## FEATURES

- 14-bit resolution; 10MSPS sampling rate
- Functionally complete; $\pm 2.5 \mathrm{~V}$ input range
- No missing codes over full temperature range
- Edge-triggered
- $\pm 5 \mathrm{~V}$ supplies, 1.6 Watts
- 76dB SNR, -83dB THD
- Ideal for both time and frequency domain applications


## GENERAL DESCRIPTION

The ADSD-1410S is a functionally complete, dual 14-bit, 10 MSPS , sampling $A / D$ converter. Its standard, $40-\mathrm{pin}$, triple-wide SMT DIP contains two fast-settling sample/hold amplifiers, two 14-bit A/D converters, multiplexed output buffers, a precision reference, and all the timing and control logic necessary to operate from either two or a single start convert pulse.

The ADSD-1410S is optimized for wideband frequencydomain applications and is fully FFT tested. The ADSD1410 S requires only $\pm 5 \mathrm{~V}$ supplies and typically consumes 1.6 Watts. The digital output power supply is capable of directly driving 5 V or 3 V logic systems. Models are available in either commercial 0 to $+70^{\circ} \mathrm{C}$ or military -55 to $+125^{\circ} \mathrm{C}$ operating temperature ranges.

## INPUT/OUTPUT CONNECTIONS

| PIN | FUNCTION | PIN | FUNCTION |
| :--- | :--- | :--- | :--- |
| 1 | INPUTA | 40 | INPUT B |
| 2 | +5VA | 39 | +5VA |
| 3 | ANALOG GROUND | 38 | ANALOG GROUND |
| 4 | N.C. | 37 | N.C. |
| 5 | OFFSETA | 36 | OFFSET B |
| 6 | RANGE | 35 | N.C. |
| 7 | 1.6 V REF | 34 | EOC A |
| 8 | ANALOG GROUND | 33 | ANALOG GROUND |
| 9 | -5 V | 32 | -5 V |
| 10 | ENABLEA | 31 | ENABLE B |
| 11 | START A | 30 | START B |
| 12 | VDD | 29 | EOC B |
| 13 | BIT 14 (LSB) | 28 | BIT 1 (MSB) |
| 14 | BIT 13 | 27 | BIT 2 |
| 15 | BIT 12 | 26 | BIT 3 |
| 16 | BIT 11 | 25 | BIT 4 |
| 17 | BIT 10 | 24 | BIT 5 |
| 18 | BIT 9 | 23 | BIT 6 |
| 19 | BIT 8 | 22 | BIT 7 |
| 20 | DGND | 21 | DGND |



Figure 1. ADSD-1410S Functional Block Diagram

## ABSOLUTE MAXIMUM RATINGS

| PARAMETERS | LIMITS | UNITS |
| :--- | :---: | :---: |
| +5Vcc Supply (Pins 2, 39) | 0 to +6 | Volts |
| -5Vee Supply (Pins 9, 32) | 0 to -6 | Volts |
| Vdd Supply (Pin 12) | -0.3 to (Vcc +0.3$)$ | Volts |
| Digital Inputs (Pins 10, 11, 30, 31) | -0.3 to (VdD +0.3$)$ | Volts |
| Analog Input (Pins 1, 40) | $\pm 7$ | Volts |
| Lead Temp. (10 seconds) | +300 | ${ }^{\circ} \mathrm{C}$ |

## FUNCTIONAL SPECIFICATIONS

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=+5 \mathrm{~V}, \mathrm{VDD}=+5 \mathrm{~V}, \mathrm{VEE}=-5 \mathrm{~V}, 10 \mathrm{MSPS}\right.$ sampling rate, $\mathrm{Vin}= \pm 2.5 \mathrm{~V}$ and a minimum 7 minute warmup unless otherwise specified.)

