

### **PRELIMINARY DATA SHEET**

# SKY77550 Tx Quad-Band / Rx Dual-Band BiFET iPAC<sup>™</sup> FEM for GSM / GPRS (824-915 MHz and 1710-1910 MHz)

# **Applications**

- Dual-band cellular handsets encompassing
  - Class 4 GSM850/900
  - DCS1800/PCS1900
  - Class 12 GPRS multi-slot operation

# **Features**

- · High efficiency
  - 42% (GSM850)
  - 42% (GSM900)
  - 42% (DCS1800
  - 41% (PCS1900)
- Low transmit supply current
  - 1.36 A (GSM850)
  - 1.36 A (GSM900)
  - 0.86 A (DCS1800)
  - 0.88 A (PCS1900)
- Internal ICC sense resistor for iPAC
- · Closed loop iPAC
- 50  $\Omega$  matched Input/Output
- Tx–VCO-to-antenna and antenna-to-Rx-SAW filter RF interface
- RF switch affords high linearity, low insertion loss, and 0 V DC on Rx ports
- Small, low profile package
  - 6 mm x 6 mm x 0.9 mm
  - 28-pad configuration



Skyworks Green™ products are RoHS (Restriction of Hazardous Substances)compliant, conform to the EIA/EICTA/JETA Joint Industry Guide (JIG) Level A guidelines, are halogen free according to IEC-61249-2-21, and contain < 1,000 ppm antimony trioxide in polymeric materials.

# Description

SKY77550 is a transmit and receive Front-End Module (FEM) with Integrated Power Amplifier Control (iPAC<sup>™</sup>) designed in a low profile, compact form factor for dual-band cellular handsets comprising GSM850/900 and DCS1800/PCS1900 operation. The SKY77550 offers a complete Transmit VCO-to-Antenna and Antenna-to-Receive SAW filter solution. The FEM also supports Class 12 General Packet Radio Service (GPRS) multi-slot operation.

The module consists of a GSM850/900 PA block and a DCS1800/PCS1900 PA block, impedancematching circuitry for 50 ohm input and output impedances, Tx harmonics filtering, high linearity / low insertion loss RF switch, and a Power Amplifier Control (PAC) block with internal current sense resistor. The two Heterojunction Bipolar Transistor (HBT) PA blocks, a BiFET PAC and switch control circuit are fabricated onto a single Gallium Arsenide (GaAs) die. One PA block supports the GSM850/900 bands and the other PA block supports the DCS1800/PCS1900 bands. Both PA blocks share common power supply pads to distribute current. The output of each PA block and the outputs to the two receive pads are connected to the antenna pad through an RF switch. The GaAs die, Switch die and passive components are mounted on a multi-layer laminate substrate. The assembly is encapsulated with plastic overmold.

Band selection and control of transmit and receive are performed using four external control pads. Refer to the block diagram in Figure 1 below. The band select pad, BS, selects GSM850, GSM900, DCS, and PCS modes of operation. Transmit enable TxEN controls receive or transmit mode of the RF switch (Tx = logic 1). Proper timing between transmit enable TxEN and Analog Power Control VRAMP allows for high isolation between the antenna and Tx–VCO while the VCO is being tuned prior to the transmit burst.

The SKY77550 is compatible with logic levels from 1.2 V to 2.9 V for BS, TxEN, and VSW\_EN pads.

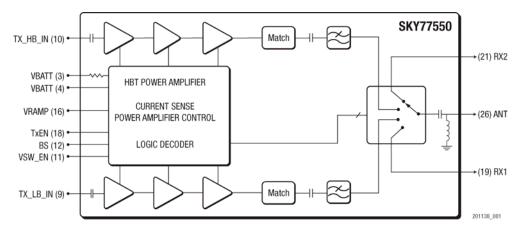



Figure 1. SKY77550 Functional Block Diagram

# Electrical Specifications

The following tables list the electrical characteristics of the SKY77550 Front-End Module. The absolute maximum ratings and recommended operating conditions for the SKY77550 are listed in Table 1 and Table 2, respectively. Table 3 specifies the mode control logic and Table 4 contains the electrical characteristics of

### SKY77550 Tx QUAD-BAND / Rx DUAL-BAND BIFET iPAC<sup>™</sup> FEM for GSM / GPRS (824-915 MHz and 1710-1910 MHz)

the SKY77550 for modes GSM850/900 and DCS1800/PCS1900. Figure 2 presents an application schematic for the SKY77550.

The SKY77550 is a static-sensitive electronic device and should not be stored or operated near strong electrostatic fields. Detailed information on device dimensions, pad descriptions, packaging and handling can be found in later sections of this data sheet.

#### Table 1. SKY77550 Absolute Maximum Ratings

| Parameter                                                                               | Minimum | Nominal | Maximum                          | Unit |
|-----------------------------------------------------------------------------------------|---------|---------|----------------------------------|------|
| Input Power (PIN)                                                                       | —       | 3       | 15                               | dBm  |
| Supply Voltage (Vcc), Standby VRAMP $\leq 0.3 \text{ V}$<br>Vsw_en $\leq 0.5 \text{ V}$ | _       | 3.5     | 7                                | V    |
| Control Voltage (VRAMP)                                                                 | -0.5    | 1.6     | Vcc_max – 0.2 V<br>(See Table 4) | V    |
| Storage Temperature                                                                     | -55     | +25     | +150                             | °C   |

<sup>1</sup> No damage assuming only one parameter is set at limit with all other parameters set at nominal value.

#### Table 2. SKY77550 Recommended Operating Conditions

| Parameter                                       |                                        | Minimum | Nominal | Maximum | Unit |
|-------------------------------------------------|----------------------------------------|---------|---------|---------|------|
| Supply Voltage (Vcc)                            |                                        | 3.1     | 3.5     | 4.8     | V    |
| Supply Current (Icc)                            |                                        | 0       | —       | 1.8     | А    |
| Operating Case Temperature (TCASE) <sup>1</sup> | 1-Slot (12.5% duty cycle)              | -20     | —       | +85     | °C   |
|                                                 | 2-Slot (25% duty cycle)                | -20     | —       | +85     |      |
|                                                 | 3-Slot (37.5% duty cycle) <sup>2</sup> | -20     | —       | +85     |      |
|                                                 | 4-Slot (50% duty cycle) <sup>2</sup>   | -20     | _       | +85     |      |

<sup>1</sup> Case Operating Temperature refers to the temperature of the GROUND PAD on the underside of the package.

<sup>2</sup> Max. output power must be reduced by 6 dB to support 3-slot and 4-slot operation.

#### Table 3. SKY77550 Mode Control Logic

|                  |        | Input Control Bits |    |  |  |  |  |
|------------------|--------|--------------------|----|--|--|--|--|
| Mode             | VSW_EN | TxEN               | BS |  |  |  |  |
| STANDBY          | 0      | 0                  | 0  |  |  |  |  |
| Rx1 <sup>1</sup> | 1      | 0                  | 0  |  |  |  |  |
| Rx2 <sup>1</sup> | 1      | 0                  | 1  |  |  |  |  |
| Tx_LB            | 1      | 1                  | 0  |  |  |  |  |
| Tx_HB            | 1      | 1                  | 1  |  |  |  |  |

<sup>1</sup> Rx1 and Rx2 are broadband receive ports and each supports the GSM850, GSM900, DCS, and PCS bands.

