceptionally be written to while transfer is enabled, the following conditions must be observed:

(1) DMA Channel Control Register 0 transfer enable bit and transfer request flag

For all other bits in this register, be sure to write the same data that those bits had before the write. Note, however, that only writing "0" is effective for the transfer request flag.

(2) DMA Transfer Count Register

When transfer is enabled, this register is protected in hardware, so that any data rewritten to it is ignored.

(3) Rewriting the DMA source and DMA destination addresses on different channels by DMA transfer

Although this operation means accessing the DMAC related registers while DMA is enabled, there is no problem. Note, however, that no data can be transferred by DMA to the DMAC related registers on the currently active channel itself.

Manipulating the DMAC related registers by DMA transfer

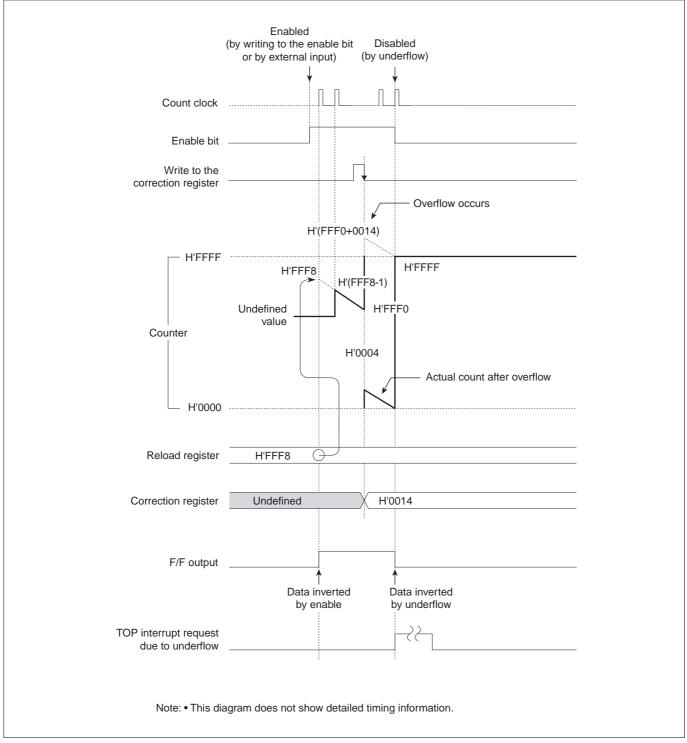
When manipulating the DMAC related registers by means of DMA transfer (e.g., reloading the DMAC related registers with the initial values by DMA transfer), do not write to the DMAC related registers on the currently active channel through that channel. (If this precaution is neglected, device operation cannot be guaranteed.) It is only the DMAC related registers on other channels that can be rewritten by means of DMA transfer. (For example, the DMAN Source Address and DMAN Destination Address Registers on channel 1 can be rewritten by DMA transfer through channel 0.)

About the DMA Interrupt Request Status Register

When clearing the DMA Interrupt Request Status Register, be sure to write "1" to all bits, except those to be cleared. Writing "1" to any bits in this register has no effect, so that they retain the data they had before the write.

About the stable operation of DMA transfer

To ensure the stable operation of DMA transfer, never rewrite the DMAC related registers, except the channel control register's transfer enable bit, unless transfer is disabled. One exception is that even when transfer is enabled, the DMA Source Address and DMA Destination Address Registers can be rewritten by DMA transfer from one channel to another.

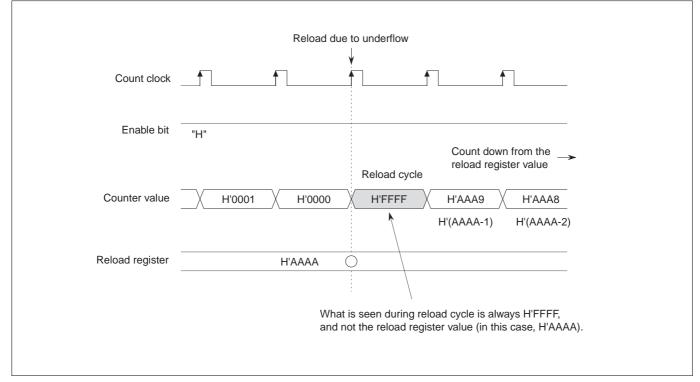

Appendix 4.8 Precautions about the Multijunction Timers

Appendix 4.8.1 Precautions on using TOP single-shot output mode

The following describes precautions to be observed when using TOP single-shot output mode.

- If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops.
- If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled.
- If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled.
- Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before starting F/F operation after the timer is enabled.
- When writing to the correction register, be careful not to cause the counter to overflow. Even if the counter overflows due to correction of counts, no interrupt requests are generated for reasons of an overflow. Therefore, if the counter underflows in the subsequent down-count after an overflow, a false interrupt request is generated for an underflow that includes the overflowed count.

In the example below, the reload register is initially set to H'FFF8. When the timer starts, the reload register value is loaded into the counter, letting it start counting down. In the diagram below, the value H'0014 is written to the correction register when the counter has counted down to H'FFF0. As a result of this correction, the count overflows to H'0004 and the counter fails to count correctly. Also, an interrupt request is generated for an erroneous overflowed count.



SUMMARY OF PRECAUTIONS Appendix 4.8 Precautions about the Multijunction Timers

Appendix 4.8.2 Precautions on using TOP delayed single-shot output mode

The following describes precautions to be observed when using TOP delayed single-shot output mode.

- If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops.
- If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled.
- If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled.
- Even if the counter overflows due to correction of counts, no interrupt requests are generated for reasons of an overflow. Therefore, if the counter underflows in the subsequent down-count after an overflow, a false interrupt request is generated for an underflow that includes the overflowed count.
- If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value 1) at the next clock edge.

Appendix Figure 4.8.2 Counter Value Immediately after Underflow

Appendix 4.8.3 Precautions on using TOP continuous output mode

Appendix 4

The following describes precautions to be observed when using TOP continuous output mode.

- If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled.
- If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value 1) at the next clock edge.
- Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled.

Appendix 4.8.4 Precautions on using TIO measure free-run/clear input modes

The following describes precautions to be observed when using TIO measure free-run/clear input modes.

• If measure event input and write to the counter occur in the same clock period, the write value is set in the counter while at the same time latched into the measure register.

Appendix 4.8.5 Precautions on using TIO PWM output mode

The following describes precautions to be observed when using TIO PWM output mode.

- If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled.
- If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value 1) at the next clock edge.
- Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled.

Appendix 4.8.6 Precautions on using TIO single-shot output mode

The following describes precautions to be observed when using TIO single-shot output mode.

- If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops.
- If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled.
- If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled.
- Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled.

SUMMARY OF PRECAUTIONS Appendix 4.8 Precautions about the Multijunction Timers

Appendix 4.8.7 Precautions on using TIO delayed single-shot output mode

Appendix 4

The following describes precautions to be observed when using TIO delayed single-shot output mode.

- If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops.
- If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled.
- If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled.
- If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value 1) at the next clock edge.

Appendix 4.8.8 Precautions on using TIO continuous output mode

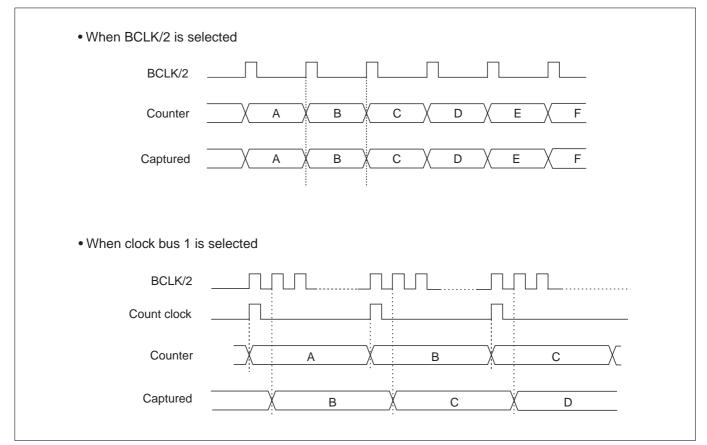
The following describes precautions to be observed when using TIO continuous output mode.

- If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled.
- If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value 1) at the next clock edge.
- Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled.

Appendix 4.8.9 Precautions on using TMS measure input

The following describes precautions to be observed when using TMS measure input.

• If measure event input and write to the counter occur in the same clock period, the write value is set in the counter while at the same time latched into the measure register.


Appendix 4.8.10 Precautions on using TML measure input

Appendix 4

The following describes precautions to be observed when using TML measure input.

- If measure event input and write to the counter occur in the same clock period, the write value is set in the counter, whereas the up-count value (before being rewritten) is latched into the measure register.
- If clock bus 1 is selected and any clock other than BCLK/2 is used for the timer, the counter cannot be written normally. Therefore, when using any clock other than BCLK/2, do not write to the counter.
- If clock bus 1 is selected and any clock other than BCLK/2 is used for the timer, the value captured into the measure register is one count larger the counter value. During the count clock to BCLK/2 period interval, how ever, the captured value is exactly the counter value.

The diagram below shows the relationship between counter operation and the valid data that can be captured.

Appendix Figure 4.8.3 Mistimed Counter Value and the Captured Value

Appendix 4.9 Precautions about the A-D Converter

• Forcible termination during scan operation

If A-D conversion is forcibly terminated by setting the A-D conversion stop bit (AD0CSTP) to "1" during scan mode operation and the A-D data register for the channel that was in the middle of conversion is accessed for read, the read value shows the last conversion result that had been transferred to the data register before the conversion was forcibly terminated.

• Modification of the A-D converter related registers

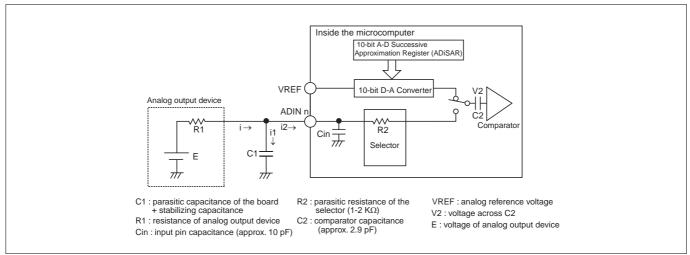
If the content of any register—A-D Conversion Interrupt Control Register, Single or Scan Mode Registers or A-D Successive Approximation Register, except the A-D conversion stop bit—is modified in the middle of A-D conversion, the conversion result cannot be guaranteed. Therefore, do not modify the contents of these registers while A-D conversion is in progress, or be sure to restart A-D conversion if register contents have been modified.

• Handling of analog input signals

When using the A-D Converter with its sample-and-hold function disabled, make sure the analog input level is fixed during A-D conversion.

A-D conversion completed bit read timing

To read the A-D conversion completed bit (Single Mode Register 0 bit 5 or Scan Mode Register 0 bit 5) immediately after A-D conversion has started, be sure to adjust the timing 2 BCLK periods by, for example, inserting a NOP instruction before read.


• Regarding the analog input pins

Appendix Figure 4.9.1 shows the internal equivalent circuit of the A-D Converter's analog input part. To obtain accurate A-D conversion results, make sure the internal capacitor C2 of the A-D conversion circuit is charged up within a predetermined time (sampling time). To meet this sampling time requirement, it is recommended that a stabilizing capacitor C1 be connected external to the chip.

The method for determining the necessary value of this external stabilizing capacitor with respect to the output impedance of an analog output device is described below. Also, an explanation is made of the case where the output impedance of an analog output device is low and the external stabilizing capacitor C1 is unnecessary.

• Rated value of the absolute accuracy

The rated value of the absolute accuracy is the actual performance value of the microcomputer alone, with influences of the power supply wiring and noise on the board not taken into account. When designing the application system, use caution for the board layout by, for example, separating the analog circuit power supply and ground (AVCC0, AVSS0 and VREF0) from those of the digital circuit and incorporating measures to prevent the analog input pins from being affected by noise, etc. from other digital signals.

Appendix Figure 4.9.1 Internal Equivalent Circuit of the Analog Input Part

(a) Example for calculating the external stabilizing capacitor C1 (addition of this capacitor is recommended)

Assuming the R1 in Appendix Figure 4.9.1 is infinitely large and that the current necessary to charge the internal capacitor C2 is supplied from C1, if the potential fluctuation, Vp, caused by capacitance division of C1 and C2 is to be within 0.1 LSB, then what amount of capacitance C1 should have. For a 10-bit A-D Converter where VREF is 5.12 V, 1 LSB determination voltage = 5.12 V / 1,024 = 5 mV. The potential fluctuation of 0.1 LSB means a 0.5 mV fluctuation.

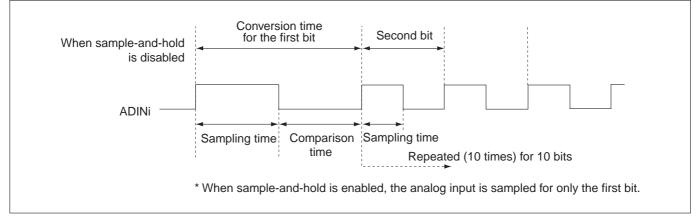
The relationship between the capacitance division of C1 and C2 and the potential fluctuation, Vp, is obtained by the equation below:

$$Vp = \frac{C2}{C1 + C2} \times (E - V2)$$
 Eq. A-1

Vp is also obtained by the equation below:

$$Vp = Vp1 \times \sum_{i=0}^{x-1} \frac{1}{2^{i}} < \frac{VREF}{10 \times 2^{x}}$$
where $Vp1 = potential fluctuation in the first A-D conversion performedand x = 10 for a 10-bit resolution A-D converter$

When Eq. A-1 and Eq. A-2 are solved, the following results:


C1 = C2 {
$$\frac{E - V2}{Vp1} - 1$$
 } Eq. A-3
 \therefore C1 > C2 {10 × 2[×] × $\sum_{i=0}^{x-1} \frac{1}{2^{i}} - 1$ } Eq. A-4

Thus, for a 10-bit resolution A-D Converter where C2 = 2.9 pF, C1 is 0.06 μ F or more. Use this value for reference when setting up C1.

(b) Maximum value of the output impedance R1 when C1 is not added

If the external capacitor C1 in Appendix Figure 4.9.1 is not used, examination must be made to see if the analog output device can fully charge C2 within a predetermined time. First, the equation to find i2 when C1 in Appendix Figure 4.9.1 does not exist is shown below.

$$i2 = \frac{C2(E - V2)}{Cin \times R1 + C2(R1 + R2)} \times exp = \frac{\{-t\}}{Cin \times R1 + C2(R1 + R2)}$$
------ Eq. B-1

Appendix Figure 4.9.2 A-D Conversion Timing Diagram

Appendix Figure 4.9.2 shows an A-D conversion timing diagram. C2 must be charged up within the sampling time shown in this diagram. When the sample-and-hold function is disabled, the sampling time for the second and subsequent bits is about half that of the first bit.

The sampling times at the respective conversion speeds are listed in the Appendix Table 4.9.1. Note that when the sample-and-hold function is enabled, the analog input is sampled for only the first bit.

Appendix 4

SUMMARY OF PRECAUTIONS Appendix 4.9 Precautions about the A-D Converter

Conversion start method	hod Conversion speed		Sampling time for the first bit	Sampling time for the second and subsequent bits
Single mode	Slow mode	Normal speed	27.5BCLK	13.5BCLK
(when sample-and		Double speed	15.5BCLK	7.5BCLK
-hold disabled)	Fast mode	Normal speed	11.5BCLK	5.5BCLK
		Double speed	7.5BCLK	3.5BCLK
Single mode	Slow mode	Normal speed	27.5BCLK	_
(when sample-and		Double speed	15.5BCLK	_
-hold enabled)	Fast mode	Normal speed	11.5BCLK	_
		Double speed	7.5BCLK	_
Comparator mode	Slow mode	Normal speed	27.5BCLK	_
		Double speed	15.5BCLK	_
	Fast mode	Normal speed	11.5BCLK	_
		Double speed	7.5BCLK	_

Appendix Table 4.9.1 Sampling Time (in Which C2 Needs to Be Charged)

Therefore, the time in which C2 needs to be charged is found from Eq. B-1, as follows:

Sampling time (in which C2 needs to be charged) > $Cin \times R1 + C2(R1 + R2) - Eq. B2$

Thus, the maximum value of R1 can be obtained as a criterion from the equation below. Note, however, that for single mode (when sample-and-hold is disabled), the sampling time for the second and subsequent bits (C2 charging time) must be applied.

 $R1 < \frac{C2 \text{ charging time - } C2 \times R2}{Cin + C2}$

Appendix 4.10 Precautions about Serial I/O

Appendix 4.10.1 Precautions on Using CSIO Mode

• Settings of SIO Transmit/Receive Mode Register and SIO Baud Rate Register

The SIO Transmit/Receive Mode Register and SIO Baud Rate Register and the Transmit Control Register's BRG count source select bit must always be set when the serial I/O is not operating. If a transmit or receive operation is in progress, wait until the transmit and receive operations are finished and then clear the transmit and receive enable bits before making changes.

• Settings of BRG (Baud Rate Register)

If f(BCLK) is selected with the BRG clock source select bit, use caution when setting the BRG register so that the transfer rate will not exceed 2 Mbps.

About successive transmission

To transmit data successively, make sure the next transmit data is set in the SIO Transmit Buffer Register before the current data transmission finishes.

About reception

Because the receive shift clock in CSIO mode is derived by an operation of the transmit circuit, transmit operation must always be executed (by sending dummy data) even when the serial I/O is used for only receiving data. In this case, be aware that if the port function is set for the TXD pin (by setting the operation mode register to "1"), dummy data may actually be output from the pin.

About successive reception

To receive data successively, make sure that data (dummy data) is set in the SIO Transmit Buffer Register before a transmit operation on the transmitter side starts.

• Transmission/reception using DMA

To transmit/receive data in DMA request mode, enable the DMAC to accept transfer requests (by setting the DMA Mode Register) before serial communication starts.

About reception finished bit

If a receive error (overrun error) occurs, the reception finished bit can only be cleared by clearing the receive enable bit, and cannot be cleared by reading out the receive buffer register.

About overrun error

If all bits of the next received data have been set in the SIO Receive Shift Register before reading out the SIO Receive Buffer Register (i.e., an overrun error occurred), the received data is not stored in the receive buffer register, with the previous received data retained in it. Although a receive operation continues thereafter, the subsequent received data is not stored in the receive buffer register (receive status bit = "1").

Before normal receive operation can be restarted, the receive enable bit must be temporarily cleared to "0". And this is the only way that the overrun error flag can be cleared.

About DMA transfer request generation during SIO transmission

If the transmit buffer register becomes empty (transmit buffer empty flag = "1") while the transmit enable bit remains set to "1" (transmission enabled), an SIO transmit buffer empty DMA transfer request is generated.

About DMA transfer request generation during SIO reception

If the reception finished bit is set to "1" (receive buffer register full), a reception finished DMA transfer request is generated. Be aware, however, that if an overrun error occurred during reception, this DMA transfer request is not generated.

Appendix 4.10.2 Precautions on Using UART Mode

• Settings of SIO Transmit/Receive Mode Register and SIO Baud Rate Register

The SIO Transmit/Receive Mode Register and SIO Baud Rate Register and the Transmit Control Register's BRG count source select bit must always be set when the serial I/O is not operating. If a transmit or receive operation is in progress, wait until the transmit and receive operations are finished and then clear the transmit and receive enable bits before making changes.

• Settings of BRG (Baud Rate Register)

Writes to the SIO Baud Rate Register take effect in the next cycle after the BRG counter has finished counting. However, if the register is accessed for write while transmission and reception are disabled, the written value takes effect at the same time it is written.

• Transmission/reception using DMA

To transmit/receive data in DMA request mode, enable the DMAC to accept transfer requests (by setting the DMA Mode Register) before serial communication starts.

About overrun error

If all bits of the next received data have been set in the SIO Receive Shift Register before reading out the SIO Receive Buffer Register (i.e., an overrun error occurred), the received data is not stored in the receive buffer register, with the previous received data retained in it. Once an overrun error occurs, although a receive operation continues, the subsequent received data is not stored in the receive buffer register. Before normal receive operation can be restarted, the receive enable bit must be temporarily cleared. And this is the only way that the overrun error flag can be cleared.

• Flags showing the status of UART receive operation

There are following flags that indicate the status of receive operation during UART mode:

- SIO Receive Control Register receive status bit
- SIO Receive Control Register reception finished bit
- SIO Receive Control Register receive error sum bit
- SIO Receive Control Register overrun error bit
- SIO Receive Control Register parity error bit
- SIO Receive Control Register framing error bit

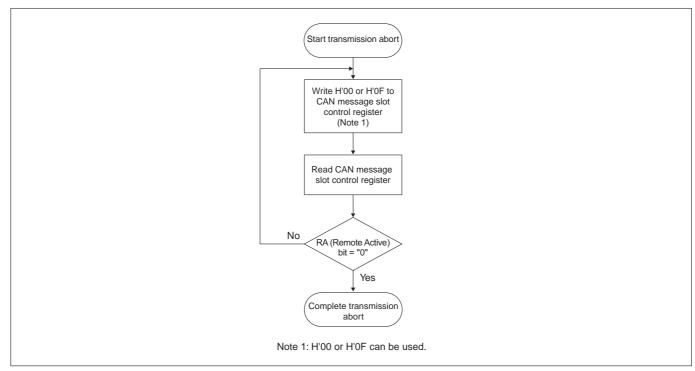
The manner in which the reception finished bit and various error flags are cleared differs depending on whether an overrun error occurred, as described below.

[When an overrun error did not occur]

Cleared by reading out the lower byte of the receive buffer register or by clearing the receive enable bit.

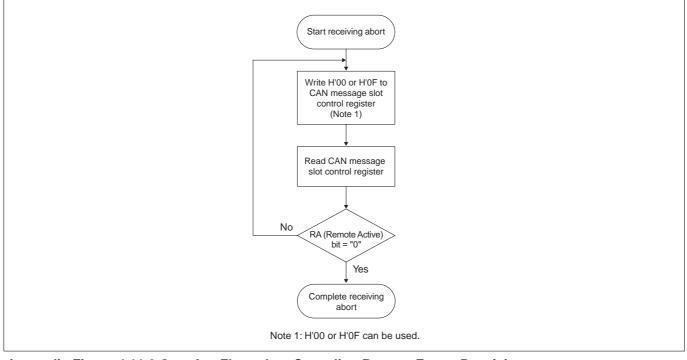
[When an overrun error occurred]

Cleared by only clearing the receive enable bit.


Appendix 4

Appendix 4.11 Precautions about CAN Module

• Note for cancelation of transmit and receive CAN remote frame


When aborting remote frame transmission or canceling remote frame receiving, make sure that the RA (Remote Active) bit is cleared to "0" after writing "H'00" or "H'0F" to the CAN Message Slot Control Register.

(1) When aborting remote frame transmission

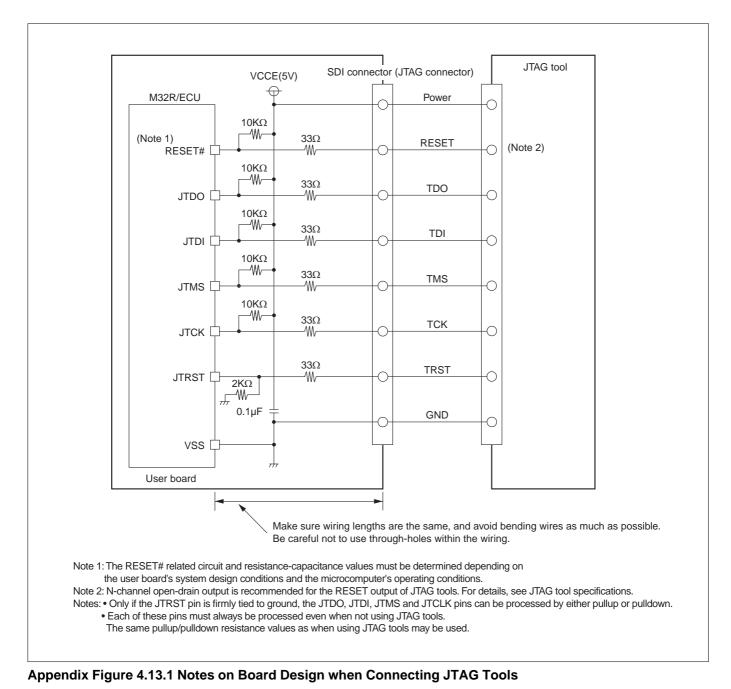
Appendix Figure 4.11.1 Opertion Flow when Aborting Remote Frame Transmission

(2) When canceling remote frame receiving

Appendix Figure 4.11.2 Opertion Flow when Canceling Remote Frame Receiving

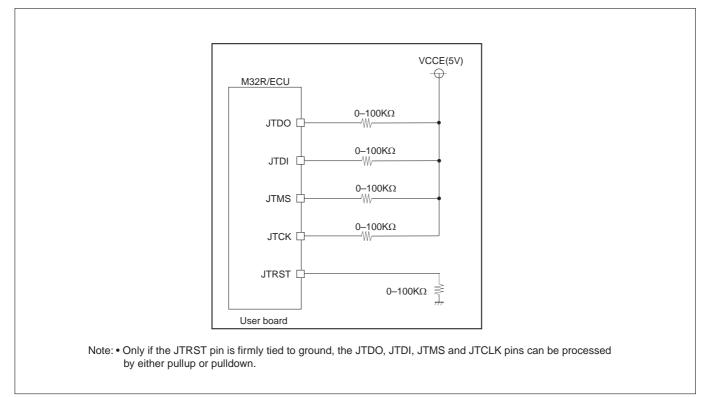
Appendix 4.12 Precautions about RAM Backup Mode

• Precautions to Be Observed at Power-On


When changing port X from input mode to output mode after power-on, pay attention to the following. If port X is set for output mode while no data is set in the Port X Data Register, the port's initial output level is instable. Therefore, before changing port X for output mode, make sure the Port X Data Register is set to output a high.

Unless this precaution is followed, port output may go low at the same time the port is set for output after the oscillation has stabilized, causing the microcomputer to enter RAM backup mode.

Appendix 4.13 Precautions about JTAG


Appendix 4.13.1 Notes on Board Design when Connecting JTAG

To materialize fast and highly reliable communication with JTAG tools, make sure wiring lengths of JTAG pins are matched during board design.

Appendix 4.13.2 Processing Pins when Not Using JTAG

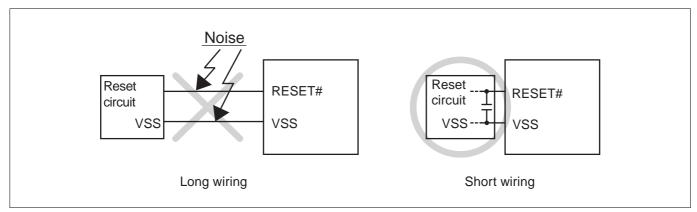
The following shows how the pins on the chip should be processed when not using JTAG tools.

Appendix Figure 4.13.2 Processing Pins when Not Using JTAG

Appendix 4.14 Precautions about Noise

The following describes precautions to be taken about noise and corrective measures against noise. The corrective measures described here are theoretically effective for noise, but require that the application system incorporating those measures be fully evaluated before it can actually be put to use.

Appendix 4.14.1 Reduction of Wiring Length


Wiring on the board may serve as an antenna to draw noise into the microcomputer. Shorter the total wiring length, the smaller the possibility of drawing noise into the microcomputer.

