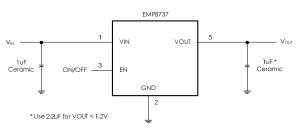
ESMT/EMP

Fast Ultra High-PSRR, Low-Noise, 300mA CMOS Linear Regulator

General Description

The EMP8737 features ultra-high power supply rejection ratio, low output voltage noise, low dropout voltage, low quiescent current and fast transient response. It guarantees delivery of 300mA output current for V_{IN}=2.2V ~ 5.5V and supports preset output voltages ranging from 0.8V to 4.5V with 0.05V increment. It also guarantees delivery of 100mA output current for V_{IN} range lower from 1.75V ~ 2.1V.

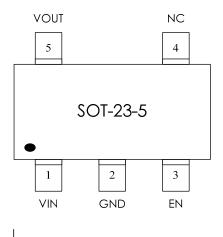

Based on its low quiescent current consumption and its less than 1μ A shutdown mode of logical operation, the EMP8737 is ideal for battery-powered applications. The high power supply rejection ratio of the EMP8737 holds well for low input voltages typically encountered in battery-operated systems. The regulator is stable with small ceramic capacitive loads (1μ F typical). The EMP8737 is Available in miniature SOT-23-5 package.

Features

- 2.2V to 5.5V input range for Iout 300mA operation
- 1.75V to 2.1V input range for IOUT 100mA operation
- 62dB typical PSRR at 1kHz
- 110µV RMS output voltage noise (10Hz to 100kHz)
- 290mV typical dropout at 300mA
- 57µA typical quiescent current
- Less than 1µA typical shutdown mode
- Fast line and load transient response
- Auto-discharge during chip disable
- 80µs typical turn-on time
- Stable with small ceramic output capacitors
- Over temperature and over current protection
- ±2% output voltage tolerance

Applications

- Wireless handsets
- PCMCIA cards
- DSP core power
- Hand-held instruments
- Battery-powered systems
- Portable information appliances



*Use 2.2 μ F for V_{OUT} < 1.2V

Typical Application

ESMT/EMP

CONNECTION DIAGRAM SOT-23-5(TOP View)

ORDER INFORMATION

EMP8737-XXVF05GRR			
XX	Output Voltage		
VF05	SOT-23-5 Package		
NRR	RoHS & Halogen free		
	Commercial Grade Temperature		
	Rating: -40 to 85°C		
	Package in Tape & Reel		

Pin Functions

Name	SOT-23-5	Function		
VIN		Supply Voltage Input. Require a minimum input capacitor of close to 1μ F to		
VIN	1	ensure stability and sufficient decoupling from the ground pin.		
GND	2	Ground Pin.		
		Enable Input. Enable the regulator by pulling the EN pin High. To keep the		
EN	3	regulator on during normal operation, connect the EN pin to VIN. The EN pin		
		must not exceed VIN + 0.5V under all operating conditions.		
NC	4	No Connection		
VOUT	5	Output Voltage Feedback.		

Order, Mark & Packing Information

Marking	Vout	Product ID	Packing
5 873 Tracking PINI DOT	1.2	EMP8737-12VF05GRR	3K units Tape & Reel

Absolute Maximum Ratings (Notes 1, 2)

VIN, VOUT, VEN	-0.3V to 6.5V	Thermal Resistance (θ_{JA})	
Storage Temperature Range	-65°C to160°C	SOT-23-5	250°C/W
Junction Temperature (TJ)	150°C		
Lead Temperature (10 sec.)	260°C	Operating Ratings (Note 1, 2)	
ESD Rating		Temperature Range	-40°C to 85°C
Human Body Model	2kV	Supply Voltage	2.2V to 5.5V
MM	200V		

Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $V_{IN} = V_{OUT} + 1V$ (Note 3), $V_{EN} = V_{IN}$, $C_{IN} = C_{OUT} = 2.2\mu$ F, $T_A = 25^{\circ}$ C. Boldface & underline limits apply for the operating temperature extremes: -40°C and 85°C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
VIN	Input Voltage	I _{OUT} = 300mA (max.)	<u>2.2</u>		<u>5.5</u>	V	
Vout	Output Voltage		<u>0.8</u>		<u>4.5</u>	V	
ΔV_{OTL}	Output Voltage Tolerance	louτ = 10mA (Note 3)	-2		+2	% of	
-			<u>-3</u>		<u>+3</u>	Vout (NOM)	
IOUT	Maximum Output Current	V _{IN} = 2.2V ~ 5.5V	<u>300</u>			mA	
Ilimit	Output Current Limit		<u>300</u>	450		mA	
		I _{OUT} = 0mA		57			
	Sumply Current	I _{OUT} = 50mA		63			
lq	Supply Current	I _{OUT} = 150mA		88		μA	
		I _{OUT} = 300mA		130			
	Shutdown Supply Current	V _{OUT} = 0V, EN = GND		0.001	1		
	Dropout Voltage (Note4)	I _{OUT} = 100mA		90			
V_{DO}		I _{OUT} = 300mA		290		mV	
ΔV_{OUT}	Line Regulation	$I_{OUT} = 1 \text{ mA}, (V_{OUT} + 1 \text{ V}) \le V_{IN} \le$ 5.5V (Note 3)	-0.1	0.01	0.1	%/V	
	Load Regulation	$1 \text{mA} \le I_{\text{OUT}} \le 300 \text{mA}$		0.0008		%/mA	
en	Output Voltage Noise	V_{OUT} =2.5V, I_{OUT} = 10mA, 10Hz \leq f \leq 100kHz		110		μV _{RMS}	
	Thermal Shutdown			165			
T _{SD}	Temperature			100		°C	
.30	Thermal Shutdown			35		Ũ	
	Hysteresis			00			
V _{EN}	EN Input Threshold	V_{IH} , $(V_{OUT} + 1V) \le V_{IN} \le 5.5V$ (Note 3)	<u>1.2</u>				
		V_{IL} (V_{OUT} + 1V) \leq $V_{IN} \leq$ 5.5V (Note 3)			<u>0.4</u>	- V	
I _{EN}	EN Input Bias Current	$EN = GND \text{ or } V_{IN}$		0.1	100	nA	
Ton	Turn-On Time	Vout at 95% of Final Value		80		μs	
TOFF	Turn-Off Time	Iour=0mA (Note 5)		2.4		ms	

Elite Semiconductor Memory Technology Inc./Elite MicroPower Inc.

Electrical Characteristics (cont.)

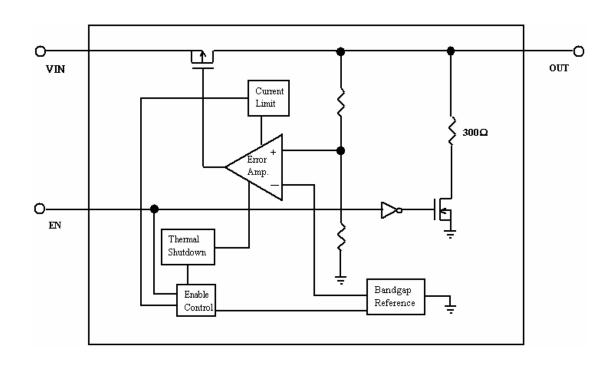
Unless otherwise specified, all limits guaranteed for $V_{EN}=V_{IN}$, $C_{IN}=C_{OUT}=2.2\mu$ F, $T_A=25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{IN}	Input Voltage	I _{out} = 100mA (max.)	1.75		2.1	V
ΔV_{OTL}	Output Voltage Tolerance	$1 \text{mA} \le I_{\text{OUT}} \le 100 \text{mA},$ $1.75 \text{V} \le \text{V}_{\text{IN}} \le 2.1 \text{V}$	-2		+2	% of V _{OUT (NOM)}
Гоит	Maximum Output Current	V _{IN} = 1.75V ~ 2.1V	50		100	mA

Note 1: Absolute Maximum ratings indicate limits beyond which damage may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.

Note 2: All voltages are with respect to the potential at the ground pin.

Note 3: Condition does not apply to input voltages below 2.2V since this is the minimum input operating voltage.