|                                 |             |             | General                                                                                                                                                                                                                                                                 |         |         |         |      |
|---------------------------------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|------|
| Parameter                       |             | Symbol      | Test Condition                                                                                                                                                                                                                                                          | Minimum | Typical | Maximum | Unit |
| Supply Voltage                  |             | Vcc         | _                                                                                                                                                                                                                                                                       | 3.1     | 3.5     | 4.8     | ۷    |
| Power Control Impedance         |             | Zvramp      | —                                                                                                                                                                                                                                                                       | _       | 120     | _       | kΩ   |
| /SW_EN Control Voltage LOW      |             | Vsw_en_low  | —                                                                                                                                                                                                                                                                       | -0.1    | _       | 0.3     | ۷    |
|                                 | HIGH        | Vsw_en_high |                                                                                                                                                                                                                                                                         | 1.2     |         | 2.9     |      |
| VSW_EN Current                  |             | Ivsw_en     | —                                                                                                                                                                                                                                                                       | _       | _       | 25      | μA   |
| Band Select Control Voltage LOW |             | Vbs_low     | —                                                                                                                                                                                                                                                                       | -0.1    | _       | 0.3     | ۷    |
|                                 | HIGH        | Vbs_high    |                                                                                                                                                                                                                                                                         | 1.2     | _       | 2.9     |      |
| Band Select Current             |             | IBS         | —                                                                                                                                                                                                                                                                       | _       | _       | 25      | μA   |
| TxEN Control Voltage            | LOW         | VTXEN_LOW   | —                                                                                                                                                                                                                                                                       | -0.1    | _       | 0.3     | ۷    |
|                                 | HIGH        | VTxen_high  |                                                                                                                                                                                                                                                                         | 1.2     |         | 2.9     |      |
| TxEN Control Current            |             | Itxen       | —                                                                                                                                                                                                                                                                       | _       | _       | 60      | μA   |
| Leakage Current Standby Mode    |             | las         | $\begin{array}{l} 3.1 \ V \leq Vcc \leq 4.2 \ V \\ Vsw\_en = Vsw\_en\_low \\ Vramp \leq 0.1 \ V \\ TxEN \leq TxEN\_low \\ BS \leq VBs\_low \\ MODE < Vmode\_low \\ Tcase = +25 \ ^{\circ}C \\ Pin \leq -60 \ dBm \end{array}$                                           |         | 30      | 50      | μA   |
| R                               | eceive Mode | IQRX        | $\label{eq:VCC} \begin{array}{l} V_{CC} \leq 4.2 \ V \\ 1.8 \ V \leq V_{SW}_{EN} \leq 2.5 \ V \\ V_{RAMP} \leq 0.1 \ V \\ TxEN \leq TxEN_{\_LOW} \\ MODE < V_{MODE}_{\_LOW} \\ MODE < V_{MODE}_{\_LOW} \\ TcAse = +25 \ ^{\circ}C \\ P_{IN} \leq -60 \ dBm \end{array}$ |         | 200     | 250     |      |

#### Table 4. SKY77550 Electrical Specifications<sup>1</sup>

Unless specified otherwise:

1

TCASE = -20 °C to max. operating temperature (see Table 2); RL = 50  $\Omega$ ; pulsed operation with pulse width  $\leq$  1154 µs and duty cycle  $\leq$  2:8; 3.1 V  $\leq$  VCC  $\leq$  4.8 V.

|                                | GSM850 (Tx_LL         | 8) Mode (ƒ = 824 MHz to 849 MHz, −1 dBm ≤ Pııı ≤ 5 dBr                                                                                                                                                   | n)      |         |         |      |
|--------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|------|
| Parameter                      | Symbol                | Test Condition                                                                                                                                                                                           | Minimum | Typical | Maximum | Unit |
| Frequency Range                | f                     | _                                                                                                                                                                                                        | 824     |         | 849     | MHz  |
| Input Power                    | Pin                   | _                                                                                                                                                                                                        | -1      | _       | 5       | dBm  |
| Analog Power Control Voltage   | Vramp                 | _                                                                                                                                                                                                        | 0.2     |         | 1.6     | V    |
| Power Added Efficiency         | PAE                   | Vcc = $3.5 \text{ V}$<br>Pout = $33 \text{ dBm}$<br>PiN = $3 \text{ dBm}$<br>duty cycle 1:8<br>TCASE = $+25 \text{ °C}$                                                                                  | 39      | 42      | _       | %    |
| Supply Current @ Rated Power   | lcc_33 dBm            | Vcc = $3.5 \text{ V}$<br>Pout = $33 \text{ dBm}$<br>PiN = $3 \text{ dBm}$<br>duty cycle 1:8<br>Tcase = $+25 \text{ °C}$                                                                                  | _       | 1.36    | 1.46    | А    |
|                                | lcc_29 dBm            | Vcc = $3.5 \text{ V}$<br>Pout = $29 \text{ dBm}$<br>PiN = $3 \text{ dBm}$<br>duty cycle 1:8<br>TCASE = $+25 \text{ °C}$                                                                                  | _       | 770     | _       | mA   |
| Supply Current @ Minimum Power | lcc_5 dBm             | Vcc = $3.5 \text{ V}$<br>Pout = $5 \text{ dBm}$<br>PiN = $3 \text{ dBm}$<br>duty cycle 1:8<br>Tcase = $+25 \text{ °C}$                                                                                   | _       | 70      | 85      | mA   |
| Harmonics                      | 2fo to 13fo           | $\begin{array}{l} BW = 3 \mbox{ MHz} \\ 5 \mbox{ dBm} \leq Pout \leq 33 \mbox{ dBm} \\ V_{RAMP} \mbox{ controlled}^2 \end{array}$                                                                        | _       | -40     | -33     | dBm  |
| Mismatch Harmonics             | 2fo to 7fo            | BW = 3 MHz<br>VRAMP = Max VRAMP4<br>VBATT = 3.5 V<br>VSWR = 3:1 all phases<br>TCASE = +25 °C                                                                                                             | _       | _       | -33     |      |
| Output Power                   | Роит                  | Vcc = 3.5 V<br>Tcase = +25 °C<br>PiN = -1 dBm                                                                                                                                                            | 33.0    | 33.7    |         | dBm  |
|                                | POUT_MAX LOW VOLTAGE  | $\begin{array}{l} \mbox{Vcc} = 3.1 \ \mbox{V} \\ \mbox{Vramp} = \ \mbox{Max} \ \mbox{Vramp}^4 \\ -20 \ \ \mbox{C} \le \ \mbox{Tcase} \le +85 \ \ \mbox{C} \\ \mbox{Pin} = -1 \ \ \mbox{dBm} \end{array}$ | 30.5    | 32.0    |         |      |
|                                | POUT_MAX HIGH VOLTAGE | $Vcc = 4.8 V$ $VRAMP = Max VRAMP^{4}$ $-20 °C \le TCASE \le +85 °C$ $PIN = -1 dBm$                                                                                                                       | 30.5    | 34.5    | _       |      |
| Input VSWR                     | ΓIN                   | 5 dBm $\leq$ Pout $\leq$ 33 dBm VRAMP controlled <sup>2</sup>                                                                                                                                            | —       | 1.5:1   | 2.5:1   |      |
| Forward Isolation <sup>3</sup> | Pout_rx               | Pin = 5 dBm<br>Vramp ≤ 0.1 V<br>Vsw_en = Vsw_en_high<br>TxEN = Vtxen_Low<br>Rx1 Mode                                                                                                                     | _       | 55      | -45     | dBm  |
|                                | Pout_enabled_tx       | $\label{eq:Pin} \begin{array}{l} Pin = 5 \ dBm \\ Vramp \leq 0.1 \ V \\ Vsw\_en = Vsw\_en\_high \\ TxEN = Vtxen\_high \end{array}$                                                                       | —       | -25     | -5      |      |

Table 5. SKY77550 Electrical Specifications<sup>1</sup> (1 of 2)

