Am90CL255

Low-Power 256K x 1 CMOS Nibble Mode DRAM

OVERVIEW

The 256K x 1 CMOS Low-Power ('L') DRAM versions share common functional descriptions, DC and AC characteristics with the corresponding standard CMOS (non-'L') versions. The only additions to these sections are:

DISTINCTIVE CHARACTERISTICS

- · Extended refresh period
 - 32 ms (Max.) during standby
- Low data retention current
 - 230 µA (Max.)

- Low-power dissipation
 - 0.55 mW (Max.)

ORDERING INFORMATION

The Ordering Information for the Low-Power DRAM versions are the same as for the Standard CMOS DRAMs, with the exception of an 'L' inserted within the device number to denote 'Low-Power.' For example, the Am90CL255 is = a 256K x 1 CMOS "Low-Power" Nibble Mode DRAM. All temperature ranges, speed and package options remain the same as those listed in Ordering Information sections for the respective Standard CMOS DRAMs.

DC CHARACTERISTICS

The low-power version DRAMs are screened for one additional parameter, viz, CMOS standby current. All other DC characteristics remain the same for both families.

Parameter Symbol	Parameter Description	Test Conditions		Min.	Max.	Units
ICC5	V _{CC} Supply Current CMOS Standby	$\overline{RAS} \geqslant V_{CC} - 0.5 \text{ V}$ and \overline{CAS} at V_{JH} , all other inputs and outputs $\geqslant V_{SS}$	Am90CL255		0.1	mA

The Am90CL255-15 is screened for $I_{CC1} = 55$ mA, $I_{CC3} = 50$ mA, and $I_{CC4} = 16$ mA.

AC CHARACTERISTICS

AC Characteristics remain unchanged on the low-power 100 ns and 120 ns versions. The AC characteristics corresponding to the 150 ns speed are on the following pages.

FUNCTIONAL DESCRIPTION

The Functional Descriptions for low-power versions are the same as the corresponding standard versions. The low-power devices, however, support Extended Refresh cycles described below:

Extended Refresh Cycle

All low-power versions extend the Refresh Cycle period to 32 ms for RAS-Only Refresh cycles. This feature reduces the total current consumption to a maximum of 230 μ A for data retention. The low-standby current can significantly extend battery life in battery back-up applications. Current consumption is calculated from the following equation:

$$I = \frac{(t_{RC}) \cdot (l_{ACTIVE}) + (t_{RI} - t_{RC}) \cdot (l_{STANDBY})}{T_{RI}}$$
 where t_{RC} = Refresh Cycle Time and t_{RI} = Refresh Interval Time or $t_{REF}/256$

Before entering or leaving an Extended Refresh period, the entire array must be refreshed at the normal interval of 4 ms. This can be accomplished by either a burst or distributed refresh.

> Publication # <u>Amendment</u>

SWITCHING CHARACTERISTICS ($T_A = 0$ to $+70^{\circ}$ C, $V_{CC} = 5$ V $\pm 10\%$, $V_{SS} = 0$ V unless otherwise noted)