(1) Wiring of the RESET# pin

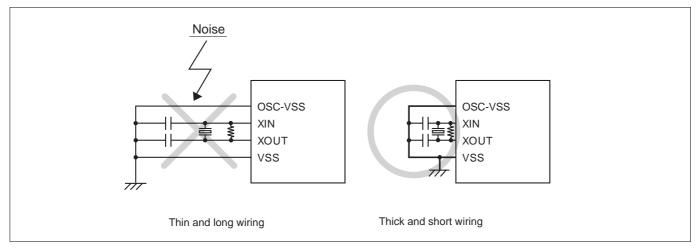
Reduce the length of wiring connecting to the RESET# pin. Especially when connecting a capacitor between the RESET# and VSS pins, make sure it is wired to each pin in the shortest distance possible (within 20 mm).

<Reasons>

Reset is a function to initialize the internal logic of the microcomputer. The width of a pulse applied to the RESET# pin is important and is therefore specified as part of timing requirements. If a pulse in width shorter than the specified duration (i.e., noise) is applied to the RESET# pin, the microcomputer will not be reset for a sufficient duration of time and come out of reset before its internal logic is fully initialized, causing the program to malfunction.

Appendix Figure 4.14.1 Example Wiring of the RESET# Pin

Appendix 4

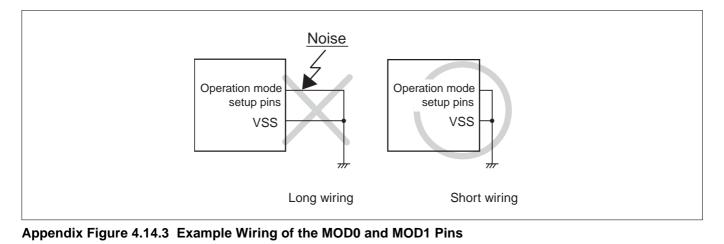

(2) Wiring of clock input/output pins

Use as much thick and short wiring as possible for connections to the clock input/output pins. When connecting a capacitor to the oscillator, make sure its grounding lead wire and the OSC-VSS pin on the microcomputer are connected in the shortest distance possible (within 20 mm).

Also, make sure the VSS pattern used for clock oscillation is a large ground plane and is connected to GND.

<Reasons>

The microcomputer operates synchronously with the clock generated by an oscillator circuit. Inclusion of noise on the clock input/output pins causes the clock waveform to become distorted, which may result in the microcomputer operating erratically or getting out of control. Furthermore, if a noise-induced potential difference exists between the microcomputer's VSS level and that of the oscillator, the clock fed into the microcomputer may not be an exact clock.

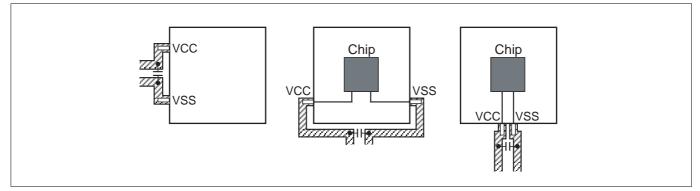

Appendix Figure 4.14.2 Example Wiring of Clock Input/Output Pins

(3) Wiring of the operation mode setup pins

When connecting the operation mode setup pins and the VCC or VSS pin, make sure they are wired in the shortest distance possible.

<Reasons>

The levels of the operation mode setup pins affect the microcomputer's operation mode. When connecting the operation mode setup pins and the VCC or VSS pin, be careful that no noise-induced potential difference will exist between the operation mode setup pins and the VCC or VSS pin. This is because the presence of such a potential difference makes operation mode instable, which may result in the microcomputer operating erratically or getting out of control.

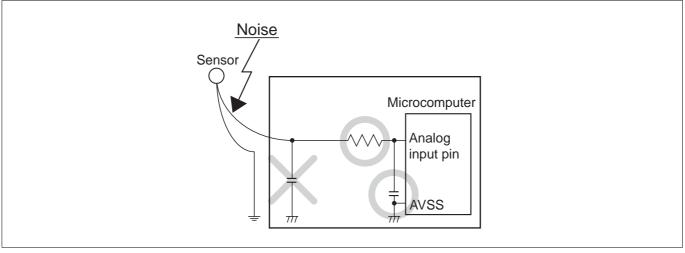


Appendix 4

Appendix 4.14.2 Inserting a Bypass Capacitor between VSS and VCC Lines

Insert a bypass capacitor of about 0.1 μ F between the VSS and VCC lines. At this time, make sure the requirements described below are met.

- The wiring length between the VSS pin and bypass capacitor and that between the VCC pin and bypass capacitor are the same.
- The wiring length between the VSS pin and bypass capacitor and that between the VCC pin and bypass capacitor are the shortest distance possible.
- The VSS and VCC lines have a greater wiring width than that of all other signal lines.


Appendix Figure 4.14.4 Example of a Bypass Capacitor Inserted between VSS and VCC Lines

Appendix 4.14.3 Processing Analog Input Pin Wiring

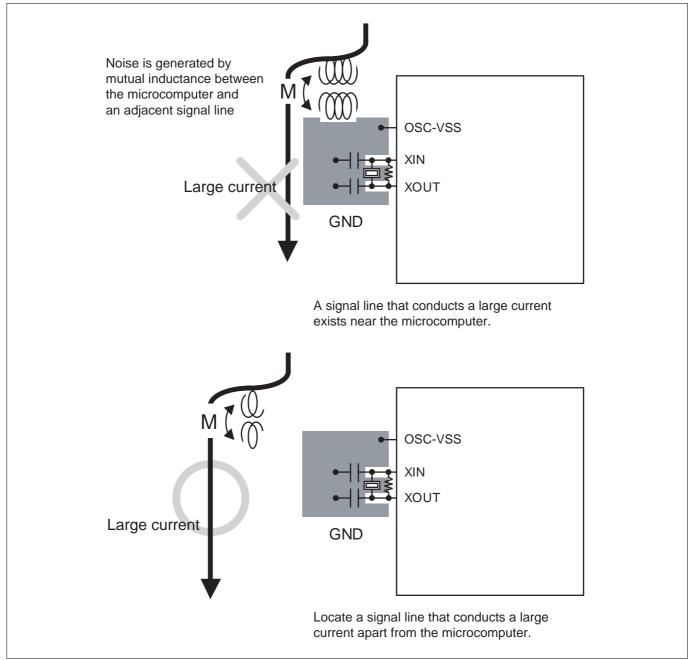
Insert a resistor of about 100 to 500Ω in series to the analog signal line connecting to the analog input pin at a position as close to the microcomputer as possible. Also, insert a capacitor of about 100 pF between the analog input pin and AVSS pin at a position as close to the AVSS pin as possible.

<Reasons>

The signal fed into the analog input pin (e.g., A-D converter input pin) normally is an output signal from a sensor. In many cases, a sensor to detect changes of event is located apart from the board on which the microcomputer is mounted, so that wiring to the analog input pin is inevitably long. Because a long wiring serves as an antenna which draws noise into the microcomputer, the signal fed into the analog input pin tends to be noise-ridden. Furthermore, if the capacitor connected between the analog input pin and AVSS pin is grounded at a position apart from the AVSS pin, noise riding on the ground line may penetrate into the microcomputer via the capacitor.

Appendix Figure 4.14.5 Example of a Resistor and Capacitor Inserted for the Analog Signal Line

Appendix 4.14.4 Consideration about the Oscillator

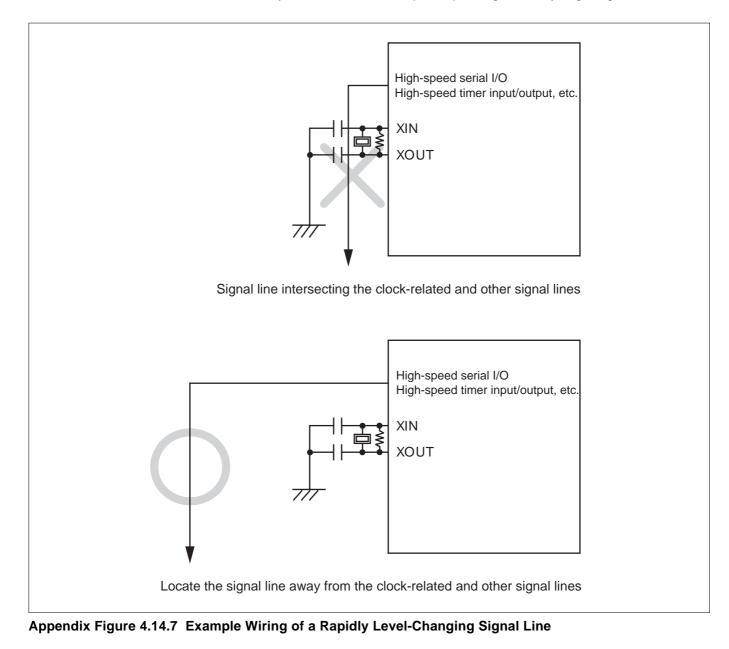

The oscillator that generates the fundamental clock for microcomputer operation requires consideration to make it unsusceptible to influences from other signals.

(1) Avoidance from large-current signal lines

Signal lines that conduct a large current exceeding the range of current values that the microcomputer can handle must be routed as far away from the microcomputer (especially the oscillator) as possible. Also, make sure the circuit is protected with a GND pattern.

<Reasons>

Systems using a microcomputer have signal lines to control a motor, LED or thermal head, for example. When a large current flows in these signal lines, it generates noise due to mutual inductance (M).

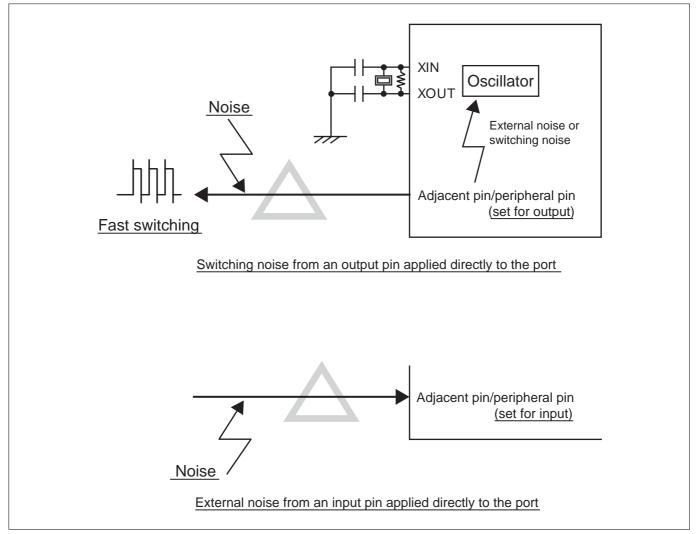


(2) Avoiding effects of rapidly level-changing signal lines

Locate signal lines whose levels change rapidly as far away from the oscillator as possible. Also, make sure the rapidly level-changing signal lines will not intersect the clock-related signal lines and other noise-sensitive signal lines.

<Reasons>

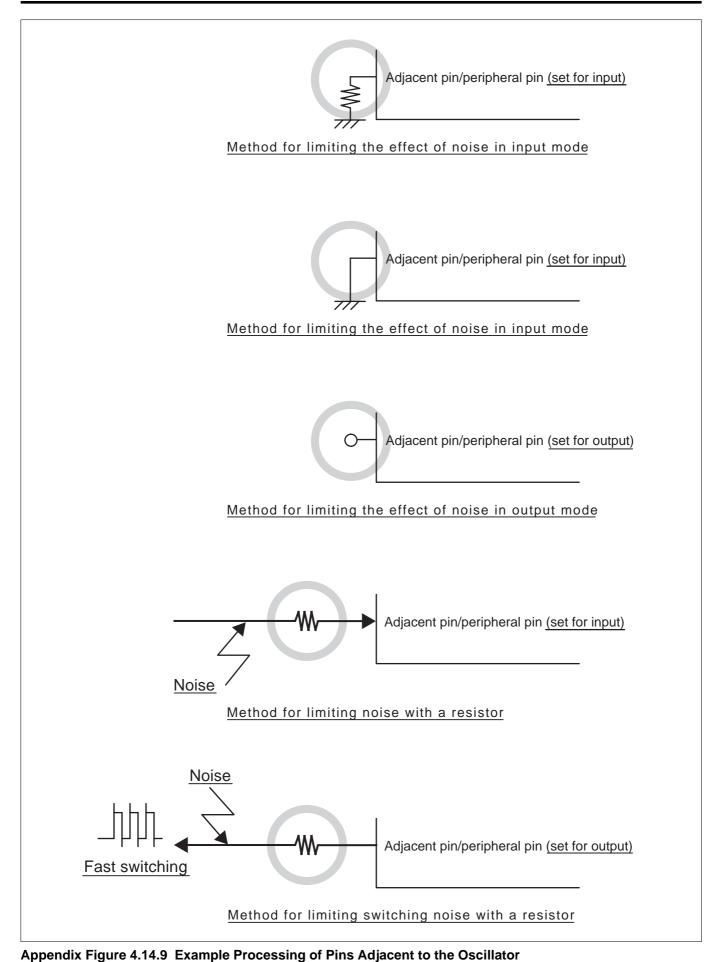
Rapidly level-changing signal lines tend to affect other signal lines as their voltage level frequently rises and falls. Especially if these signal lines intersect the clock-related signal lines, they will cause the clock waveform to become distorted, which may result in the microcomputer operating erratically or getting out of control.

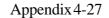

(3) Protection against signal lines that are the source of strong noise

Do not use any pin that will probably be subject to strong noise for an adjacent port near the oscillator. If the pin can be left unused, set it for input and connect to GND via a resistor, or fix it to output and leave open. If the pin needs to be used, it is recommended that it be used for input-only.

For protection against a still stronger noise source, set the adjacent port for input and connect to GND via a resistor, and use those that belong to the same port group as much for input-only as possible. If greater stability is required, do not use those that belong to the same port group and set them for input and connect to GND via a resistor. If they need to be used, insert a limiting resistor for protection against noise.

<Reasons>


If the ports or pins adjacent to the oscillator operate at high speed or are exposed to strong noise from an external source, noise may affect the oscillator circuit, causing its oscillation to become instable.

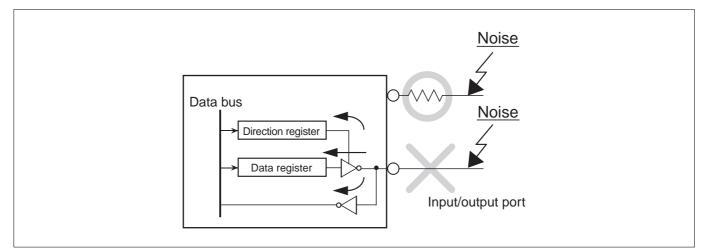


Appendix Figure 4.14.8 Example Processing of a Noise-Laden Pin

Appendix 4

SUMMARY OF PRECAUTIONS Appendix 4.14 Precautions about Noise

Appendix 4.14.5 Processing Input/Output Ports


For input/output ports, take the appropriate measures in both hardware and software following the procedure described below.

Hardware measures

• Insert resistors of 100Ω or more in series to the input/output ports.

Software measures

- For input ports, read out data in a program two or more times to verify that the levels coincide.
- For output ports, rewrite the data register at certain intervals because there is a possibility of the output data being inverted by noise.
- Rewrite the direction register at certain intervals.

Appendix Figure 4.14.10 Example Processing of Input/Output Ports

^	•
υ	-2

0-9		A-D scan mode select bit	11-18
"0"sending bit error detection bit	13-45	A-D0 Comparate Data Register	3-11, 11-12, 11-28
"1"sending bit error detection bit	13-45	A-D0 Conversion Interrupt Control Register	3-11, 5-4, 5-8
8-bit A-D0 data register 0	3-12, 11-12, 11-30	A-D0 Conversion Speed Control Register	3-11, 11-12, 11-22
8-bit A-D0 data register 1	3-12, 11-12, 11-30	A-D0 Disconnection Detection Assist Function Control Register	3-11, 11-12, 11-23
8-bit A-D0 data register 2	3-12, 11-12, 11-30	A-D0 Disconnection Detection Assist Method Select Register	3-11, 11-12, 11-24
8-bit A-D0 data register 3	3-12, 11-12, 11-30	A-D0 Scan Mode Register 0	3-11, 11-12, 11-18
8-bit A-D0 data register 4	3-12, 11-12, 11-30	A-D0 Scan Mode Register 1	3-11, 11-12, 11-20
8-bit A-D0 data register 5	3-12, 11-12, 11-30	A-D0 Single Mode Register 0	3-11, 11-12, 11-14
8-bit A-D0 data register 6	3-12, 11-12, 11-30	A-D0 Single Mode Register 1	3-11, 11-12, 11-16
8-bit A-D0 data register 7	3-12, 11-13, 11-30	A-D0 Successive Approximation Register	3-11, 11-12, 11-27
8-bit A-D0 data register 8	3-12, 11-13, 11-30	AD08DT0	3-12, 11-12, 11-30
8-bit A-D0 data register 9	3-12, 11-13, 11-30	AD08DT1	3-12, 11-12, 11-30
8-bit A-D0 data register 10	3-12, 11-13, 11-30	AD08DT2	3-12, 11-12, 11-30
8-bit A-D0 data register 11	3-12, 11-13, 11-30	AD08DT3	3-12, 11-12, 11-30
8-bit A-D0 data register 12	3-12, 11-13, 11-30	AD08DT4	3-12, 11-12, 11-30
8-bit A-D0 data register 13	3-12, 11-13, 11-30	AD08DT5	3-12, 11-12, 11-30
8-bit A-D0 data register 14	3-12, 11-13, 11-30	AD08DT6	3-12, 11-12, 11-30
8-bit A-D0 data register 15	3-12, 11-13, 11-30	AD08DT7	3-12, 11-13, 11-30
10-bit A-D0 data register 0	3-11, 11-12, 11-29	AD08DT8	3-12, 11-13, 11-30
10-bit A-D0 data register 1	3-11, 11-12, 11-29	AD08DT9	3-12, 11-13, 11-30
10-bit A-D0 data register 2	3-11, 11-12, 11-29	AD08DT10	3-12, 11-13, 11-30
10-bit A-D0 data register 3	3-11, 11-12, 11-29	AD08DT11	3-12, 11-13, 11-30
10-bit A-D0 data register 4	3-11, 11-12, 11-29	AD08DT12	3-12, 11-13, 11-30
10-bit A-D0 data register 5	3-11, 11-12, 11-29	AD08DT13	3-12, 11-13, 11-30
10-bit A-D0 data register 6	3-12, 11-12, 11-29	AD08DT14	3-12, 11-13, 11-30
10-bit A-D0 data register 7	3-12, 11-12, 11-29	AD08DT15	3-12, 11-13, 11-30
10-bit A-D0 data register 8	3-12, 11-12, 11-29	AD0CMP	3-11, 11-12, 11-28
10-bit A-D0 data register 9	3-12, 11-12, 11-29	AD0CVSCR	3-11, 11-12, 11-22
10-bit A-D0 data register 10	3-12, 11-12, 11-29	AD0DDACR	3-11, 11-12, 11-23
10-bit A-D0 data register 11	3-12, 11-12, 11-29	AD0DDASEL	3-11, 11-12, 11-24
10-bit A-D0 data register 12	3-12, 11-12, 11-29	AD0DT0	3-11, 11-12, 11-29
10-bit A-D0 data register 13	3-12, 11-12, 11-29	AD0DT1	3-11, 11-12, 11-29
10-bit A-D0 data register 14	3-12, 11-12, 11-29	AD0DT2	3-11, 11-12, 11-29
10-bit A-D0 data register 15	3-12, 11-12, 11-29	AD0DT3	3-11, 11-12, 11-29
		AD0DT4	3-11, 11-12, 11-29
Α		AD0DT5	3-11, 11-12, 11-29
ACK error detection bit	13-45	AD0DT6	3-12, 11-12, 11-29
ACKE	13-45	AD0DT7	3-12, 11-12, 11-29
A-D analog input pin select bit	11-16	AD0DT8	3-12, 11-12, 11-29
A-D conversion completed bit	11-18	AD0DT9	3-12, 11-12, 11-29
A-D conversion method select bit	11-16, 11-20	AD0DT10	3-12, 11-12, 11-29
A-D conversion mode select bit	11-16	AD0DT11	3-12, 11-12, 11-29
A-D conversion speed control bit	11-22	AD0DT12	3-12, 11-12, 11-29
A-D conversion speed select bit	11-16, 11-20	AD0DT13	3-12, 11-12, 11-29
A-D conversion start bit	11-14, 11-18	AD0DT14	3-12, 11-12, 11-29
A-D conversion start trigger select bit	11-14, 11-18	AD0DT15	3-12, 11-12, 11-29
A-D conversion stop bit	11-14, 11-18	AD0SAR	3-11, 11-12, 11-27
A-D conversion/comparate completed bit	11-14	AD0SCM0	3-11, 11-12, 11-18
A-D hardware trigger select 0 bit	11-14, 11-18	AD0SCM1	3-11, 11-12, 11-20
A-D hardware trigger select 1 bit	11-14, 11-18	AD0SIM0	3-11, 11-12, 11-14
A-D interrupt/DMA transfer request select bit	11-14, 11-18	AD0SIM1	3-11, 11-12, 11-16
A-D sample-and-hold conversion speed select bit	11-16, 11-20	ADCCMP	11-18
A-D scan loop select bit	11-20	ADCMSL	11-18

	44.40		40.40
ADCREQ	11-18	Bus off status bit	13-18
ADCSEL ADCSHSL	11-18 11-20	BUSMOD BUSMODC	15-5 3-21, 15-5
ADCSHSPD	11-20		6-11
ADCSPD	11-20	Busy check bit	0-11
ADCSTP	11-20	С	
ADCSTT	11-18	COGMSKE0	3-22, 13-4, 13-50
ADCTRG0	11-18	COGMSKE1	3-22, 13-4, 13-50
ADCTRG1	11-18	C0GMSKE2	3-22, 13-4, 13-50
ADCVSD	11-22	COGMSKS0	3-22, 13-4, 13-49
ADDDASEL0	11-24	C0GMSKS1	3-22, 13-4, 13-49
ADDDASEL1	11-24	COLMSKAEO	3-22, 13-4, 13-50
ADDDASEL2	11-24	COLMSKAE1	3-22, 13-4, 13-50
ADDDASEL3	11-24	COLMSKAE2	3-22, 13-4, 13-51
ADDDASEL4	11-24	COLMSKASO	3-22, 13-4, 13-49
ADDDASEL5	11-24	C0LMSKAS1	3-22, 13-4, 13-49
ADDDASEL6	11-24	COLMSKBEO	3-23, 13-4, 13-50
ADDDASEL7	11-24	C0LMSKBE1	3-23, 13-4, 13-50
ADDDASEL8	11-24	C0LMSKBE2	3-23, 13-4, 13-51
ADDDASEL9	11-24	Colmskbso	3-23, 13-4, 13-49
ADDDASEL10	11-24	C0LMSKBS1	3-23, 13-4, 13-49
ADDDASEL11	11-24	COMSLOCNT	3-23, 13-5, 13-54
ADDDASEL12	11-24	COMSLODLC	3-23, 13-5, 13-63
ADDDASEL13	11-24	COMSLODTO	3-23, 13-5, 13-64
ADDDASEL14	11-24	C0MSL0DT1	3-23, 13-5, 13-65
ADDDASEL15	11-24	C0MSL0DT2	3-23, 13-5, 13-66
ADSCMP	11-14	C0MSL0DT3	3-23, 13-5, 13-67
ADSMSL	11-16	C0MSL0DT4	3-23, 13-5, 13-68
ADSREQ	11-14	C0MSL0DT5	3-23, 13-5, 13-69
ADSSEL	11-14	C0MSL0DT6	3-23, 13-5, 13-70
ADSSHSL	11-16	C0MSL0DT7	3-23, 13-5, 13-71
ADSSHSPD	11-16	COMSLOEIDO	3-23, 13-5, 13-60
ADSSPD	11-16	C0MSL0EID1	3-23, 13-5, 13-61
ADSSTP	11-14	C0MSL0EID2	3-23, 13-5, 13-62
ADSSTT	11-14	COMSLOSIDO	3-23, 13-5, 13-58
ADSTRG0	11-14	C0MSL0SID1	3-23, 13-5, 13-59
ADSTRG1	11-14	COMSLOTSP	3-23, 13-5, 13-72
ANSCAN	11-20	C0MSL10CNT	3-23, 13-5, 13-54
ANSEL	11-16	C0MSL10DLC	3-26, 13-7, 13-63
Automatic response inhibit bit	13-55	C0MSL10DT0	3-26, 13-7, 13-64
		C0MSL10DT1	3-26, 13-7, 13-65
В		C0MSL10DT2	3-26, 13-7, 13-66
BasicCAN mode bit	13-15	C0MSL10DT3	3-26, 13-7, 13-67
BasicCAN status bit	13-18	C0MSL10DT4	3-26, 13-7, 13-68
BCM	13-15	C0MSL10DT5	3-26, 13-7, 13-69
BCS	13-18	C0MSL10DT6	3-26, 13-7, 13-70
BITEO	13-45	COMSL10DT7	3-26, 13-7, 13-71
BITE1	13-45	COMSL10EID0	3-26, 13-7, 13-60
BOS	13-18	COMSL10EID1	3-26, 13-7, 13-61
BRG count source select bit	12-13		3-26, 13-7, 13-62
Bus mode control bit	15-5		3-26, 13-7, 13-58
Bus Mode Control Register	3-21, 15-5	COMSL10SID1	3-26, 13-7, 13-59
Bus off interrupt request task bit	13-32		3-26, 13-7, 13-72
Bus off interrupt request status bit	13-31	C0MSL11CNT	3-23, 13-5, 13-54