|                                                                    |                                                               | Table 5            | <b>SKY77550 Electrical Specifications'</b> (2 of 2)                                                                                                                                                                            |                                    |                                           |         |       |
|--------------------------------------------------------------------|---------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------|---------|-------|
|                                                                    |                                                               | [continued] GSM850 | (Tx_LB) Mode ( $f = 824$ MHz to 849 MHz, -1 dBm $\leq$ Pm                                                                                                                                                                      | <i>i ≤ 5 dBm)</i>                  |                                           |         |       |
| Ра                                                                 | arameter                                                      | Symbol             | Test Condition                                                                                                                                                                                                                 | Minimum                            | Typical                                   | Maximum | Unit  |
| Coupling of GSM<br>to Rx <sup>5</sup> Output pa                    | 850/900 Tx Output ( <i>f</i> <sub>0</sub> )<br>d <sup>4</sup> | CGHI_Tx-Rx_f0      | $5 \text{ dBm} \le P_{\text{OUT}} \le 33 \text{ dBm}$                                                                                                                                                                          | —                                  | -5                                        | 0       | dBm   |
| Coupling of GSM<br>(2 <i>f</i> 0, 3 <i>f</i> 0) to Rx <sup>5</sup> | 850/900 Tx Output<br>Output pad <sup>4</sup>                  | CGHI_Tx-DCS_Rx     | $5 \text{ dBm} \le P_{\text{OUT}} \le 33 \text{ dBm}$                                                                                                                                                                          | —                                  | -45                                       | -36     | dBm   |
| Spurious                                                           |                                                               | Spur               | All combinations of the following parameters:<br>$V_{RAMP} = controlled^2$<br>$P_{IN} = min. to max.$<br>$3.1 V \le Vcc \le 4.8 V$<br>$-20 \ ^{\circ}C \le T_{CASE} \le +85 \ ^{\circ}C$<br>Load VSWR = 12:1, all phase angles | No parasitic oscillation > –35 dBn |                                           | Bm      |       |
| Load Mismatch                                                      |                                                               | Load               | All combinations of the following parameters:<br>$V_{RAMP} = controlled^2$<br>$P_{IN} = min. to max.$<br>$3.1 V \le Vcc \le 4.8 V$<br>$-20 \ ^{\circ}C \le T_{CASE} \le +85 \ ^{\circ}C$<br>Load VSWR = 20:1, all phase angles | No mo                              | No module damage or permanent degradation |         |       |
| Rx Band Spurious                                                   |                                                               | Rx_spur            | At $f_0 + 20$ MHz (869 MHz to 894 MHz)<br>RBW = 100 kHz<br>Vcc = 3.5 V<br>TCASE = +25 °C<br>5 dBm $\leq$ Pout $\leq$ 33 dBm                                                                                                    | _                                  | -84                                       | -83     | dBm   |
|                                                                    |                                                               |                    | At 1930 MHz to 1990 MHz<br>RBW = 100 kHz<br>Vcc = 3.5 V<br>TCASE = +25 °C<br>5 dBm ≤ Pout ≤ 33 dBm                                                                                                                             | — — — — — — — — — — — — 4          |                                           | -84     |       |
| Power Control Dy                                                   | ynamic Range                                                  | PCdr               | _                                                                                                                                                                                                                              | 30                                 | 50                                        |         | dB    |
| Power Control<br>Variation                                         | Control Level 5                                               | PCv                | VBATT = 3.5 V<br>Pout = 33 dBm<br>TCASE = +25 °C                                                                                                                                                                               | -1.5                               | _                                         | 1.5     | dB    |
|                                                                    |                                                               |                    | Роит = 33 dBm                                                                                                                                                                                                                  | -2.0                               |                                           | 2.0     |       |
|                                                                    | Control Level 6-15                                            |                    | $\label{eq:VBATT} \begin{array}{l} V_{BATT} = 3.5 \text{ V} \\ 13 \text{ dBm} \leq Pout \leq 31 \text{ dBm} \\ T_{CASE} = +25 \ ^{\circ}C \end{array}$                                                                         | -2.5                               | _                                         | 2.5     |       |
|                                                                    |                                                               |                    | $13 \text{ dBm} \le \text{Pout} \le 31 \text{ dBm}$                                                                                                                                                                            | -3.5                               | _                                         | 3.5     |       |
|                                                                    | Control Level 16-19                                           |                    | VBATT = 3.5 V<br>5 dBm ≤ Pout ≤ 11 dBm<br>TCASE = +25 °C                                                                                                                                                                       | -4.5                               |                                           | 4.5     |       |
|                                                                    |                                                               |                    | 5 dBm $\leq$ Pout $\leq$ 11 dBm                                                                                                                                                                                                | -5.5                               | _                                         | 5.5     |       |
| Power Control Sl                                                   | ope                                                           | PCs                | 5 dBm to 33 dBm                                                                                                                                                                                                                | _                                  |                                           | 250     | dB/V  |
|                                                                    |                                                               | GSM                | 1850 RECEIVE (f = 869 MHz to 894 MHz) Rx Mode                                                                                                                                                                                  |                                    |                                           |         |       |
| Pa                                                                 | arameter                                                      | Symbol             | Test Condition                                                                                                                                                                                                                 | Minimum                            | Typical                                   | Maximum | Units |
| Frequency Range                                                    | e                                                             | f                  |                                                                                                                                                                                                                                | 869                                |                                           | 894     | MHz   |
| Insertion Loss, Al                                                 | NT to Rx <sup>5,3</sup>                                       | IL_Rx <sup>5</sup> | $T_{CASE} = +25 \ ^{\circ}C$                                                                                                                                                                                                   |                                    | 1.0                                       | 1.3     | dB    |
| VSWR ANT, Rx <sup>5,3</sup>                                        | 3                                                             | ΓΙΝ, ΓΟυτ          | _                                                                                                                                                                                                                              | _                                  | 1.2:1                                     | 1.5:1   |       |

#### Table 5. SKY77550 Electrical Specifications<sup>1</sup> (2 of 2)

<sup>1</sup> Unless specified otherwise:

TCASE = -20 °C to max. operating temperature (see Table 2); RL = 50  $\Omega$ ; pulsed operation with pulse width  $\leq$  1154 µs and duty cycle  $\leq$  2:8; 3.1 V  $\leq$  VCC  $\leq$  4.8 V.

 $^2$   $\,$  VRAMP is calibrated to each PCL at TCASE = +25 °C, VBATT = 3.5 V, PIN = 3 dBm, 50  $\Omega$  load.

 $^3$   $\,$  Terminate all unused RF ports with 50  $\Omega$  loads

 $^4$   $\,$  Max VRAMP = VRAMP @ POUT =33 dBm, 50  $\Omega$  load, TCASE = +25 °C, VBATT = 3.5 V, PIN = 3 dBm  $\,$ 

<sup>5</sup> Rx1 and Rx2 are broadband receive ports and each supports the GSM850, GSM900, DCS, and PCS bands.

|                                | GSM900 (Tx_LL         | 3) Mode (ƒ = 880 MHz to 915 MHz, −1 dBm ≤ Pix ≤ 5                                                                                                     | 5 dBm)  |         |         |       |
|--------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|-------|
| Parameter                      | Symbol                | Test Condition                                                                                                                                        | Minimum | Typical | Maximum | Units |
| Frequency Range                | f                     |                                                                                                                                                       | 880     | _       | 915     | MHz   |
| Input Power                    | Pin                   | _                                                                                                                                                     | -1      | _       | 5       | dBm   |
| Analog Power Control Voltage   | Vramp                 | _                                                                                                                                                     | 0.2     | _       | 1.6     | V     |
| Power Added Efficiency         | PAE                   | Vcc = $3.5 \text{ V}$<br>Pout = $33 \text{ dBm}$<br>PiN = $3 \text{ dBm}$<br>duty cycle 1:8<br>TCASE = $+25 \text{ °C}$                               | 39      | 42      | _       | %     |
| Supply Current @ Rated Power   | lcc_33 dBm            | Vcc = $3.5 \text{ V}$<br>Pout = $33 \text{ dBm}$<br>PiN = $3 \text{ dBm}$<br>duty cycle 1:8<br>Tcase = $+25 \text{ °C}$                               | _       | 1.36    | 1.46    | A     |
|                                | lcc_29 dBm            | Vcc = $3.5 \text{ V}$<br>Pout = $29 \text{ dBm}$<br>PiN = $3 \text{ dBm}$<br>duty cycle 1:8<br>TCASE = $+25 \text{ °C}$                               | _       | 750     | _       | mA    |
| Supply Current @ Minimum Power | lcc_5 dBm             | Vcc = $3.5 \text{ V}$<br>Pout = $5 \text{ dBm}$<br>PiN = $3 \text{ dBm}$<br>duty cycle 1:8<br>TCASE = $+25 \text{ °C}$                                | -       | 70      | 85      | mA    |
| Harmonics                      | 2fo to 13fo           | $\begin{array}{l} BW=3\ MHz\\ 5\ dBm\leqPout\leq33\ dBm\\ VRAMP\ controlled^2 \end{array}$                                                            |         | -40     | -33     | dBm   |
| Mismatch Harmonics             | 2fo to 7fo            | BW = 3 MHz<br>$V_{RAMP} = Max V_{RAMP}^4$<br>$V_{BATT} = 3.5 V$<br>VSWR = 3:1 all phases<br>$T_{CASE} = +25 °C$                                       | _       | _       | -33     | dBm   |
| Output Power                   | Роит                  | Vcc = 3.5 V<br>Tcase = +25 °C<br>PiN = -1 dBm                                                                                                         | 33.0    | 33.7    | —       | dBm   |
|                                | POUT_MAX LOW VOLTAGE  | $\label{eq:Vcc} \begin{array}{l} Vcc = 3.1 \ V \\ Vramp = Max \ Vramp^4 \\ -20 \ ^\circC \leq Tcase \leq +85 \ ^\circC \\ Pin = -1 \ dBm \end{array}$ | 30.5    | 32.0    | -       |       |
|                                | POUT_MAX HIGH VOLTAGE | $V_{CC} = 4.8 V$ $V_{RAMP} = Max V_{RAMP}^4$ $-20 °C \le T_{CASE} \le +85 °C$ $P_{IN} = -1 dBm$                                                       | 30.5    | 34.5    | _       |       |
| Input VSWR                     | ΓIN                   | Pout = 5 dBm to 33 dBm<br>Vramp controlled <sup>2</sup>                                                                                               | —       | 1.5:1   | 2.5:1   |       |