| ANALOG INPUTS | MIN. | TYP. | MAX. | UNITS |
| :---: | :---: | :---: | :---: | :---: |
| Input Voltage Range Input Impedence Input Capacitance | - | $\pm 2.5 \mathrm{~V}$ | - | Volts |
|  | 610 | 620 | 630 | $\Omega$ |
|  | - | 7 | 15 | pF |
| DIGITAL INPUTS |  |  |  |  |
| Logic Levels Logic "1" Logic "0" Logic Loading "1" Logic Loading "0" |  |  |  |  |
|  | +2.4 | - | - | Volts |
|  | - | - | +0.8 | Volts |
|  | - | - | +10 | $\mu \mathrm{A}$ |
|  | - | - | -10 | $\mu \mathrm{A}$ |
| PERFORMANCE |  |  |  |  |
| $\begin{gathered} \hline \text { Integral Non-Linearity } \\ +25^{\circ} \mathrm{C}(\text { fin }=10 \mathrm{kHz}) \\ 0 \text { to }+70^{\circ} \mathrm{C} \\ -55 \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |  |  |
|  | - | $\pm 1$ | - | LSB |
|  | - | $\pm 1$ | - | LSB |
|  | - | $\pm 2$ | - | LSB |
| Differential Non-Linearity (fin $=10 \mathrm{kHz}$ ) |  |  |  |  |
| $+25^{\circ} \mathrm{C}$ | -0.99 | $\pm 0.5$ | +1.5 | LSB |
| 0 to $+70^{\circ} \mathrm{C}$ | -0.99 | $\pm 0.5$ | +1.5 | LSB |
| -55 to $+125^{\circ} \mathrm{C}$ | -0.99 | $\pm 0.75$ | +1.75 | LSB |
| Offset Error |  |  |  |  |
| ${ }^{+25{ }^{\circ} \mathrm{C} \text { (see Figure 3) }}$ | - | $\pm 0.25$ | $\pm 0.5$ | \%FSR |
| 0 to $+70^{\circ} \mathrm{C}$ | - | $\pm 0.25$ | $\pm 0.5$ | \%FSR |
| -55 to $+125^{\circ} \mathrm{C}$ | - | $\pm 0.5$ | $\pm 0.8$ | \%FSR |
|  |  |  |  |  |
| Gain Error $+25^{\circ} \mathrm{C}$ (see Figure 3) | - | $\pm 0.3$ | $\pm 0.6$ | \%FSR |
| 0 to $+70^{\circ} \mathrm{C}$ | - | $\pm 0.3$ | $\pm 0.6$ | \%FSR |
| -55 to $+125^{\circ} \mathrm{C}$ | - | $\pm 0.6$ | $\pm 0.8$ | \%FSR |
| No Missing Codes | $\begin{gathered} -55 \text { to }+125^{\circ} \mathrm{C} \\ 14 \text { Bits } \end{gathered}$ |  |  |  |
| $\begin{array}{r} 14 \text { Bits } \\ \text { Resolution } \end{array}$ |  |  |  |  |
| OUTPUTS |  |  |  |  |
| Output Coding Logic Level | Offset Bin. |  |  |  |
| Logic "1" $\quad \mathrm{VDD}=+5 \mathrm{~V}$ | +3.8 | - | - | Volts |
| $\mathrm{VDD}=+3.3 \mathrm{~V}$ | +2.48 | - | - | Volts |
| Logic "0" ${ }^{\text {a }}$ VD $=+5 \mathrm{~V}$ | - | - | +0.5 | Volts |
| $\mathrm{VDD}=+3.3 \mathrm{~V}$ | - | - | +0.5 | Volts |
| Logic Loading "1" VDD $=+5 \mathrm{~V}$ | - | - | -8 | mA |
| $\mathrm{VdD}=+3.3 \mathrm{~V}$ | - | - | -4 | mA |
| Logic Loading "0" Vdo $=+5 \mathrm{~V}$ | - | - | +8 | mA |
| $\mathrm{VdD}=+3.3 \mathrm{~V}$ | - | - | +4 | mA |
| Internal Reference |  |  |  |  |
| Voltage, $+25^{\circ} \mathrm{C}$ | +1.5 | +1.6 | +1.7 | Volts |
| 0 to $+70^{\circ} \mathrm{C}$ | +1.5 | +1.6 | +1.7 | Volts |
| External Current | - | - | 5 | mA |