C0MSL11DLC	3-26, 13-8, 13-63	C0MSL14DT5	3-27, 13-8, 13-69
C0MSL11DT0	3-26, 13-8, 13-64	C0MSL14DT6	3-27, 13-8, 13-70
C0MSL11DT1	3-26, 13-8, 13-65	C0MSL14DT7	3-27, 13-8, 13-71
C0MSL11DT2	3-26, 13-8, 13-66	C0MSL14EID0	3-27, 13-8, 13-60
C0MSL11DT3	3-26, 13-8, 13-67	C0MSL14EID1	3-27, 13-8, 13-61
C0MSL11DT4	3-26, 13-8, 13-68	C0MSL14EID2	3-27, 13-8, 13-62
C0MSL11DT5	3-26, 13-8, 13-69	C0MSL14SID0	3-27, 13-8, 13-58
C0MSL11DT6	3-26, 13-8, 13-70	C0MSL14SID1	3-27, 13-8, 13-59
C0MSL11DT7	3-26, 13-8, 13-71	C0MSL14TSP	3-27, 13-8, 13-72
C0MSL11EID0	3-26, 13-8, 13-60	C0MSL15CNT	3-23, 13-5, 13-54
C0MSL11EID1	3-26, 13-8, 13-61	C0MSL15DLC	3-27, 13-9, 13-63
C0MSL11EID2	3-26, 13-8, 13-62	C0MSL15DT0	3-27, 13-9, 13-64
C0MSL11SID0	3-26, 13-8, 13-58	C0MSL15DT1	3-27, 13-9, 13-65
C0MSL11SID1	3-26, 13-8, 13-59	C0MSL15DT2	3-27, 13-9, 13-66
C0MSL11TSP	3-26, 13-8, 13-72	C0MSL15DT3	3-27, 13-9, 13-67
C0MSL12CNT	3-23, 13-5, 13-54	C0MSL15DT4	3-27, 13-9, 13-68
C0MSL12DLC	3-26, 13-8, 13-63	C0MSL15DT5	3-27, 13-9, 13-69
C0MSL12DT0	3-26, 13-8, 13-64	C0MSL15DT6	3-27, 13-9, 13-70
C0MSL12DT1	3-26, 13-8, 13-65	C0MSL15DT7	3-27, 13-9, 13-71
C0MSL12DT2	3-26, 13-8, 13-66	C0MSL15EID0	3-27, 13-9, 13-60
C0MSL12DT3	3-26, 13-8, 13-67	C0MSL15EID1	3-27, 13-9, 13-61
C0MSL12DT4	3-26, 13-8, 13-68	C0MSL15EID2	3-27, 13-9, 13-62
C0MSL12DT5	3-26, 13-8, 13-69	C0MSL15SID0	3-27, 13-9, 13-58
C0MSL12DT6	3-26, 13-8, 13-70	C0MSL15SID1	3-27, 13-9, 13-59
C0MSL12DT7	3-26, 13-8, 13-71	C0MSL15TSP	3-27, 13-9, 13-72
C0MSL12EID0	3-26, 13-8, 13-60	C0MSL1CNT	3-23, 13-5, 13-54
C0MSL12EID1	3-26, 13-8, 13-61	C0MSL1DLC	3-23, 13-5, 13-63
C0MSL12EID2	3-26, 13-8, 13-62	C0MSL1DT0	3-23, 13-5, 13-64
C0MSL12SID0	3-26, 13-8, 13-58	C0MSL1DT1	3-23, 13-5, 13-65
C0MSL12SID1	3-26, 13-8, 13-59	C0MSL1DT2	3-23, 13-5, 13-66
C0MSL12TSP	3-26, 13-8, 13-72	C0MSL1DT3	3-23, 13-5, 13-67
C0MSL13CNT	3-23, 13-5, 13-54	C0MSL1DT4	3-23, 13-5, 13-68
C0MSL13DLC	3-26, 13-8, 13-63	C0MSL1DT5	3-23, 13-5, 13-69
C0MSL13DT0	3-26, 13-8, 13-64	C0MSL1DT6	3-23, 13-5, 13-70
C0MSL13DT1	3-26, 13-8, 13-65	C0MSL1DT7	3-23, 13-5, 13-71
C0MSL13DT2	3-26, 13-8, 13-66	C0MSL1EID0	3-23, 13-5, 13-60
C0MSL13DT3	3-26, 13-8, 13-67	C0MSL1EID1	3-23, 13-5, 13-61
C0MSL13DT4	3-26, 13-8, 13-68	C0MSL1EID2	3-23, 13-5, 13-62
C0MSL13DT5	3-26, 13-8, 13-69	C0MSL1SID0	3-23, 13-5, 13-58
C0MSL13DT6	3-26, 13-8, 13-70	C0MSL1SID1	3-23, 13-5, 13-59
C0MSL13DT7	3-26, 13-8, 13-71	C0MSL1TSP	3-23, 13-5, 13-72
C0MSL13EID0	3-26, 13-8, 13-60	COMSL2CNT	3-23, 13-5, 13-54
C0MSL13EID1	3-26, 13-8, 13-61	C0MSL2DLC	3-24, 13-5, 13-63
C0MSL13EID2	3-26, 13-8, 13-62	C0MSL2DT0	3-24, 13-5, 13-64
C0MSL13SID0	3-26, 13-8, 13-58	C0MSL2DT1	3-24, 13-5, 13-65
C0MSL13SID1	3-26, 13-8, 13-59	C0MSL2DT2	3-24, 13-5, 13-66
C0MSL13TSP	3-26, 13-8, 13-72	C0MSL2DT3	3-24, 13-5, 13-67
C0MSL14CNT	3-23, 13-5, 13-54	C0MSL2DT4	3-24, 13-5, 13-68
C0MSL14DLC	3-27, 13-8, 13-63	C0MSL2DT5	3-24, 13-5, 13-69
C0MSL14DT0	3-27, 13-8, 13-64	C0MSL2DT6	3-24, 13-5, 13-70
C0MSL14DT1	3-27, 13-8, 13-65	C0MSL2DT7	3-24, 13-5, 13-71
C0MSL14DT2	3-27, 13-8, 13-66	C0MSL2EID0	3-24, 13-5, 13-60
C0MSL14DT3	3-27, 13-8, 13-67	C0MSL2EID1	3-24, 13-5, 13-61
C0MSL14DT4	3-27, 13-8, 13-68	C0MSL2EID2	3-24, 13-5, 13-62

С	0MSL2SID0	3-24, 13-5, 13-58	C0MSL6DT1	3-25, 13-6, 13-65
С	0MSL2SID1	3-24, 13-5, 13-59	C0MSL6DT2	3-25, 13-6, 13-66
С	0MSL2TSP	3-24, 13-5, 13-72	C0MSL6DT3	3-25, 13-6, 13-67
С	0MSL3CNT	3-23, 13-5, 13-54	C0MSL6DT4	3-25, 13-6, 13-68
С	0MSL3DLC	3-24, 13-6, 13-63	C0MSL6DT5	3-25, 13-6, 13-69
С	0MSL3DT0	3-24, 13-6, 13-64	C0MSL6DT6	3-25, 13-6, 13-70
С	0MSL3DT1	3-24, 13-6, 13-65	COMSL6DT7	3-25, 13-6, 13-71
С	0MSL3DT2	3-24, 13-6, 13-66	C0MSL6EID0	3-25, 13-6, 13-60
С	0MSL3DT3	3-24, 13-6, 13-67	C0MSL6EID1	3-25, 13-6, 13-61
С	0MSL3DT4	3-24, 13-6, 13-68	C0MSL6EID2	3-25, 13-6, 13-62
С	0MSL3DT5	3-24, 13-6, 13-69	C0MSL6SID0	3-25, 13-6, 13-58
С	0MSL3DT6	3-24, 13-6, 13-70	C0MSL6SID1	3-25, 13-6, 13-59
С	0MSL3DT7	3-24, 13-6, 13-71	COMSL6TSP	3-25, 13-6, 13-72
С	0MSL3EID0	3-24, 13-6, 13-60	COMSL7CNT	3-23, 13-5, 13-54
С	0MSL3EID1	3-24, 13-6, 13-61	COMSL7DLC	3-25, 13-7, 13-63
С	0MSL3EID2	3-24, 13-6, 13-62	C0MSL7DT0	3-25, 13-7, 13-64
С	0MSL3SID0	3-24, 13-6, 13-58	C0MSL7DT1	3-25, 13-7, 13-65
С	0MSL3SID1	3-24, 13-6, 13-59	C0MSL7DT2	3-25, 13-7, 13-66
С	0MSL3TSP	3-24, 13-6, 13-72	C0MSL7DT3	3-25, 13-7, 13-67
С	0MSL4CNT	3-23, 13-5, 13-54	C0MSL7DT4	3-25, 13-7, 13-68
С	0MSL4DLC	3-24, 13-6, 13-63	C0MSL7DT5	3-25, 13-7, 13-69
С	0MSL4DT0	3-24, 13-6, 13-64	COMSL7DT6	3-25, 13-7, 13-70
С	0MSL4DT1	3-24, 13-6, 13-65	C0MSL7DT7	3-25, 13-7, 13-71
С	0MSL4DT2	3-24, 13-6, 13-66	C0MSL7EID0	3-25, 13-7, 13-60
С	0MSL4DT3	3-24, 13-6, 13-67	C0MSL7EID1	3-25, 13-7, 13-61
С	0MSL4DT4	3-24, 13-6, 13-68	C0MSL7EID2	3-25, 13-7, 13-62
С	0MSL4DT5	3-24, 13-6, 13-69	C0MSL7SID0	3-25, 13-7, 13-58
С	0MSL4DT6	3-24, 13-6, 13-70	C0MSL7SID1	3-25, 13-7, 13-59
С	0MSL4DT7	3-24, 13-6, 13-71	C0MSL7TSP	3-25, 13-7, 13-72
С	0MSL4EID0	3-24, 13-6, 13-60	COMSL8CNT	3-23, 13-5, 13-54
С	0MSL4EID1	3-24, 13-6, 13-61	C0MSL8DLC	3-25, 13-7, 13-63
С	0MSL4EID2	3-24, 13-6, 13-62	C0MSL8DT0	3-25, 13-7, 13-64
С	0MSL4SID0	3-24, 13-6, 13-58	C0MSL8DT1	3-25, 13-7, 13-65
С	0MSL4SID1	3-24, 13-6, 13-59	C0MSL8DT2	3-25, 13-7, 13-66
С	0MSL4TSP	3-24, 13-6, 13-72	C0MSL8DT3	3-25, 13-7, 13-67
С	0MSL5CNT	3-23, 13-5, 13-54	C0MSL8DT4	3-25, 13-7, 13-68
С	0MSL5DLC	3-24, 13-6, 13-63	C0MSL8DT5	3-25, 13-7, 13-69
С	0MSL5DT0	3-24, 13-6, 13-64	C0MSL8DT6	3-25, 13-7, 13-70
С	0MSL5DT1	3-24, 13-6, 13-65	C0MSL8DT7	3-25, 13-7, 13-71
С	0MSL5DT2	3-24, 13-6, 13-66	C0MSL8EID0	3-25, 13-7, 13-60
С	0MSL5DT3	3-24, 13-6, 13-67	C0MSL8EID1	3-25, 13-7, 13-61
С	0MSL5DT4	3-24, 13-6, 13-68	C0MSL8EID2	3-25, 13-7, 13-62
С	0MSL5DT5	3-24, 13-6, 13-69	C0MSL8SID0	3-25, 13-7, 13-58
С	0MSL5DT6	3-24, 13-6, 13-70	C0MSL8SID1	3-25, 13-7, 13-59
С	0MSL5DT7	3-24, 13-6, 13-71	COMSL8TSP	3-25, 13-7, 13-72
С	0MSL5EID0	3-24, 13-6, 13-60	COMSL9CNT	3-23, 13-5, 13-54
С	0MSL5EID1	3-24, 13-6, 13-61	COMSL9DLC	3-25, 13-7, 13-63
С	0MSL5EID2	3-24, 13-6, 13-62	C0MSL9DT0	3-25, 13-7, 13-64
С	0MSL5SID0	3-24, 13-6, 13-58	C0MSL9DT1	3-25, 13-7, 13-65
С	0MSL5SID1	3-24, 13-6, 13-59	C0MSL9DT2	3-25, 13-7, 13-66
С	0MSL5TSP	3-24, 13-6, 13-72	C0MSL9DT3	3-25, 13-7, 13-67
С	0MSL6CNT	3-23, 13-5, 13-54	C0MSL9DT4	3-25, 13-7, 13-68
С	0MSL6DLC	3-25, 13-6, 13-63	C0MSL9DT5	3-25, 13-7, 13-69
С	0MSL6DT0	3-25, 13-6, 13-64	C0MSL9DT6	3-25, 13-7, 13-70

C0MSL9DT7	3-25, 13-7, 13-71	C1MSL11CNT	3-28, 13-10, 13-54
C0MSL9EID0	3-25, 13-7, 13-60	C1MSL11DLC	3-31, 13-13, 13-63
C0MSL9EID1	3-25, 13-7, 13-61	C1MSL11DT0	3-31, 13-13, 13-64
C0MSL9EID2	3-25, 13-7, 13-62	C1MSL11DT1	3-31, 13-13, 13-65
C0MSL9SID0	3-25, 13-7, 13-58	C1MSL11DT2	3-31, 13-13, 13-66
C0MSL9SID1	3-25, 13-7, 13-59	C1MSL11DT3	3-31, 13-13, 13-67
COMSL9TSP	3-25, 13-7, 13-72	C1MSL11DT4	3-31, 13-13, 13-68
C1GMSKE0	3-27, 13-9, 13-50	C1MSL11DT5	3-31, 13-13, 13-69
C1GMSKE1	3-27, 13-9, 13-50	C1MSL11DT6	3-31, 13-13, 13-70
C1GMSKE2	3-27, 13-9, 13-51	C1MSL11DT7	3-31, 13-13, 13-71
C1GMSKS0	3-27, 13-9, 13-49	C1MSL11EID0	3-31, 13-13, 13-60
C1GMSKS1	3-27, 13-9, 13-49	C1MSL11EID1	3-31, 13-13, 13-61
C1LMSKAE0	3-28, 13-9, 13-50	C1MSL11EID2	3-31, 13-13, 13-62
C1LMSKAE1	3-28, 13-9, 13-50	C1MSL11SID0	3-31, 13-13, 13-58
C1LMSKAE2	3-28, 13-9, 13-51	C1MSL11SID1	3-31, 13-13, 13-59
C1LMSKAS0	3-28, 13-9, 13-49	C1MSL11TSP	3-31, 13-13, 13-72
C1LMSKAS1	3-28, 13-9, 13-49	C1MSL12CNT	3-28, 13-10, 13-54
C1LMSKBE0	3-28, 13-9, 13-50	C1MSL12DLC	3-31, 13-13, 13-63
C1LMSKBE1	3-28, 13-9, 13-50	C1MSL12DT0	3-31, 13-13, 13-64
C1LMSKBE2	3-28, 13-9, 13-51	C1MSL12DT1	3-31, 13-13, 13-65
C1LMSKBS0	3-28, 13-9, 13-49	C1MSL12DT2	3-31, 13-13, 13-66
C1LMSKBS1	3-28, 13-9, 13-49	C1MSL12DT3	3-31, 13-13, 13-67
C1MSL0CNT	3-28, 13-10, 13-54	C1MSL12DT4	3-31, 13-13, 13-68
C1MSL0DLC	3-28, 13-10, 13-63	C1MSL12DT5	3-31, 13-13, 13-69
C1MSL0DT0	3-28, 13-10, 13-64	C1MSL12DT6	3-31, 13-13, 13-70
C1MSL0DT1	3-28, 13-10, 13-65	C1MSL12DT7	3-31, 13-13, 13-71
C1MSL0DT2	3-28, 13-10, 13-66	C1MSL12EID0	3-31, 13-13, 13-60
C1MSL0DT3	3-28, 13-10, 13-67	C1MSL12EID1	3-31, 13-13, 13-61
C1MSL0DT4	3-28, 13-10, 13-68	C1MSL12EID2	3-31, 13-13, 13-62
C1MSL0DT5	3-28, 13-10, 13-69	C1MSL12SID0	3-31, 13-13, 13-58
C1MSL0DT6	3-28, 13-10, 13-70	C1MSL12SID1	3-31, 13-13, 13-59
C1MSL0DT7	3-28, 13-10, 13-71	C1MSL12TSP	3-31, 13-13, 13-72
C1MSL0EID0	3-28, 13-10, 13-60	C1MSL13CNT	3-28, 13-10, 13-54
C1MSL0EID1	3-28, 13-10, 13-61	C1MSL13DLC	3-32, 13-13, 13-63
C1MSL0EID2	3-28, 13-10, 13-62	C1MSL13DT0	3-32, 13-13, 13-64
C1MSL0SID0	3-28, 13-10, 13-58	C1MSL13DT1	3-32, 13-13, 13-65
C1MSL0SID1	3-28, 13-10, 13-59	C1MSL13DT2	3-32, 13-13, 13-66
C1MSL0TSP	3-28, 13-10, 13-72	C1MSL13DT3	3-32, 13-13, 13-67
C1MSL10CNT	3-28, 13-10, 13-54	C1MSL13DT4	3-32, 13-13, 13-68
C1MSL10DLC	3-31, 13-13, 13-63	C1MSL13DT5	3-32, 13-13, 13-69
C1MSL10DT0	3-31, 13-13, 13-64	C1MSL13DT6	3-32, 13-13, 13-70
C1MSL10DT1	3-31, 13-13, 13-65	C1MSL13DT7	3-32, 13-13, 13-71
C1MSL10DT2	3-31, 13-13, 13-66	C1MSL13EID0	3-32, 13-13, 13-60
C1MSL10DT3	3-31, 13-13, 13-67	C1MSL13EID1	3-32, 13-13, 13-61
C1MSL10DT4	3-31, 13-13, 13-68	C1MSL13EID2	3-32, 13-13, 13-62
C1MSL10DT5	3-31, 13-13, 13-69	C1MSL13SID0	3-32, 13-13, 13-58
C1MSL10DT6	3-31, 13-13, 13-70	C1MSL13SID1	3-32, 13-13, 13-59
C1MSL10DT7	3-31, 13-13, 13-71	C1MSL13TSP	3-32, 13-13, 13-72
C1MSL10EID0	3-31, 13-13, 13-60	C1MSL14CNT	3-28, 13-10, 13-54
C1MSL10EID1	3-31, 13-13, 13-61	C1MSL14DLC	3-32, 13-14, 13-63
C1MSL10EID2	3-31, 13-13, 13-62	C1MSL14DT0	3-32, 13-14, 13-64
C1MSL10SID0	3-31, 13-13, 13-58	C1MSL14DT1	3-32, 13-14, 13-65
C1MSL10SID1	3-31, 13-13, 13-59	C1MSL14DT2	3-32, 13-14, 13-66
C1MSL10TSP	3-31, 13-13, 13-72	C1MSL14DT3	3-32, 13-14, 13-67

C1MSL14DT4	3-32, 13-14, 13-68	C1MSL2EID2	3-29, 13-11, 13-62
C1MSL14DT5	3-32, 13-14, 13-69	C1MSL2SID0	3-29, 13-11, 13-58
C1MSL14DT6	3-32, 13-14, 13-70	C1MSL2SID1	3-29, 13-11, 13-59
C1MSL14DT7	3-32, 13-14, 13-71	C1MSL2TSP	3-29, 13-11, 13-72
C1MSL14EID0	3-32, 13-14, 13-60	C1MSL3CNT	3-28, 13-10, 13-54
C1MSL14EID1	3-32, 13-14, 13-61	C1MSL3DLC	3-29, 13-11, 13-63
C1MSL14EID2	3-32, 13-14, 13-62	C1MSL3DT0	3-29, 13-11, 13-64
C1MSL14SID0	3-32, 13-14, 13-58	C1MSL3DT1	3-29, 13-11, 13-65
C1MSL14SID1	3-32, 13-14, 13-59	C1MSL3DT2	3-29, 13-11, 13-66
C1MSL14TSP	3-32, 13-14, 13-72	C1MSL3DT3	3-29, 13-11, 13-67
C1MSL15CNT	3-28, 13-10, 13-54	C1MSL3DT4	3-29, 13-11, 13-68
C1MSL15DLC	3-32, 13-14, 13-63	C1MSL3DT5	3-29, 13-11, 13-69
C1MSL15DT0	3-32, 13-14, 13-64	C1MSL3DT6	3-29, 13-11, 13-70
C1MSL15DT1	3-32, 13-14, 13-65	C1MSL3DT7	3-29, 13-11, 13-71
C1MSL15DT2	3-32, 13-14, 13-66	C1MSL3EID0	3-29, 13-11, 13-60
C1MSL15DT3	3-32, 13-14, 13-67	C1MSL3EID1	3-29, 13-11, 13-61
C1MSL15DT4	3-32, 13-14, 13-68	C1MSL3EID2	3-29, 13-11, 13-62
C1MSL15DT5	3-32, 13-14, 13-69	C1MSL3SID0	3-29, 13-11, 13-58
C1MSL15DT6	3-32, 13-14, 13-70	C1MSL3SID1	3-29, 13-11, 13-59
C1MSL15DT7	3-32, 13-14, 13-71	C1MSL3TSP	3-29, 13-11, 13-72
C1MSL15EID0	3-32, 13-14, 13-60	C1MSL4CNT	3-28, 13-10, 13-54
C1MSL15EID1	3-32, 13-14, 13-61	C1MSL4DLC	3-29, 13-11, 13-63
C1MSL15EID2	3-32, 13-14, 13-62	C1MSL4DT0	3-29, 13-11, 13-64
C1MSL15SID0	3-32, 13-14, 13-58	C1MSL4DT1	3-29, 13-11, 13-65
C1MSL15SID1	3-32, 13-14, 13-59	C1MSL4DT2	3-29, 13-11, 13-66
C1MSL15TSP	3-32, 13-14, 13-72	C1MSL4DT3	3-29, 13-11, 13-67
C1MSL1CNT	3-28, 13-10, 13-54	C1MSL4DT4	3-29, 13-11, 13-68
C1MSL1DLC	3-29, 13-10, 13-63	C1MSL4DT5	3-29, 13-11, 13-69
C1MSL1DT0	3-29, 13-10, 13-64	C1MSL4DT6	3-29, 13-11, 13-70
C1MSL1DT1	3-29, 13-10, 13-65	C1MSL4DT7	3-29, 13-11, 13-71
C1MSL1DT2	3-29, 13-10, 13-66	C1MSL4EID0	3-29, 13-11, 13-60
C1MSL1DT3	3-29, 13-10, 13-67	C1MSL4EID1	3-29, 13-11, 13-61
C1MSL1DT4	3-29, 13-10, 13-68	C1MSL4EID2	3-29, 13-11, 13-62
C1MSL1DT5	3-29, 13-10, 13-69	C1MSL4SID0	3-29, 13-11, 13-58
C1MSL1DT6	3-29, 13-10, 13-70	C1MSL4SID1	3-29, 13-11, 13-59
C1MSL1DT7	3-29, 13-10, 13-71	C1MSL4TSP	3-29, 13-11, 13-72
C1MSL1EID0 C1MSL1EID1	3-29, 13-10, 13-60	C1MSL5CNT	3-28, 13-10, 13-54
C1MSL1EID2	3-29, 13-10, 13-61 3-29, 13-10, 13-62	C1MSL5DLC	3-30, 13-11, 13-63
C1MSL1SID0	3-29, 13-10, 13-58	C1MSL5DT0	3-30, 13-11, 13-64 3-30, 13-11, 13-65
C1MSL1SID1	3-29, 13-10, 13-59	C1MSL5DT1	
C1MSL1TSP	3-29, 13-10, 13-72	C1MSL5DT2	3-30, 13-11, 13-66
C1MSL2CNT	3-28, 13-10, 13-54	C1MSL5DT3 C1MSL5DT4	3-30, 13-11, 13-67
C1MSL2DLC	3-29, 13-11, 13-63	C1MSL5DT4 C1MSL5DT5	3-30, 13-11, 13-68
C1MSL2DL0	3-29, 13-11, 13-64	C1MSL5DT5 C1MSL5DT6	3-30, 13-11, 13-69 3-30, 13-11, 13-70
C1MSL2DT1	3-29, 13-11, 13-65	C1MSL5DT7	3-30, 13-11, 13-71
C1MSL2DT2	3-29, 13-11, 13-66	C1MSL5EID0	3-30, 13-11, 13-60
C1MSL2DT3	3-29, 13-11, 13-67	C1MSL5EID1	3-30, 13-11, 13-61
C1MSL2DT4	3-29, 13-11, 13-68	C1MSL5EID2	3-30, 13-11, 13-62
C1MSL2DT5	3-29, 13-11, 13-69	C1MSL5SID0	3-30, 13-11, 13-58
C1MSL2DT6	3-29, 13-11, 13-70	C1MSL5SID1	3-30, 13-11, 13-59
C1MSL2DT7	3-29, 13-11, 13-71	C1MSL5TSP	3-30, 13-11, 13-72
C1MSL2EID0	3-29, 13-11, 13-60	C1MSL6CNT	3-28, 13-10, 13-54
C1MSL2EID1	3-29, 13-11, 13-61	C1MSL6DLC	3-30, 13-12, 13-63
	,,,		5 55, 10 12, 10 00

C1MSL6DT0	3-30, 13-12, 13-64	C1MSL9DT6	3-31, 13-12, 13-70
C1MSL6DT1	3-30, 13-12, 13-65	C1MSL9DT7	3-31, 13-12, 13-71
C1MSL6DT2	3-30, 13-12, 13-66	C1MSL9EID0	3-31, 13-12, 13-60
C1MSL6DT3	3-30, 13-12, 13-67	C1MSL9EID1	3-31, 13-12, 13-61
C1MSL6DT4	3-30, 13-12, 13-68	C1MSL9EID2	3-31, 13-12, 13-62
C1MSL6DT5	3-30, 13-12, 13-69	C1MSL9SID0	3-31, 13-12, 13-58
C1MSL6DT6	3-30, 13-12, 13-70	C1MSL9SID1	3-31, 13-12, 13-59
C1MSL6DT7	3-30, 13-12, 13-71	C1MSL9TSP	3-31, 13-12, 13-72
C1MSL6EID0	3-30, 13-12, 13-60	CAN bus error bit	13-18
C1MSL6EID1	3-30, 13-12, 13-61	CAN bus error interrupt request mask bit	13-32
C1MSL6EID2	3-30, 13-12, 13-62	CAN bus error interrupt request status bit	13-31
C1MSL6SID0	3-30, 13-12, 13-58	CAN DMA0 transfer request source select bit	13-48
C1MSL6SID1	3-30, 13-12, 13-59	CAN DMA1 transfer request source select bit	13-48
C1MSL6TSP	3-30, 13-12, 13-72	CAN operation mode select bit	13-47
C1MSL7CNT	3-28, 13-10, 13-54	CAN reset bit	13-15
C1MSL7DLC	3-30, 13-12, 13-63	CAN reset status bit	13-18
C1MSL7DT0	3-30, 13-12, 13-64	CAN0 Baud Rate Prescaler	3-22, 13-4, 13-26
C1MSL7DT1	3-30, 13-12, 13-65	CAN0 Cause of Error Register	3-22, 13-4, 13-45
C1MSL7DT2	3-30, 13-12, 13-66	CAN0 Configuration Register	3-22, 13-4, 13-22
C1MSL7DT3	3-30, 13-12, 13-67	CAN0 Control Register	3-22, 13-4, 13-15
C1MSL7DT4	3-30, 13-12, 13-68	CAN0 DMA Transfer Request Select Register	3-22, 13-4, 13-48
C1MSL7DT5	3-30, 13-12, 13-69	CAN0 Error Interrupt Request Mask Register	3-22, 13-4, 13-32
C1MSL7DT6	3-30, 13-12, 13-70	CAN0 Error Interrupt Request Status Register	3-22, 13-4, 13-31
C1MSL7DT7	3-30, 13-12, 13-71	CAN0 Extended ID Register	3-22, 13-4, 13-21
C1MSL7EID0	3-30, 13-12, 13-60	CAN0 Global Mask Register Extended ID 0	3-22, 13-4, 13-50
C1MSL7EID1	3-30, 13-12, 13-61	CAN0 Global Mask Register Extended ID 1	3-22, 13-4, 13-50
C1MSL7EID2	3-30, 13-12, 13-62	CAN0 Global Mask Register Extended ID 2	3-22, 13-4, 13-51
C1MSL7SID0	3-30, 13-12, 13-58	CAN0 Global Mask Register Standard ID 0	3-22, 13-4, 13-49
C1MSL7SID1	3-30, 13-12, 13-59	CAN0 Global Mask Register Standard ID 1	3-22, 13-4, 13-49
C1MSL7TSP	3-30, 13-12, 13-72	CAN0 Local Mask Register A Extended ID 0	3-22, 13-4, 13-50
C1MSL8CNT	3-28, 13-10, 13-54	CAN0 Local Mask Register A Extended ID 1	3-22, 13-4, 13-50
C1MSL8DLC	3-30, 13-12, 13-63	CAN0 Local Mask Register A Extended ID 2	3-22, 13-4, 13-51
C1MSL8DT0	3-30, 13-12, 13-64	CAN0 Local Mask Register A Standard ID 0	3-22, 13-4, 13-49
C1MSL8DT1	3-30, 13-12, 13-65	CAN0 Local Mask Register A Standard ID 1	3-22, 13-4, 13-49
C1MSL8DT2	3-30, 13-12, 13-66	CAN0 Local Mask Register B Extended ID 0	3-23, 13-4, 13-50
C1MSL8DT3	3-30, 13-12, 13-67	CAN0 Local Mask Register B Extended ID 1	3-23, 13-4, 13-50
C1MSL8DT4	3-30, 13-12, 13-68	CAN0 Local Mask Register B Extended ID 2	3-23, 13-4, 13-51
C1MSL8DT5	3-30, 13-12, 13-69	CAN0 Local Mask Register B Standard ID 0	3-23, 13-4, 13-49
C1MSL8DT6	3-30, 13-12, 13-70	CAN0 Local Mask Register B Standard ID 1	3-23, 13-4, 13-49
C1MSL8DT7	3-30, 13-12, 13-71	CAN0 Message Slot 0 Control Register	3-23, 13-5, 13-54
C1MSL8EID0	3-30, 13-12, 13-60	CAN0 Message Slot 0 Data 0	3-23, 13-5, 13-64
C1MSL8EID1	3-30, 13-12, 13-61	CAN0 Message Slot 0 Data 1	3-23, 13-5, 13-65
C1MSL8EID2	3-30, 13-12, 13-62	CAN0 Message Slot 0 Data 2	3-23, 13-5, 13-66
C1MSL8SID0	3-30, 13-12, 13-58	CAN0 Message Slot 0 Data 3	3-23, 13-5, 13-67
C1MSL8SID1	3-30, 13-12, 13-59	CAN0 Message Slot 0 Data 4	3-23, 13-5, 13-68
C1MSL8TSP	3-30, 13-12, 13-72	CAN0 Message Slot 0 Data 5	3-23, 13-5, 13-69
C1MSL9CNT	3-28, 13-10, 13-54	CAN0 Message Slot 0 Data 6	3-23, 13-5, 13-70
C1MSL9DLC	3-31, 13-12, 13-63	CAN0 Message Slot 0 Data 7	3-23, 13-5, 13-71
C1MSL9DT0	3-31, 13-12, 13-64	CAN0 Message Slot 0 Data Length Register	3-23, 13-5, 13-63
C1MSL9DT1	3-31, 13-12, 13-65	CAN0 Message Slot 0 Extended ID 0	3-23, 13-5, 13-60
C1MSL9DT2	3-31, 13-12, 13-66	CAN0 Message Slot 0 Extended ID 1	3-23, 13-5, 13-61
C1MSL9DT3	3-31, 13-12, 13-67	CAN0 Message Slot 0 Extended ID 2	3-23, 13-5, 13-62
C1MSL9DT4	3-31, 13-12, 13-68	CAN0 Message Slot 0 Standard ID 0	3-23, 13-5, 13-58
C1MSL9DT5	3-31, 13-12, 13-69	CAN0 Message Slot 0 Standard ID 1	3-23, 13-5, 13-59