# Table 6. SKY77550 Electrical Specifications<sup>1</sup> (1 of 3)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [continued] <b>GSM90</b> | D (Tx_LB) Mode ( $f$ = 880 MHz to 915 MHz, −1 dBm ≤ Pl                                                                                                                                                                       | w <i>≤5 dBm)</i> |                                             |         |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------|---------|-------|
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Symbol                   | Test Condition                                                                                                                                                                                                               | Minimum          | Typical                                     | Maximum | Units |
| Forward Isolation <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pout_rx                  | $\begin{array}{l} {\sf Pin}=5\;dBm\\ {\sf Vramp}\leq 0.1\;V\\ {\sf Vsw\_en}={\sf Vsw\_en\_high}\\ {\sf TxEN}={\sf Vtxen\_low}\\ {\sf Rx1}\;{\sf Mode} \end{array}$                                                           | _                | -55                                         | -45     | dBm   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pout_enabled_tx          | $ \begin{array}{l} {\sf Pin}=5 \; dBm \\ {\sf Vramp} \leq 0.1 \; V \\ {\sf Vsw\_en}={\sf Vsw\_en\_high} \\ {\sf TxEN}={\sf Vtxen\_high} \end{array} $                                                                        | _                | -25                                         | -5      |       |
| Coupling of GSM850/900 Tx Output (for the transformation of trans | ) CGHI_Tx-Rx_f0          | $5 \text{ dBm} \le Pout \le 33 \text{ dBm}$                                                                                                                                                                                  | —                | -5                                          | 0       | dBm   |
| Coupling of GSM850/900 Tx Output $(2f_0, 3f_0)$ to $Rx^5$ Output pad <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CGHI_Tx_Rx <sup>5</sup>  | $5 \text{ dBm} \le Pout \le 33 \text{ dBm}$                                                                                                                                                                                  | —                | -45                                         | -36     | dBm   |
| Spurious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spur                     | All combinations of the following parameters:<br>$V_{RAMP} = controlled^2$<br>$P_{IN} = min. to max.$<br>$3.1 V \le Vcc \le 4.8 V$<br>$-20 °C \le T_{CASE} \le +85 °C$<br>Load VSWR = 12:1, all phase angles                 | No para          | No parasitic oscillation > –36 dBn          |         |       |
| Load Mismatch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Load                     | All combinations of the following parameters:<br>$V_{RAMP} = controlled^2$<br>$P_{IN} = min. to max.$<br>$3.1 V \le Vcc \le 4.8 V$<br>$-20 \text{ °C} \le T_{CASE} \le +85 \text{ °C}$<br>Load VSWR = 20:1, all phase angles | No mo            | No module damage or permanen<br>degradation |         | ent   |
| Rx Band Spurious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rx_spur                  | At $f_0 + 20$ MHz (935 MHz to 960 MHz)<br>RBW = 100 kHz<br>Vcc = 3.5 V<br>TCASE = +25 °C<br>5 dBm $\leq$ Pout $\leq$ 33 dBm                                                                                                  | _                | -84                                         | -83     | dBm   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | At $f_0 + 10$ MHz (925 MHz to 935 MHz)<br>RBW = 100 kHz<br>Vcc = 3.5 V<br>TCASE = +25 °C<br>5 dBm $\leq$ Pout $\leq$ 33 dBm                                                                                                  | -                | -80                                         | -76     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | At 1805 MHz to 1880 MHz<br>RBW = 100  kHz<br>Vcc = 3.5  V<br>Tcase = +25  °C<br>$5 \text{ dBm} \le Pout \le 33 \text{ dBm}$                                                                                                  | —                | -101                                        | -84     |       |
| Power Control Dynamic Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PCDR                     | _                                                                                                                                                                                                                            | 30               | 50                                          | _       | dB    |
| Power Control Control Level 5<br>Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PCv                      | VBATT = 3.5 V<br>Pout = 33 dBm<br>TCASE = +25 °C                                                                                                                                                                             | -1.5             |                                             | 1.5     | dB    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                        | Pout = 33 dBm                                                                                                                                                                                                                | -2.0             | —                                           | 2.0     |       |
| Control Level 6-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | $\label{eq:VBATT} \begin{array}{l} VBATT = 3.5 \text{ V} \\ 13 \text{ dBm} \leq Pout \leq 31 \text{ dBm} \\ TCASE = +25 \ ^{\circ}C \end{array}$                                                                             | -2.5             | —                                           | 2.5     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | $13 \text{ dBm} \le Pout \le 31 \text{ dBm}$                                                                                                                                                                                 | -3.5             | —                                           | 3.5     | 1     |
| Control Level 16-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | $\label{eq:VBATT} \begin{array}{l} VBATT = 3.5 \text{ V} \\ 5 \text{ dBm} \leq Pout \leq 11 \text{ dBm} \\ TCASE = +25 \ ^\circC \end{array}$                                                                                | -4.5             |                                             | 4.5     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | $5 \text{ dBm} \le P_{\text{OUT}} \le 11 \text{ dBm}$                                                                                                                                                                        | -5.5             |                                             | 5.5     | 1     |
| Power Control Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PCs                      | 5 dBm to 33 dBm                                                                                                                                                                                                              |                  |                                             | 250     | dB/V  |

#### Table 6. SKY77550 Electrical Specifications<sup>1</sup> (2 of 3)

7

#### Table 6. SKY77550 Electrical Specifications<sup>1</sup> (3 of 3)

| GSM900 RECEIVE (f = 925 MHz to 960 MHz) Rx Mode |                    |                |         |         |         |       |
|-------------------------------------------------|--------------------|----------------|---------|---------|---------|-------|
| Parameter                                       | Symbol             | Test Condition | Minimum | Typical | Maximum | Units |
| Frequency Range                                 | f                  | _              | 925     | _       | 960     | MHz   |
| Insertion Loss, ANT to Rx <sup>5,3</sup>        | IL_Rx <sup>5</sup> | TCASE = +25 °C | _       | 1.0     | 1.3     | dB    |
| VSWR ANT, Rx <sup>5,3</sup>                     | ΓιΝ, ΓΟυτ          | —              | —       | 1.2:1   | 1.5:1   |       |

<sup>1</sup> Unless specified otherwise:

TCASE = -20 °C to max. operating temperature (see Table 2); RL =  $50 \Omega$ ; pulsed operation with pulse width  $\leq 1154 \mu$ s and duty cycle  $\leq 2:8$ ;  $3.1 V \leq VCC \leq 4.8 V$ .

 $^2$   $\,$  VRAMP is calibrated to each PCL at TCASE = +25 °C, VBATT = 3.5 V, PIN = 3 dBm, 50  $\Omega$  load.

 $^3$   $\,$  Terminate all unused RF ports with 50  $\Omega$  loads

 $^4$   $\,$  Max VRAMP = VRAMP @ POUT =33 dBm, 50  $\Omega$  load, TCASE +25 °C, VBATT = 3.5 V, PIN = 3 dBm  $\,$ 

<sup>5</sup> Rx1 and Rx2 are broadband receive ports and each supports the GSM850, GSM900, DCS, and PCS bands.