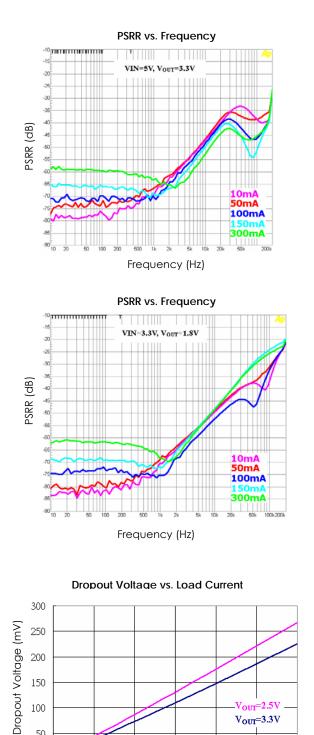

Note 4: Dropout voltage is measured by reducing V_{IN} until V_{OUT} drops 100mV from its nominal value at V_{IN} - V_{OUT} = 1V. Dropout voltage does not apply to the regulator versions with V_{OUT} less than 2.2V.

Note 5: Turn-off time is time measured between the enable input just decreasing below V_{IL} and the output voltage just decreasing to 10% of its nominal value.

Note 6: Maximum Power dissipation for the device is calculated using the following equations:

$$P_{D} = \frac{T_{J}(MAX) - T_{A}}{\theta_{JA}}$$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance. E.g. for the SOT-23-5 package $\theta_{JA} = 250^{\circ}$ C/W, $T_{J(MAX)} = 150^{\circ}$ C and using $T_A = 25^{\circ}$ C, the maximum power dissipation is found to be 500mW. The derating factor $(-1/\theta_{JA}) = -4$ mW/°C, thus below 25°C the power dissipation figure can be increased by 4mW per degree, and similarity decreased by this factor for temperatures above 25°C.



Functional Block Diagram

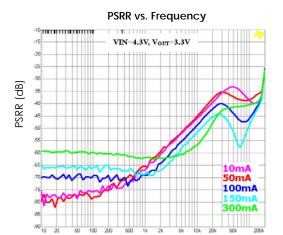
Typical Performance Characteristics

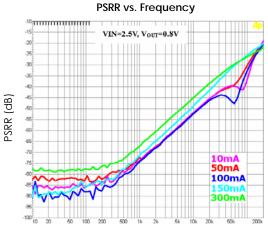
Unless otherwise specified, VIN = $V_{OUT (NOM)}$ + 1V, V_{EN} = V_{IN} , C_{IN} = C_{OUT} = 2.2µF, T_A = 25°C.