CAN0 Message Slot 0 Timestamp	3-23, 13-5, 13-72	CAN0 Message Slot 4 Data 4	3-24, 13-6, 13-68
CAN0 Message Slot 1 Control Register	3-23, 13-5, 13-54	CAN0 Message Slot 4 Data 5	3-24, 13-6, 13-69
CAN0 Message Slot 1 Data 0	3-23, 13-5, 13-64	CAN0 Message Slot 4 Data 6	3-24, 13-6, 13-70
CAN0 Message Slot 1 Data 1	3-23, 13-5, 13-65	CAN0 Message Slot 4 Data 7	3-24, 13-6, 13-71
CAN0 Message Slot 1 Data 2	3-23, 13-5, 13-66	CAN0 Message Slot 4 Data Length Register	3-24, 13-6, 13-63
CAN0 Message Slot 1 Data 3	3-23, 13-5, 13-67	CAN0 Message Slot 4 Extended ID 0	3-24, 13-6, 13-60
CAN0 Message Slot 1 Data 4	3-23, 13-5, 13-68	CAN0 Message Slot 4 Extended ID 1	3-24, 13-6, 13-61
CAN0 Message Slot 1 Data 5	3-23, 13-5, 13-69	CAN0 Message Slot 4 Extended ID 2	3-24, 13-6, 13-62
CAN0 Message Slot 1 Data 6	3-23, 13-5, 13-70	CAN0 Message Slot 4 Standard ID 0	3-24, 13-6, 13-58
CAN0 Message Slot 1 Data 7	3-23, 13-5, 13-71	CAN0 Message Slot 4 Standard ID 1	3-24, 13-6, 13-59
CAN0 Message Slot 1 Data Length Register	3-23, 13-5, 13-63	CAN0 Message Slot 4 Timestamp	3-24, 13-6, 13-72
CAN0 Message Slot 1 Extended ID 0	3-23, 13-5, 13-60	CAN0 Message Slot 5 Control Register	3-23, 13-5, 13-54
CAN0 Message Slot 1 Extended ID 1	3-23, 13-5, 13-61	CAN0 Message Slot 5 Data 0	3-24, 13-6, 13-64
CAN0 Message Slot 1 Extended ID 2	3-23, 13-5, 13-62	CAN0 Message Slot 5 Data 1	3-24, 13-6, 13-65
CAN0 Message Slot 1 Standard ID 0	3-23, 13-5, 13-58	CAN0 Message Slot 5 Data 2	3-24, 13-6, 13-66
CAN0 Message Slot 1 Standard ID 1	3-23, 13-5, 13-59	CAN0 Message Slot 5 Data 3	3-24, 13-6, 13-67
CAN0 Message Slot 1 Timestamp	3-23, 13-5, 13-72	CAN0 Message Slot 5 Data 4	3-24, 13-6, 13-68
CAN0 Message Slot 2 Control Register	3-23, 13-5, 13-54	CAN0 Message Slot 5 Data 5	3-24, 13-6, 13-69
CAN0 Message Slot 2 Data 0	3-24, 13-5, 13-64	CAN0 Message Slot 5 Data 6	3-24, 13-6, 13-70
CAN0 Message Slot 2 Data 1	3-24, 13-5, 13-65	CAN0 Message Slot 5 Data 7	3-24, 13-6, 13-71
CAN0 Message Slot 2 Data 2	3-24, 13-5, 13-66	CAN0 Message Slot 5 Data Length Register	3-24, 13-6, 13-63
CAN0 Message Slot 2 Data 3	3-24, 13-5, 13-67	CAN0 Message Slot 5 Extended ID 0	3-24, 13-6, 13-60
CAN0 Message Slot 2 Data 4	3-24, 13-5, 13-68	CAN0 Message Slot 5 Extended ID 1	3-24, 13-6, 13-61
CAN0 Message Slot 2 Data 5	3-24, 13-5, 13-69	CAN0 Message Slot 5 Extended ID 2	3-24, 13-6, 13-62
CAN0 Message Slot 2 Data 6	3-24, 13-5, 13-70	CAN0 Message Slot 5 Standard ID 0	3-24, 13-6, 13-58
CAN0 Message Slot 2 Data 7	3-24, 13-5, 13-71	CAN0 Message Slot 5 Standard ID 1	3-24, 13-6, 13-59
CAN0 Message Slot 2 Data Length Register	3-24, 13-5, 13-63	CAN0 Message Slot 5 Timestamp	3-24, 13-6, 13-72
CAN0 Message Slot 2 Extended ID 0	3-24, 13-5, 13-60	CAN0 Message Slot 6 Control Register	3-23, 13-5, 13-54
CAN0 Message Slot 2 Extended ID 1	3-24, 13-5, 13-61	CAN0 Message Slot 6 Data 0	3-25, 13-6, 13-64
CAN0 Message Slot 2 Extended ID 2	3-24, 13-5, 13-62	CAN0 Message Slot 6 Data 1	3-25, 13-6, 13-65
CAN0 Message Slot 2 Standard ID 0	3-24, 13-5, 13-58	CAN0 Message Slot 6 Data 2	3-25, 13-6, 13-66
CAN0 Message Slot 2 Standard ID 1	3-24, 13-5, 13-59	CAN0 Message Slot 6 Data 3	3-25, 13-6, 13-67
CAN0 Message Slot 2 Timestamp	3-24, 13-5, 13-72	CAN0 Message Slot 6 Data 4	3-25, 13-6, 13-68
CAN0 Message Slot 3 Control Register	3-23, 13-5, 13-54	CAN0 Message Slot 6 Data 5	3-25, 13-6, 13-69
CAN0 Message Slot 3 Data 0	3-24, 13-6, 13-64	CAN0 Message Slot 6 Data 6	3-25, 13-6, 13-70
CAN0 Message Slot 3 Data 1	3-24, 13-6, 13-65	CAN0 Message Slot 6 Data 7	3-25, 13-6, 13-71
CAN0 Message Slot 3 Data 2	3-24, 13-6, 13-66	CAN0 Message Slot 6 Data Length Register	3-25, 13-6, 13-63
CAN0 Message Slot 3 Data 3	3-24, 13-6, 13-67	CAN0 Message Slot 6 Extended ID 0	3-25, 13-6, 13-60
CAN0 Message Slot 3 Data 4	3-24, 13-6, 13-68	CAN0 Message Slot 6 Extended ID 1	3-25, 13-6, 13-61
CAN0 Message Slot 3 Data 5	3-24, 13-6, 13-69	CAN0 Message Slot 6 Extended ID 2	3-25, 13-6, 13-62
CAN0 Message Slot 3 Data 6	3-24, 13-6, 13-70	CAN0 Message Slot 6 Standard ID 0	3-25, 13-6, 13-58
CAN0 Message Slot 3 Data 7	3-24, 13-6, 13-71	CAN0 Message Slot 6 Standard ID 1	3-25, 13-6, 13-59
CAN0 Message Slot 3 Data Length Register	3-24, 13-6, 13-63	CAN0 Message Slot 6 Timestamp	3-25, 13-6, 13-72
CAN0 Message Slot 3 Extended ID 0	3-24, 13-6, 13-60	CAN0 Message Slot 7 Control Register	3-23, 13-5, 13-54
CAN0 Message Slot 3 Extended ID 1	3-24, 13-6, 13-61	CAN0 Message Slot 7 Data 0	3-25, 13-7, 13-64
CAN0 Message Slot 3 Extended ID 2	3-24, 13-6, 13-62	CAN0 Message Slot 7 Data 1	3-25, 13-7, 13-65
CAN0 Message Slot 3 Standard ID 0	3-24, 13-6, 13-58	CAN0 Message Slot 7 Data 2	3-25, 13-7, 13-66
CAN0 Message Slot 3 Standard ID 1	3-24, 13-6, 13-59	CAN0 Message Slot 7 Data 3	3-25, 13-7, 13-67
CAN0 Message Slot 3 Timestamp	3-24, 13-6, 13-72	CAN0 Message Slot 7 Data 4	3-25, 13-7, 13-68
CAN0 Message Slot 4 Control Register	3-23, 13-5, 13-54	CAN0 Message Slot 7 Data 5	3-25, 13-7, 13-69
CAN0 Message Slot 4 Data 0	3-24, 13-6, 13-64	CAN0 Message Slot 7 Data 6	3-25, 13-7, 13-70
CAN0 Message Slot 4 Data 1	3-24, 13-6, 13-65	CAN0 Message Slot 7 Data 7	3-25, 13-7, 13-71
CAN0 Message Slot 4 Data 2	3-24, 13-6, 13-66	CAN0 Message Slot 7 Data Length Register	3-25, 13-7, 13-63
CAN0 Message Slot 4 Data 3	3-24, 13-6, 13-67	CAN0 Message Slot 7 Extended ID 0	3-25, 13-7, 13-60

CAN0 Message Slot 7 Extended ID 1	3-25, 13-7, 13-61	CAN0 Message Slot 11 Data 0	3-26, 13-8, 13-64
CAN0 Message Slot 7 Extended ID 2	3-25, 13-7, 13-62	CAN0 Message Slot 11 Data 1	3-26, 13-8, 13-65
CAN0 Message Slot 7 Standard ID 0	3-25, 13-7, 13-58	CAN0 Message Slot 11 Data 2	3-26, 13-8, 13-66
CAN0 Message Slot 7 Standard ID 1	3-25, 13-7, 13-59	CAN0 Message Slot 11 Data 3	3-26, 13-8, 13-67
CAN0 Message Slot 7 Timestamp	3-25, 13-7, 13-72	CAN0 Message Slot 11 Data 4	3-26, 13-8, 13-68
CAN0 Message Slot 8 Control Register	3-23, 13-5, 13-54	CAN0 Message Slot 11 Data 5	3-26, 13-8, 13-69
CAN0 Message Slot 8 Data 0	3-25, 13-7, 13-64	CAN0 Message Slot 11 Data 6	3-26, 13-8, 13-70
CAN0 Message Slot 8 Data 1	3-25, 13-7, 13-65	CAN0 Message Slot 11 Data 7	3-26, 13-8, 13-71
CAN0 Message Slot 8 Data 2	3-25, 13-7, 13-66	CAN0 Message Slot 11 Data Length Register	3-26, 13-8, 13-63
CAN0 Message Slot 8 Data 3	3-25, 13-7, 13-67	CAN0 Message Slot 11 Extended ID 0	3-26, 13-8, 13-60
CAN0 Message Slot 8 Data 4	3-25, 13-7, 13-68	CAN0 Message Slot 11 Extended ID 1	3-26, 13-8, 13-61
CAN0 Message Slot 8 Data 5	3-25, 13-7, 13-69	CAN0 Message Slot 11 Extended ID 2	3-26, 13-8, 13-62
CAN0 Message Slot 8 Data 6	3-25, 13-7, 13-70	CAN0 Message Slot 11 Standard ID 0	3-26, 13-8, 13-58
CAN0 Message Slot 8 Data 7	3-25, 13-7, 13-71	CAN0 Message Slot 11 Standard ID 1	3-26, 13-8, 13-59
CAN0 Message Slot 8 Data Length Register	3-25, 13-7, 13-63	CAN0 Message Slot 11 Timestamp	3-26, 13-8, 13-72
CAN0 Message Slot 8 Extended ID 0	3-25, 13-7, 13-60	CAN0 Message Slot 12 Control Register	3-23, 13-5, 13-54
CAN0 Message Slot 8 Extended ID 1	3-25, 13-7, 13-61	CAN0 Message Slot 12 Data 0	3-26, 13-8, 13-64
CAN0 Message Slot 8 Extended ID 2	3-25, 13-7, 13-62	CAN0 Message Slot 12 Data 1	3-26, 13-8, 13-65
CAN0 Message Slot 8 Standard ID 0	3-25, 13-7, 13-58	CAN0 Message Slot 12 Data 2	3-26, 13-8, 13-66
CAN0 Message Slot 8 Standard ID 1	3-25, 13-7, 13-59	CAN0 Message Slot 12 Data 3	3-26, 13-8, 13-67
CAN0 Message Slot 8 Timestamp	3-25, 13-7, 13-72	CAN0 Message Slot 12 Data 4	3-26, 13-8, 13-68
CAN0 Message Slot 9 Control Register	3-23, 13-5, 13-54	CAN0 Message Slot 12 Data 5	3-26, 13-8, 13-69
CAN0 Message Slot 9 Data 0	3-25, 13-7, 13-64	CAN0 Message Slot 12 Data 6	3-26, 13-8, 13-70
CAN0 Message Slot 9 Data 1	3-25, 13-7, 13-65	CAN0 Message Slot 12 Data 7	3-26, 13-8, 13-71
CAN0 Message Slot 9 Data 2	3-25, 13-7, 13-66	CAN0 Message Slot 12 Data Length Register	3-26, 13-8, 13-63
CAN0 Message Slot 9 Data 3	3-25, 13-7, 13-67	CAN0 Message Slot 12 Extended ID 0	3-26, 13-8, 13-60
CAN0 Message Slot 9 Data 4	3-25, 13-7, 13-68	CAN0 Message Slot 12 Extended ID 1	3-26, 13-8, 13-61
CAN0 Message Slot 9 Data 5	3-25, 13-7, 13-69	CAN0 Message Slot 12 Extended ID 2	3-26, 13-8, 13-62
CAN0 Message Slot 9 Data 6	3-25, 13-7, 13-70	CAN0 Message Slot 12 Standard ID 0	3-26, 13-8, 13-58
CAN0 Message Slot 9 Data 7	3-25, 13-7, 13-71	CAN0 Message Slot 12 Standard ID 1	3-26, 13-8, 13-59
CAN0 Message Slot 9 Data Length Register	3-25, 13-7, 13-63	CAN0 Message Slot 12 Timestamp	3-26, 13-8, 13-72
CAN0 Message Slot 9 Extended ID 0	3-25, 13-7, 13-60	CAN0 Message Slot 13 Control Register	3-23, 13-5, 13-54
CAN0 Message Slot 9 Extended ID 1	3-25, 13-7, 13-61	CAN0 Message Slot 13 Data 0	3-26, 13-8, 13-64
CAN0 Message Slot 9 Extended ID 2	3-25, 13-7, 13-62	CAN0 Message Slot 13 Data 1	3-26, 13-8, 13-65
CAN0 Message Slot 9 Standard ID 0	3-25, 13-7, 13-58	CAN0 Message Slot 13 Data 2	3-26, 13-8, 13-66
CAN0 Message Slot 9 Standard ID 1	3-25, 13-7, 13-59	CAN0 Message Slot 13 Data 3	3-26, 13-8, 13-67
CAN0 Message Slot 9 Timestamp	3-25, 13-7, 13-72	CAN0 Message Slot 13 Data 4	3-26, 13-8, 13-68
CAN0 Message Slot 10 Control Register	3-23, 13-5, 13-54	CAN0 Message Slot 13 Data 5	3-26, 13-8, 13-69
CAN0 Message Slot 10 Data 0	3-26, 13-7, 13-64	CAN0 Message Slot 13 Data 6	3-26, 13-8, 13-70
CAN0 Message Slot 10 Data 1	3-26, 13-7, 13-65	CAN0 Message Slot 13 Data 7	3-26, 13-8, 13-71
CAN0 Message Slot 10 Data 2	3-26, 13-7, 13-66	CAN0 Message Slot 13 Data Length Register	3-26, 13-8, 13-63
CAN0 Message Slot 10 Data 3	3-26, 13-7, 13-67	CAN0 Message Slot 13 Extended ID 0	3-26, 13-8, 13-60
CAN0 Message Slot 10 Data 4	3-26, 13-7, 13-68	CAN0 Message Slot 13 Extended ID 1	3-26, 13-8, 13-61
CAN0 Message Slot 10 Data 5	3-26, 13-7, 13-69	CAN0 Message Slot 13 Extended ID 2	3-26, 13-8, 13-62
CAN0 Message Slot 10 Data 6	3-26, 13-7, 13-70	CAN0 Message Slot 13 Standard ID 0	3-26, 13-8, 13-58
CAN0 Message Slot 10 Data 7	3-26, 13-7, 13-71	CAN0 Message Slot 13 Standard ID 1	3-26, 13-8, 13-59
CAN0 Message Slot 10 Data Length Register	3-26, 13-7, 13-63	CAN0 Message Slot 13 Timestamp	3-26, 13-8, 13-72
CAN0 Message Slot 10 Extended ID 0	3-26, 13-7, 13-60	CAN0 Message Slot 14 Control Register	3-23, 13-5, 13-54
CAN0 Message Slot 10 Extended ID 1	3-26, 13-7, 13-61	CAN0 Message Slot 14 Data 0	3-27, 13-8, 13-64
CAN0 Message Slot 10 Extended ID 2	3-26, 13-7, 13-62	CAN0 Message Slot 14 Data 1	3-27, 13-8, 13-65
CAN0 Message Slot 10 Standard ID 0	3-26, 13-7, 13-58	CAN0 Message Slot 14 Data 2	3-27, 13-8, 13-66
CAN0 Message Slot 10 Standard ID 1	3-26, 13-7, 13-59	CAN0 Message Slot 14 Data 3	3-27, 13-8, 13-67
CAN0 Message Slot 10 Timestamp	3-26, 13-7, 13-72	CAN0 Message Slot 14 Data 4	3-27, 13-8, 13-68
CAN0 Message Slot 11 Control Register	3-23, 13-5, 13-54	CAN0 Message Slot 14 Data 5	3-27, 13-8, 13-69

CAN0 Message Slot 14 Data 6	3-27, 13-8, 13-70	CAN1 Baud Rate Prescaler	3-27, 13-9, 13-26
CAN0 Message Slot 14 Data 7	3-27, 13-8, 13-71	CAN1 Cause of Error Register	3-27, 13-9, 13-45
CAN0 Message Slot 14 Data Length Register	3-27, 13-8, 13-63	CAN1 Configuration Register	3-27, 13-9, 13-22
CAN0 Message Slot 14 Extended ID 0	3-27, 13-8, 13-60	CAN1 Control Register	3-27, 13-9, 13-15
CAN0 Message Slot 14 Extended ID 1	3-27, 13-8, 13-61	CAN1 DMA Transfer Request Select Register	3-27, 13-9, 13-48
CAN0 Message Slot 14 Extended ID 2	3-27, 13-8, 13-62	CAN1 Error Interrupt Request Mask Register	3-27, 13-9, 13-32
CAN0 Message Slot 14 Standard ID 0	3-27, 13-8, 13-58	CAN1 Error Interrupt Request Status Register	3-27, 13-9, 13-31
CAN0 Message Slot 14 Standard ID 1	3-27, 13-8, 13-59	CAN1 Extended ID Register	3-27, 13-9, 13-21
CAN0 Message Slot 14 Timestamp	3-27, 13-8, 13-72	CAN1 Global Mask Register Extended ID 0	3-27, 13-9, 13-50
CAN0 Message Slot 15 Control Register	3-23, 13-5, 13-54	CAN1 Global Mask Register Extended ID 1	3-27, 13-9, 13-50
CAN0 Message Slot 15 Data 0	3-27, 13-9, 13-64	CAN1 Global Mask Register Extended ID 2	3-27, 13-9, 13-51
CAN0 Message Slot 15 Data 1	3-27, 13-9, 13-65	CAN1 Global Mask Register Standard ID 0	3-27, 13-9, 13-49
CAN0 Message Slot 15 Data 2	3-27, 13-9, 13-66	CAN1 Global Mask Register Standard ID 1	3-27, 13-9, 13-49
CAN0 Message Slot 15 Data 3	3-27, 13-9, 13-67	CAN1 Local Mask Register A Extended ID0	3-28, 13-9, 13-50
CAN0 Message Slot 15 Data 4	3-27, 13-9, 13-68	CAN1 Local Mask Register A Extended ID1	3-28, 13-9, 13-50
CAN0 Message Slot 15 Data 5	3-27, 13-9, 13-69	CAN1 Local Mask Register A Extended ID2	3-28, 13-9, 13-51
CAN0 Message Slot 15 Data 6	3-27, 13-9, 13-70	CAN1 Local Mask Register A Standard ID0	3-28, 13-9, 13-49
CAN0 Message Slot 15 Data 7	3-27, 13-9, 13-71	CAN1 Local Mask Register A Standard ID1	3-28, 13-9, 13-49
CAN0 Message Slot 15 Data Length Register	3-27, 13-9, 13-63	CAN1 Local Mask Register B Extended ID0	3-28, 13-9, 13-50
CAN0 Message Slot 15 Extended ID 0	3-27, 13-9, 13-60	CAN1 Local Mask Register B Extended ID1	3-28, 13-9, 13-50
CAN0 Message Slot 15 Extended ID 1	3-27, 13-9, 13-61	CAN1 Local Mask Register B Extended ID2	3-28, 13-9, 13-51
CAN0 Message Slot 15 Extended ID 2	3-27, 13-9, 13-62	CAN1 Local Mask Register B Standard ID0	3-28, 13-9, 13-49
CAN0 Message Slot 15 Standard ID 0	3-27, 13-9, 13-58	CAN1 Local Mask Register B Standard ID1	3-28, 13-9, 13-49
CAN0 Message Slot 15 Standard ID 1	3-27, 13-9, 13-59	CAN1 Message Slot 0 Control Register	3-28, 13-10, 13-54
CAN0 Message Slot 15 Timestamp	3-27, 13-9, 13-72	CAN1 Message Slot 0 Data 0	3-28, 13-10, 13-64
CAN0 Mode Register	3-22, 13-4, 13-47	CAN1 Message Slot 0 Data 1	3-28, 13-10, 13-65
CAN0 Receive Error Count Register	3-22, 13-4, 13-25	CAN1 Message Slot 0 Data 2	3-28, 13-10, 13-66
CAN0 Single-Shot Interrupt Request Mask Register	3-23, 13-5, 13-34	CAN1 Message Slot 0 Data 3	3-28, 13-10, 13-67
CAN0 Single-Shot Interrupt Request Status Register	3-23, 13-4, 13-33	CAN1 Message Slot 0 Data 4	3-28, 13-10, 13-68
CAN0 Single-Shot Mode Control Register	3-23, 13-4, 13-53	CAN1 Message Slot 0 Data 5	3-28, 13-10, 13-69
CAN0 Slot Interrupt Request Mask Register	3-22, 13-4, 13-30	CAN1 Message Slot 0 Data 6	3-28, 13-10, 13-70
CAN0 Slot Interrupt Request Status Register	3-22, 13-4, 13-29	CAN1 Message Slot 0 Data 7	3-28, 13-10, 13-71
CAN0 Status Register	3-22, 13-4, 13-18	CAN1 Message Slot 0 Data Length Register	3-28, 13-10, 13-63
CAN0 Timestamp Count Register	3-22, 13-4, 13-24	CAN1 Message Slot 0 Extended ID 0	3-28, 13-10, 13-60
CAN0 Transmit Error Count Register	3-22, 13-4, 13-25	CAN1 Message Slot 0 Extended ID 1	3-28, 13-10, 13-61
CAN0 Transmit/Receive & Error Interrupt Control Register	3-11, 5-4, 5-8	CAN1 Message Slot 0 Extended ID 2	3-28, 13-10, 13-62
CANOBRP	3-22, 13-4, 13-26	CAN1 Message Slot 0 Standard ID 0	3-28, 13-10, 13-58
CANOCNT	3-22, 13-4, 13-15	CAN1 Message Slot 0 Standard ID 1	3-28, 13-10, 13-59
CAN0CONF	3-22, 13-4, 13-22	CAN1 Message Slot 0 Timestamp	3-28, 13-10, 13-72
CAN0DMARQ	3-22, 13-4, 13-48	CAN1 Message Slot 1 Control Register	3-28, 13-10, 13-54
CAN0EF	3-22, 13-4, 13-45	CAN1 Message Slot 1 Data 0	3-29, 13-10, 13-64
CAN0ERIMK	3-22, 13-4, 13-32	CAN1 Message Slot 1 Data 1	3-29, 13-10, 13-65
CANOERIST	3-22, 13-4, 13-31	CAN1 Message Slot 1 Data 2	3-29, 13-10, 13-66
CAN0EXTID	3-22, 13-4, 13-21	CAN1 Message Slot 1 Data 3	3-29, 13-10, 13-67
CAN0MOD	3-22, 13-4, 13-47	CAN1 Message Slot 1 Data 4	3-29, 13-10, 13-68
CANOREC	3-22, 13-4, 13-25	CAN1 Message Slot 1 Data 5	3-29, 13-10, 13-69
CANOSLIMK	3-22, 13-4, 13-30	CAN1 Message Slot 1 Data 6	3-29, 13-10, 13-70
CANOSLIST	3-22, 13-4, 13-29	CAN1 Message Slot 1 Data 7	3-29, 13-10, 13-71
CANOSSIMK	3-23, 13-5, 13-34	CAN1 Message Slot 1 Data Length Register	3-29, 13-10, 13-63
CANOSSIST	3-23, 13-4, 13-33	CAN1 Message Slot 1 Extended ID0	3-29, 13-10, 13-60
CANOSSMODE	3-23, 13-4, 13-53	CAN1 Message Slot 1 Extended ID1	3-29, 13-10, 13-61
CANOSTAT	3-22, 13-4, 13-18	CAN1 Message Slot 1 Extended ID2	3-29, 13-10, 13-62
CANOTEC	3-22, 13-4, 13-25	CAN1 Message Slot 1 Standard ID0	3-29, 13-10, 13-58
CANOTSTMP	3-22, 13-4, 13-24	CAN1 Message Slot 1 Standard ID1	3-29, 13-10, 13-59
	, . ,		