|                                | DCS1800 (Tx_ | HB) Mode ( $f = 1710$ MHz to 1785 MHz, -1 dBm $\leq$ Pin $\leq$ 5 d                                                                | Bm)     |         |         |       |
|--------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|-------|
| Parameter                      | Symbol       | Test Condition                                                                                                                     | Minimum | Typical | Maximum | Units |
| Frequency Range                | f            | _                                                                                                                                  | 1710    | _       | 1785    | MHz   |
| Input Power                    | Pin          | —                                                                                                                                  | -1      | _       | 5       | dBm   |
| Analog Power Control Voltage   | VRAMP        | —                                                                                                                                  | 0.2     | _       | 1.6     | ۷     |
| Power Added Efficiency         | PAE          | Vcc = $3.5 \text{ V}$<br>Pout = $31 \text{ dBm}$<br>PiN = $3 \text{ dBm}$<br>duty cycle 1:8<br>TCASE = $+25 \text{ °C}$            | 37      | 42      | _       | %     |
| Supply Current @ Rated Power   | lcc_31 dBm   | $V_{CC} = 3.5 V$ $P_{OUT} = 31 \text{ dBm}$ $P_{IN} = 3 \text{ dBm}$ $duty cycle 1:8$ $T_{CASE} = +25 \text{ °C}$                  | _       | 0.86    | 0.97    | A     |
|                                | lcc_28 dBm   | Vcc = $3.5 \text{ V}$<br>Pout = $28 \text{ dBm}$<br>PiN = $3 \text{ dBm}$<br>duty cycle 1:8<br>TCASE = $+25 \text{ °C}$            | -       | 630     | -       | mA    |
| Supply Current @ Minimum Power | lcc_0 dBm    | Vcc = 3.5 V $Pout = 0 dBm$ $PiN = 3 dBm$ $duty cycle 1:8$ $Tcase = +25 °C$                                                         | -       | 40      | 55      | mA    |
| Harmonics                      | 2fo to 7fo   | $\begin{array}{l} BW = 3 \mbox{ MHz}, \\ 0 \mbox{ dBm} \leq Pout \leq 31 \mbox{ dBm} \\ V_{RAMP} \mbox{ controlled}^2 \end{array}$ | _       | -40     | -33     | dBm   |
| Mismatch Harmonics             | 2f0, 3f0     | BW = 3  MHz<br>$V_{RAMP} = Max V_{RAMP}^4$<br>$V_{BATT} = 3.5 V$<br>VSWR = 3:1  all phases<br>$T_{CASE} = +25 °C$                  | _       | _       | -33     | dBm   |

## Table 7. SKY77550 Electrical Specifications <sup>1</sup> (1 of 3)

|                                                                    | [continued] <i>DCS1800 (1</i> | $x_HB$ ) Mode (f = 1710 MHz to 1785 MHz, -1 dBm $\leq$ P                                                                                                                                                     | 'ıı ≤ 5 dBm <i>)</i> |                                           |         |       |  |
|--------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------|---------|-------|--|
| Parameter                                                          | Symbol                        | Test Condition                                                                                                                                                                                               | Minimum              | Typical                                   | Maximum | Units |  |
| Output Power                                                       | Роит                          | $V_{CC} = 3.5 V$ $T_{CASE} = +25 °C$ $P_{IN} = -1 dBm$                                                                                                                                                       | 31.0                 | 32.0                                      |         | dBm   |  |
|                                                                    | POUT _MAX LOW VOLTAGE         | $V_{CC} = 3.1 V$ $V_{RAMP} = MAX V_{RAMP}^4$ $-20 \circ C \leq T_{CASE} \leq +85 \circ C$ $P_{IN} = -1 dBm$                                                                                                  | 28.5                 | 30.0                                      | _       |       |  |
|                                                                    | POUT _MAX HIGH VOLTAGE        | $V_{CC} = 4.8 V$ $V_{RAMP} = Max V_{RAMP}^4$ $-20 \circ C \leq T_{CASE} \leq +85 \circ C$ $P_{IN} = -1 dBm$                                                                                                  | 28.5                 | 32.5                                      | _       |       |  |
| Input VSWR                                                         | ΓIN                           | $0 \text{ dBm} \le P_{OUT} \le 31 \text{ dBm}$<br>VRAMP controlled <sup>2</sup>                                                                                                                              | —                    | 1.5:1                                     | 2.5:1   |       |  |
| Forward Isolation <sup>3</sup>                                     | Pout Rx                       | $\label{eq:Pin} \begin{array}{l} Pin = 5 \ dBm \\ Vramp \leq 0.1 \ V \\ Vsw\_en = Vsw\_en\_high \\ TxEN = Vtxen\_low \\ Rx2 \ Mode \end{array}$                                                              | _                    | -65                                       | -53     | dBm   |  |
|                                                                    | Pout_enabled_tx               | $\label{eq:Pin} \begin{array}{l} Pin = 5 \ dBm \\ Vramp \leq 0.1 \ V \\ Vsw\_en = Vsw\_en\_high \\ TxEN = Vtxen\_high \end{array}$                                                                           |                      | -35                                       | -5      |       |  |
| Coupling of DCS Tx output to Receive<br>RF output pad <sup>3</sup> | CDCS_Tx-Rx_f0                 | $0 \text{ dBm} \le \text{Pout} \le 31 \text{ dBm}$                                                                                                                                                           | —                    | 0                                         | 5       | dBm   |  |
| Spurious                                                           | Spur                          | All combinations of the following parameters:<br>$V_{RAMP} = controlled^2$<br>$P_{IN} = min. to max.$<br>$3.1 V \le Vcc \le 4.8 V$<br>$-20 °C \le T_{CASE} \le +85 °C$<br>Load VSWR = 12:1, all phase angles | No para              | No parasitic oscillation > –36 dBm        |         |       |  |
| Load Mismatch                                                      | Load                          | All combinations of the following parameters:<br>$V_{RAMP} = controlled^2$<br>$P_{IN} = min. to max.$<br>$3.1 V \le Vcc \le 4.8 V$<br>$-20 °C \le T_{CASE} \le +85 °C$<br>Load VSWR = 20:1, all phase angles | No mo                | No module damage or permanent degradation |         |       |  |
| Rx Band Spurious                                                   | Rx_spur                       | At $f_0$ + 20 MHz (1805 MHz to 1880 MHz)<br>RBW = 100 kHz<br>Vcc = 3.5 V<br>TCASE = +25 °C<br>0 dBm $\leq$ Pout $\leq$ 31 dBm                                                                                | _                    | -83                                       | -78     | dBm   |  |
|                                                                    |                               | 925 MHz to 960 MHz<br>RBW = 100 kHz<br>Vcc = $3.5$ V<br>TCASE = $+25$ °C<br>0 dBm $\leq$ Pout $\leq 31$ dBm                                                                                                  | _                    | _                                         | -87     |       |  |
| Power Control Dynamic Range                                        | PCdr                          |                                                                                                                                                                                                              | 35                   | 50                                        |         | dB    |  |

#### Table 7. SKY77550 Electrical Specifications <sup>1</sup> (2 of 3)

|                            | [0                      | continued] <i>DCS1800 (</i>                                                                                                                               | Tx_HB) Mode ( $f = 1710$ MHz to 1785 MHz, -1 dBm $\le P_{IN} \le 5$                                                                                    | dBm)    |         |         |       |
|----------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|-------|
| Pa                         | arameter                | Symbol                                                                                                                                                    | Test Condition                                                                                                                                         | Minimum | Typical | Maximum | Units |
| Power Control<br>Variation | trol Control Level 0    | PCv                                                                                                                                                       | $\label{eq:VBATT} \begin{array}{l} V_{BATT} = 3.5 \text{ V} \\ 30 \text{ dBm} \leq Pout \leq 31 \text{ dBm} \\ T_{CASE} = +25 \ ^{\circ}C \end{array}$ | -1.5    | _       | 1.5     | dB    |
|                            |                         |                                                                                                                                                           | $30 \text{ dBm} \le \text{Pout} \le 31 \text{ dBm}$                                                                                                    | -2.0    |         | 2.0     |       |
| Control Level 1-8          |                         | $\label{eq:VBATT} \begin{array}{l} V_{BATT} = 3.5 \text{ V} \\ 14 \text{ dBm} \leq P_{OUT} \leq 28 \text{ dBm} \\ T_{CASE} = +25 \ ^{\circ}C \end{array}$ | -2.5                                                                                                                                                   | _       | 2.5     |         |       |
|                            |                         |                                                                                                                                                           | $14 \text{ dBm} \le P_{OUT} \le 28 \text{ dBm}$                                                                                                        | -3.5    |         | 3.5     |       |
|                            | Control Level 9-13      |                                                                                                                                                           | $\label{eq:VBATT} \begin{array}{l} V_{BATT} = 3.5 \text{ V} \\ 4 \text{ dBm} \leq Pout \leq 12 \text{ dBm} \\ T_{CASE} = +25 \ ^{\circ}C \end{array}$  | -3.5    | _       | 3.5     |       |
|                            |                         |                                                                                                                                                           | 4 dBm $\leq$ Pout $\leq$ 12 dBm                                                                                                                        | -4.5    |         | 4.5     |       |
|                            | Control Level 14-15     |                                                                                                                                                           |                                                                                                                                                        | -4.5    |         | 4.5     |       |
|                            |                         |                                                                                                                                                           | $0 \text{ dBm} \le P_{\text{OUT}} \le 2 \text{ dBm}$                                                                                                   | -5.5    |         | 5.5     |       |
| Power Control SI           | lope                    | PCs                                                                                                                                                       | 0 dBm to 31 dBm                                                                                                                                        |         | _       | 250     | dB/V  |
|                            |                         | DCS1                                                                                                                                                      | 800 RECEIVE ( <i>f</i> =1805 MHz to 1880 MHz) Rx Mode                                                                                                  |         |         |         | •     |
| Pa                         | arameter                | Symbol                                                                                                                                                    | Test Condition                                                                                                                                         | Minimum | Typical | Maximum | Units |
| Frequency Rang             | е                       | f                                                                                                                                                         | _                                                                                                                                                      | 1805    |         | 1880    | MHz   |
| Insertion Loss, A          | NT to Rx <sup>5,3</sup> | IL_Rx <sup>5</sup>                                                                                                                                        | $T_{CASE} = +25 \ ^{\circ}C$                                                                                                                           | _       | 1.2     | 1.5     | dB    |
| VSWR ANT, Rx <sup>5,</sup> | 3                       | ΓΙΝ, ΓΟυτ                                                                                                                                                 | _                                                                                                                                                      |         | 1.2:1   | 1.5:1   |       |

Table 7. SKY77550 Electrical Specifications <sup>1</sup> (3 of 3)

<sup>1</sup> Unless specified otherwise:

TCASE = -20 °C to max. operating temperature (see Table 2); RL = 50  $\Omega$ ; pulsed operation with pulse width  $\leq$  1154 µs and duty cycle  $\leq$  2:8; 3.1 V  $\leq$  VCC  $\leq$  4.8 V.

 $^2$  VRAMP is calibrated to each PCL at TCASE = +25 °C, VBATT = 3.5 V, PIN = 3 dBm, 50  $\Omega$  load.

 $^3$   $\,$  Terminate all unused RF ports with 50  $\Omega$  loads

<sup>4</sup> Max VRAMP = VRAMP @ POUT =31 dBm, 50  $\Omega$  load, TCASE +25 °C, VBATT = 3.5 V, PIN = 3 dBm

<sup>5</sup> Rx1 and Rx2 are broadband receive ports and each supports the GSM850, GSM900, DCS, and PCS bands.

#### Table 8. SKY77550 Electrical Specifications<sup>1</sup> (1 of 3)

|                              | PCS1900 (Tx_HB) Mode ( $f = 1850$ MHz to 1910 MHz, -1 dBm $\leq$ PiN $\leq$ 5 dBm) |                                                                             |         |         |         |       |
|------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------|---------|---------|-------|
| Parameter                    | Symbol                                                                             | Test Condition                                                              | Minimum | Typical | Maximum | Units |
| Frequency Range              | f                                                                                  | _                                                                           | 1850    | _       | 1910    | MHz   |
| Input Power                  | Pin                                                                                | _                                                                           | -1      |         | 5       | dBm   |
| Analog Power Control Voltage | Vramp                                                                              | _                                                                           | 0.2     | _       | 1.6     | ٧     |
| Power Added Efficiency       | PAE                                                                                | Vcc = 3.5 V $Pout = 31 dBm$ $PiN = 3 dBm$ $duty cycle 1:8$ $TcASE = +25 °C$ | 37      | 41      | _       | %     |

|                                                                 | [continued] <b>PCS1900 (</b> 1 | Tx_HB) Mode ( $f = 1850$ MHz to 1910 MHz, -1 dBm $\leq H$                                                                                                                                                      | Pın ≤5 dBm) |                |               |       |
|-----------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|---------------|-------|
| Parameter                                                       | Symbol                         | Test Condition                                                                                                                                                                                                 | Minimum     | Typical        | Maximum       | Units |
| Supply Current @ Rated Power                                    | lcc_31 dBm                     | Vcc = $3.5 \text{ V}$<br>PIN = $3 \text{ dBm}$<br>POUT = $31 \text{ dBm}$<br>duty cycle 1:8<br>TCASE = $+25 \text{ °C}$                                                                                        | _           | 0.88           | 0.97          | A     |
|                                                                 | lcc_28 dBm                     | Vcc = $3.5 \text{ V}$<br>PIN = $3 \text{ dBm}$<br>POUT = $28 \text{ dBm}$<br>duty cycle 1:8<br>TCASE = $+25 \text{ °C}$                                                                                        | _           | 630            | _             | mA    |
| Supply Current @ Minimum Power                                  | lcc_0 dBm                      | Vcc = 3.5 V $P = 3 dBm$ $Pout = 0 dBm$ $duty cycle 1:8$ $Tcase = +25 °C$                                                                                                                                       | _           | 45             | 55            | mA    |
| Harmonics                                                       | 2fo to 7fo                     | $\begin{array}{l} BW = 3 \mbox{ MHz}, \\ 0 \mbox{ dBm} \leq \mbox{Pout} \leq 31 \mbox{ dBm} \\ \mbox{Vramp controlled}^2 \end{array}$                                                                          | —           | -40            | -33           | dBm   |
| Mismatch Harmonics                                              | 2f0, 3f0                       | BW = 3 MHz<br>VrAMP = MAX VrAMP4<br>VBATT = 3.5 V<br>VSWR = 3:1 all phases<br>TCASE = +25 °C                                                                                                                   |             |                | -33           | dBm   |
| Output Power                                                    | Роит                           | $V_{CC} = 3.5 V$<br>$T_{CASE} = +25 °C$<br>$P_{IN} = -1 dBm$                                                                                                                                                   | 31.0        | 32.0           | _             | dBm   |
|                                                                 | POUT _MAX LOW VOLTAGE          | $V_{CC} = 3.1 V$ $V_{RAMP} = MAX V_{RAMP}^4$ $-20 °C \le T_{CASE} \le +85 °C$ $P_{IN} = -1 dBm$                                                                                                                | 28.5        | 30.0           | —             |       |
|                                                                 | POUT _MAX HIGH VOLTAGE         | $V_{CC} = 4.8 V$ $V_{RAMP} = MAX V_{RAMP}^4$ $-20 °C \le T_{CASE} \le +85 °C$ $P_{IN} = -1 dBm$                                                                                                                | 28.5        | 32.5           | —             |       |
| Input VSWR                                                      | Гіл                            | 0 dBm Pout $\leq$ 31 dBm<br>Vramp controlled <sup>2</sup>                                                                                                                                                      | —           | 1.5:1          | 2.5:1         |       |
| Forward Isolation <sup>3</sup>                                  | Pout Rx                        | $\label{eq:Pin} \begin{array}{l} Pin = 5 \ dBm \\ Vramp \leq 0.1 \ V \\ Vsw\_en = Vsw\_en\_high \\ TxEN = Vtxen\_low \\ Rx2 \ Mode \end{array}$                                                                | _           | -60            | -53           | dBm   |
|                                                                 | Pout_enabled_tx                | $\label{eq:ramp} \begin{array}{l} Pin = 5 \ dBm \\ Vramp \leq 0.1 \ V \\ Vsw\_en = Vsw\_en\_high \\ TxEN = Vtxen\_high \\ \end{array}$                                                                         | —           | -35            | -5            |       |
| Coupling of PCS Tx Output to Receive RF Output pad <sup>3</sup> | CPCS_Tx-Rx_f0                  | $0 \text{ dBm} \le P_{0UT} \le 31 \text{ dBm}$                                                                                                                                                                 | —           | 0              | 5             | dBm   |
| Spurious                                                        | Spur                           | All combinations of the following parameters:<br>$V_{RAMP} = controlled^2$<br>$P_{IN} = min. to max$<br>$3.1 V \le V_{CC} \le 4.8 V$<br>$-20 °C \le T_{CASE} \le +85 °C$<br>Load VSWR = 12:1, all phase angles | No para     | asitic oscilla | ition > −36 d | Bm    |

