

AOS Semiconductor Product Reliability Report

AOWF11C60, rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc www.aosmd.com

This AOS product reliability report summarizes the qualification result for AOWF11C60. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AOWF11C60 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be routine monitored for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Reliability Stress Test Summary and Results
- IV. Reliability Evaluation

I. Product Description:

- Latest Trench Power AlphaMOS-II technology
- Low R_{DS(ON)}
- Low Ciss and Crss
- High Current Capability
- RoHS and Halogen Free Compliant
- · General Lighting for LED and CCFL
- AC/DC Power supplies for Industrial, Consumer, and Telecom

Details refer to the datasheet.

II. Die / Package Information:

AOWF11C60

Process Standard sub-micron

600V N-Channel MOSFET

Package TypeTO262FLead FrameBare CuDie AttachSoft SolderBondAl wire

Mold Material Epoxy resin with silica filler

Moisture Level Up to Level 1

III. Reliability Stress Test Summary and Results

Test Item	Test Condition	Time Point	Total Sample Size*	Number of Failures	Reference Standard
MSL Precondition	168hr 85°C / 85%RH + 3 cycle reflow@260°C (MSL 1)	-	4389 pcs	0	JESD22-A113
нтдв	Temp = 150°C , Vgs=100% of Vgsmax	168 / 500 / 1000 hours	924 pcs	0	JESD22-A108
HTRB	Temp = 150°C , Vds=80% of Vdsmax	168 / 500 / 1000 hours	924 pcs	0	JESD22-A108
HAST	130°C , 85%RH, 33.3 psi, Vds = 80% of Vdsmax up to 42V	96 hours	924 pcs	0	JESD22-A110
H3TRB	85°C , 85%RH, Vds = 80% of Vdsmax up to 100V	1000 hours	693 pcs	0	JESD22-A101
Autoclave	121°C , 29.7psi, RH=100%	96 hours	924 pcs	0	JESD22-A102
Temperature Cycle	-65°C to 150°C , air to air,	250 / 500 cycles	924 pcs	0	JESD22-A104
Power Cycling	Δ Tj = 100°C	8572 cycles	924 pcs	0	AEC Q101

^{*}Note: The reliability data presents total of available generic data up to the published date.

IV. Reliability Evaluation

FIT rate (per billion): 3.05 MTTF = 37419 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $\text{Chi}^2 \times 10^9 \text{/} [2 \text{ (N) (H) (Af)}] = 3.05 \text{MTTF} = <math>10^9 \text{/} \text{FIT} = 37419 \text{ years}$

 $\mathbf{Chi^2} = \mathbf{Chi}\ \mathbf{Squared}\ \mathbf{Distribution},\ \mathbf{determined}\ \mathbf{by}\ \mathbf{the}\ \mathbf{number}\ \mathbf{of}\ \mathbf{failures}\ \mathbf{and}\ \mathbf{confidence}\ \mathbf{interval}$

N = Total Number of units from burn-in tests

H = Duration of burn-in testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = Exp [Ea/k(1/T) u - 1/T] s]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	259	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K

Tj u = The use junction temperature in degree (Kelvin), K = C+273.16