CAN1 Message Slot 1 Timestamp	3-29, 13-10, 13-72	CAN1 Message Slot 5 Data 4	3-30, 13-11, 13-68
CAN1 Message Slot 2 Control Register	3-28, 13-10, 13-54	CAN1 Message Slot 5 Data 5	3-30, 13-11, 13-69
CAN1 Message Slot 2 Data 0	3-29, 13-11, 13-64	CAN1 Message Slot 5 Data 6	3-30, 13-11, 13-70
CAN1 Message Slot 2 Data 1	3-29, 13-11, 13-65	CAN1 Message Slot 5 Data 7	3-30, 13-11, 13-71
CAN1 Message Slot 2 Data 2	3-29, 13-11, 13-66	CAN1 Message Slot 5 Data Length Register	3-30, 13-11, 13-63
CAN1 Message Slot 2 Data 3	3-29, 13-11, 13-67	CAN1 Message Slot 5 Extended ID0	3-30, 13-11, 13-60
CAN1 Message Slot 2 Data 4	3-29, 13-11, 13-68	CAN1 Message Slot 5 Extended ID1	3-30, 13-11, 13-61
CAN1 Message Slot 2 Data 5	3-29, 13-11, 13-69	CAN1 Message Slot 5 Extended ID2	3-30, 13-11, 13-62
CAN1 Message Slot 2 Data 6	3-29, 13-11, 13-70	CAN1 Message Slot 5 Standard ID0	3-30, 13-11, 13-58
CAN1 Message Slot 2 Data 7	3-29, 13-11, 13-71	CAN1 Message Slot 5 Standard ID1	3-30, 13-11, 13-59
CAN1 Message Slot 2 Data Length Register	3-29, 13-11, 13-63	CAN1 Message Slot 5 Timestamp	3-30, 13-11, 13-72
CAN1 Message Slot 2 Extended ID0	3-29, 13-11, 13-60	CAN1 Message Slot 6 Control Register	3-28, 13-10, 13-54
CAN1 Message Slot 2 Extended ID1	3-29, 13-11, 13-61	CAN1 Message Slot 6 Data 0	3-30, 13-12, 13-64
CAN1 Message Slot 2 Extended ID2	3-29, 13-11, 13-62	CAN1 Message Slot 6 Data 1	3-30, 13-12, 13-65
CAN1 Message Slot 2 Standard ID0	3-29, 13-11, 13-58	CAN1 Message Slot 6 Data 2	3-30, 13-12, 13-66
CAN1 Message Slot 2 Standard ID1	3-29, 13-11, 13-59	CAN1 Message Slot 6 Data 3	3-30, 13-12, 13-67
CAN1 Message Slot 2 Timestamp	3-29, 13-11, 13-72	CAN1 Message Slot 6 Data 4	3-30, 13-12, 13-68
CAN1 Message Slot 3 Control Register	3-28, 13-10, 13-54	CAN1 Message Slot 6 Data 5	3-30, 13-12, 13-69
CAN1 Message Slot 3 Data 0	3-29, 13-11, 13-64	CAN1 Message Slot 6 Data 6	3-30, 13-12, 13-70
CAN1 Message Slot 3 Data 1	3-29, 13-11, 13-65	CAN1 Message Slot 6 Data 7	3-30, 13-12, 13-71
CAN1 Message Slot 3 Data 2	3-29, 13-11, 13-66	CAN1 Message Slot 6 Data Length Register	3-30, 13-12, 13-63
CAN1 Message Slot 3 Data 3	3-29, 13-11, 13-67	CAN1 Message Slot 6 Extended ID0	3-30, 13-12, 13-60
CAN1 Message Slot 3 Data 4	3-29, 13-11, 13-68	CAN1 Message Slot 6 Extended ID1	3-30, 13-12, 13-61
CAN1 Message Slot 3 Data 5	3-29, 13-11, 13-69	CAN1 Message Slot 6 Extended ID2	3-30, 13-12, 13-62
CAN1 Message Slot 3 Data 6	3-29, 13-11, 13-70	CAN1 Message Slot 6 Standard ID0	3-30, 13-12, 13-58
CAN1 Message Slot 3 Data 7	3-29, 13-11, 13-71	CAN1 Message Slot 6 Standard ID1	3-30, 13-12, 13-59
CAN1 Message Slot 3 Data Length Register	3-29, 13-11, 13-63	CAN1 Message Slot 6 Timestamp	3-30, 13-12, 13-72
CAN1 Message Slot 3 Extended ID0	3-29, 13-11, 13-60	CAN1 Message Slot 7 Control Register	3-28, 13-10, 13-54
CAN1 Message Slot 3 Extended ID1	3-29, 13-11, 13-61	CAN1 Message Slot 7 Data 0	3-30, 13-12, 13-64
CAN1 Message Slot 3 Extended ID2	3-29, 13-11, 13-62	CAN1 Message Slot 7 Data 1	3-30, 13-12, 13-65
CAN1 Message Slot 3 Standard ID0	3-29, 13-11, 13-58	CAN1 Message Slot 7 Data 2	3-30, 13-12, 13-66
CAN1 Message Slot 3 Standard ID1	3-29, 13-11, 13-59	CAN1 Message Slot 7 Data 3	3-30, 13-12, 13-67
CAN1 Message Slot 3 Timestamp	3-29, 13-11, 13-72	CAN1 Message Slot 7 Data 4	3-30, 13-12, 13-68
CAN1 Message Slot 4 Control Register	3-28, 13-10, 13-54	CAN1 Message Slot 7 Data 5	3-30, 13-12, 13-69
CAN1 Message Slot 4 Data 0	3-29, 13-11, 13-64	CAN1 Message Slot 7 Data 6	3-30, 13-12, 13-70
CAN1 Message Slot 4 Data 1	3-29, 13-11, 13-65	CAN1 Message Slot 7 Data 7	3-30, 13-12, 13-71
CAN1 Message Slot 4 Data 2	3-29, 13-11, 13-66	CAN1 Message Slot 7 Data Length Register	3-30, 13-12, 13-63
CAN1 Message Slot 4 Data 3	3-29, 13-11, 13-67	CAN1 Message Slot 7 Extended ID0	3-30, 13-12, 13-60
CAN1 Message Slot 4 Data 4	3-29, 13-11, 13-68	CAN1 Message Slot 7 Extended ID1	3-30, 13-12, 13-61
CAN1 Message Slot 4 Data 5	3-29, 13-11, 13-69	CAN1 Message Slot 7 Extended ID2	3-30, 13-12, 13-62
CAN1 Message Slot 4 Data 6	3-29, 13-11, 13-70	CAN1 Message Slot 7 Standard ID0	3-30, 13-12, 13-58
CAN1 Message Slot 4 Data 7	3-29, 13-11, 13-71	CAN1 Message Slot 7 Standard ID1	3-30, 13-12, 13-59
CAN1 Message Slot 4 Data Length Register	3-29, 13-11, 13-63	CAN1 Message Slot 7 Timestamp	3-30, 13-12, 13-72
CAN1 Message Slot 4 Extended ID0	3-29, 13-11, 13-60	CAN1 Message Slot 8 Control Register	3-28, 13-10, 13-54
CAN1 Message Slot 4 Extended ID1	3-29, 13-11, 13-61	CAN1 Message Slot 8 Data 0	3-30, 13-12, 13-64
CAN1 Message Slot 4 Extended ID2	3-29, 13-11, 13-62	CAN1 Message Slot 8 Data 1	3-30, 13-12, 13-65
CAN1 Message Slot 4 Standard ID0	3-29, 13-11, 13-58	CAN1 Message Slot 8 Data 2	3-30, 13-12, 13-66
CAN1 Message Slot 4 Standard ID1	3-29, 13-11, 13-59	CAN1 Message Slot 8 Data 3	3-30, 13-12, 13-67
CAN1 Message Slot 4 Timestamp	3-29, 13-11, 13-72	CAN1 Message Slot 8 Data 4	3-30, 13-12, 13-68
CAN1 Message Slot 5 Control Register	3-28, 13-10, 13-54	CAN1 Message Slot 8 Data 5	3-30, 13-12, 13-69
CAN1 Message Slot 5 Data 0	3-30, 13-11, 13-64	CAN1 Message Slot 8 Data 6	3-30, 13-12, 13-70
CAN1 Message Slot 5 Data 1	3-30, 13-11, 13-65	CAN1 Message Slot 8 Data 7	3-30, 13-12, 13-71
CAN1 Message Slot 5 Data 2	3-30, 13-11, 13-66	CAN1 Message Slot 8 Data Length Register	3-30, 13-12, 13-63
CAN1 Message Slot 5 Data 3	3-30, 13-11, 13-67	CAN1 Message Slot 8 Extended ID0	3-30, 13-12, 13-60

CAN1 Message Slot 8 Extended ID1	3-30, 13-12, 13-61	CAN1 Message Slot 12 Data 0	3-31, 13-13, 13-64
CAN1 Message Slot 8 Extended ID2	3-30, 13-12, 13-62	CAN1 Message Slot 12 Data 1	3-31, 13-13, 13-65
CAN1 Message Slot 8 Standard ID0	3-30, 13-12, 13-58	CAN1 Message Slot 12 Data 2	3-31, 13-13, 13-66
CAN1 Message Slot 8 Standard ID1	3-30, 13-12, 13-59	CAN1 Message Slot 12 Data 3	3-31, 13-13, 13-67
CAN1 Message Slot 8 Timestamp	3-30, 13-12, 13-72	CAN1 Message Slot 12 Data 4	3-31, 13-13, 13-68
CAN1 Message Slot 9 Control Register	3-28, 13-10, 13-54	CAN1 Message Slot 12 Data 5	3-31, 13-13, 13-69
CAN1 Message Slot 9 Data 0	3-31, 13-12, 13-64	CAN1 Message Slot 12 Data 6	3-31, 13-13, 13-70
CAN1 Message Slot 9 Data 1	3-31, 13-12, 13-65	CAN1 Message Slot 12 Data 7	3-31, 13-13, 13-71
CAN1 Message Slot 9 Data 2	3-31, 13-12, 13-66	CAN1 Message Slot 12 Data Length Register	3-31, 13-13, 13-63
CAN1 Message Slot 9 Data 3	3-31, 13-12, 13-67	CAN1 Message Slot 12 Extended ID 0	3-31, 13-13, 13-60
CAN1 Message Slot 9 Data 4	3-31, 13-12, 13-68	CAN1 Message Slot 12 Extended ID 1	3-31, 13-13, 13-61
CAN1 Message Slot 9 Data 5	3-31, 13-12, 13-69	CAN1 Message Slot 12 Extended ID 2	3-31, 13-13, 13-62
CAN1 Message Slot 9 Data 6	3-31, 13-12, 13-70	CAN1 Message Slot 12 Standard ID 0	3-31, 13-13, 13-58
CAN1 Message Slot 9 Data 7	3-31, 13-12, 13-71	CAN1 Message Slot 12 Standard ID 1	3-31, 13-13, 13-59
CAN1 Message Slot 9 Data Length Register	3-31, 13-12, 13-63	CAN1 Message Slot 12 Timestamp	3-31, 13-13, 13-72
CAN1 Message Slot 9 Extended ID0	3-31, 13-12, 13-60	CAN1 Message Slot 13 Control Register	3-28, 13-10, 13-54
CAN1 Message Slot 9 Extended ID1	3-31, 13-12, 13-61	CAN1 Message Slot 13 Data 0	3-32, 13-13, 13-64
CAN1 Message Slot 9 Extended ID2	3-31, 13-12, 13-62	CAN1 Message Slot 13 Data 1	3-32, 13-13, 13-65
CAN1 Message Slot 9 Standard ID0	3-31, 13-12, 13-58	CAN1 Message Slot 13 Data 2	3-32, 13-13, 13-66
CAN1 Message Slot 9 Standard ID1	3-31, 13-12, 13-59	CAN1 Message Slot 13 Data 3	3-32, 13-13, 13-67
CAN1 Message Slot 9 Timestamp	3-31, 13-12, 13-72	CAN1 Message Slot 13 Data 4	3-32, 13-13, 13-68
CAN1 Message Slot 10 Control Register	3-28, 13-10, 13-54	CAN1 Message Slot 13 Data 5	3-32, 13-13, 13-69
CAN1 Message Slot 10 Data 0	3-31, 13-13, 13-64	CAN1 Message Slot 13 Data 6	3-32, 13-13, 13-70
CAN1 Message Slot 10 Data 1	3-31, 13-13, 13-65	CAN1 Message Slot 13 Data 7	3-32, 13-13, 13-71
CAN1 Message Slot 10 Data 2	3-31, 13-13, 13-66	CAN1 Message Slot 13 Data Length Register	3-32, 13-13, 13-63
CAN1 Message Slot 10 Data 3	3-31, 13-13, 13-67	CAN1 Message Slot 13 Extended ID 0	3-32, 13-13, 13-60
CAN1 Message Slot 10 Data 4	3-31, 13-13, 13-68	CAN1 Message Slot 13 Extended ID 1	3-32, 13-13, 13-61
CAN1 Message Slot 10 Data 5	3-31, 13-13, 13-69	CAN1 Message Slot 13 Extended ID 2	3-32, 13-13, 13-62
CAN1 Message Slot 10 Data 6	3-31, 13-13, 13-70	CAN1 Message Slot 13 Standard ID 0	3-32, 13-13, 13-58
CAN1 Message Slot 10 Data 7	3-31, 13-13, 13-71	CAN1 Message Slot 13 Standard ID 1	3-32, 13-13, 13-59
CAN1 Message Slot 10 Data Length Register	3-31, 13-13, 13-63	CAN1 Message Slot 13 Timestamp	3-32, 13-13, 13-72
CAN1 Message Slot 10 Extended ID 0	3-31, 13-13, 13-60	CAN1 Message Slot 14 Control Register	3-28, 13-10, 13-54
CAN1 Message Slot 10 Extended ID 1	3-31, 13-13, 13-61	CAN1 Message Slot 14 Data 0	3-32, 13-14, 13-64
CAN1 Message Slot 10 Extended ID 2	3-31, 13-13, 13-62	CAN1 Message Slot 14 Data 1	3-32, 13-14, 13-65
CAN1 Message Slot 10 Standard ID 0	3-31, 13-13, 13-58	CAN1 Message Slot 14 Data 2	3-32, 13-14, 13-66
CAN1 Message Slot 10 Standard ID 1	3-31, 13-13, 13-59	CAN1 Message Slot 14 Data 3	3-32, 13-14, 13-67
CAN1 Message Slot 10 Timestamp	3-31, 13-13, 13-72	CAN1 Message Slot 14 Data 4	3-32, 13-14, 13-68
CAN1 Message Slot 11 Control Register	3-28, 13-10, 13-54	CAN1 Message Slot 14 Data 5	3-32, 13-14, 13-69
CAN1 Message Slot 11 Data 0	3-31, 13-13, 13-64	CAN1 Message Slot 14 Data 6	3-32, 13-14, 13-70
CAN1 Message Slot 11 Data 1	3-31, 13-13, 13-65	CAN1 Message Slot 14 Data 7	3-32, 13-14, 13-71
CAN1 Message Slot 11 Data 2	3-31, 13-13, 13-66	CAN1 Message Slot 14 Data Length Register	3-32, 13-14, 13-63
CAN1 Message Slot 11 Data 3	3-31, 13-13, 13-67	CAN1 Message Slot 14 Extended ID 0	3-32, 13-14, 13-60
CAN1 Message Slot 11 Data 4	3-31, 13-13, 13-68	CAN1 Message Slot 14 Extended ID 1	3-32, 13-14, 13-61
CAN1 Message Slot 11 Data 5	3-31, 13-13, 13-69	CAN1 Message Slot 14 Extended ID 2	3-32, 13-14, 13-62
CAN1 Message Slot 11 Data 6	3-31, 13-13, 13-70	CAN1 Message Slot 14 Standard ID 0	3-32, 13-14, 13-58
CAN1 Message Slot 11 Data 7	3-31, 13-13, 13-71	CAN1 Message Slot 14 Standard ID 1	3-32, 13-14, 13-59
CAN1 Message Slot 11 Data Length Register	3-31, 13-13, 13-63	CAN1 Message Slot 14 Timestamp	3-32, 13-14, 13-72
CAN1 Message Slot 11 Extended ID 0	3-31, 13-13, 13-60	CAN1 Message Slot 15 Control Register	3-28, 13-10, 13-54
CAN1 Message Slot 11 Extended ID 1	3-31, 13-13, 13-61	CAN1 Message Slot 15 Data 0	3-32, 13-14, 13-64
CAN1 Message Slot 11 Extended ID 2	3-31, 13-13, 13-62	CAN1 Message Slot 15 Data 1	3-32, 13-14, 13-65
CAN1 Message Slot 11 Standard ID 0	3-31, 13-13, 13-58	CAN1 Message Slot 15 Data 2	3-32, 13-14, 13-66
CAN1 Message Slot 11 Standard ID 1	3-31, 13-13, 13-59	CAN1 Message Slot 15 Data 3	3-32, 13-14, 13-67
CAN1 Message Slot 11 Timestamp	3-31, 13-13, 13-72	CAN1 Message Slot 15 Data 4	3-32, 13-14, 13-68
CAN1 Message Slot 12 Control Register	3-28, 13-10, 13-54	CAN1 Message Slot 15 Data 5	3-32, 13-14, 13-69
	2		

CAN1 Message Slot 15 Data 6	3-32, 13-14, 13-70	Channel 13 disconnection detection assist method select bit	11-24
CAN1 Message Slot 15 Data 7	3-32, 13-14, 13-71	Channel 14 disconnection detection assist method select bit	11-24
CAN1 Message Slot 15 Data Length Register	3-32, 13-14, 13-63	Channel 15 disconnection detection assist method select bit	11-24
CAN1 Message Slot 15 Extended ID 0	3-32, 13-14, 13-60	CKB2S	10-13
CAN1 Message Slot 15 Extended ID 1	3-32, 13-14, 13-61	CKIEBCR	3-13, 10-8, 10-13
CAN1 Message Slot 15 Extended ID 2	3-32, 13-14, 13-62	CKPOL	12-24
CAN1 Message Slot 15 Standard ID0	3-32, 13-14, 13-58	CKS	12-15
CAN1 Message Slot 15 Standard ID1	3-32, 13-14, 13-59	CLKCR	3-21, 18-5
CAN1 Message Slot 15 Timestamp	3-32, 13-14, 13-72	Clock Bus & Input Event Bus Control Register	3-13, 10-8, 10-13
CAN1 Mode Register	3-27, 13-9, 13-47	Clock bus 2 input select bit	10-13
CAN1 Receive Error Count Register	3-27, 13-9, 13-25	Clock Control Register	3-21, 18-5
CAN1 Single-Shot Interrupt Request Mask Register	3-28, 13-10, 13-34	CMOD	13-47
CAN1 Single-Shot Interrupt Request Status Register	3-28, 13-10, 13-33	CRC error detection bit	13-45
CAN1 Single-Shot Mode Control Register	3-28, 13-10, 13-53	CRCE	13-45
CAN1 Slot Interrupt Request Mask Register	3-27, 13-9, 13-30	CRS	13-18
CAN1 Slot Interrupt Request Status Register	3-27, 13-9, 13-29	CS0 wait cycles select bit	16-4
CAN1 Status Register	3-27, 13-9, 13-18	CSOWTC	16-4
CAN1 Timestamp Count Register	3-27, 13-9, 13-24	CS1 wait cycles select bit	16-4
CAN1 Transmit Error Count Register	3-27, 13-9, 13-25	CS1WTC	16-4
CAN1 Transmit/Receive & Error Interrupt Control Register	3-11, 5-4, 5-8	_	
CAN1BRP	3-27, 13-9, 13-26	D	
CAN1CNT	3-27, 13-9, 13-15	DADSLO	9-6
CAN1CONF	3-27, 13-9, 13-22	DADSL1	9-6
CAN1DMARQ	3-27, 13-9, 13-48	DADSL2	9-7
CAN1EF	3-27, 13-9, 13-45	DADSL3	9-7
CAN1ERIMK	3-27, 13-9, 13-32	DADSL4	9-8
CAN1ERIST	3-27, 13-9, 13-31	DADSL5	9-8
CAN1EXTID	3-27, 13-9, 13-21	DADSL6	9-9
CAN1MOD	3-27, 13-9, 13-47	DADSL7	9-9
CAN1REC	3-27, 13-9, 13-25	DADSL8	9-10
CAN1SLIMK	3-27, 13-9, 13-30	DADSL9	9-10
CAN1SLIST	3-27, 13-9, 13-29	Data length setting bit	13-63
CAN1SSIMK	3-28, 13-10, 13-34	DLCO	13-63
CAN1SSIST	3-28, 13-10, 13-33	DLC1	13-63
CAN1SSMODE	3-28, 13-10, 13-53	DLC2	13-63
CANISTAT	3-27, 13-9, 13-18	DLC3	13-63
CAN1TEC	3-27, 13-9, 13-25		3-18, 9-4, 9-19
CAN1TSTMP	3-27, 13-9, 13-24	DM04ITST	3-18, 9-4, 9-18
CBS	13-18	DMOCNT	3-18, 9-4, 9-6
CDIV	12-13	DM0DA	3-18, 9-4, 9-14
CDMSEL0	13-48	DMOSA	3-18, 9-4, 9-13
CDMSEL1	13-48	DMOSRI	3-19, 9-5, 9-12
Channel 0 disconnection detection assist method select bit	11-24	DMOTCT	3-18, 9-4, 9-15
Channel 1 disconnection detection assist method select bit	11-24	DM1CNT	3-19, 9-4, 9-6
Channel 2 disconnection detection assist method select bit	11-24	DM1DA	3-19, 9-4, 9-14
Channel 3 disconnection detection assist method select bit	11-24	DM1SA	3-19, 9-4, 9-13
Channel 4 disconnection detection assist method select bit	11-24	DM1SRI	3-19, 9-5, 9-12
Channel 5 disconnection detection assist method select bit	11-24		3-19, 9-4, 9-15
Channel 6 disconnection detection assist method select bit	11-24	DM2CNT	3-19, 9-4, 9-7
Channel 7 disconnection detection assist method select bit	11-24	DM2DA	3-19, 9-4, 9-14
Channel 8 disconnection detection assist method select bit	11-24	DM2SA	3-19, 9-4, 9-13
Channel 9 disconnection detection assist method select bit	11-24	DM2SRI	3-20, 9-5, 9-12
Channel 11 disconnection detection assist method select bit	11-24	DM2TCT	3-19, 9-4, 9-15
Channel 12 disconnection detection assist method select bit	11-24	DM3CNT	3-19, 9-5, 9-7

21/22			
DM3DA DM3SA	3-19, 9-5, 9-14	DMA1 destination address direction select bit	9-6
DM3SRI	3-19, 9-5, 9-13	DMA1 Destination Address Register	3-19, 9-4, 9-14 9-19
DM3TCT	3-20, 9-5, 9-12 3-19, 9-5, 9-15	DMA1 interrupt request mask bit	9-19
DM4CNT	3-19, 9-5, 9-8	DMA1 interrupt request status bit DMA1 request source select bit	9-6
DM4DA	3-19, 9-5, 9-14	DMA1 Software Request Generation Register	3-19, 9-5, 9-12
DM45A	3-19, 9-5, 9-13	DMA1 source address direction select bit	9-6
DM4SRI	3-20, 9-5, 9-12	DMA1 Source Address Register	3-19, 9-4, 9-13
DM45Ki	3-20, 9-5, 9-12	DMA1 Transfer Count Register	3-19, 9-4, 9-15
DM59ITMK	3-18, 9-4, 9-19	DMA1 transfer enable bit	9-6
DM59ITST	3-18, 9-4, 9-18	DMA1 transfer mode select bit	9-6
DM5CNT	3-18, 9-4, 9-8	DMA1 transfer request flag bit	9-6
DM5DA	3-18, 9-4, 9-14	DMA1 transfer size select bit	9-6
DM5SA	3-18, 9-4, 9-13	DMA2 Channel Control Register	3-19, 9-4, 9-7
DM5SRI	3-20, 9-5, 9-12	DMA2 destination address direction select bit	9-7
DM5TCT	3-18, 9-4, 9-15	DMA2 Destination Address Register	3-19, 9-4, 9-14
DM6CNT	3-19, 9-4, 9-9	DMA2 Destination Address Register	9-19
DM6DA	3-19, 9-4, 9-14	DMA2 interrupt request status bit	9-18
DM6SA	3-19, 9-4, 9-13	DMA2 request source select bit	9-7
DM6SRI	3-20, 9-5, 9-12	DMA2 Software Request Generation Register	3-20, 9-5, 9-12
DM6TCT	3-19, 9-4, 9-15	DMA2 source address direction select bit	9-7
DM7CNT	3-19, 9-4, 9-9	DMA2 Source Address Register	3-19, 9-4, 9-13
DM7DA	3-19, 9-4, 9-14	DMA2 Transfer Count Register	3-19, 9-4, 9-15
DM7SA	3-19, 9-4, 9-13	DMA2 transfer enable bit	9-7
DM7SRI	3-20, 9-5, 9-12	DMA2 transfer mode select bit	9-7
DM7TCT	3-19, 9-4, 9-15	DMA2 transfer request flag bit	9-7
DM8CNT	3-19, 9-5, 9-10	DMA2 transfer size select bit	9-7
DM8DA	3-19, 9-5, 9-14	DMA3 Channel Control Register	3-19, 9-5, 9-7
DM8SA	3-19, 9-5, 9-13	DMA3 destination address direction select bit	9-7
DM8SRI	3-20, 9-5, 9-12	DMA3 Destination Address Register	3-19, 9-5, 9-14
DM8TCT	3-19, 9-5, 9-15	DMA3 interrupt request mask bit	9-19
DM9CNT	3-19, 9-5, 9-10	DMA3 interrupt request status bit	9-18
DM9DA	3-19, 9-5, 9-14	DMA3 request source select bit	9-7
DM9SA	3-19, 9-5, 9-13	DMA3 Software Request Generation Register	3-20, 9-5, 9-12
DM9SRI	3-20, 9-5, 9-12	DMA3 source address direction select bit	9-7
DM9TCT	3-19, 9-5, 9-15	DMA3 Source Address Register	3-19, 9-5, 9-13
DMA0 Channel Control Register	3-18, 9-4, 9-6	DMA3 Transfer Count Register	3-19, 9-5, 9-15
DMA0 destination address direction select bit	9-6	DMA3 transfer enable bit	9-7
DMA0 Destination Address Register	3-18, 9-4, 9-14	DMA3 transfer mode select bit	9-7
DMA0 interrupt request mask bit	9-19	DMA3 transfer request flag bit	9-7
DMA0 interrupt request status bit	9-18	DMA3 transfer size select bit	9-7
DMA0 request source select bit	9-6	DMA4 Channel Control Register	3-19, 9-5, 9-8
DMA0 Software Request Generation Register	3-19, 9-5, 9-12	DMA4 destination address direction select bit	9-8
DMA0 source address direction select bit	9-6	DMA4 Destination Address Register	3-19, 9-5, 9-14
DMA0 Source Address Register	3-18, 9-4, 9-13	DMA4 interrupt request mask bit	9-19
DMA0 Transfer Count Register	3-18, 9-4, 9-15	DMA4 interrupt request status bit	9-18
DMA0 transfer enable bit	9-6	DMA4 request source select bit	9-8
DMA0 transfer mode select bit	9-6	DMA4 Software Request Generation Register	3-20, 9-5, 9-12
DMA0 transfer request flag bit	9-6	DMA4 source address direction select bit	9-8
DMA0 transfer size select bit	9-6	DMA4 Source Address Register	3-19, 9-5, 9-13
DMA0-4 Interrupt Control Register	3-11, 5-4, 5-8	DMA4 Transfer Count Register	3-19, 9-5, 9-15
DMA0–4 Interrupt Request Mask Register	3-18, 9-4, 9-19	DMA4 transfer enable bit	9-8
DMA0–4 Interrupt Request Status Register	3-18, 9-4, 9-18	DMA4 transfer mode select bit	9-8
DMA1 Channel Control Register	3-19, 9-4, 9-6	DMA4 transfer request flag bit	9-8
-		· -	