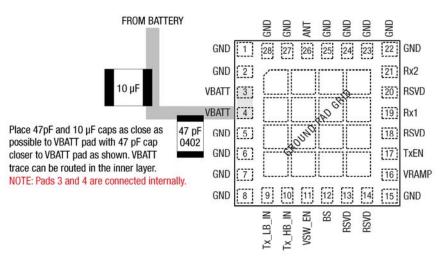
#### Table 8. SKY77550 Electrical Specifications <sup>1</sup> (2 of 3)

| Р                          | arameter            | Symbol  | Test Condition                                                                                                                                                                                                                 | Minimum | Typical                                      | Maximum | Units |  |
|----------------------------|---------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------|---------|-------|--|
| Load Mismatch              |                     | Load    | All combinations of the following parameters:<br>$V_{RAMP} = controlled^2$<br>$P_{IN} = min. to max.$<br>$3.1 V \le Vcc \le 4.8 V$<br>$-20 °C \le T_{CASE} \le +85 °C$<br>Load VSWR = 20:1, all phase angles                   |         | No module damage or permanent<br>degradation |         |       |  |
| Rx Band Spurious           |                     | Rx_spur | At $f_0 + 20$ MHz (1930 MHz to 1990 MHz)<br>RBW = 100 kHz<br>Vcc = 3.5 V<br>Tcase = +25 °C<br>0 dBm $\leq$ Pout $\leq$ 31 dBm                                                                                                  | _       | -83                                          | -78     | dBm   |  |
|                            |                     |         | $\begin{array}{l} 869 \mbox{ MHz to } 894 \mbox{ MHz} \\ \mbox{RBW} = 100 \mbox{ kHz} \\ \mbox{Vcc} = 3.5 \mbox{ V} \\ \mbox{Tcase} = +25 \mbox{ °C} \\ \mbox{0} \mbox{ dBm} \leq \mbox{Pout} \leq 31 \mbox{ dBm} \end{array}$ | _       |                                              | -87     |       |  |
| Power Control D            | Dynamic Range       | PCdr    |                                                                                                                                                                                                                                | 35      | 50                                           | —       | dB    |  |
| Power Control<br>Variation | Control Level 0     | PCv     | $ \begin{array}{l} V_{BATT}=3.5 \ V \\ 30 \ dBm \leq Pout \leq 31 \ dBm \\ T_{CASE}=+25 \ ^{\circ}C \end{array} $                                                                                                              | -1.5    | _                                            | 1.5     | dB    |  |
|                            |                     |         | 30 dBm $\leq$ Pout $\leq$ 33 dBm                                                                                                                                                                                               | -2.0    |                                              | 2.0     |       |  |
|                            | Control Level 1-8   |         | $\label{eq:VBATT} \begin{array}{l} VBATT = 3.5 \text{ V} \\ 14 \text{ dBm} \leq Pout \leq 28 \text{ dBm} \\ TCASE = +25 \ ^{\circ}C \end{array}$                                                                               | -2.5    | _                                            | 2.5     |       |  |
|                            |                     |         | $14 \text{ dBm} \le P_{\text{OUT}} \le 28 \text{ dBm}$                                                                                                                                                                         | -3.5    |                                              | 3.5     |       |  |
|                            | Control Level 9-13  |         | $VBATT = 3.5 V$ $4 dBm \le Pout \le 12 dBm$ $TCASE = +25 °C$                                                                                                                                                                   | -3.5    | _                                            | 3.5     |       |  |
|                            |                     |         | $4 \text{ dBm} \le \text{Pout} \le 12 \text{ dBm}$                                                                                                                                                                             | -4.5    | _                                            | 4.5     |       |  |
|                            | Control Level 14-15 |         | $\label{eq:VBATT} \begin{array}{l} V_{BATT} = 3.5 \ V \\ 0 \ dBm \leq Pout \leq 2 \ dBm \\ T_{CASE} = +25 \ ^{\circ}C \end{array}$                                                                                             | -4.5    |                                              | 4.5     |       |  |
|                            |                     |         | $0 \text{ dBm} \le Pout \le 2 \text{ dBm}$                                                                                                                                                                                     | -5.5    |                                              | 5.5     |       |  |
| Power Control S            | Slope               | PCs     | 0 dBm to 31 dBm                                                                                                                                                                                                                | —       | —                                            | 250     | dB/V  |  |
|                            |                     | PCS19   | 000 RECEIVE (f = 1930 MHz to 1990 MHz) = Rx Mode                                                                                                                                                                               |         |                                              |         |       |  |
| Р                          | arameter            | Symbol  | Test Condition                                                                                                                                                                                                                 | Minimum | Typical                                      | Maximum | Units |  |
|                            |                     |         |                                                                                                                                                                                                                                | 1000    |                                              | 1000    |       |  |

#### Table 8. SKY77550 Electrical Specifications <sup>1</sup> (3 of 3)

| Parameter                                | Symbol             | Test Condition | Minimum | Typical | Maximum | Units |
|------------------------------------------|--------------------|----------------|---------|---------|---------|-------|
| Frequency Range                          | f                  | -              | 1930    |         | 1990    | MHz   |
| Insertion Loss, ANT to Rx <sup>5,3</sup> | IL_Rx <sup>5</sup> | TCASE = +25 °C | _       | 1.2     | 1.5     | dB    |
| VSWR ANT, Rx <sup>5,3</sup>              | Γιν, Γουτ          | —              | _       | 1.2:1   | 1.5:1   |       |

<sup>1</sup> Unless specified otherwise:


 $\mathsf{TCASE} = -20\ ^\circ\mathsf{C} \text{ to max. operating temperature (see Table 2); RL} = 50\ \Omega; \text{ pulsed operation with pulse width} \leq 1154\ \mu\text{s and duty cycle} \leq 2:8; 3.1\ V \leq V\mathsf{CC} \leq 4.8\ V.$ 

 $^2$  VRAMP is calibrated to each PCL at TCASE = +25 °C, VBATT = 3.5 V, PIN = 3 dBm, 50  $\Omega$  load.

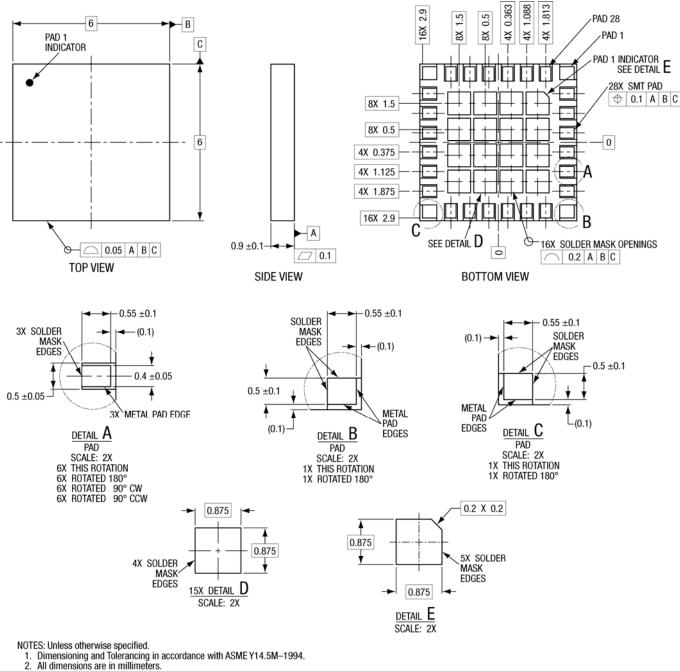
 $^3$   $\,$  Terminate all unused RF ports with 50  $\Omega$  loads

<sup>4</sup> Max VRAMP = VRAMP @ POUT =31 dBm, 50 Ω load, TCASE +25 °C, VBATT = 3.5 V, PIN = 3 dBm

<sup>5</sup> Rx1 and Rx2 are broadband receive ports and each supports the GSM850, GSM900, DCS, and PCS bands.



Pad layout as seen from Top View looking through package.


Figure 2. SKY77550 Application Schematic Diagram

#### 201138\_002

# **Package Dimensions**

Figure 3 is a mechanical diagram of the pad layout for the SKY77550, a 28-pad leadless dual-band FEM. Figure 4 provides a recommended phone board layout footprint for the FEM to help

the designer attain optimum thermal conductivity, good grounding, and minimum RF discontinuity for the 50-ohm terminals.



Pad definitions per details on drawing.