100

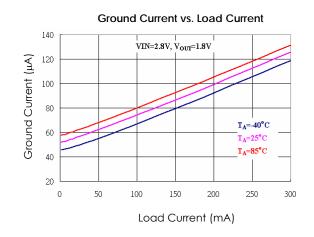
50

0


0


50

100

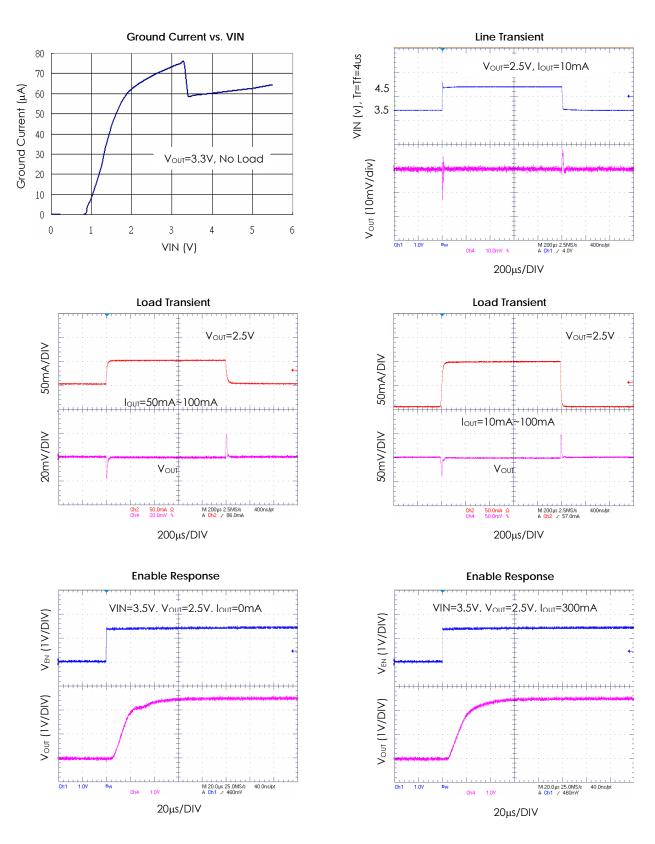

150

Load Current (mA)

Frequency (Hz)

200

Vout=3.3V

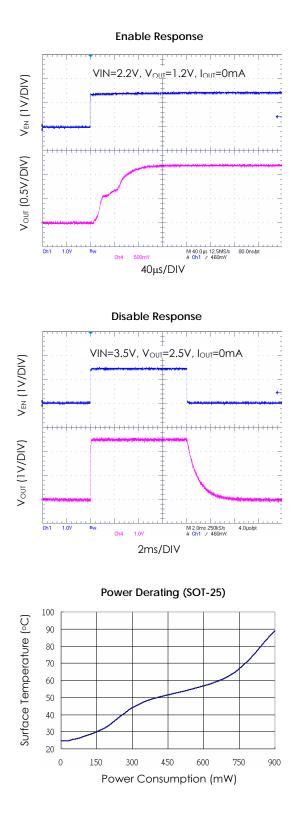

250

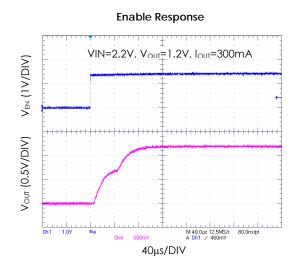
300

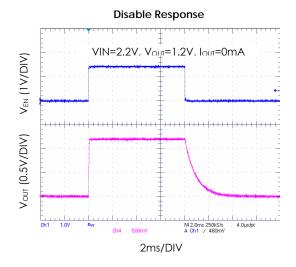
ESMT/EMP

Typical Performance Characteristics

Unless otherwise specified, VIN = V_{OUT (NOM)} + 1V, V_{EN}=V_{IN}, C_{IN} = C_{OUT} = 2.2µF, T_A = 25°C. (Continued)

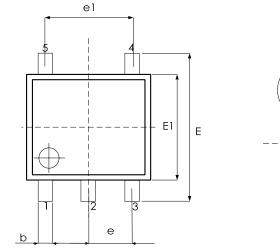

Elite Semiconductor Memory Technology Inc./Elite MicroPower Inc.

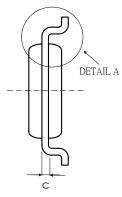

Publication Date: Jul. 2011Revision: 1.26/10

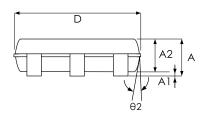


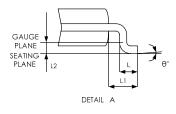
Typical Performance Characteristics

Unless otherwise specified, VIN = V_{OUT (NOM)} + 1V, V_{EN}=V_{IN}, C_{IN} = C_{OUT} = 2.2µF, T_A = 25°C. (Continued)









SOT-23-5

SYMBPLS	MIN.	NOM.	MAX.
А	1.05	1.20	1.35
A1	0.05	0.10	0.15
A2	1.00	1.10	1.20
b	0.30		0.50
С	0.08	_	0.20
D	2.80	2.90	3.00
E	2.60	2.80	3.00
E1	1.50	1.60	1.70
е	0.95 BSC		
el	1.90 BSC		
L	0.30	0.45	0.55
L1	0.60 REF		
L2	0.25 REF		
θ°	0	5	10
θ2°	6	8	10
			UNIT: MM

Revision History

Revision	Date	Description
1.0	2011.05.28	Original version
1.1	2011.05.28	EN pin must not exceed VIN + 0.5V under all operating conditions
1.2	2011.07.04	Modify Output Voltage Tolerance

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.