DMA4 transfer size select bit	9-8	DMA8 Source Address Register	3-19, 9-5, 9-13
DMA5 Channel Control Register	3-18, 9-4, 9-8	DMA8 Transfer Count Register	3-19, 9-5, 9-15
DMA5 destination address direction select bit	9-8	DMA8 transfer enable bit	9-10
DMA5 Destination Address Register	3-18, 9-4, 9-14	DMA8 transfer mode select bit	9-10
DMA5 interrupt request mask bit	9-19	DMA8 transfer request flag bit	9-10
DMA5 interrupt request status bit	9-18	DMA8 transfer size select bit	9-10
DMA5 request source select bit	9-8	DMA9 Channel Control Register	3-19, 9-5, 9-10
DMA5 Software Request Generation Register	3-20, 9-5, 9-12	DMA9 destination address direction select bit	9-10
DMA5 source address direction select bit	9-8	DMA9 Destination Address Register	3-19, 9-5, 9-14
DMA5 Source Address Register	3-18, 9-4, 9-13	DMA9 interrupt request mask bit	9-19
DMA5 Transfer Count Register	3-18, 9-4, 9-15	DMA9 interrupt request status bit	9-18
DMA5 transfer enable bit	9-8	DMA9 request source select bit	9-10
DMA5 transfer mode select bit	9-8	DMA9 Software Request Generation Register	3-20, 9-5, 9-12
DMA5 transfer request flag bit	9-8	DMA9 source address direction select bit	9-10
DMA5 transfer size select bit	9-8	DMA9 Source Address Register	3-19, 9-5, 9-13
DMA5-9 Interrupt Control Register	3-11, 5-4, 5-8	DMA9 Transfer Count Register	3-19, 9-5, 9-15
DMA5-9 Interrupt Request Mask Register	3-18, 9-4, 9-19	DMA9 transfer enable bit	9-10 9-10
DMA5-9 Interrupt Request Status Register	3-18, 9-4, 9-18	DMA9 transfer mode select bit	
DMA6 Channel Control Register	3-19, 9-4, 9-9	DMA9 transfer request flag bit	9-10
DMA6 destination address direction select bit	9-9	DMA9 transfer size select bit	9-10
DMA6 Destination Address Register	3-19, 9-4, 9-14	DMITMKO	9-19
DMA6 interrupt request statue bit	9-19 9-18	DMITMK1 DMITMK2	9-19 9-19
DMA6 interrupt request status bit	9-18	DMITMK2 DMITMK3	9-19 9-19
DMA6 request source select bit			
DMA6 Software Request Generation Register	3-20, 9-5, 9-12 9-9	DMITMK4 DMITMK5	9-19 9-19
DMA6 source address direction select bit DMA6 Source Address Register	9-9 3-19, 9-4, 9-13	DMITMK5 DMITMK6	9-19
DMA6 Transfer Count Register	3-19, 9-4, 9-15	DMITMK7	9-19
DMA6 transfer enable bit	9-9	DMITMK8	9-19
DMA6 transfer mode select bit	9-9	DMITMK9	9-19
DMA6 transfer request flag bit	9-9	DMITSTO	9-18
DMA6 transfer size select bit	9-9	DMITST0	9-18
DMA7 Channel Control Register	3-19, 9-4, 9-9	DMITST2	9-18
DMA7 destination address direction select bit	9-9	DMITST3	9-18
DMA7 Destination Address Register	3-19, 9-4, 9-14	DMITST4	9-18
DMA7 interrupt request mask bit	9-19	DMITST5	9-18
DMA7 interrupt request status bit	9-18	DMITST6	9-18
DMA7 request source select bit	9-9	DMITST7	9-18
DMA7 Software Request Generation Register	3-20, 9-5, 9-12	DMITST8	9-18
DMA7 source address direction select bit	9-9	DMITST9	9-18
DMA7 Source Address Register	3-19, 9-4, 9-13		0.10
DMA7 Transfer Count Register	3-19, 9-4, 9-15	E	
DMA7 transfer enable bit	9-9	EID0	13-60
DMA7 transfer mode select bit	9-9	EIDOM	13-50
DMA7 transfer request flag bit	9-9	EID1	13-60
DMA7 transfer size select bit	9-9	EID10	13-61
DMA8 Channel Control Register	3-19, 9-5, 9-10	EID10M	13-50
DMA8 destination address direction select bit	9-10	EID11	13-61
DMA8 Destination Address Register	3-19, 9-5, 9-14	EID11M	13-50
DMA8 interrupt request mask bit	9-19	EID12	13-62
DMA8 interrupt request status bit	9-18	EID12M	13-51
DMA8 request source select bit	9-10	EID13	13-62
DMA8 Software Request Generation Register	3-20, 9-5, 9-12	EID13M	13-51
DMA8 source address direction select bit	9-10	EID14	13-62

EID14M	13-51	Extended mask ID2 bit	13-50
EID15	13-62	Extended mask ID3 bit	13-50
EID15M	13-51	Extended mask ID4 bit	13-50
EID16	13-62	Extended mask ID5 bit	13-50
EID16M	13-51	Extended mask ID6 bit	13-50
EID17	13-62	Extended mask ID7 bit	13-50
EID17M	13-51	Extended mask ID8 bit	13-50
EID1M	13-50	Extended mask ID9 bit	13-50
EID2	13-60	Extended mask ID10 bit	13-50
EID2M	13-50	Extended mask ID11 bit	13-50
EID3	13-60	Extended mask ID12 bit	13-51
EID3M	13-50	Extended mask ID13 bit	13-51
EID4	13-61	Extended mask ID14 bit	13-51
EID4M	13-50	Extended mask ID15 bit	13-51
EID5	13-61	Extended mask ID16 bit	13-51
EID5M	13-50	Extended mask ID17 bit	13-51
EID6	13-61	External FP pin status bit	6-7
EID6M	13-50		
EID7	13-61	F	
EID7M	13-50	F/F Data Register 0	3-14, 10-8, 10-24
EID8	13-61	F/F Data Register 1	3-14, 10-8, 10-24
EID8M	13-50	F/F Protect Register 0	3-13, 10-8, 10-23
EID9	13-61	F/F Protect Register 1	3-14, 10-8, 10-23
EID9M	13-50	F/F Source Select Register 0	3-13, 10-8, 10-21
EIM	13-32	F/F Source Select Register 1	3-13, 10-8, 10-22
EIS	13-31	F/F0 output data bit	10-24
EPS	13-18	F/F0 protect bit	10-23
ERASE	6-8	F/F1 output data bit	10-24
Erase status confirmation bit	6-8	F/F1 protect bit	10-23
Error passive interrupt request mask bit	13-32	F/F2 output data bit	10-24
Error passive interrupt request status bit	13-31	F/F2 protect bit	10-23
Error passive status bit	13-18	F/F3 output data bit	10-24
Error sum bit	12-20	F/F3 protect bit	10-23
ERS	12-20	F/F4 output data bit	10-24
Extended ID0 bit	13-60	F/F4 protect bit	10-23
Extended ID1 bit	13-60	F/F5 output data bit	10-24
Extended ID2 bit	13-60	F/F5 protect bit	10-23
Extended ID3 bit	13-60	F/F6 output data bit	10-24
Extended ID4 bit	13-61	F/F6 protect bit	10-23
Extended ID5 bit	13-61	F/F6 source select bit	10-21
Extended ID6 bit	13-61	F/F7 output data bit	10-24
Extended ID7 bit	13-61	F/F7 protect bit	10-23
Extended ID8 bit	13-61	F/F7 source select bit	10-21
Extended ID9 bit	13-61	F/F8 output data bit	10-24
Extended ID10 bit	13-61	F/F8 protect bit	10-23
Extended ID11 bit	13-61	F/F8 source select bit	10-21
Extended ID12 bit	13-62	F/F9 output data bit	10-24
Extended ID13 bit	13-62	F/F9 protect bit	10-23
Extended ID14 bit	13-62	F/F9 source select bit	10-21
Extended ID15 bit	13-62	F/F10 output data bit	10-24
Extended ID16 bit	13-62	F/F10 protect bit	10-23
Extended ID17 bit	13-62	F/F10 source select bit	10-21
Extended mask ID0 bit	13-50	F/F11 output data bit	10-24
Extended mask ID1 bit	13-50	F/F11 protect bit	10-23
		·	

F/F11 source select bit	10-21	FD20	10-24
F/F12 output data bit	10-24	FELBANK0	3-21, 6-6, 6-15
F/F12 protect bit	10-23	FELBANK1	3-21, 6-6, 6-15
F/F12 source select bit	10-21	FEMMOD	6-9
F/F13 output data bit	10-24	FENTRY	6-9
F/F13 protect bit	10-23	FESBANK0	3-21, 6-6, 6-16
F/F13 source select bit	10-21	FESBANK1	3-21, 6-6, 6-16
F/F14 output data bit	10-24	FF6	10-21
F/F14 protect bit	10-23	FF7	10-21
F/F14 source select bit	10-21	FF8	10-21
F/F15 output data bit	10-24	FF9	10-21
F/F15 protect bit	10-23	FF10	10-21
F/F15 source select bit	10-21	FF11	10-21
F/F16 output data bit	10-24	FF12	10-21
F/F16 protect bit	10-23	FF13	10-21
F/F16 source select bit	10-22	FF14	10-21
F/F17 output data bit	10-24	FF15	10-21
F/F17 protect bit	10-23	FF16	10-22
F/F17 source select bit	10-22	FF17	10-22
F/F18 output data bit	10-24	FF18	10-22
F/F18 protect bit	10-23	FF19	10-22
F/F18 source select bit	10-22	FFD0	3-14, 10-8, 10-24
F/F19 output data bit	10-24	FFD1	3-14, 10-8, 10-24
F/F19 protect bit	10-23	FFP0	3-13, 10-8, 10-23
F/F19 source select bit	10-22	FFP1	3-14, 10-8, 10-23
F/F20 output data bit	10-24	FFS0	3-13, 10-8, 10-21
F/F20 protect bit	10-23	FFS1	3-13, 10-8, 10-22
		Fleeh eesses enable status hit	
FAENS	6-7	Flash access enable status bit	6-7
FAENS FBSYCK	6-7 6-11	Flash busy bit	6-7 6-8
FAENS FBSYCK FBUSY	6-7 6-11 6-8	Flash busy bit Flash Control Register 1	6-7 6-8 3-21, 6-6, 6-9
FAENS FBSYCK FBUSY FCNT1	6-7 6-11 6-8 3-21, 6-6, 6-9	Flash busy bit Flash Control Register 1 Flash Control Register 2	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10
FAENS FBSYCK FBUSY FCNT1 FCNT2	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash E/W enable mode entry bit	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 6-9
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash E/W enable mode entry bit Flash Mode Register	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 6-9 3-21, 6-6, 6-7
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-24	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash E/W enable mode entry bit Flash Mode Register Flash reset bit	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 6-9 3-21, 6-6, 6-7 6-13
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-24 10-24	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash E/W enable mode entry bit Flash Mode Register Flash reset bit Flash Status Register	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 6-9 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-13 10-24 10-24 10-24 10-24	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash E/W enable mode entry bit Flash Mode Register Flash reset bit Flash Status Register FLBST	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 6-9 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8 6-32
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD4	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-24 10-24 10-24 10-24 10-24	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash E/W enable mode entry bit Flash Mode Register Flash reset bit Flash Status Register FLBST FLM	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 6-9 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8 6-32 12-20
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD4 FD5	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash E/W enable mode entry bit Flash Mode Register Flash reset bit Flash Status Register FLBST FLM FLOCKS	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 6-9 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8 6-32 12-20 6-10
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD4 FD5 FD6	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash E/W enable mode entry bit Flash Mode Register Flash reset bit Flash Status Register FLBST FLM FLOCKS FLOCKST	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-13 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8 6-32 12-20 6-10 6-13
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD4 FD5 FD6 FD7	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash Control Register 4 Flash Mode Register Flash neset bit Flash Status Register FLBST FLM FLOCKS FLOCKST FMOD	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-13 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8 6-32 12-20 6-10 6-13 3-21, 6-6, 6-7
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD4 FD5 FD6 FD7 FD8	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash Control Register 4 Flash E/W enable mode entry bit Flash Mode Register Flash reset bit Flash status Register FLBST FLM FLOCKS FLOCKST FMOD Forcible reset bit	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 6-9 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8 6-32 12-20 6-10 6-13 3-21, 6-6, 6-7 13-15
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD4 FD5 FD6 FD7 FD8 FD9	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash Control Register 4 Flash Mode Register Flash Mode Register Flash status Register FLBST FLM FLOCKS FLOCKST FMOD Forcible reset bit Form error detection bit	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8 6-32 12-20 6-10 6-13 3-21, 6-6, 6-7 13-15 13-45
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD4 FD5 FD6 FD7 FD8 FD9 FD10	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash Control Register 4 Flash Mode Register Flash Mode Register Flash status Register FLBST FLM FLOCKS FLOCKST FMOD Forcible reset bit Form error detection bit FORME	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8 6-32 12-20 6-10 6-13 3-21, 6-6, 6-7 13-15 13-45
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD6 FD7 FD8 FD9 FD10 FD11	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash Control Register 4 Flash Mode Register Flash neset bit Flash Status Register FLBST FLM FLOCKS FLOCKS FLOCKST FMOD Forcible reset bit Form error detection bit FORME FP0	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8 6-32 12-20 6-10 6-13 3-21, 6-6, 6-7 13-15 13-45 13-45 10-23
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD4 FD5 FD6 FD7 FD8 FD9 FD10 FD11 FD12	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-24 10-24 10-24 10-24 10-24 10-24 10-24 10-24 10-24 10-24 10-24 10-24 10-24	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash Control Register 4 Flash Control Register 4 Flash Mode Register Flash reset bit Flash status Register FLBST FLM FLOCKS FLOCKST FMOD Forcible reset bit Form error detection bit FORME FP0 FP1	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8 6-32 12-20 6-10 6-13 3-21, 6-6, 6-7 13-15 13-45 13-45 10-23 10-23
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD4 FD5 FD6 FD7 FD8 FD9 FD10 FD11 FD12 FD13	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash Control Register 4 Flash Mode Register Flash Node Register Flash reset bit Flash Status Register FLBST FLM FLOCKS FLOCKST FMOD Forcible reset bit Form error detection bit FORME FP0 FP1 FP2	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8 6-32 12-20 6-10 6-13 3-21, 6-6, 6-7 13-15 13-45 13-45 10-23 10-23
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD4 FD5 FD6 FD7 FD8 FD9 FD10 FD11 FD12 FD13 FD14	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash Control Register 4 Flash Mode Register Flash Mode Register Flash status Register FLBST FLM FLOCKS FLOCKST FMOD Forcible reset bit Form error detection bit FORME FP0 FP1 FP2 FP3	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-13 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-7 6-32 12-20 6-10 6-13 3-21, 6-6, 6-7 13-15 13-45 13-45 13-45 10-23 10-23 10-23
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD4 FD5 FD6 FD7 FD8 FD9 FD10 FD11 FD12 FD13 FD14 FD15	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash Control Register 4 Flash Mode Register Flash Node Register Flash reset bit Flash Status Register FLBST FLM FLOCKS FLOCKST FMOD Forcible reset bit Form error detection bit FORME FP0 FP1 FP2	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8 6-32 12-20 6-10 6-13 3-21, 6-6, 6-7 13-15 13-45 13-45 10-23 10-23
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD4 FD5 FD6 FD7 FD8 FD9 FD10 FD11 FD12 FD13 FD14 FD15 FD14 FD15 FD16	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash Control Register 4 Flash Mode Register Flash reset bit Flash status Register FLBST FLM FLOCKS FLOCKST FMOD Forcible reset bit Form error detection bit FORME FP0 FP1 FP2 FP3 FP4 FP5	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 6-9 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8 6-32 12-20 6-10 6-13 3-21, 6-6, 6-7 13-15 13-45 13-45 13-45 10-23
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD4 FD5 FD6 FD7 FD8 FD9 FD10 FD11 FD12 FD13 FD14 FD15	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash Control Register 4 Flash Mode Register Flash reset bit Flash Status Register FLBST FLM FLOCKS FLOCKST FMOD Forcible reset bit Form error detection bit FORME FP0 FP1 FP2 FP3 FP4 FP5 FP6	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-7 12-20 6-10 6-13 3-21, 6-6, 6-7 13-15 13-45 13-45 13-45 10-23 10-23 10-23 10-23 10-23
FAENS FBSYCK FBUSY FCNT1 FCNT2 FCNT3 FCNT4 FD0 FD1 FD2 FD3 FD4 FD5 FD6 FD7 FD8 FD9 FD10 FD12 FD13 FD14 FD15 FD14 FD15 FD16 FD15 FD16 FD17	6-7 6-11 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 10-24 10-	Flash busy bit Flash Control Register 1 Flash Control Register 2 Flash Control Register 3 Flash Control Register 4 Flash Control Register 4 Flash Mode Register Flash reset bit Flash status Register FLBST FLM FLOCKS FLOCKST FMOD Forcible reset bit Form error detection bit FORME FP0 FP1 FP2 FP3 FP4 FP5	6-7 6-8 3-21, 6-6, 6-9 3-21, 6-6, 6-10 3-21, 6-6, 6-11 3-21, 6-6, 6-13 6-9 3-21, 6-6, 6-7 6-13 3-21, 6-6, 6-8 6-32 12-20 6-10 6-13 3-21, 6-6, 6-7 13-15 13-45 13-45 13-45 10-23

FP9	10-23	IMJTICR2	3-11, 5-4, 5-8
FP10	10-23	IMJTICR3	3-11, 5-4, 5-8
FP11	10-23	IMJTICR4	3-11, 5-4, 5-8
FP12	10-23	IMJTOCR0	3-11, 5-4, 5-8
FP13	10-23	IMJTOCR1	3-11, 5-4, 5-8
FP14	10-23	IMJTOCR2	3-11, 5-4, 5-8
FP15	10-23	IMJTOCR3	3-11, 5-4, 5-8
FP16	10-23	IMJTOCR4	3-11, 5-4, 5-8
FP17	10-23	IMJTOCR5	3-11, 5-4, 5-8
FP18	10-23	IMJTOCR6	3-11, 5-4, 5-8
FP19	10-23	IMJTOCR7	3-11, 5-4, 5-8
FP20	10-23	Input event bus 0 input select bit	10-13
FPBSYCK	6-11	Input event bus 1 input select bit	10-13
FPMOD	6-7	Input event bus 2 input select bit	10-13
FPROT	6-10	Input event bus 3 input select bit	10-13
Framing error bit, UART mode only	12-20	Internal/external clock select bit	12-15
FRESET	6-13	Interrupt priority level bits	5-9
FRST	13-15	Interrupt request bit	5-9
FSTAT	3-21, 6-6, 6-8	Interrupt Request Mask Register	3-11, 5-4, 5-6
		Interrupt Vector Register	3-11, 5-4, 5-5
G		IRB0	13-30
Group n dual-function input select bit	8-19	IRB1	13-30
Group n input threshold select bit	8-19	IRB2	13-30
Group n port input select bit	8-19	IRB3	13-30
		IRB4	13-30
I		IRB5	13-30
IAD0CCR	3-11, 5-4, 5-8	IRB6	13-30
ICAN0CR	3-11, 5-4, 5-8	IRB7	13-30
ICAN1CR	3-11, 5-4, 5-8	IRB8	13-30
IDE0	13-21	IRB9	13-30
IDE1	13-21	IRB10	13-30
IDE2	13-21	IRB11	13-30
IDE3	13-21	IRB12	13-30
IDE4	13-21	IRB13	13-30
IDE5	13-21	IRB14	13-30
IDE6	13-21	IRB15	13-30
IDE7	13-21	IREQ	5-9
IDE8	13-21	IRQR2	12-9
IDE9	13-21	IRQR3	12-9
IDE10	13-21	IRQT2	12-9
IDE11	13-21	IRQT3	12-9
IDE12	13-21	IRTDCR	3-11, 5-4, 5-8
IDE13	13-21	ISIO0RXCR	3-11, 5-4, 5-8
IDE14	13-21	ISIO0TXCR	3-11, 5-4, 5-8
IDE15	13-21	ISIO1RXCR	3-11, 5-4, 5-8
IDMA04CR	3-11, 5-4, 5-8	ISIO1TXCR	3-11, 5-4, 5-8
IDMA59CR	3-11, 5-4, 5-8	ISIO23CR	3-11, 5-4, 5-8
IEB0S	10-13	ISR0	12-11
IEB1S	10-13	ISR1	12-11
IEB2S	10-13	ISR2	12-11
IEB3S	10-13	ISR3	12-11
ILEVEL	5-9	ISTO	12-11
IMASK	3-11, 5-4, 5-6	IST1	12-11
IMJTICR1	3-11, 5-4, 5-8	IST2	12-11

10770		05500	
IST3	12-11	OEB3S	10-14
IVECT	3-11, 5-4, 5-5	OEBCR	3-13, 10-8, 10-14
		OIM	13-32 13-31
L	C 45	OIS	10-14
L bank address bit LBANKAD	6-15 6-15	Output event bus 0 input select bit	10-14
LBM		Output event bus 1 input select bit	
	13-15	Output event bus 2 input select bit	10-14
LBS	13-18 6-10	Output event bus 3 input select bit	10-14 3-13, 10-8, 10-14
Lock bit protect control bit Lock bit read mode select bit	6-10	Output Event Bus Control Register Overrun error bit	12-20
Lock bit tead mode select bit	6-13	OVR	12-20
Lock Bit Status Register	6-32		12-20
Loopback mode bit	13-15	Р	
Loopback status bit	13-18	• P0 Data Register	3-20, 8-5, 8-7
	10 10	P0 Direction Register	3-20, 8-5, 8-8
м		PODATA	3-20, 8-5, 8-7
MDSEL0	9-6	PODIR	3-20, 8-5, 8-8
MDSEL1	9-6	P1 Data Register	3-20, 8-5, 8-7
MDSEL2	9-7	P1 Direction Register	3-20, 8-5, 8-8
MDSEL3	9-7	P10 Data Register	3-20, 8-5, 8-7
MDSEL4	9-8	P10 Direction Register	3-20, 8-5, 8-8
MDSEL5	9-8	P10 Operation Mode Register	3-21, 8-6, 8-10
MDSEL6	9-9	P100MOD	8-10
MDSEL7	9-9	P101MOD	8-10
MDSEL8	9-10	P102MOD	8-10
MDSEL9	9-10	P103MOD	8-10
Message lost bit	13-55	P104MOD	8-10
Message slot number bit	13-18	P105MOD	8-10
MJT Input Interrupt Control Register 1	3-11, 5-4, 5-8	P106MOD	8-10
MJT Input Interrupt Control Register 2	3-11, 5-4, 5-8	P107MOD	8-10
MJT Input Interrupt Control Register 3	3-11, 5-4, 5-8	P10DATA	3-20, 8-5, 8-7
MJT Input Interrupt Control Register 4	3-11, 5-4, 5-8	P10DIR	3-20, 8-5, 8-8
MJT Output Interrupt Control Register 0	3-11, 5-4, 5-8	P10MOD	3-21, 8-6, 8-10
MJT Output Interrupt Control Register 1	3-11, 5-4, 5-8	P11 Data Register	3-20, 8-5, 8-7
MJT Output Interrupt Control Register 2	3-11, 5-4, 5-8	P11 Direction Register	3-20, 8-5, 8-8
MJT Output Interrupt Control Register 3	3-11, 5-4, 5-8	P11 Operation Mode Register	3-21, 8-6, 8-11
MJT Output Interrupt Control Register 4	3-11, 5-4, 5-8	P110MOD	8-11
MJT Output Interrupt Control Register 5	3-11, 5-4, 5-8	P111MOD	8-11
MJT Output Interrupt Control Register 6	3-11, 5-4, 5-8	P112MOD	8-11
MJT Output Interrupt Control Register 7	3-11, 5-4, 5-8	P113MOD	8-11
ML	13-55	P114MOD	8-11
MOD0 data bit	6-24	P115MOD	8-11
MOD0DT	6-24	P116MOD	8-11
MOD1 data bit	6-24	P117MOD	8-11
MOD1DT	6-24	P11DATA	3-20, 8-5, 8-7
MODENL	6-15	P11DIR	3-20, 8-5, 8-8
MODENS	6-16	P11MOD	3-21, 8-6, 8-11
MSN	13-18	P12 Data Register	3-20, 8-5, 8-7
2		P12 Direction Register	3-20, 8-5, 8-8
O	10.1-	P12 Operation Mode Register	3-21, 8-6, 8-11
Odd/even parity select bit, UART mode only	12-15	P124MOD	8-11
OEB0S	10-14	P125MOD	8-11
OEB1S OEB2S	10-14 10-14	P126MOD	8-11 8-11
	10-14	P127MOD	8-11