| DYNAMIC PERFORMANCE | MIN. | TYP. | MAX. | UNITS |
| :---: | :---: | :---: | :---: | :---: |
| Total Harm. Distort. (-0.5dB)     |  |  |  |  |
| dc to 500 kHz | - | -84 | -80 | dB |
| 500 kHz to 5 MHz | - | -83 | -77 | dB |
| Signal-to-Noise Ratio |  |  |  |  |
| dc to 500 kHz | 74 | 76 | - | dB |
| 500 kHz to 5MHz | 74 | 76 | - | dB |
| Signal-to-Noise Ratio (and distortion, -0.5 dB ) | Signal-to-Noise Ratio |  |  |  |
| dc to 500 kHz | 72 | 75 | - | dB |
| 500 kHz to 5MHz | 72 | 75 | - | dB |
| Spurious Free Dyn. Range (1) |  |  |  |  |
| 500 kHz to 5 MHz | - | -86 | -80 | dB |
| Two-tone IMD |  |  |  |  |
| Distortion (fin $=4.85 \mathrm{MHz}$, <br> fs $=10 \mathrm{MHz},-0.5 \mathrm{~dB}$ ) |  |  |  |  |
| Input Bandwidth (-3dB) |  |  |  |  |
| Small Signal (-20dB input) | - | 14 | - | MHz |
| Large Signal ( -0.5 dB input) | - | 14 | - | MHz |
| Aperture Delay Time | - | - | $\pm 10$ | ns |
|  |  |  |  |  |
|  |  |  |  |  |
| Feedthrough Rejection |  |  |  |  |
| Noise | - | 250 | - | $\mu \mathrm{Vrms}$ |
| TIMING SPECIFICATIONS |  |  |  |  |
| Conversion Rate | 1 | - | 10 | MHz |
| Start Convert High | 25 | 50 | 500 | ns |
| Start Convert Low | 25 | 50 | 500 | ns |
| Start Convert to EOC |  |  |  |  |
| Delay | 2 | 6 | 10 | ns |
| $\overline{\text { EOC }}$ to Data Valid |  |  |  |  |
| Delay | 0 | 7 | 12 | ns |
| Output Enable Delay | 1 | 6 | 13 | ns |
| Output Disable Delay | 1 | 6 | 13 | ns |
| POWER REQUIREMENTS |  |  |  |  |
| Power Supply Ranges |  |  |  |  |
| -5Vee Supply | -5.25 | $-5.0$ | -4.75 | Volts |
| +5Vcc Supply | +4.75 | +5.0 | +5.25 | Volts |
| Vdd Supply | +3.0 | +5.0 | Vcc | Volts |
| Power Supply Currents |  |  |  |  |
| -5Vee Supply | -100 | -89 |  | mA |
| +5Vcc Supply | - | +230 | +245 | mA |
| Vdd Supply | - | +2.0 | +5.0 | mA |
| Power Dissipation | - | 1.6 | 1.7 | Watts |
| Power Supply Rejection | - | - | $\pm 0.01$ | \%FSR\%V |
| PHYSICAL/ENVIRONMENTAL |  |  |  |  |
| Oper. Temp. Range, Ambient ADSD-1410S ADSD-1410S-EX <br> Storage Temperature Range <br> Package Type |  |  |  |  |
|  | 0 | - | +70 | ${ }^{\circ} \mathrm{C}$ |
|  | -55 | - | +125 | ${ }^{\circ} \mathrm{C}$ |
|  | -65 | - | +150 | ${ }^{\circ} \mathrm{C}$ |
|  | 40-pin, SMT TDIP |  |  |  |

## Footnote:

(1) Same specification as In-Band Harmonics and Peak Harmonics.