DS-D644-544 REV 1 01/20/09 201138 003



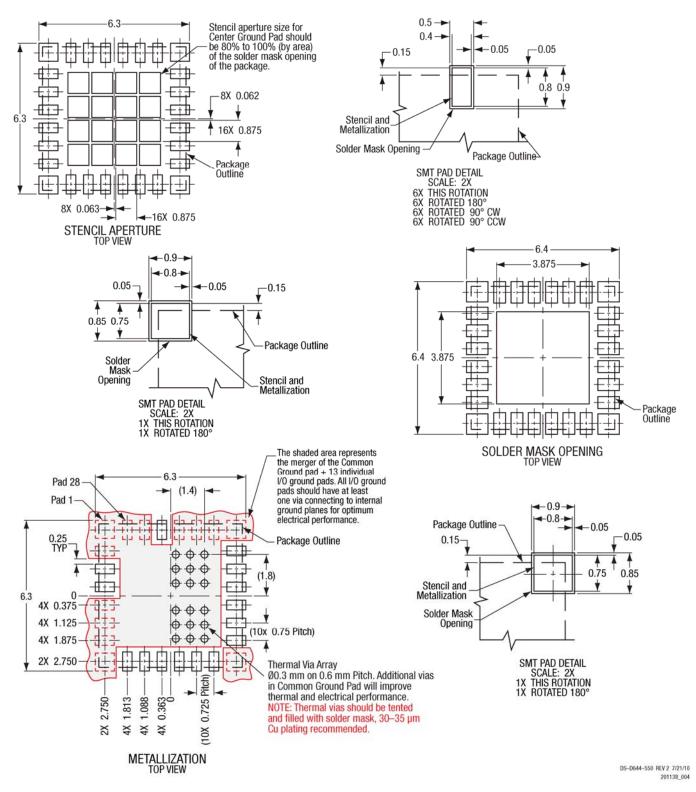
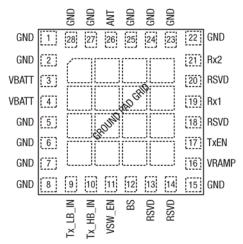
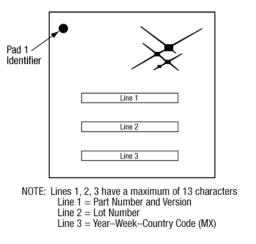




Figure 4. Phone PCB Layout Footprint for 6 mm x 6 mm, 28-Pad Package with Grid-Bottom Solder Mask – SKY77550 Specific.

# **Package Description**

Figure 5 illustrates the device pad configuration and the numbering convention which starts with pad 1 at the lower left, as indicated and increments counter-clockwise around the package. Table 9 lists the pad names and the associated signal descriptions. Figure 6 interprets typical case markings.




Pad layout as seen from Top View looking through package.

#### Figure 5. SKY77550 FEM Pad Configuration – 28-Pad Leadless (Top View)

| Pad <sup>1</sup> | Name     | Description                                    |
|------------------|----------|------------------------------------------------|
| 3, 4             | VBATT    | Battery input voltage (pads internally common) |
| 9                | Tx_LB_IN | RF input 824–915 MHz                           |
| 10               | Tx_HB_IN | RF input 1710–1910 MHz                         |
| 11               | VSW_EN   | Control logic level selection/Standby control  |
| 12               | BS       | Band Select (mode control)                     |
| 16               | VRAMP    | Analog power control voltage input             |
| 17               | TxEN     | Tx-Rx select (mode control)                    |
| 19               | Rx1      | Broadband Receive Port                         |
| 21               | Rx2      | Broadband Receive Port                         |
| 26               | ANT      | RF_IN / RF_OUT to Antenna                      |

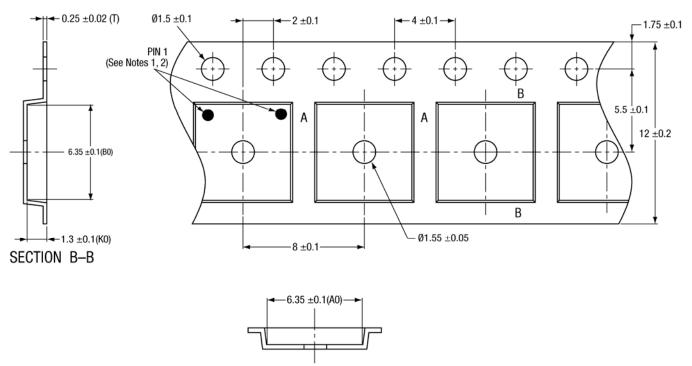
#### Table 9. SKY77550 Pad Names and Signal Descriptions

<sup>1</sup> Pads 1, 2, 5–8, 15, 22–25, 27, 28 are ground pads. Pads 13, 14, 18, 20 are Reserved



201138\_006

Figure 6. Typical Case Markings


# **Package Handling Information**

Because of its sensitivity to moisture absorption, this device package is baked and vacuum-packed prior to shipment. Instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY77550 is capable of withstanding an MSL3/260 °C solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is attached in a reflow oven, the temperature ramp rate should not exceed 3 °C per second; maximum temperature should not exceed 260 °C. If the part is manually attached, precaution should be taken to insure that the part is not subjected to temperatures exceeding 260 °C for more than 10 seconds. For details on attachment techniques, precautions, and handling procedures recommended by Skyworks, please refer to Skyworks Application Note: *PCB Design and SMT Assembly/Rework*, Document Number 101752. Additional information on standard SMT reflow profiles can also be found in the JEDEC *Joint Industry Standard J-STD-020*.

Production quantities of this product are shipped in the standard tape-and-reel format (Figure 7).

201138 005



SECTION A-A

NOTES:

- 1. PIN 1 ORIENTATION IS "TOP LEFT" ONLY FOR RFLGA & MCM PRODUCTS LISTED BELOW:
  - SKY73022-21 SKY73022-31
  - SKY73023-21 SKY73023-31
- 2. PIN 1 ORIENTATION IS "TOP RIGHT" FOR ALL 6 x 6 mm RFLGA & MCM PRODUCTS EXCEPT THOSE LISTED IN NOTE 1 ABOVE.
- 3. CARRIER TAPE IS BLACK CONDUCTIVE POLYCARBONATE OR POLYSTYRENE.
- 4. COVER TAPE IS TRANSPARENT AND CONDUCTIVE.
- 5. ESD-SURFACE RESISTIVITY IS ≤ 1 X 10<sup>10</sup> OHMS/SQUARE PER EIA, JEDEC TNR SPECIFICATION.
- 6. ALL DIMENSIONS ARE IN MILLIMETERS.

CARRIER TAPE OVERMOLD MCM/RFLGA 6 x 6 x 0.85 / 1.1 mm 80DY SIZE -1936 201138\_008

Figure 7. Dimensional Diagram for Carrier Tape Body Size 6 mm x 6 mm x 0.85 / 1.1 mm - MCM

# **Electrostatic Discharge (ESD) Sensitivity**

To avoid ESD damage, both latent and visible, it is very important that the product assembly and test areas follow the ESD handling precautions listed below.

- Personnel Grounding
  - Wrist Straps
  - Conductive Smocks, Gloves and Finger Cots
  - Antistatic ID Badges
- Protective Workstation
  - Dissipative Table Top
  - Protective Test Equipment (Properly Grounded)
  - Grounded Tip Soldering Irons
  - Solder Conductive Suckers
  - Static Sensors

- Facility
  - Relative Humidity Control and Air Ionizers
  - Dissipative Floors (less than 109  $\Omega$  to GND)
- Protective Packaging and Transportation
  - Bags and Pouches (Faraday Shield)
  - Protective Tote Boxes (Conductive Static Shielding)
- Protective Trays
- Grounded Carts
- Protective Work Order Holders

# **Ordering Information**

| Model Number | Manufacturing<br>Part Number | Product Revision | Package               | Operating Temperature |
|--------------|------------------------------|------------------|-----------------------|-----------------------|
| SKY77550     | SKY77550                     |                  | MCM 6 mm x 6 mm x 0.9 | -20 °C to +85 °C      |

# **Revision History**

| Revision | Date              | Description                                                                                                                            |
|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| A        | October 27, 2009  | Initial Release – Advance Information                                                                                                  |
| В        | November 9, 2009  | Revise: Figure 4                                                                                                                       |
| C        | April 11, 2010    | Revise: Description (p1); Tables 2–8                                                                                                   |
| D        | May June 14, 2010 | Revise: Change Data Sheet status to "Preliminary" from "Advance"; Description, Features list (p1);<br>Figure 2; Tables 4–9; References |
| E        | September 8, 2010 | Revise: Features list (p1); Tables 4–8; Figures 4, 7                                                                                   |

### References

Skyworks Application Note: PCB Design and SMT Assembly/Rework, Document Number 101752

Skyworks Application Note: iPAC<sup>™</sup> Peak Output Power Calibration, Document Number 103180

Skyworks Application Note: SKY77550 BiFET iPAC™ Front-End Module – Implementation, Document Number 201287

Standard SMT Reflow Profiles: JEDEC Standard J-STD-020

©2009, 2010, Skyworks Solutions, Inc. All Rights Reserved

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, "Breakthrough Simplicity," DCR, Helios, HIP3, Innovation to Go, Intera, iPAC, LIPA, Polar Loop, and System Smart are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.