P12DATA P12DIR	3-20, 8-5, 8-7	P6 Data Register	3-20, 8-5, 8-7
P12DIR P12MOD	3-20, 8-5, 8-8 3-21, 8-6, 8-11	P6 Direction Register P6DATA	3-20, 8-5, 8-8 3-20, 8-5, 8-7
P13 Data Register	3-20, 8-5, 8-7	P6DIR	3-20, 8-5, 8-8
P13 Direction Register	3-20, 8-5, 8-8	P7 Data Register	3-20, 8-5, 8-7
P13 Operation Mode Register	3-21, 8-6, 8-12	P7 Direction Register	3-20, 8-5, 8-8
P130MOD	8-12	P7 Operation Mode Register	3-21, 8-6, 8-9,
P131MOD	8-12		15-4, 18-7
P132MOD	8-12	P7 Peripheral Function Select Register	3-21, 8-6, 8-14
P133MOD	8-12	P70MOD	8-9, 15-4, 18-7
P134MOD	8-12	P71MOD	8-9, 15-4, 18-7
P135MOD	8-12	P72MOD	8-9, 15-4, 18-7
P136MOD	8-12	P73MOD	8-9, 15-4, 18-7
P137MOD	8-12	P74MOD	8-9, 8-14, 15-4, 18-7
P13DATA	3-20, 8-5, 8-7	P75MOD	8-9, 8-14, 15-4, 18-7
P13DIR	3-20, 8-5, 8-8	P76MOD	8-9, 8-14, 15-4, 18-7
P13MOD	3-21, 8-6, 8-12	P77MOD	8-9, 8-14, 15-4, 18-7
P15 Data Register	3-20, 8-5, 8-7	P7DATA	3-20, 8-5, 8-7
P15 Direction Register	3-20, 8-5, 8-8	P7DIR	3-20, 8-5, 8-8
P15 Operation Mode Register	3-21, 8-6, 8-12	P7MOD	3-21, 8-6, 8-9,
P150MOD	8-12		15-4, 18-7
P153MOD	8-12	P7SMOD	3-21, 8-6, 8-14
P15DATA	3-20, 8-5, 8-7	P8 Data Register	3-20, 6-24, 8-5, 8-7
P15DIR	3-20, 8-5, 8-8	P8 Direction Register	3-20, 8-5, 8-8
P15MOD	3-21, 8-6, 8-12	P8 Operation Mode Register	3-21, 8-6, 8-9
P17 Data Register	3-20, 8-5, 8-7	P82DT	6-24
P17 Direction Register	3-20, 8-5, 8-8	P82MOD	8-9
P17 Operation Mode Register	3-21, 8-6, 8-13	P83DT	6-24
P174MOD	8-13	P83MOD	8-9
P175MOD	8-13	P84DT	6-24
P17DATA	3-20, 8-5, 8-7	P84MOD	8-9
P17DIR	3-20, 8-5, 8-8	P85DT	6-24
P17MOD	3-21, 8-6, 8-13	P85MOD	8-9
P1DATA	3-20, 8-5, 8-7	P86DT	6-24
P1DIR	3-20, 8-5, 8-8	P86MOD	8-9
P2 Data Register	3-20, 8-5, 8-7	P87DT	6-24
P2 Direction Register	3-20, 8-5, 8-8	P87MOD	8-9
P22 Data Register	3-20, 8-5, 8-7	P8DATA	3-20, 6-24, 8-5, 8-7
P22 Direction Register	3-21, 8-5, 8-8	P8DIR	3-20, 8-5, 8-8
P22 Operation Mode Register	3-21, 8-6, 8-13	P8MOD	3-21, 8-6, 8-9
P220MOD	8-13	P9 Data Register	3-20, 8-5, 8-7
P22DATA	3-20, 8-5, 8-7	P9 Direction Register	3-20, 8-5, 8-8
P22DIR	3-21, 8-5, 8-8	P9 Operation Mode Register	3-21, 8-6, 8-10
P22MOD	3-21, 8-6, 8-13	P93MOD	8-10
P2DATA	3-20, 8-5, 8-7	P94MOD	8-10
P2DIR	3-20, 8-5, 8-8	P95MOD	8-10
P3 Data Register	3-20, 8-5, 8-7	P96MOD	8-10
P3 Direction Register	3-20, 8-5, 8-8	P97MOD	8-10
P3DATA	3-20, 8-5, 8-7	P9DATA	3-20, 8-5, 8-7
P3DIR	3-20, 8-5, 8-8	P9DIR	3-20, 8-5, 8-8
P4 Data Register	3-20, 8-5, 8-7	P9MOD	3-21, 8-6, 8-10
P4 Direction Register	3-20, 8-5, 8-8	Parity enable bit, UART mode only	12-15
P4DATA	3-20, 8-5, 8-7	Parity error bit, UART mode only	12-20
P4DIR	3-20, 8-5, 8-8	PEN	12-15

PG01LEV	3-21, 8-6, 8-18	Port P84 data bit	6-24
PG3LEV	3-21, 8-6, 8-18	Port P84 operation mode bit	8-9
PG45LEV	3-21, 8-6, 8-18	Port P85 data bit	6-24
PG67LEV	3-21, 8-6, 8-18	Port P85 operation mode bit	8-9
PG8LEV	3-21, 8-6, 8-18	Port P86 data bit	6-24
PH1	13-22	Port P86 operation mode bit	8-9
PH2	13-22	Port P87 data bit	6-24
Phase Segment1 setting bit	13-22	Port P87 operation mode bit	8-9
Phase Segment2 setting bit	13-22	Port P93 operation mode bit	8-10
PICNT	3-21, 8-6, 8-15, 18-3	Port P94 operation mode bit	8-10
PIEN0	8-15, 18-3	Port P95 operation mode bit	8-10
PIM	13-32	Port P96 operation mode bit	8-10
PIS	13-31	Port P97 operation mode bit	8-10
PISEL	8-15, 18-3	Port P100 operation mode bit	8-10
Pn0DIR	8-8	Port P101 operation mode bit	8-10
Pn0DT	8-7	Port P102 operation mode bit	8-10
Pn1DIR	8-8	Port P103 operation mode bit	8-10
Pn1DT	8-7	Port P104 operation mode bit	8-10
Pn2DIR	8-8	Port P105 operation mode bit	8-10
Pn2DT	8-7	Port P106 operation mode bit	8-10
Pn3DIR	8-8	Port P107 operation mode bit	8-10
Pn3DT	8-7	Port P110 operation mode bit	8-11
Pn4DIR	8-8	Port P111 operation mode bit	8-11
Pn4DT	8-7	Port P112 operation mode bit	8-11
Pn5DIR	8-8	Port P113 operation mode bit	8-11
Pn5DT	8-7	Port P114 operation mode bit	8-11
Pn6DIR	8-8	Port P115 operation mode bit	8-11
Pn6DT	8-7	Port P116 operation mode bit	8-11
Pn7DIR	8-8	Port P117 operation mode bit	8-11
Pn7DT	8-7	Port P220 operation mode bit	8-13
Port Group 0, 1 Input Level Setting Register	3-21, 8-6, 8-18	Port P124 operation mode bit	8-11
Port Group 3 Input Level Setting Register	3-21, 8-6, 8-18	Port P125 operation mode bit	8-11
Port Group 4, 5 Input Level Setting Register	3-21, 8-6, 8-18	Port P126 operation mode bit	8-11
Port Group 6, 7 Input Level Setting Register	3-21, 8-6, 8-18	Port P127 operation mode bit	8-11
Port Group 8 Input Level Setting Register	3-21, 8-6, 8-18	Port P130 operation mode bit	8-12
Port input data select bit	8-15, 18-3	Port P131 operation mode bit	8-12
Port input enable bit	8-15, 18-3	Port P132 operation mode bit	8-12
Port Input Special Function Control Register	3-21, 8-6, 8-15, 18-3	Port P133 operation mode bit	8-12
Port P70 operation mode bit	8-9, 15-4, 18-7	Port P134 operation mode bit	8-12
Port P71 operation mode bit	8-9, 15-4, 18-7	Port P135 operation mode bit	8-12
Port P72 operation mode bit	8-9, 15-4, 18-7	Port P136 operation mode bit	8-12
Port P73 operation mode bit	8-9, 15-4, 18-7	Port P137 operation mode bit	8-12
Port P74 operation mode bit	8-9, 15-4, 18-7	Port P150 operation mode bit	8-12
Port P74 peripheral function select bit	8-14	Port P153 operation mode bit	8-12
Port P75 operation mode bit	8-9, 15-4, 18-7	Port P174 operation mode bit	8-13
Port P75 peripheral function select bit	8-14	Port P175 operation mode bit	8-13
Port P76 operation mode bit	8-9, 15-4, 18-7 8-14	Port Pn0 data bit Port Pn0 direction bit	8-7 8-8
Port P76 peripheral function select bit	8-14		
Port P77 operation mode bit	8-9, 15-4, 18-7 8-14	Port Pn1 data bit Port Pn1 direction bit	8-7
Port P77 peripheral function select bit	8-14 6-24		8-8 8-7
Port P82 data bit	8-9	Port Pn2 data bit	
Port P82 operation mode bit Port P83 data bit	8-9 6-24	Port Pn2 direction bit Port Pn3 data bit	8-8 8-7
Port P83 operation mode bit	8-9	Port Pn3 data bit	8-7 8-8
	0-9		0-0

Port Pn4 data bit	8-7	RSB	13-18
Port Pn4 direction bit	8-8	RSC	13-18
Port Pn5 data bit	8-7	RST	13-15
Port Pn5 direction bit	8-8	RSTAT	12-20
Port Pn6 data bit	8-7	RTD Interrupt Control Register	3-11, 5-4, 5-8
Port Pn6 direction bit	8-8	RTD Write Function Disable Register	3-21, 14-3
Port Pn7 data bit	8-7	RTDWRDIS	14-3
Port Pn7 direction bit	8-8	-	
PRB	13-22	S	
Prebusy check bit	6-11	S bank address bit	6-16
Prescaler Register 0	3-13, 10-8, 10-9	SOBAUR	3-12, 12-5, 12-23
Prescaler Register 1	3-13, 10-8, 10-9	SOMOD	3-12, 12-5, 12-15
Prescaler Register 2	3-13, 10-8, 10-9	SORCNT	3-12, 12-5, 12-20
Propagation Segment setting bit	13-22	SORXB	3-12, 12-5, 12-19
PRS0	3-13, 10-8, 10-9	SOSMOD	3-13, 12-5, 12-24
PRS1	3-13, 10-8, 10-9	SOTCNT	3-12, 12-5, 12-13
PRS2	3-13, 10-8, 10-9	SOTXB	3-12, 12-5, 12-18
PSEL	12-15	S1BAUR	3-13, 12-5, 12-23
PTnSEL	8-19	S1MOD	3-13, 12-5, 12-15
PTY	12-20	S1RCNT	3-13, 12-5, 12-20
-		S1RXB	3-13, 12-5, 12-19
R	40.40	SISMOD	3-13, 12-5, 12-24
ROMASK	12-10	SITCNT	3-13, 12-5, 12-13
R1MASK	12-10	S1TXB	3-13, 12-5, 12-18
R2MASK	12-10	S2BAUR	3-13, 12-5, 12-23
R3MASK	12-10	S2MOD	3-13, 12-5, 12-15
RA	13-55	S2RCNT	3-13, 12-5, 12-20
RBO	13-15	S2RXB	3-13, 12-5, 12-19
RCVE	13-45	S2TCNT	3-13, 12-5, 12-13
Receive enable bit	12-20	S2TXB	3-13, 12-5, 12-18
Receive error detection bit	13-45	S3BAUR	3-13, 12-5, 12-23
Receive request bit	13-55	S3MOD	3-13, 12-5, 12-15
Receive status bit	12-20, 13-18	S3RCNT	3-13, 12-5, 12-20
Reception completed status bit	13-18	S3RXB	3-13, 12-5, 12-19
Reception finished bit	12-20	S3TCNT	3-13, 12-5, 12-13
Remote active bit	13-55	S3TXB	3-13, 12-5, 12-18
Remote bit REN	13-55 12-20	SADSL0 SADSL1	9-6
			9-6
REQSL0 REQSL1	9-6 9-6	SADSL2 SADSL3	9-7 9-7
REQSL2	9-8	SADSL3 SADSL4	9-7 9-8
REQSL2 REQSL3	9-7	SADSL4 SADSL5	9-8 9-8
REQSL4	9-8	SADSL5 SADSL6	9-9
REQSL5	9-8	SADSLO SADSL7	9-9
REQSL6	9-9	SADSL7 SADSL8	9-9 9-10
REQSL7	9-9	SADSL9	9-10
REQSL8	9-10	SAM	13-22
REQSL9	9-10 9-10	Sampling count select bit	13-22
reSynchronization Jump Width setting bit	13-22	SBANKAD	6-16
Return bus off bit	13-22	SBI (System Break Interrupt) Control Register	3-11, 5-4, 5-7
RFIN	12-20	SBI request bit	5-7
RL	13-55	SBICR	3-11, 5-4, 5-7
RM	13-55	SBIREQ	5-7
RR	13-55	SEN	12-15
	10 00	-	12 10

	40.45		0.40.40.5.40.00
Serial I/O mode select bit	12-15	SIO2 Baud Rate Register	3-13, 12-5, 12-23
SI03MASK	3-12, 12-5, 12-10	SIO2 Receive Buffer Register	3-13, 12-5, 12-19
SI03SEL	3-12, 12-5, 12-11	SIO2 Receive Control Register	3-13, 12-5, 12-20
SI23STAT	3-12, 12-5, 12-9	SIO2 receive interrupt request mask bit	12-10
SIDO	13-58	SIO2 receive interrupt request source select bit	12-11
SIDOM	13-49	SIO2 receive interrupt request status bit	12-9
SID1	13-58	SIO2 Transmit Buffer Register	3-13, 12-5, 12-18
SID1M	13-49	SIO2 Transmit Control Register	3-13, 12-5, 12-13
SID2	13-58	SIO2 transmit interrupt request mask bit	12-10
SID2M	13-49	SIO2 transmit interrupt request source select bit	12-11
SID3	13-58	SIO2 transmit interrupt request status bit	12-9
SID3M	13-49	SIO2 Transmit/Receive Mode Register	3-13, 12-5, 12-15
SID4	13-58	SIO2, 3 Transmit/Receive Interrupt Control Register	3-11, 5-4, 5-8
SID4M	13-49	SIO23 Interrupt Request Status Register	3-12, 12-5, 12-9
SID5	13-59	SIO3 Baud Rate Register	3-13, 12-5, 12-23
SID5M	13-49	SIO3 Receive Buffer Register	3-13, 12-5, 12-19
SID6	13-59	SIO3 Receive Control Register	3-13, 12-5, 12-20
SID6M	13-49	SIO3 receive interrupt request mask bit	12-10
SID7	13-59	SIO3 receive interrupt request source select bit	12-11
SID7M	13-49	SIO3 receive interrupt request status bit	12-9
SID8	13-59	SIO3 Transmit Buffer Register	3-13, 12-5, 12-18
SID8M	13-49	SIO3 Transmit Control Register	3-13, 12-5, 12-13
SID9	13-59	SIO3 transmit interrupt request mask bit	12-10
SID9M	13-49	SIO3 transmit interrupt request source select bit	12-11
SID10	13-59	SIO3 transmit interrupt request status bit	12-9
SID10M	13-49	SIO3 Transmit/Receive Mode Register	3-13, 12-5, 12-15
SIO0 Baud Rate Register	3-12, 12-5, 12-23	SJW	13-22
SIO0 Receive Buffer Register	3-12, 12-5, 12-19	Sleep select bit, UART mode only	12-15
SIO0 Receive Control Register	3-12, 12-5, 12-20	Slot 0 extended format bit	13-21
SIO0 Receive Interrupt Control Register	3-11, 5-4, 5-8	Slot 0 interrupt request mask bit	13-30
SIO0 receive interrupt request mask bit	12-10	Slot 0 interrupt request status bit	13-29
SIO0 receive interrupt request source select bit	12-11	Slot 0 single-shot interrupt request mask bit	13-34
SIO0 Special Mode Register	3-13, 12-5, 12-24	Slot 0 single-shot interrupt request status bit	13-33
SIO0 Transmit Buffer Register	3-12, 12-5, 12-18	Slot 0 single-shot mode bit	13-53
SIO0 Transmit Control Register	3-12, 12-5, 12-13	Slot 1 extended format bit	13-21
SIO0 Transmit Interrupt Control Register	3-11, 5-4, 5-8	Slot 1 interrupt request mask bit	13-30
SIO0 transmit interrupt request mask bit	12-10	Slot 1 interrupt request status bit	13-29
SIO0 transmit interrupt request source select bit	12-11	Slot 1 single-shot interrupt request mask bit	13-34
SIO0 Transmit/Receive Mode Register	3-12, 12-5, 12-15	Slot 1 single-shot interrupt request status bit	13-33
SIO03 Interrupt Request Mask Register	3-12, 12-5, 12-10	Slot 1 single-shot mode bit	13-53
SIO03 Interrupt Request Source Select Register	3-12, 12-5, 12-11	Slot 2 extended format bit	13-21
SIO1 Baud Rate Register	3-13, 12-5, 12-23	Slot 2 interrupt request mask bit	13-30
SIO1 Receive Buffer Register	3-13, 12-5, 12-19	Slot 2 interrupt request status bit	13-29
SIO1 Receive Control Register	3-13, 12-5, 12-20	Slot 2 single-shot interrupt request mask bit	13-34
SIO1 Receive Interrupt Control Register	3-11, 5-4, 5-8	Slot 2 single-shot interrupt request status bit	13-33
SIO1 receive interrupt request mask bit	12-10	Slot 2 single-shot mode bit	13-53
SIO1 receive interrupt request source select bit	12-11	Slot 3 extended format bit	13-21
SIO1 Special Mode Register	3-13, 12-5, 12-24	Slot 3 interrupt request mask bit	13-30
SIO1 Transmit Buffer Register	3-13, 12-5, 12-18	Slot 3 interrupt request status bit	13-29
SIO1 Transmit Control Register	3-13, 12-5, 12-13	Slot 3 single-shot interrupt request mask bit	13-34
SIO1 Transmit Interrupt Control Register	3-11, 5-4, 5-8	Slot 3 single-shot interrupt request status bit	13-33
SIO1 transmit interrupt request mask bit	12-10	Slot 3 single-shot mode bit	13-53
SIO1 transmit interrupt request source select bit	12-11	Slot 4 extended format bit	13-21
SIO1 Transmit/Receive Mode Register	3-13, 12-5, 12-15	Slot 4 interrupt request mask bit	13-30

Slot 4 interrupt request status bit	13-29	Slot 13 interrupt request status bit	13-29
Slot 4 single-shot interrupt request mask bit	13-34	Slot 13 single-shot interrupt request mask bit	13-34
Slot 4 single-shot interrupt request status bit	13-33	Slot 13 single-shot interrupt request status bit	13-33
Slot 4 single-shot mode bit	13-53	Slot 13 single-shot mode bit	13-53
Slot 5 extended format bit	13-21	Slot 14 extended format bit	13-21
Slot 5 interrupt request mask bit	13-30	Slot 14 interrupt request mask bit	13-30
Slot 5 interrupt request status bit	13-29	Slot 14 interrupt request status bit	13-29
Slot 5 single-shot interrupt request mask bit	13-34	Slot 14 single-shot interrupt request mask bit	13-34
Slot 5 single-shot interrupt request status bit	13-33	Slot 14 single-shot interrupt request status bit	13-33
Slot 5 single-shot mode bit	13-53	Slot 14 single-shot mode bit	13-53
Slot 6 extended format bit	13-21	Slot 15 extended format bit	13-21
Slot 6 interrupt request mask bit	13-30	Slot 15 interrupt request mask bit	13-30
Slot 6 interrupt request status bit	13-29	Slot 15 interrupt request status bit	13-29
Slot 6 single-shot interrupt request mask bit	13-34	Slot 15 single-shot interrupt request mask bit	13-34
Slot 6 single-shot interrupt request status bit	13-33	Slot 15 single-shot interrupt request status bit	13-33
Slot 6 single-shot mode bit	13-53	Slot 15 single-shot mode bit	13-53
Slot 7 extended format bit	13-21	SMOD	12-15
Slot 7 interrupt request mask bit	13-30	SSB0	13-29
Slot 7 interrupt request status bit	13-29	SSB1	13-29
Slot 7 single-shot interrupt request mask bit	13-34	SSB2	13-29
Slot 7 single-shot interrupt request status bit	13-33	SSB3	13-29
Slot 7 single-shot mode bit	13-53	SSB4	13-29
Slot 8 extended format bit	13-21	SSB5	13-29
Slot 8 interrupt request mask bit	13-30	SSB6	13-29
Slot 8 interrupt request status bit	13-29	SSB7	13-29
Slot 8 single-shot interrupt request mask bit	13-34	SSB8	13-29
Slot 8 single-shot interrupt request status bit	13-33	SSB9	13-29
Slot 8 single-shot mode bit	13-53	SSB10	13-29
Slot 9 extended format bit	13-21	SSB11	13-29
Slot 9 interrupt request mask bit	13-30	SSB12	13-29
Slot 9 interrupt request status bit	13-29	SSB13	13-29
Slot 9 single-shot interrupt request mask bit	13-34	SSB14	13-29
Slot 9 single-shot interrupt request status bit	13-33	SSB15	13-29
Slot 9 single-shot mode bit	13-53	SSCNT0	13-53
Slot 10 extended format bit	13-21	SSCNT1	13-53
Slot 10 interrupt request mask bit	13-30	SSCNT2	13-53
Slot 10 interrupt request status bit	13-29	SSCNT3	13-53
Slot 10 single-shot interrupt request mask bit	13-34	SSCNT4	13-53
Slot 10 single-shot interrupt request status bit	13-33	SSCNT5	13-53
Slot 10 single-shot mode bit	13-53	SSCNT6	13-53
Slot 11 extended format bit	13-21	SSCNT7	13-53
Slot 11 interrupt request mask bit	13-30	SSCNT8	13-53
Slot 11 interrupt request status bit	13-29	SSCNT9	13-53
Slot 11 single-shot interrupt request mask bit	13-34	SSCNT10	13-53
Slot 11 single-shot interrupt request status bit	13-33	SSCNT11	13-53
Slot 11 single-shot mode bit	13-53	SSCNT12	13-53
Slot 12 extended format bit	13-21	SSCNT13	13-53
Slot 12 interrupt request mask bit	13-30	SSCNT14	13-53
Slot 12 interrupt request status bit	13-29	SSCNT15	13-53
Slot 12 single-shot interrupt request mask bit	13-34	SSIMKO	13-34
Slot 12 single-shot interrupt request status bit	13-33	SSIMK1	13-34
Slot 12 single-shot mode bit	13-53	SSIMK2	13-34
Slot 13 extended format bit	13-21	SSIMK3	13-34
Slot 13 interrupt request mask bit	13-30	SSIMK4	13-34

SSIMK5	13-34	т	
SSIMK6	13-34	TOMASK	12-10
SSIMK7	13-34	T1MASK	12-10
SSIMK8	13-34	T2MASK	12-10
SSIMK9	13-34	T3MASK	12-10
SSIMK10	13-34	TBE	12-13
SSIMK11	13-34	TCLK Input Processing Control Register	3-13, 10-8, 10-17
SSIMK12	13-34	TCLK0 input processing select bit	10-17
SSIMK13	13-34	TCLK0S	10-17
SSIMK14	13-34	TCLK1 input processing select bit	10-17
SSIMK15	13-34	TCLK1S	10-17
SSISTO	10-33	TCLK2 input processing select bit	10-17
SSIST1	10-33	TCLK2S	10-17
SSIST2	10-33	TCLK3 input processing select bit	10-17
SSIST3	10-33	TCLK3S	10-17
SSIST4	10-33	TCLKCR	3-13, 10-8, 10-17
SSIST5	10-33	TEN	12-13
SSIST6	10-33	TENLO	9-6
SSIST7	10-33	TENL1	9-6
SSIST8	10-33	TENL2	9-7
SSIST9	10-33	TENL3	9-7
SSIST10	10-33	TENL4	9-8
SSIST11	10-33	TENL5	9-8
SSIST12	10-33	TENL6	9-9
SSIST13	10-33	TENL7	9-9
SSIST14	10-33	TENL8	9-10
SSIST15	10-33	TENL9	9-10
Standard ID0 bit	13-58	Timestamp counter reset bit	13-15
Standard ID1 bit	13-58	Timestamp prescaler bit	13-15
Standard ID2 bit	13-58	TIN Input Processing Control Register 0	3-13, 10-8, 10-18
Standard ID3 bit	13-58	TIN Input Processing Control Register 3	3-13, 10-8, 10-19
Standard ID4 bit	13-58	TIN Input Processing Control Register 4	3-13, 10-8, 10-19
Standard ID5 bit	13-59	TIN Interrupt Control Register 0	3-14, 10-8, 10-37
Standard ID6 bit	13-59	TIN Interrupt Control Register 1	3-14, 10-8, 10-38
Standard ID7 bit	13-59	TIN Interrupt Control Register 4	3-14, 10-8, 10-39
Standard ID8 bit	13-59	TIN Interrupt Control Register 5	3-14, 10-8, 10-39
Standard ID9 bit	13-59	TIN Interrupt Control Register 6	3-14, 10-8, 10-41
Standard ID10 bit	13-59	TIN0 input processing select bit	10-18
Standard mask ID0 bit	13-49	TIN0 interrupt request mask bit	10-37
Standard mask ID1 bit	13-49	TIN0 interrupt request status bit	10-37
Standard mask ID2 bit	13-49	TINOS	10-18
Standard mask ID3 bit	13-49	TIN16 input processing select bit	10-19
Standard mask ID4 bit	13-49	TIN16 interrupt request mask bit	10-39
Standard mask ID5 bit	13-49	TIN16 interrupt request status bit	10-39
Standard mask ID6 bit	13-49	TIN16S	10-19
Standard mask ID7 bit	13-49	TIN17 input processing select bit	10-19
Standard mask ID8 bit	13-49	TIN17 interrupt request mask bit	10-39
Standard mask ID9 bit	13-49	TIN17 interrupt request status bit	10-39
Standard mask ID10 bit	13-49	TIN17S	10-19
STB	12-15	TIN18 input processing select bit	10-19
STFE	13-45	TIN18 interrupt request mask bit	10-39
Stop bit length select bit, UART mode only	12-15	TIN18 interrupt request status bit	10-39
Stuff error detection bit	13-45	TIN18S	10-19
		TIN19 input processing select bit	10-19