	Parameter	Parameter	Am90C	Am90CL255-15	
No.	Symbol	Parameter Description	Min.	Max.	Unita
READ/WR	RITE/READ-MODIFY	-WRITE CYCLE			
1	t _{RAC}	Access Time from RAS (Note 10)		150	ns
2	†CAC	Access Time from CAS (Note 10)		60	ns
3	t _{RP}	RAS Precharge Time	85		ns
4	tRC	R/W Cycle Time (Note 3)	245		ns
5	t _{RAS}	RAS Pulse Width	150	10,000	ns
6	tCAS	CAS Pulse Width	60	10,000	ns
7	tCRP	CAS-to-RAS Precharge Time	0		ns
8	tRCD	RAS-to-CAS Delay Time (Note 4)	30	90	ns
9	trsh	RAS Hold Time	60		ns
10	t _{CSH}	CAS Hold Time	150		ns
11	t _{ASR}	Row Address Setup Time	0		ns
12	tRAH	Row Address Hold Time	20		ns
13	tASC	Column Address Setup Time	0		ns
14	tCAH	Column Address Hold Time	25		ns
15	tAR	Column Address Hold Time to RAS (Note 12)			ns
16	tŢ	Transition Time	3	50	ns
17	toff	Output Disable Time	0	30	ns
18	tREF	Time Between Refresh		4	ms
READ CY			'		
19	tRCS	Read Command Setup Time	0		ns
20	^t RCH	Read Command Hold to CAS	0		ns
21	tern	Read Command Hold to RAS	20		ns
WRITE C	YCLE				
22	twcs	Write Command Setup	0		ns
23	twch	Write Command Hold Time	25		ns
24	twp	Write Command Pulse Width	25		ns
25	tRWL	Write Command to RAS	30		ns
26	tcwL	Write Command to CAS Setup Time	30		ns
27	tos	Data-In Setup Time	0		ns
28	t _{DH}	Data-in Hold Time	25		ns
READ-MO	DIFY-WRITE CYCL	E.	·		
29	trwc	RMW Cycle Time (Note 5)	245		ns
30	tcwp	CAS-to-WE Delay Time	25		ns
31	traw	RMW RAS Pulse Width (Note 6)	150	10,000	ns
32	tcrw	RMW CAS Pulse Width (Note 7)	60		ns
NIBBLE A	MODE READ CYCLE				
33	tNC	Nibble R/W Cycle Time (Note 8)	60		ns
34	tNCAC	Nibble CAS Access Time	30		ns
35	tncas	Nibble CAS Pulse Width	30		ns
36	t _{NCP}	Nibble CAS Precharge Time	20		ns
37	tNRSH	Nibble RAS Hold Time	30	1	ns

SWITCHING CHARACTERISTICS (TA = 0 to +70°C, VCC = 5 V ±10%, VSS = 0 V unless otherwise noted)

	Parameter	Parameter	Am90CL255-15		
No.	Symbol	Description	Min.	Max.	Units
NIBBLE M	ODE WRITE CYCL	E			
38	tNCWL	Nibble Mode Write-to-CAS Lead Time	30		ns
39	tncwD	Nibble CAS-to-WE Delay Time (Note 11)	0		ns
40	tncrw	Nibble Mode RMW CAS Pulse Width	. 30		ns
41	tNWRH	Nibble RAS Hold Time	40		ns
42	t _{NRWC}	Nibble RMW Cycle Time (Note 9)	65		ns

Notes: 1. An initial pause of 100 μ s is required after power-up, followed by any 8 RAS cycles, before proper device operation is achieved.

- 2. Switching characteristics assume $t_T = 5$ ns. t_T is measured between V_{IH} (Min.) and V_{IL} (Max.).
- 3. $t_{RC} = t_{RAS} + t_T + t_{RP} + t_T$.
- 4. tRCD = tRAH + tT + tASC + tT.
- 5. $t_{RWC} = t_{RRW} + t_{RP} + t_{T} + t_{T}$.
- 6. trrw = trcp(Max) + try + try + try.
 7. trrw = trwp + tr + try.
- 8. tNC = tNCAS + tT + tNCP + tT.
- 9. $t_{NRWC} = t_{NCWD} + t_{T} + t_{NCWL} + t_{T} + t_{NCP} + t_{T}$.
- 10. All switching characteristic parameters are measured with a load equivalent of two TTL loads and 100 pF.
- 11. If the first Nibble Cycle is a Read-Modify-Write, the same cycle can be performed on the next three bits if WE stays LOW, or Read Cycle if WE is pulled HiGH prior to start of Nibble Cycle.
- 12. Timing requirements referenced to RAS are non-restrictive and are deleted from the data sheet. These include tags, twork tohin and trivial the hold times of the Column Address, Din and WE, as well as town (CAS-to-WE delay) are not restricted by tRCD.