## TECHNICAL NOTES

1. Rated performance requires using good high-frequency circuit board layout techniques. Connect the digital and analog grounds to one point, the analog ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.

## CALIBRATION PROCEDURE

1. Connect the converter per Figure 3. Apply a pulse of 50 nanoseconds typical to START CONVERT (pin 11) at a rate of 2 MHz . This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

## 2. Zero (Offset) Adjustments

Apply a precision voltage reference source between ANALOG INPUT A (pin 1) and SIGNAL GROUND (pin 3), then adjust the reference source output per Table 2. Adjust trimpot R1 until the code flickers equally between 100000 00000000 and 10000000000001.
3. Repeat above step for Analog Input B (Pin 40). Use trimpot R2 for the zero (Offset) adjustment .

Table 2. Offset Adjustment

| Input <br> Range | Offset Adjust <br> $+1 / 2$ LSB |
| :---: | :---: |
| $\pm 2.5 \mathrm{~V}$ | +0.000153 V |

Table 3. Output Coding

| OUTPUT CODING |  |  | INPUT RANGE <br> MSB | LSB | BIPOLAR <br> SCALE |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 11 | 1111 | 1111 | 1111 | +2.499695 | + FS -1 LSB |
| 11 | 1000 | 0000 | 0000 | +1.875000 | $+3 / 4 F S$ |
| 11 | 0000 | 0000 | 0000 | +1.250000 | $+1 / 2 F S$ |
| 10 | 0000 | 0000 | 0000 | $\pm 0.000000$ | 0 |
| 01 | 0000 | 0000 | 0000 | -1.250000 | $-1 / 2 F S$ |
| 00 | 1000 | 0000 | 0000 | -1.875000 | $-3 / 4 F S$ |
| 00 | 0000 | 0000 | 0001 | -2.499695 | - FS +1 LSB |
| 00 | 0000 | 0000 | 0000 | -2.500000 | - FS |

4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.


Figure 2. ADSD-1410S Timing Diagram


Figure 3. ADSD-1410S Connection Diagram

## THERMAL REQUIREMENTS

The ADSD-1410S sampling A/D converter is fully characterized and specified over the commercial operating temperature (ambient) range of 0 to $+70^{\circ} \mathrm{C}$ and military temperature range of -55 to $+125^{\circ} \mathrm{C}$ ( EX suffix). All room-temperature ( $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$ ) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.
These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should
be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electricallyinsulating, thermally-conductive "pads" may be installed underneath the package. Minimal air flow over the surface can greatly help reduce the package temperature.

MECHANICAL DIMENSIONS INCHES (mm)


## ORDERING INFORMATION

| MODEL NUMBER | OPERATING TEMP. RANGE |
| :--- | :---: |
| ADSD-1410S | 0 to $+70^{\circ} \mathrm{C}$ |
| ADSD-1410S-EX | -55 to $+125^{\circ} \mathrm{C}$ |

Contact C\&D Technologies (Datel) for high-reliability versions

C\&D Technologies (DATEL), Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151
Tel: 508.339.3000, 800.233.2765 Fax: 508.339.6356 www.cd4power.com E-mail: sales@cdtechno.com

ISO 9001:2000 REGISTERED

C\&D Technologies (NCL), Ltd. Milton Keynes, England
Tel: +44 (0) 1908.615232 E-mail: mk@cdtechno.com
C\&D Technologies (DATEL) S.a.r.I. Montigny Le Bretonneux, France
Tel: +33 (0) 1.34.60.01.01 E-mail: france@cdtechno.com
C\&D Technologies (DATEL) GmbH München, Germany
Tel: +49 (0) 89.544334.0 E-mail: munich@cdtechno.com
C\&D Technologies KK Tokyo and Osaka, Japan
Tel: +81 3.3779.1031, 6.6354.2025 E-mail: tokyo@cdtechno.com, osaka@cdtechno.com
C\&D Technologies (DATEL) China Shanghai, People's Republic of China
Tel: +86.50273678 E-mail: shanghai@cdtechno.com