	10.00	TIOD sound an able bit	10.04
TIN19 interrupt request status bit	10-39 10-39	TIO0 count enable bit TIO0 Counter	10-91 2 16 10 77 10 87
TIN19 interrupt request status bit TIN19S	10-39	TIO0 enable protect bit	3-16, 10-77, 10-87 10-90
TIN20 input processing select bit	10-19	TIO0 enable/measure input source select bit	10-90
TIN20 interrupt request mask bit	10-13	TIO0 interrupt request mask bit	10-33
TIN20 interrupt request status bit	10-41	TIO0 interrupt request status bit	10-33
TIN20S	10-19	TIO0 operation mode select bit	10-80
TIN21 input processing select bit	10-19	TIO0 Reload 0/Measure Register	3-16, 10-77, 10-88
TIN21 interrupt request mask bit	10-19	TIO0 Reload 1 Register	3-16, 10-77, 10-88
TIN21 interrupt request status bit	10-41	TIO0-3 clock source select bit	10-81
TIN21S	10-19	TIO0-3 Control Register 0	3-16, 10-77, 10-80
TIN22 input processing select bit	10-19	TIO0-3 Control Register 1	3-16, 10-77, 10-81
TIN22 interrupt request mask bit	10-41	TIO03CKS	10-81
TIN22 interrupt request status bit	10-41	TIO03CR0	3-16, 10-77, 10-80
TIN22S	10-19	TIO03CR1	3-16, 10-77, 10-81
TIN23 input processing select bit	10-19	TIO0-9 Count Enable Register	3-17, 10-78, 10-91
TIN23 interrupt request mask bit	10-41	TIO0-9 Enable Protect Register	3-17, 10-78, 10-90
TIN23 interrupt request status bit	10-41	TIOOCEN	10-91
TIN23S	10-19	TIOOCT	3-16, 10-77, 10-87
TIN3 input processing select bit	10-18	TIO0ENS	10-80
TIN3 interrupt request mask bit	10-38	TIOOM	10-80
TIN3 interrupt request status bit	10-38	TIOOPRO	10-90
TIN3S	10-18	TIOORLO	3-16, 10-77, 10-88
TINCR0	3-13, 10-8, 10-18	TIO0RL1	3-16, 10-77, 10-89
TINCR3	3-13, 10-8, 10-19	TIO1 count enable bit	10-91
TINCR4	3-13, 10-8, 10-19	TIO1 Counter	3-16, 10-77, 10-87
TINIMO	10-37	TIO1 enable protect bit	10-90
TINIM3	10-38	TIO1 interrupt request mask bit	10-33
TINIM16	10-39	TIO1 interrupt request status bit	10-33
TINIM17	10-39	TIO1 operation mode select bit	10-80
TINIM18	10-39	TIO1 Reload 0/Measure Register	3-16, 10-77, 10-88
TINIM19	10-39	TIO1 Reload 1 Register	3-16, 10-77, 10-89
TINIM20	10-41	TIO1CEN	10-91
TINIM21	10-41	TIO1CT	3-16, 10-77, 10-87
TINIM22	10-41	TIO1M	10-80
TINIM23	10-41	TIO1PRO	10-90
TINIRO	3-14, 10-8, 10-37	TIO1RL0	3-16, 10-77, 10-88
TINIR1	3-14, 10-8, 10-38	TIO1RL1	3-16, 10-77, 10-89
TINIR4	3-14, 10-8, 10-39	TIO2 count enable bit	10-91
TINIR5	3-14, 10-8, 10-39	TIO2 Counter	3-16, 10-77, 10-87
TINIR6	3-14, 10-8, 10-41	TIO2 enable protect bit	10-90
TINISO	10-37	TIO2 interrupt request mask bit	10-33
TINIS3	10-38	TIO2 interrupt request status bit	10-33
TINIS16	10-39	TIO2 operation mode select bit	10-80
TINIS17	10-39	TIO2 Reload 0/Measure Register	3-16, 10-77, 10-88
TINIS18	10-39	TIO2 Reload 1 Register	3-16, 10-77, 10-89
TINIS19	10-39	TIO2CEN	10-91
TINIS20	10-41	TIO2CT	3-16, 10-77, 10-87
TINIS21	10-41	TIO2M	10-80
TINIS22	10-41	TIO2PRO	10-90
TINIS23	10-41	TIO2RL0	3-16, 10-77, 10-88
TIO Interrupt Control Register 0	3-14, 10-8, 10-33	TIO2RL1	3-16, 10-77, 10-89
TIO Interrupt Control Register 1	3-14, 10-8, 10-34	TIO3 count enable bit	10-91
TIO Interrupt Control Register 2	3-14, 10-8, 10-35	TIO3 Counter	3-16, 10-77, 10-87

TIO3 enable protect bit	10-90	TIO5RL0	3-17, 10-78, 10-88
TIO3 external input enable bit	10-80	TIO5RL1	3-17, 10-78, 10-89
TIO3 interrupt request mask bit	10-33	TIO6 clock source select bit	10-85
TIO3 interrupt request status bit	10-33	TIO6 Control Register	3-17, 10-78, 10-85
TIO3 operation mode select bit	10-80	TIO6 count enable bit	10-91
TIO3 Reload 0/Measure Register	3-16, 10-77, 10-88	TIO6 Counter	3-17, 10-78, 10-87
TIO3 Reload 1 Register	3-16, 10-77, 10-89	TIO6 enable protect bit	10-90
TIO3,4 enable/measure input source select bit	10-82	TIO6 enable/measure input source select bit	10-85
TIO34ENS	10-82	TIO6 interrupt request mask bit	10-34
TIO3CEN	10-91	TIO6 interrupt request status bit	10-34
TIO3CT	3-16, 10-77, 10-87	TIO6 operation mode select bit	10-85
TIO3EEN	10-80	TIO6 Reload 0/Measure Register	3-17, 10-78, 10-88
ТІОЗМ	10-80	TIO6 Reload 1 Register	3-17, 10-78, 10-89
TIO3PRO	10-90	TIO6CEN	10-91
TIO3RL0	3-16, 10-77, 10-88	TIO6CKS	10-85
TIO3RL1	3-16, 10-77, 10-89	TIO6CR	3-17, 10-78, 10-85
TIO4 clock source select bit	10-82	TIO6CT	3-17, 10-78, 10-87
TIO4 Control Register	3-17, 10-77, 10-82	TIO6ENS	10-85
TIO4 count enable bit	10-91	TIO6M	10-85
TIO4 Counter	3-16, 10-77, 10-87	TIO6PRO	10-90
TIO4 enable protect bit	10-90	TIO6RL0	3-17, 10-78, 10-88
TIO4 external input enable bit	10-82	TIO6RL1	3-17, 10-78, 10-89
TIO4 interrupt request mask bit	10-34	TIO7 clock source select bit	10-86
TIO4 interrupt request status bit	10-34	TIO7 Control Register	3-17, 10-78, 10-86
TIO4 operation mode select bit	10-82	TIO7 count enable bit	10-91
TIO4 Reload 0/Measure Register	3-16, 10-77, 10-88	TIO7 Counter	3-17, 10-78, 10-87
TIO4 Reload 1 Register	3-16, 10-77, 10-89	TIO7 enable protect bit	10-90
TIO4CEN	10-91	TIO7 enable/measure input source select bit	10-86
TIO4CKS	10-82	TIO7 interrupt request mask bit	10-34
TIO4CR	3-17, 10-77, 10-82	TIO7 interrupt request status bit	10-34
TIO4CT	3-16, 10-77, 10-87	TIO7 operation mode select bit	10-86
TIO4EEN	10-82	TIO7 Reload 0/Measure Register	3-17, 10-78, 10-88
TIO4M	10-82	TIO7 Reload 1 Register	3-17, 10-78, 10-89
TIO4PRO	10-90	TIO7CEN	10-91
TIO4RL0	3-16, 10-77, 10-88	TIO7CKS	10-86
TIO4RL1	3-16, 10-77, 10-89	TIO7CR	3-17, 10-78, 10-86
TIO5 clock source select bit	10-84	TIO7CT	3-17, 10-78, 10-87
TIO5 Control Register	3-17, 10-77, 10-84	TIO7ENS	10-86
TIO5 count enable bit	10-91	ТІО7М	10-86
TIO5 Counter	3-17, 10-77, 10-87	TIO7PRO	10-90
TIO5 enable protect bit	10-90	TIO7RL0	3-17, 10-78, 10-88
TIO5 enable/measure input source select bit	10-84	TIO7RL1	3-17, 10-78, 10-89
TIO5 interrupt request mask bit	10-34	TIO8 clock source select bit	10-86
TIO5 interrupt request status bit	10-34	TIO8 Control Register	3-17, 10-78, 10-86
TIO5 operation mode select bit	10-84	TIO8 count enable bit	10-91
TIO5 Reload 0/Measure Register	3-17, 10-78, 10-88	TIO8 Counter	3-17, 10-78, 10-87
TIO5 Reload 1 Register	3-17, 10-78, 10-89	TIO8 enable protect bit	10-90
TIO5CEN	10-91	TIO8 enable/measure input source select bit	10-86
TIO5CKS	10-84	TIO8 interrupt request mask bit	10-35
TIO5CR	3-17, 10-77, 10-84	TIO8 interrupt request status bit	10-35
TIO5CT	3-17, 10-77, 10-87	TIO8 operation mode select bit	10-86
TIO5ENS	10-84	TIO8 Reload 0/Measure Register	3-17, 10-78, 10-88
ТІО5М	10-84	TIO8 Reload 1 Register	3-17, 10-78, 10-89
TIO5PRO	10-90	TIO8CEN	10-91

71000//0	10.00		
TIO8CKS	10-86	TML0 Control Register	3-18, 10-111, 10-112
TIO8CR	3-17, 10-78, 10-86	TML0 Counter (Lower)	3-18, 10-111, 10-113
TIOSCT	3-17, 10-78, 10-87	TML0 Counter (Upper)	3-18, 10-111, 10-113
TIO8ENS TIO8M	10-86 10-86	TML0 Measure 0 Register TML0 measure 0 source select bit	3-18, 10-111, 10-114
TIO8PRO	10-88	TML0 Measure 1 Register	10-112 3-18, 10-111, 10-114
		C C	10-112
TIO8RL0 TIO8RL1	3-17, 10-78, 10-88	TML0 measure 1 source select bit	
TIO9 clock source select bit	3-17, 10-78, 10-89	TML0 Measure 2 Register TML0 measure 2 source select bit	3-18, 10-111, 10-114 10-112
TIO9 Control Register	10-87 3-17, 10-78, 10-87	TML0 Measure 3 Register	3-18, 10-111, 10-114
TIO9 count enable bit	10-91	TML0 measure 3 source select bit	10-112
TIO9 Counter	3-17, 10-78, 10-87	TMLOCKS	10-112
TIO9 enable protect bit	10-90	TMLOCR	3-18, 10-111, 10-112
TIO9 enable/measure input source select bit	10-87	TMLOCTH	3-18, 10-111, 10-113
TIO9 interrupt request mask bit	10-35	TMLOCTL	3-18, 10-111, 10-113
TIO9 interrupt request status bit	10-35	TML0MR0H	3-18, 10-111, 10-114
TIO9 operation mode select bit	10-87	TMLOMROL	3-18, 10-111, 10-114
TIO9 Reload 0/Measure Register	3-17, 10-78, 10-88	TML0MR1H	3-18, 10-111, 10-114
TIO9 Reload 1 Register	3-17, 10-78, 10-89	TMLOMR1L	3-18, 10-111, 10-114
TIO9CEN	10-91	TML0MR2H	3-18, 10-111, 10-114
TIO9CKS	10-87	TML0MR2L	3-18, 10-111, 10-114
TIO9CR	3-17, 10-78, 10-87	TMLOMR3H	3-18, 10-111, 10-114
TIO9CT	3-17, 10-78, 10-87	TML0MR3L	3-18, 10-111, 10-114
TIO9ENS	10-87	TML0SS0	10-112
TIO9M	10-87	TML0SS1	10-112
TIO9PRO	10-90	TML0SS2	10-112
TIO9RL0	3-17, 10-78, 10-88	TML0SS3	10-112
TIO9RL1	3-17, 10-78, 10-89	TML1 clock source select bit	10-112
TIOCEN	3-17, 10-78, 10-91	TML1 Control Register	3-22, 10-111, 10-112
TIOIMO	10-33	TML1 Counter (Lower)	3-22, 10-111, 10-113
TIOIM1	10-33	TML1 Counter (Upper)	3-21, 10-111, 10-113
TIOIM2	10-33	TML1 Measure 0 Register	3-22, 10-111, 10-115
TIOIM3	10-33	TML1 measure 0 source select bit	10-112
TIOIM4	10-34	TML1 Measure 1 Register	3-22, 10-111, 10-115
TIOIM5	10-34	TML1 measure 1 source select bit	10-112
TIOIM6	10-34	TML1 Measure 2 Register	3-22, 10-111, 10-115
TIOIM7	10-34	TML1 measure 2 source select bit	10-112
TIOIM8	10-35	TML1 Measure 3 Register	3-22, 10-111, 10-115
TIOIM9	10-35	TML1 measure 3 source select bit	10-112
TIOIR0	3-14, 10-8, 10-33	TML1CKS	10-112
TIOIR1	3-14, 10-8, 10-34	TML1CR	3-22, 10-111, 10-112
TIOIR2	3-14, 10-8, 10-35	TML1CTH	3-21, 10-111, 10-113
TIOIS0	10-33	TML1CTL	3-22, 10-111, 10-113
TIOIS1	10-33	TML1MR0H	3-22, 10-111, 10-115
TIOIS2	10-33	TML1MR0L	3-22, 10-111, 10-115
TIOIS3	10-33	TML1MR1H	3-22, 10-111, 10-115
TIOIS4	10-34	TML1MR1L	3-22, 10-111, 10-115
TIOIS5	10-34	TML1MR2H	3-22, 10-111, 10-115
TIOIS6	10-34	TML1MR2L	3-22, 10-111, 10-115
TIOIS7	10-34	TML1MR3H	3-22, 10-111, 10-115
TIOIS8	10-35	TML1MR3L	3-22, 10-111, 10-115
TIOIS9	10-35	TML1SS0	10-112
	3-17, 10-78, 10-90	TML1SS1	10-112
TML0 clock source select bit	10-112	TML1SS2	10-112

TML1SS3	10-112	TMSIMO	10-36
TMS Interrupt Control Register	3-14, 10-8, 10-36	TMSIM1	10-36
TMS0 clock source select bit	10-107	TMSIR	3-14, 10-8, 10-36
TMS0 Control Register	3-18, 10-106, 10-107	TMSISO	10-36
TMS0 count enable bit	10-107	TMSIS1	10-36
TMS0 Counter	3-17, 10-106, 10-108	TOP Interrupt Control Register 0	3-14, 10-8, 10-29
TMS0 interrupt request mask bit	10-36	TOP Interrupt Control Register 1	3-14, 10-8, 10-29
TMS0 interrupt request status bit	10-36	TOP Interrupt Control Register 2	3-14, 10-8, 10-31
TMS0 Measure 0 Register	3-18, 10-106, 10-108	TOP Interrupt Control Register 3	3-14, 10-8, 10-32
TMS0 measure 0 source select bit	10-107	TOP0 Correction Register	3-14, 10-46, 10-55
TMS0 Measure 1 Register	3-18, 10-106, 10-108	TOP0 count enable bit TOP0 Counter	10-57
TMS0 measure 1 source select bit	10-107		3-14, 10-46, 10-53
TMS0 Measure 2 Register	3-18, 10-106, 10-108	TOP0 enable protect bit	10-56
TMS0 measure 2 source select bit TMS0 Measure 3 Register	10-107 3-17, 10-106, 10-108	TOP0 external enable permit bit	10-56 10-29
TMS0 measure 3 source select bit	10-107	TOP0 interrupt request status bit	10-29
TMS0CEN	10-107	TOP0 interrupt request status bit TOP0 operation mode select bit	10-29
TMSOCKS	10-107	TOP0 Reload Register	3-14, 10-46, 10-54
TMSOCR	3-18, 10-106, 10-107	TOP0-10 Count Enable Register	3-16, 10-47, 10-57
TMSOCT	3-17, 10-106, 10-108	TOP0-10 Enable Protect Register	3-16, 10-47, 10-57
TMS0MR0	3-18, 10-106, 10-108	TOP0-10 External Enable Permit Register	3-16, 10-47, 10-56
TMS0MR1	3-18, 10-106, 10-108	TOP0-5 clock source select bit	10-49
TMS0MR2	3-18, 10-106, 10-108	TOP0-5 Control Register 0	3-15, 10-47, 10-49
TMS0MR3	3-17, 10-106, 10-108	TOP0–5 Control Register 1	3-15, 10-47, 10-49
TMS0SS0	10-107	TOP0–5 enable source select bit	10-49
TMS0SS1	10-107	TOP05CKS	10-49
TMS0SS2	10-107	TOP05CR0	3-15, 10-47, 10-49
TMS0SS3	10-107	TOP05CR1	3-15, 10-47, 10-49
TMS1 clock source select bit	10-107	TOP05ENS	10-49
TMS1 Control Register	3-18, 10-106, 10-107	TOPOCC	3-14, 10-46, 10-55
TMS1 count enable bit	10-107	TOP0CEN	10-57
TMS1 Counter	3-18, 10-106, 10-108	TOP0CT	3-14, 10-46, 10-53
TMS1 interrupt request mask bit	10-36	TOP0EEN	10-56
TMS1 interrupt request status bit	10-36	ТОРОМ	10-49
TMS1 Measure 0 Register	3-18, 10-106, 10-108	TOP0PRO	10-56
TMS1 measure 0 source select bit	10-107	TOP0RL	3-14, 10-46, 10-54
TMS1 Measure 1 Register	3-18, 10-106, 10-108	TOP1 Correction Register	3-14, 10-46, 10-55
TMS1 measure 1 source select bit	10-107	TOP1 count enable bit	10-57
TMS1 Measure 2 Register	3-18, 10-106, 10-108	TOP1 Counter	3-14, 10-46, 10-53
TMS1 measure 2 source select bit	10-107	TOP1 enable protect bit	10-56
TMS1 Measure 3 Register	3-18, 10-106, 10-108	TOP1 external enable permit bit	10-56
TMS1 measure 3 source select bit	10-107	TOP1 interrupt request mask bit	10-29
TMS1CEN	10-107	TOP1 interrupt request status bit	10-29
TMS1CKS	10-107	TOP1 operation mode select bit	10-49
TMS1CR	3-18, 10-106, 10-107	TOP1 Reload Register	3-14, 10-46, 10-54
TMS1CT	3-18, 10-106, 10-108	TOP1CC	3-14, 10-46, 10-55
TMS1MR0	3-18, 10-106, 10-108	TOP1CEN	10-57
TMS1MR1	3-18, 10-106, 10-108	TOP1CT	3-14, 10-46, 10-53
TMS1MR2	3-18, 10-106, 10-108	TOP1EEN	10-56
TMS1MR3	3-18, 10-106, 10-108	TOP1M	10-49
TMS1SS0	10-107	TOP1PRO	10-56
TMS1SS1	10-107	TOP1RL	3-14, 10-46, 10-54
TMS1SS2	10-107	TOP2 Correction Register	3-14, 10-46, 10-55
TMS1SS3	10-107	TOP2 count enable bit	10-57

TOP2 Counter	3-14, 10-46, 10-53	TOP5 Reload Register	3-15, 10-46, 10-54
TOP2 enable protect bit	10-56	TOP5CC	3-15, 10-46, 10-55
TOP2 external enable permit bit	10-56	TOP5CEN	10-57
TOP2 interrupt request mask bit	10-29	TOP5CT	3-15, 10-46, 10-53
TOP2 interrupt request status bit	10-29	TOP5EEN	10-56
TOP2 operation mode select bit	10-49	TOP5M	10-49
TOP2 Reload Register	3-14, 10-46, 10-54	TOP5PRO	10-56
TOP2CC	3-14, 10-46, 10-55	TOP5RL	3-15, 10-46, 10-54
TOP2CEN	10-57	TOP6 Correction Register	3-15, 10-47, 10-55
TOP2CT	3-14, 10-46, 10-53	TOP6 count enable bit	10-57
TOP2EEN	10-56	TOP6 Counter	3-15, 10-47, 10-53
TOP2M	10-49	TOP6 enable protect bit	10-56
TOP2PRO	10-56	TOP6 external enable permit bit	10-56
TOP2RL	3-14, 10-46, 10-54	TOP6 interrupt request mask bit	10-31
TOP3 Correction Register	3-14, 10-46, 10-55	TOP6 interrupt request status bit	10-31
TOP3 count enable bit	10-57	TOP6 operation mode select bit	10-51
TOP3 Counter	3-14, 10-46, 10-53	TOP6 Reload Register	3-15, 10-47, 10-54
TOP3 enable protect bit	10-56	TOP6, 7 Control Register	3-15, 10-47, 10-51
TOP3 external enable permit bit	10-56	TOP6, TOP7 clock source select bit	10-51
TOP3 interrupt request mask bit	10-29	TOP6, TOP7 enable source select bit	10-51
TOP3 interrupt request status bit	10-29	TOP67CKS	10-51
TOP3 operation mode select bit	10-49	TOP67CR	3-15, 10-47, 10-51
TOP3 Reload Register	3-14, 10-46, 10-54	TOP67ENS	10-51
TOP3CC	3-14, 10-46, 10-55	TOP6CC	3-15, 10-47, 10-55
TOP3CEN	10-57	TOP6CEN	10-57
TOP3CT	3-14, 10-46, 10-53	TOP6CT	3-15, 10-47, 10-53
TOP3EEN	10-56	TOP6EEN	10-56
TOP3M	10-49	TOP6M	10-51
TOP3PRO	10-56	TOP6PRO	10-56
TOP3RL	3-14, 10-46, 10-54	TOP6RL	3-15, 10-47, 10-54
TOP4 Correction Register	3-15, 10-46, 10-55	TOP7 Correction Register	3-15, 10-47, 10-55
TOP4 count enable bit	10-57	TOP7 count enable bit	10-57
TOP4 Counter	3-14, 10-46, 10-53	TOP7 Counter	3-15, 10-47, 10-53
TOP4 enable protect bit	10-56	TOP7 enable protect bit	10-56
TOP4 external enable permit bit	10-56	TOP7 enable source select bit	10-51
TOP4 interrupt request mask bit	10-29	TOP7 external enable permit bit	10-56
TOP4 interrupt request status bit	10-29	TOP7 interrupt request mask bit	10-31
TOP4 operation mode select bit	10-49	TOP7 interrupt request status bit	10-31
TOP4 Reload Register	3-14, 10-46, 10-54	TOP7 operation mode select bit	10-51
TOP4CC	3-15, 10-46, 10-55	TOP7 Reload Register	3-15, 10-47, 10-54
TOP4CEN	10-57		3-15, 10-47, 10-55 10-57
	3-14, 10-46, 10-53	TOP7CEN	
TOP4EEN	10-56		3-15, 10-47, 10-53
	10-49	TOP7EEN	10-56
TOP4PRO	10-56	TOP7ENS	10-51
TOP4RL	3-14, 10-46, 10-54		10-51
TOP5 Correction Register TOP5 count enable bit	3-15, 10-46, 10-55 10-57	TOP7PRO TOP7RL	10-56 3-15, 10-47, 10-54
TOP5 Counter	3-15, 10-46, 10-53	TOP8 Correction Register TOP8 count enable bit	3-15, 10-47, 10-55
TOP5 enable protect bit	10-56 10-56	TOP8 Count enable bit	10-57 3-15, 10-47, 10-53
TOP5 external enable permit bit	10-56		3-15, 10-47, 10-53
TOP5 interrupt request mask bit	10-29	TOP8 enable protect bit	
TOP5 interrupt request status bit TOP5 operation mode select bit	10-29	TOP8 external enable permit bit TOP8 interrupt request mask bit	10-56 10-32
i or o operation mode deleti bit	10-49	i or o interrupt request mask bit	10-32

TOP8 interrupt request status bit	10-32	ТОРІМ6	10-31
TOP8 operation mode select bit	10-52	ТОРІМ7	10-31
TOP8 Reload Register	3-15, 10-47, 10-54	ТОРІМ8	10-32
TOP8–10 clock source select bit	10-52	ТОРІМ9	10-32
TOP8–10 Control Register	3-16, 10-47, 10-52	TOPIR0	3-14, 10-8, 10-29
TOP8–10 enable source select bit	10-52	TOPIR1	3-14, 10-8, 10-29
TOP810CKS	10-52	TOPIR2	3-14, 10-8, 10-31
TOP810CR	3-16, 10-47, 10-52	TOPIR3	3-14, 10-8, 10-32
TOP810ENS	10-52	TOPISO	10-29
TOP8CC	3-15, 10-47, 10-55	TOPIS1	10-29
TOP8CEN	10-57	TOPIS2	10-29
TOP8CT	3-15, 10-47, 10-53	TOPIS3	10-29
TOP8EEN	10-56	TOPIS4	10-29
TOP8M	10-52	TOPIS5	10-29
TOP8PRO	10-56	TOPIS6	10-31
TOP8RL	3-15, 10-47, 10-54	TOPIS7	10-31
TOP9 Correction Register	3-15, 10-47, 10-55	TOPIS8	10-32
TOP9 count enable bit	10-57	TOPIS9	10-32
TOP9 Counter	3-15, 10-47, 10-53	TOPPRO	3-16, 10-47, 10-56
TOP9 enable protect bit	10-56	TR	13-55
TOP9 external enable permit bit	10-56	Transmission completed status bit	13-18
TOP9 interrupt request mask bit	10-32	Transmission/reception finished bit	13-55
TOP9 interrupt request status bit	10-32	Transmit buffer empty bit	12-13
TOP9 operation mode select bit	10-52	Transmit enable bit	12-13
TOP9 Reload Register	3-15, 10-47, 10-54	Transmit error detection bit	13-45
TOP9CC	3-15, 10-47, 10-55	Transmit request bit	13-55
TOP9CEN	10-57	Transmit status bit	12-13, 13-18
ТОР9СТ	3-15, 10-47, 10-53	Transmit/receive clock polarity select bit	12-24
TOP9EEN	10-56	Transmit/receive status bit	13-55
ТОР9М	10-52	TRE	13-45
TOP9PRO	10-56	TREQF0	9-6
TOP9RL	3-15, 10-47, 10-54	TREQF1	9-6
TOP10 Correction Register	3-16, 10-47, 10-55	TREQF2	9-7
TOP10 count enable bit	10-57	TREQF3	9-7
TOP10 Counter	3-15, 10-47, 10-53	TREQF4	9-8
TOP10 enable protect bit	10-56	TREQF5	9-8
TOP10 external enable permit bit	10-56	TREQF6	9-9
TOP10 operation mode select bit	10-52	TREQF7	9-9
TOP10 Reload Register	3-15, 10-47, 10-54	TREQF8	9-10
TOP10CC	3-16, 10-47, 10-55	TREQF9	9-10
TOP10CEN	10-57	TRFIN	13-55
TOP10CT	3-15, 10-47, 10-53	TRSTAT	13-55
TOP10EEN	10-56	TSB	13-18
TOP10M	10-52	TSC	13-18
TOP10PRO	10-56	TSP	13-15
TOP10RL	3-15, 10-47, 10-54	TSR	13-15
TOPCEN	3-16, 10-47, 10-57	TSTAT	12-13
TOPEEN	3-16, 10-47, 10-56	TSZSL0	9-6
TOPIMO	10-29	TSZSL1	9-6
TOPIM1	10-29	TSZSL2	9-7
TOPIM2	10-29	TSZSL3	9-7
ТОРІМЗ	10-29	TSZSL4	9-8
TOPIM4	10-29	TSZSL5	9-8
TOPIM5	10-29	TSZSL6	9-9

TSZSL7	9-9
TSZSL8	9-10
TSZSL9	9-10

v

Virtual flash emulation L enable bit	6-15
Virtual flash emulation mode bit	6-9
Virtual flash emulation S enable bit	6-16
Virtual Flash L Bank Register 0	3-21, 6-6, 6-15
Virtual Flash L Bank Register 1	3-21, 6-6, 6-15
Virtual Flash S Bank Register 0	3-21, 6-6, 6-16
Virtual Flash S Bank Register 1	3-21, 6-6, 6-16
VTnSEL	8-19
W	
Wait Cycles Control Register	3-13, 16-4
WFnSEL	8-19

WRERR	6-8
Write status confirmation bit	6-8
Write to RAM by RTD disable bit	14-3
WRRDIS	3-21, 14-3
WTCCR	3-13, 16-4

Х

A	
XDRV	18-5
XDRV write control bit	18-5
XDRVP	18-5
XIN oscillation status bit	8-15, 18-3
XIN-XOUT drive capability select bit	18-5
XSTAT	8-15, 18-3

This page is blank for reasons of layout.

RENESAS 32-BIT RISC SINGLE-CHIP MICROCOMPUTER USER'S MANUAL 32176 Group Publication Data : Rev.1.01 Oct 31, 2003 Published by : Sales Strategic Planning Div. Renesas Technology Corp.

© 2003. Renesas Technology Corp., All rights reserved. Printed in Japan.

32176 Group User's Manual

Renesas Technology Corp. 2-6-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan