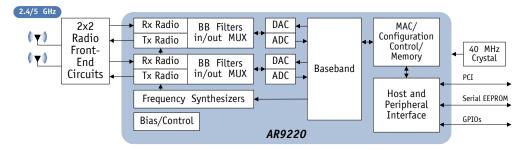
October 2009

AR9220 Single-Chip 2x2 MIMO MAC/BB/Radio with PCI Interface for 802.11n 2.4 and 5 GHz WLANs

General Description

The Atheros AR9220 is a highly integrated single-chip solution for 2.4 and 5 GHz 802.11n-ready wireless local area networks (WLANs) that enables high-performance 2x2 MIMO configurations for wireless station applications demanding robust link quality and maximum throughput and range. The AR9220 integrates a multi-protocol MAC, baseband processor, analog-to-digital and digital-to-analog (ADC/DAC) converters, 2x2 MIMO radio transceiver, and PCI interface in an all-CMOS device for low power and small form factor applications.

The AR9220 implements half-duplex OFDM, CCK, and DSSS baseband processing, supporting up to 130 Mbps for 20 MHz and 300 Mbps for 40 MHz channel operations respectively, and IEEE 802.11a/b/g data rates. Additional features include signal detection, automatic gain control, frequency offset estimation, symbol timing, and channel estimation. The AR9220 MAC supports the 802.11 wireless MAC protocol, 802.11i security, receive and transmit filtering, error recovery, and quality of service (QoS).


The AR9220 supports two simultaneous traffic streams using up to two integrated transmit chains and receive chains for high throughput and range performance. Transmit chains combine baseband in-phase (I) and quadrature (Q) signals, convert them to the desired frequency, and drive the RF signal to multiple antennas. The receiver converts an RF signal to baseband I and Q outputs. The frequency synthesizer supports one-MHz steps to match frequencies defined by IEEE 802.11a/b/g/n specifications.

The AR9220 supports frame data transfer to and from the host using a PCI interface that provides interrupt generation and reporting, power save, and status reporting. Other external interfaces include serial EEPROM and GPIOs. The AR9220 interoperates with standard legacy 802.11a/b/g devices.

Features

- Dynamic frequency selection (DFS) is supported in 5-GHz bands
- All-CMOS MIMO solution interoperable with IEEE 802.11a/b/g/n WLANs
- 2x2 MIMO technology improves effective throughput and range over existing 802.11a/b/g products
- Supports spatial multiplexing, cyclic-delay diversity (CDD), and maximal ratio combining (MRC)
- 2.4/5 GHz WLAN MAC/BB processing
- BPSK, QPSK, 16 QAM, 64 QAM, DBPSK, DQPSK, and CCK modulation schemes
- Data rates of up to 130 Mbps for 20 MHz channels and 300 Mbps for 40 MHz channels
- Wireless multimedia enhancements quality of service support (QoS)
- 802.11e-compatible bursting
- Support for IEEE 802.11e, h, and i standards
- WEP, TKIP, and AES hardware encryption
- 20 and 40 MHz channelization
- 32-bit 0–33 and 66-MHz PCI 2.3 interface
- Reduced (short) guard interval
- Frame aggregation
- Block ACK
- IEEE 1149.1 standard test access port and boundary scan architecture supported
- 337-pin, 12 mm x 12 mm BGA package

AR9220 System Block Diagram

© 2000-2009 by Atheros Communications, Inc. All rights reserved. Atheros®, Atheros Driven®, Atheros XR®, Driving the Wireless Future®, ROCm®, Super AG®, Super G®, Total 802.11n®, and Wake on Wireless® are registered by Atheros Communications, Inc. Atheros SST™, Signal-Sustain Technology™, the Air is Cleaner at 5-GHz™, XSPAN™, Wireless Future. Unleashed Now.™, and 5-UP™ are trademarks of Atheros Communications, Inc. The Atheros logo is a registered trademark of Atheros Communications, Inc. All other trademarks are the property of their respective holders. Subject to change without notice.

COMPANY CONFIDENTIAL • 1

Table of Contents

General Description1	5.2 Transmitter (Tx) Block
Features1	5.3 Synthesizer (SYNTH) Block 37
AR9220 System Block Diagram1	5.4 Bias/Control (BIAS) Block37
1 Pin Descriptions5	6 Register Descriptions39 6.1 Host PCI Configuration Space Registers
2 Functional Description 13	39
2.1 Overview	6.1.1 Vendor ID40
2.1.1 Configuration Block13	6.1.2 Device ID40
2.1.2 AR9220 Address MAP13	6.1.3 Command
2.1.3 Serial EEPROM Interface14	6.1.4 Status
2.1.4 EEPROM Auto-Sizing Mechanism	6.1.5 Revision ID
14	6.1.6 Class Code
2.1.5 EEPROM Read/Write Protection	6.1.7 Cache Line Size
Mechanism14	6.1.8 Latency Timer
2.2 Reset	6.1.9 Header Type43
2.3 GPIO14	6.1.10 Base Address 43
2.4 LED14	6.1.11 Subsystem Vendor ID 43
2.5 PCI Host Interface14	6.1.12 Subsystem ID43
2.5.1 PCI Registers15	6.1.13 Capabilities Pointer (CAP_PTR) 44
2.6 Signal Description15	6.1.14 Interrupt Line (INT_LINE) 44
2.7 Host Interface Unit Interrupts15	6.1.15 Interrupt Pin (INT_PIN)44
	6.1.16 MinGnt 44
3 Medium Access Control (MAC) 17	6.1.17 MaxLat44
3.1 Overview	6.2 AR9220 Internal Register Descriptions 45
3.2 Descriptor	6.2.1 General DMA and Rx-Related
3.3 Descriptor Format18	Registers
3.4 Queue Control Unit (QCU)31	6.2.2 Beacon Handling
3.4.1 DCF Control Unit (DCU)31	6.2.3 QCU Registers
3.5 Protocol Control Unit (PCU)31	6.2.4 DCU Registers
5.5 110tocor Control Offic (1 CC)	6.2.5 EEPROM Interface Registers 82
4 Digital PHY Block33	6.2.6 Host Interface Registers
4.1 Overview	6.2.7 RTC Interface Registers
4.2 802.11n (MIMO) Mode33	6.2.8 MAC PCU Registers
4.2.1 Transmitter (Tx)33	6.2.9 Ms Counter and Rx/Tx Latency (MAC_PCU_USEC_LATENCY) 99
4.2.2 Receiver (Rx)33	(Which colonic hitteren)
4.3 802.11 a/b/g Legacy Mode34	7 Electrical Characteristics121
4.3.1 Transmitter	7.1 Absolute Maximum Ratings121
4.3.2 Receiver	7.2 Recommended Operating Conditions 121
	7.3 Radio Receiver Characteristics 122
5 Radio Block35	7.4 Radio Transmitter Characteristics 125
5.1 Receiver (Rx) Block35	7.1 Natio Harismitter Characteristics 123

7.5	Synthesizer Characteristics	127
7.6	Power Consumption Parameters	128
_	100 10 11	4.00
	AC Specifications	
8.1	PCI Interface Timing	129
8.2	PCI_CLK Specifications	129
8.3	PCI Clock Specifications	129
	8.3.10 PCI Timing Parameters	130
8.4	EEPROM Timing	130
•	n. 1	101
9	Package Dimensions	. 131
10	Ordering Information	. 133

1. Pin Descriptions

This section contains a package pinout (see Table 1-1, Table 1-2, and Table 1-3) and a tabular listing of the signal descriptions.

The following nomenclature is used for signal names:

NC	No connection should be made to
	this pin

- _L At the end of the signal name, indicates active low signals
- P At the end of the signal name, indicates the positive side of a differential signal
- N At the end of the signal name indicates the negative side of a differential signal

The following nomenclature is used for signal types:

- I Digital input signal
- I/O A digital bidirectional signal
- IA Analog input signal
- IH Input signals with weak internal pull-up, to prevent signals from floating when left open
- IL Input signals with weak internal pull-down, to prevent signals from floating when left open
- O A digital output signal
- OA An analog output signal
- OD A digital output signal with open drain
- P A power or ground signal

6

Table 1-1. Pin Assignments (1–12)

	1	2	3	4	5	6	7	8	9	10	11	12
Α	GND	BIASREF	GND	RF5OUTN_1	RF5OUTP_1	RF5INP_1	RF5INN_1	AVDD33	RF2INP_1	RF2INN_1	RF2OUTN_1	RF2OUTP_1
В	RST_L	GND	AVDD12	PA5BIASN_1	GND	PA5BIASP_1	GND	AVDD33	AVDD12	GND	PA2BIASN_1	PA2BIASP_1
C	AVDD12	AVDD33										
D	RF2OUTP_0	PA2BIASP_0										
E	RF2OUTN_0	GND										
F	RF2INN_0	PA2BIASN_0				GND	GND	GND	GND	GND	GND	GND
G	RF2INP_0	GND				GND	GND	GND	GND	GND	GND	GND
Н	AVDD33	AVDD33				GND	GND	GND	GND	GND	GND	GND
J	RF5INN_0	AVDD12				GND	GND	GND	GND	GND	GND	GND
K	RF5INP_0	GND				GND	GND	GND	GND	GND	GND	GND
L	RF5OUTP_0	PA5BIASP_0				GND	GND	GND	GND	GND	GND	GND
М	RF5OUTN_0	PA5BIASN_0				GND	GND	GND	GND	GND	GND	GND
N	AVDD12	PDET_0				GND	GND	GND	GND	GND	GND	GND
P	NC	GND				GND	GND	GND	GND	GND	GND	GND
R	NC	NC				GND	GND	GND	GND	GND	GND	GND
T	NC	DVDD33				GND	GND	GND	GND	GND	GND	GND
U	PCI_REQ_L	PCI_INT_L				GND	GND	GND	GND	GND	GND	GND
٧	PCI_MODE	PCI_AD31				GND	GND	GND	GND	GND	GND	GND
W	PCI_GNT_L	PCI_AD29										
Y	PCI_AD30	PCI_AD28										
AA	PCI_AD27	DVDD12										
AB	SWCOM1	GND	DVDD33	GPIO0	GPIO1	GPIO3	PCI_CLK	DVDD12	PCI_AD25	PCI_AD23	DVDD12	PCI_AD20
AC	GND	SWCOM0	NC	GND	GPIO2	PCI_AD26	PCI_AD24	DVDD33	PCI_CBE3_L	PCI_IDSEL	PCI_AD21	PCI_AD22

Table 1-2. Pin Assignments (13-23)

	13	14	15	16	17	18	19	20	21	22	23
Α	AVDD12	XLNABIAS_0	XPA2BIAS_1	AVDD33	XPA5BIAS_1	GND	GND	XTALI	XTALO	GND	GND
В	PDET_1	XLNABIAS_1	XPA2BIAS_0	AVDD12	XPA5BIAS_0	GND	GND	AVDD12_XTAL	AVDD33_XTAL	GND	GND
С										NC	GND
D										NC	GND
E										GND	GND
F	GND	GND	GND	GND	GND	GND				PCI_AD0	PCI_AD1
G	GND	GND	GND	GND	GND	GND				PCI_AD2	PCI_AD3
Н	GND	GND	GND	GND	GND	GND				DVDD33	DVDD12
J	GND	GND	GND	GND	GND	GND				PCI_AD4	PCI_AD6
K	GND	GND	GND	GND	GND	GND				PCI_CBE0_L	PCI_AD5
L	GND	GND	GND	GND	GND	GND				PCI_AD9	PCI_AD7
М	GND	GND	GND	GND	GND	GND				PCI_AD10	PCI_AD8
N	GND	GND	GND	GND	GND	GND				EPRM_SDA	EPRM_SCK
P	GND	GND	GND	GND	GND	GND				GPIO8	GPIO9
R	GND	GND	GND	GND	GND	GND				PCI_AD12	PCI_AD11
T	GND	GND	GND	GND	GND	GND				DVDD12	DVDD33
U	GND	GND	GND	GND	GND	GND				GND	PCI_AD13
٧	GND	GND	GND	GND	GND	GND				PCI_AD15	PCI_AD14
W										GPIO7	PCI_DEVSEL_L
Υ										GPIO5	GPIO6
AA										PCI_STOP_L	GPIO4
AB	DVDD33	SWCOM3	PCI_PAR	DVDD12	PCI_AD16	PCI_FRAME_L	PCI_RST_L	DVDD33	PCI_PME_L	GND	PCI_CBE1_L
AC	PCI_AD19	SWCOM2	PCI_AD18	PCI_AD17	PCI_CBE2_L	PCI_IRDY_L	PCI_TRDY_L	PCI_CLKRUN_L	PCI_SERR_L	PCI_PERR_L	GND

Table 1-3. Signal-to-Pin Relationships and Descriptions

Symbol	Pin	Type	Description
PCI	•		·
PCI_AD31	V2	I/O	Multiplexed address and data bus. During the first clock of a
PCI_AD30	Y1	I/O	transaction, AD[31:0] contains a physical byte address. During subsequent clocks, it contains data.
PCI_AD29	W2	I/O	
PCI_AD28	Y2	I/O	
PCI_AD27	AA1	I/O	
PCI_AD26	AC6	I/O	
PCI_AD25	AB9	I/O	
PCI_AD24	AC7	I/O	
PCI_AD23	AB10	I/O	
PCI_AD22	AC12	I/O	
PCI_AD21	AC11	I/O	
PCI_AD20	AB12	I/O	
PCI_AD19	AC13	I/O	
PCI_AD18	AC15	I/O	
PCI_AD17	AC16	I/O	
PCI_AD16	AB17	I/O	
PCI_AD15	V22	I/O	
PCI_AD14	V23	I/O	
PCI_AD13	U23	I/O	
PCI_AD12	R22	I/O	
PCI_AD11	R23	I/O	
PCI_AD10	M22	I/O	
PCI_AD9	L22	I/O	
PCI_AD8	M23	I/O	
PCI_AD7	L23	I/O	
PCI_AD6	J23	I/O	
PCI_AD5	K23	I/O	
PCI_AD4	J22	I/O	
PCI_AD3	G23	I/O	
PCI_AD2	G22	I/O	
PCI_AD1	F23	I/O	
PCI_AD0	F22	I/O	
PCI_CBE3_L	AC9	I/O	PCI multiplexed bus command and byte enables. During a transaction
PCI_CBE2_L	AC17	I/O	address phase, these signals define the bus command. During the data phase, they are used as byte enables.
PCI_CBE1_L	AB23	I/O	
PCI_CBE0_L	K22	I/O	

Table 1-3. Signal-to-Pin Relationships and Descriptions (continued)

Symbol	Pin	Type	Description	
PCI_CLK	AB7	I	PCI clock, input for target, output for master	
PCI_CLKRUN_L	AC20	О	Provides for starting and stopping the PCI clock	
PCI_DEVSEL_L	W23	I/O	PCI device select	
PCI_FRAME_L	AB18	I/O	PCI frame	
PCI_GNT_L	W1	I	PCI grant	
PCI_IDSEL	AC10	I	PCI ID select	
PCI_INT_L	U2	О	PCI interrupt	
PCI_IRDY_L	AC18	I/O	PCI initiator ready	
PCI_MODE	V1	I	Selects between PCI and CardBus interface	
			0 CardBus	
			1 PCI (default)	
PCI_PAR	AB15	I/O	PCI parity	
PCI_PERR_L	AC22	I/O	PCI parity error	
PCI_PME_L	AB21	O	PCI power management	
PCI_REQ_L	U1	О	PCI request	
PCI_RST_L	AB19	IH	PCI reset	
PCI_SERR_L	AC21	I/O	PCI system error	
PCI_STOP_L	AA22	I/O	PCI stop	
PCI_TRDY_L	AC19	I/O	PCI target ready	
Radio				
BIASREF	A2	IA	BIASREF voltage is 310 mV; must connect a 6.19 K Ω ± 1% resistor to ground	
RF2INN_0	F1	IA	Differential RF inputs at 2.4 GHz for chain 0.	
RF2INP_0	G1	IA	Use one side for single-ended input.	
RF2INN_1	A10	IA	Differential RF inputs at 2.4 GHz for chain 1.	
RF2INP_1	A9	IA	Use one side for single-ended input.	
RF5INN_0	J1	IA	Differential RF inputs at 5 GHz for chain 0.	
RF5INP_0	K1	IA	Use one side for single-ended input.	
RF5INN_1	A7	IA	Differential RF inputs at 5 GHz for chain 1.	
RF5INP_1	A6	IA	Use one side for single-ended input.	
RF2OUTN_0	E1	OA	Differential 2.4 GHz RF power amplifier output for chain 0	
RF2OUTP_0	D1	OA		
RF2OUTN_1	A11	OA	Differential 2.4 GHz RF power amplifier output for chain 1	
RF2OUTP_1	A12	OA		
RF5OUTN_0	M1	OA	Differential 5 GHz RF power amplifier output for chain 0	
RF5OUTP_0	L1	OA		
RF5OUTN_1	A4	OA	Differential 5 GHz RF power amplifier output for chain 1	
RF5OUTP_1	A5	OA		

Table 1-3. Signal-to-Pin Relationships and Descriptions (continued)

Symbol	Pin	Type	Description	
Analog Interface	· ·			
PA2BIASN_0	F2	OA	External bias for 2.4 GHz for chain 0	
PA2BIASP_0	D2	OA		
PA2BIASN_1	B11	OA	External bias for 2.4 GHz for chain 1	
PA2BIASP_1	B12	OA		
PA5BIASN_0	M2	OA	External bias for 5 GHz for chain 0	
PA5BIASP_0	L2	OA		
PA5BIASN_1	B4	OA	External bias for 5 GHz for chain 1	
PA5BIASP_1	В6	OA		
PDET_0	N2	IA	Power detector	
PDET_1	B13	IA		
XLNABIAS_0	A14	OA	External LNA bias	
XLNABIAS_1	B14	OA		
XPA2BIAS_0	B15	OA	External bias for 2.4 GHz	
XPA2BIAS_1	A15			
XPA5BIAS_0	B17	OA	External bias for 5 GHz	
XPA5BIAS_1	A17			
External Switch Con	trol			
SWCOM0	AC2	O	Common switch control	
SWCOM1	AB1	О		
SWCOM2	AC14	О		
SWCOM3	AB14	О		
General				
RST_L	B1	IH	Reset for the AR9220	
XTALI	A20	I	40 MHz crystal. A pull up resistor may be needed on the XTALI pin,	
XTALO	A21	I/O	please refer to the reference design schematic. When using an external clock, the XTALI pin is grounded and the XTALO pin should be driven with a square wave clock that has -0.2V < VIL < 0.2V and 1V < VIH < 3.3V. The DC voltage level of XTALO should be approximately 0.6V. The external clock driving XTALO must have sharp rise and fall times to reduce jitter.	

Table 1-3. Signal-to-Pin Relationships and Descriptions (continued)

Symbol	Pin	Туре	Description
GPI0			
GPIO0	AB4	I/O	General purpose GPIO pins
GPIO1	AB5	I/O	The pins GPIO0 through GPIO2 and GPIO4 are multiplexed pins that default to the JTAG interface.
GPIO2	AC5	I/O	default to the JIAG Interface.
GPIO3	AB6	I/O	
GPIO4	AA23	I/O	
GPIO5	Y22	I/O	
GPIO6	Y23	I/O	
GPIO7	W22	I/O	
GPIO8	P22	I/O	
GPIO9	P23	I/O	
Serial EEPROM			
EPRM_SCK	N23	O	Serial EEPROM clock
EPRM_SDA	N22	I/O	Serial EEPROM data

Symbol	Pin	Description		
Power				
AVDD12	A13, B3, B9, B16, C1, J2, N1	Analog 1.2 V power supply		
AVDD12_XTAL	B20	Supply voltage for the crystal oscillator		
AVDD33	A8, A16, B8, C2, H1, H2	Analog 3.3 V power supply		
AVDD33_XTAL	B21	Supply voltage for the crystal oscillator		
DVDD12	H23, T22, AA2, AB8, AB11, AB16	Digital 1.2 V power supply		
DVDD33	H22, T2, T23, AB3, AB13, AB20, AC8	Digital 3.3 V power supply		
GND	A1, A3, A18, A19, A22, A23, B2, B5, B7, B10, B18, B19, B22, B23, C23, D23, E2, E22, E23, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, G2, G6, G7, G8, G9, G10, G11, G12, G13, G14, G15, G16, G17, G18, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17, H18, J6, J7, J8, J9, J10, J11, J12, J13, J14, J15, J16, J17, J18, K2, K6, K7, K8, K9, K10, K11, K12, K13, K14, K15, K16, K17, K18, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L18, M6, M7, M8, M9, M10, M11, M12, M13, M14, M15, M16, M17, M18, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17, N18, P2, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, U6, U7, U8, U9, U10, U11, U12, U13, U14, U15, U16, U17, U18, U22, V6, V7, V8, V9, V10, V11, V12, V13, V14, V15, V16, V17, V18, AB2, AB22, AC1, AC4, AC23	GND		
NC	C22, D22, P1, R1, R2, T1, AC3	No connect		

2. Functional Description

2.1 Overview

The AR9220 consists of four major functional blocks: PCI interface, MAC, digital PHY, and radio.

The IEEE 802.11 MAC functionality is partitioned between the host and the AR9220. IEEE 802.11 MAC data service is provided by the MAC of the AR9220, while the host software, with the aid of the AR9220 MAC, controls Tx and Rx queue processing.

The baseband digital processing functions are implemented by the digital PHY of the AR9220. The radio frequency (RF) and baseband analog processing are provided by the integrated radio. The physical layer (PHY) is partitioned between the baseband processor and the radio. The configuration block, PLL, ADC, DAC, EEPROM interface, JTAG, antenna control, LED controls and GPIO complete the AR9220 functionality. See Figure 2-1.

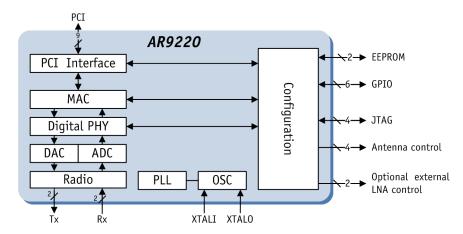


Figure 2-1. Functional Block Diagram of the AR9220

2.1.1 Configuration Block

The configuration block provides control, status, and configuration, for each major functional block. This block contains registers accessed by other blocks and by the host using the PCI interface. See "Register Descriptions" on page 39 for more information.

2.1.2 AR9220 Address MAP

Internal registers of the various functional blocks and the AR9220 peripheral interface are accessible with the host using the PCI interface. These register locations are defined as offset addresses. The combination of the host base address and the offset address allows access to a particular internal register. Table 2-1 lists the offset addresses for the AR9220 internal registers and peripheral interface.

Offset Location	Usage	Description
0x0000-0x07FC	MAC DMA general	DMA access
0x0800-0x0FFC	0x0800–0x0FFC MAC DMA QCU registers Control and statu	
0x1000-0x1FFC	DCU registers	Control and status register for DCU
0x2000-0x3FFC	EEPROM access register	Memory locations of EEPROM are mapped to this address range and allow access to EEPROM
0x4000-0x4FFC	Host interface	Control and status register for host interface
0x8000-0x98FC	PCU registers	Control and status register for PCU

2.1.3 Serial EEPROM Interface

The AR9220 provides a serial interface to access an external EEPROM. The EEPROM interface provides configuration space registers and configuration- and vendor-specific information.

The off-chip EEPROM can be:

- A 32-Kb device, organized as 2,048 entries of 16 bits each (2,048x16)
- An 64-Kb device, organized as 4,096 entries of 16 bits each (4,096x16)

The hardware automatically detects EEPROM size. The EEPROM addressing is 16 bits wide, with each 16-bit EEPROM mapped into the AR9220's register space. Each 32-bit aligned address corresponds to a unique EEPROM location. Because the host interface supports 32-bit register accesses and ignores the two least significant address bits, the address offset provided by the host interface corresponds to four times the EEPROM location.

At reset, some PCI configuration registers load from the EEPROM while others are programmed by the host or initialized by AR9220 hardware. To ensure that the EEPROM contents are valid, a 16-bit word at address offset 0x2000 is checked. If the values do not match 0xA55A, the EEPROM contents are ignored and the default values loaded. More information is provided in "Host Interface Registers" on page 84.

2.1.4 EEPROM Auto-Sizing Mechanism

The first procedure after reset is to read the offset address 0x2000 to check for the content 0xA55A. The EEPROM physical presence, programmed state, and size are determined automatically. If the offset address 0x2000 contents do not match the 0xA55A value for any supported EEPROM sizes, the AR9220 assumes the EEPROM is not present on the PCB, or is present but not programmed. In either case, the logic uses the default values as described in "Serial EEPROM Interface".

2.1.5 EEPROM Read/Write Protection Mechanism

The EEPROM contains a 16-bit word protect mask value at address location 0x2010H that prevents software from accessing certain regions. The mask is 16 bits wide and contains eight sub-masks that are 2 bits wide.

The sub-mask can have four values that determine the access types permitted to the associated protection region:

- 00: Read/write access allowed
- 01: Write-only access allowed
- 10: Read-only access allowed
- 11: No access allowed

2.2 Reset

The RST_L pin controls the AR9220 chip reset. The AR9220 host interface receives two reset signals as below:

- RST_L pin Controls the AR9220 power reset
- PCI_RST_LControls the PCI core reset

In addition, the RTC_RESET register provides software control of warm reset for the MAC/ baseband and PCU blocks. See the register "RTC Reset and Force Sleep and Force Wakeup (RTC_RESET)" on page 94.

2.3 GPIO

The AR9220 provides ten configurable bidirectional general purpose I/O ports. Each GPIO can be independently configured as input or output using the GPIO control register. Information presented at the GPIO inputs and outputs can be read from the register H_GPIO_IN_OUT (see "GPIO Input and Output (H_GPIO_IN_OUT)" on page 88).

2.4 LED

The AR9220 provides GPIO pins to configure for LED output. Control for LED output is provided by the MAC_LED register.

2.5 PCI Host Interface

This section provides a summary of the AR9220 PCI interface. This interface is compatible with PCI 2.3 standards and functions as the host interface for the AR9220, providing data and command transfer between the host software, the MAC, and the configuration registers. For details, refer to the PCI 2.3 standards specifications.

2.5.1 PCI Registers

At system boot, the host uses the PCI configuration registers to detect the type of device present and to perform low level PCI configuration (e.g., assigning a base address to the device).

An external serial EEPROM provides device configuration information. At reset, some PCI configuration registers load from the off-chip serial EEPROM, whereas the host must program the others. Configuration, control, and status registers for the various functional blocks of the AR9220 map to the memory space of the PCI interface and thus can be accessed by the host.

2.6 Signal Description

The AR9220 PCI interface pins are described in "Signal-to-Pin Relationships and Descriptions" on page 8. Table 2-2 shows the interface pins grouped by functional type.

Table 2-2. Types of PCI Interface Signals

Туре	Pin
Address and Data	PCI_AD[31:0]
	PCI_CBE[3:0]_L
	PCI_PAR
System	PCI_RST_L
	PCI_CLK
	PCI_CLKRUN_L
Interface Control	PCI_IDSEL
	PCI_DEVSEL_L
	PCI_FRAME_L
	PCI_IRDY_L
	PCI_STOP_L
	PCI_TRDY_L
Arbitration	PCI_GNT_L
	PCI_REQ_L
Interrupt	PCI_INT_L
PCI Error Reporting	PCI_SERR_L
	PCI_PERR_L
Power Management	PCI_PME_L
Mode Selection	PCI_MODE

2.7 Host Interface Unit Interrupts

The AR9220 host interface unit supports:

- Asynchronous mode interrupt
- Synchronous mode interrupt

Table 6-11 on page 86 describes interrupt signals from various different blocks on the AR9220. The signal/bits are the same for asynchronous and synchronous interrupts.

Software can control and program both the "Synchronous Interrupt Cause (H_INTR_SYNC_CAUS)" and the "Asynchronous Interrupt Enable (H_INTR_ASYN_ENAB)" registers. Because both registers contain similar bits, software should keep the synchronous and asynchronous interrupt enable registers mutually exclusive.

3. Medium Access Control (MAC)

The MAC consists of the following major functional blocks: 10 queue control units (QCUs), 10 distributed coordination function

(DCF) control units (DCUs), a single DMA Rx unit (DRU), and a single protocol control unit (PCU). See Figure 3-1.

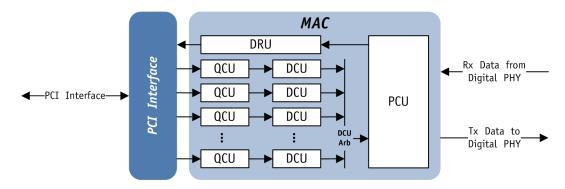


Figure 3-1. MAC Block Diagram

3.1 Overview

The MAC block supports full bus-mastering descriptor-based scatter/gather DMA. Frame transmission begins with the QCUs. QCUs manage the DMA of frame data from the host through the PCI interface, and determine when a frame is available for transmission.

Each QCU targets exactly one DCU. Ready frames are passed from a QCU to its targeted DCU. The DCU manages the enhanced distributed coordination function (EDCF) channel access procedure on behalf of the QCUs associated with it.

Functionality of the MAC block includes:

- Tx frame data transfer from the host to the radio block using the PCI bus
- Rx frame data transfer from the radio block to host using the PCI bus
- Register access to all AR9220 registers
- Interrupt generation and reporting
- Sleep-mode (power-down) sequencing
- Miscellaneous error and status reporting functions

Once the DCU gains access to the channel, it passes the frame to the PCU, which encrypts the frame and sends it to the baseband logic. The PCU handles both processing responses to the transmitted frame, and reporting the transmission attempt results to the DCU.

Frame reception begins in the PCU, which receives the incoming frame bitstream from the digital PHY. The PCU decrypts the frame and passes it to the DRU, which manages Rx descriptors and writes the incoming frame data and status to the host memory through the PCI interface.

3.2 Descriptor

The MAC is responsible for transferring frames between the host memory (accessed using the PCI interface) and the AR9220. For all normal frame transmit/receive activity, the host provides a series of descriptors to the MAC, and the MAC then parses the descriptors and performs the required set of data transfers.

3.3 Descriptor Format

The transmit (Tx) descriptor format contains 24 32-bit words and the receive (Rx) descriptor 13 32-bit words (see Table 3-1).

The first two words of the descriptor point to the next descriptor in the linked list and to the data buffer associated with the descriptor. Other words carry additional control information that affects how the MAC processes the frame and its data.

A descriptor is required to be aligned on a 32-bit boundary in host memory, although best performance is achieved if the descriptor is aligned on a cache-line boundary. The MAC uses the final two words to report status information back to the host. See:

Table	Description
Table 3-1	DMA descriptor format
Table 3-2	Tx control descriptor format (words 2–13)
Table 3-3	Tx status descriptors (words 14–23)
Table 3-4	Rx control descriptor (words 2–3)
Table 3-5	Rx status descriptor (words 4–12)

Table 3-1. DMA Descriptor Format

Word	Bits	Field Name	Description
0	31:0	link_ptr	Link pointer. Contains the address of the next descriptor to be used; must be 32-bit aligned (bits [1:0] must be 0)
1	31:0	buf_ptr	Data buffer pointer. Contains the starting address of the data buffer associated with this descriptor. A Tx data buffer can begin at any byte address. A Rx data buffer must be aligned on a 32-bit boundary in host memory, although best performance is achieved if the Rx data buffer is cache-line aligned. (Cache-line size varies from system to system.)
2–13 (Tx) 2–3 (Rx)	31:0	Host-to- DMA engine control information	Additional control information is passed from host to DMA engine. The format of these words varies depending on whether the descriptor is being used to Tx a frame from host to PCU, or Rx a frame from PCU to host. (See Table 3-2 on page 19, and Table 3-4 on page 28 for details.)
14–23 (Tx) 4–12 (Rx)	31:0	DMA completion status information	Status information reported by the DMA engine when it has finished processing a descriptor. As with the control information, the format of the status information differs between Tx and Rx descriptors. (See Table 3-3 on page 25, and Table 3-5 on page 28 for details.)

The Tx descriptor format for words 2 through 13 is described in Table 3-2.

Table 3-2. Tx Control Descriptor Format (Words 2-13)

Word	Bits	Field Name	Description		
2	11:0	frame_length	Frame length Specifies the length, in bytes, of the entire MAC frame, including the frame check sequence (FCS), initialization vector (IV), and integrity check value (ICV) fields.		
	12	vmf	Virtual more fragment If this bit is set, bursting is enabled for this frame. If no burst is in progress, it initiates a CTS-protected burst if cts_enable is set. If a previous burst is in progress, it ignores the cts_enable bit and assumes the burst is protected.		
	13	RES	Reserved		
	14	low_rx_chain	When set to 1, indicates that the Rx chain mask switches to low power mode after transmitting this frame.		
	15	clear_retry	Setting this bit disables the retry bit from being set in the Tx header on a frame retry (applies to both aggregate and non-aggregate frames).		
	21:16	tpc_0	Tx power control for series 0 These bits pass unchanged to the baseband, where they are used to control the transmit power for the frame.		
	22	rts_enable	Request to send (RTS) enable. At most, one of the "rts_enable" and "cts_enable" bits may be set; it is illegal to set both.		
			set PCU transmits the frame using the RTS/CTS protocol clear PCU transmits the frame using the contention/backoff protocol		
	23	veol	Virtual end-of-list flag When set, indicates that the QCU should act as though the descriptor had a NULL LinkPtr, even if the LinkPtr is not NULL. Must be valid in the final descriptor of a frame and must be clear for all other descriptors of the frame.		
	24	clear_dest_mask	Clear destination mask bit flag If set, instructs the PCU and DCU to clear the destination mask bit at the index specified by the DestIdx field.		
	28:25	RES	Reserved		
	29	int_req	Interrupt request flag Set to one by the driver to request that the DMA engine generate an interrupt upon completion of the frame to which this descriptor belongs. Note that this field must be valid and identical for all descriptors of the frame; that is, all descriptors for the frame must have this flag set, or all descriptors for the frame must have this flag clear.		
	30	dest_index_valid	Destination index valid flag Specifies whether the contents of the DestIdx field are valid.		
	31	cts_enable	Proceed frame with CTS flag If set, the PCU first sends a CTS before sending the frame described by the descriptor. Used for 802.11g and Atheros XR frames to quiet legacy stations before sending a frame the legacy stations cannot interpret (even at the PHY level). At most, one of the "rts_enable" and "cts_enable" bits may be set; it is illegal to set both bits.		

Table 3-2. Tx Control Descriptor Format (Words 2–13) (continued)

Word	Bits	Field Name	Description		
3	11:0	buf_len	Data buffer length Specifies the length, in bytes, of the data buffer associated with this descriptor. Tx data buffers may be any non-zero length buffers. This field must be valid for all descriptors.		
	12	more	More descriptors in this frame flag Set to one by the driver to indicate additional descriptors (DMA fragments) exist in the current frame. This field must be valid for all descriptors. 0 No more descriptors for the current frame 1 The current frame is continued in the next descriptor		
	19:13	dest_index	Destination table index Specifies an index to an on-chip table of per-destination information. The PCU fetches the encryption key from the specified index in this table and uses the key to encrypt the frame. DMA logic uses the index to maintain per-destination Tx filtering status and other related information.		
	23:20	frame_type	Frame type indication Indicates to the PCU what type of frame is being sent. Supported values: 0 Normal frame 1 Announcement traffic indication message (ATIM) frame 2 PS poll frame 3 Beacon 4 Probe response frame 15:5 Reserved		
	24	no_ack	No ACK flag Must be set for any frame that has the 802.11 NoAck bit set in the QoS field and for all other frame types (e.g., beacons) that do not receive ACKs. 1 Do not wait for ACK		
	28:25	RES	Reserved		
	29	more_agg	Indicates aggregate boundaries		
	30	is_agg	Set for all descriptors for an aggregate		
	31	more_rifs	More RIFS burst flag When set, indicates that the current packet is not the last packet of an aggregate. All descriptors for all packets of a RIFS burst except the descriptors of the last packet must have this bit set. All descriptors of the last packet of a RIFS burst must have this bit clear.		

Table 3-2. Tx Control Descriptor Format (Words 2–13) (continued)

Word	Bits	Field Name	Description
4	14:0	burst_duration	Burst duration value (in μ s) If this frame is not part of a burst or the last frame in a burst, the value should be zero. In a burst, the value is the amount of time to reserve (via NAV) after completing the current Tx packet sequence (after the ACK if applicable).
	15	dur_update_en	Frame duration update control If set, the MAC updates (overwrites) the duration field in the frame based on the current Tx rate. If clear, the MAC does not alter the contents of the frame's Duration field. Note that the MAC changes only the frame's Duration field. It does not alter the Duration field in the RTS/CTS that precedes the frame itself if "rts_enable" or "cts_enable" is set.
	19:16	tx_tries0	Number of frame data exchange attempts permitted for Tx series 0 A "frame data exchange attempt" means a transmission attempt in which the actual frame is sent on the air (in contrast to the case in which the frame has RTS enabled and the RTS fails to receive a CTS). In this case, the actual frame is not sent on the air, so this does not count as a frame data exchange attempt. A value of zero is illegal for the TXDataTries0 field.
	23:20	tx_tries1	Number of frame data exchange attempts permitted for transmission series 1. A value of zero means skip this transmission series.
	27:24	tx_tries2	Number of frame data exchange attempts permitted for transmission series 2. A value of zero means skip this transmission series.
	31:28	tx_tries3	Number of frame data exchange attempts permitted for transmission series 3. A value of zero means skip this transmission series.

Table 3-2. Tx Control Descriptor Format (Words 2–13) (continued)

Word	Bits	Field Name	Description	n					
5	7:0	tx_rate0	Tx rate for	transmiss	ion series ().			
			Value		Desc		Value		Desc
			0x1-0x7		RES		0x18	CCK_	_11Mb_L
			0x8	OF	DM_48Mb)	0x19	CCK_	5_5Mb_L
			0x9	OF	DM_24Mb)	0x1A	CCK	_2Mb_L
			0xA	OF	DM_12Mb)	0x1B	CCK	_1Mb_L
			0xB	OI	FDM_6Mb		0x1C	CCK_	_11Mb_S
			0xC	OF	DM_54Mb)	0x1D	CCK_	5_5Mb_S
			0xD	OF	DM_36Mb)	0x1E	CCK	_2Mb_S
			0xE	OF	DM_18Mb)			
			0xF	OI	FDM_9Mb				
									_
			[1]	_			GI = 0	HT40 GI = 0	HT40 GI = 1
			Value ^[1]	Desc	Stream		bps)	(Mbps)	(Mbps)
			0x80	MCS 0	1		5.5	13.5	15
			0x81	MCS 1 MCS 2	1		13	27 40.5	30
			$\frac{0x82}{0x83}$	MCS 2	1		9.5 36	54	45 60
			$\frac{0x83}{0x84}$	MCS 4	1		39	81	90
			$\frac{0x84}{0x85}$	MCS 5	1		52	108	120
			$\frac{0x85}{0x86}$	MCS 6	1		8.5	121.5	135
			$\frac{0x87}{0x87}$	MCS 7	1		65	135	150
			$\frac{0x87}{0x88}$	MCS 8	2		13	27	30
			0x89	MCS 9	2		26	54	60
			0x8A	MCS 10	2		39	81	90
			0x8B	MCS 11	2		52	108	120
			0x8C	MCS 12	2		78	162	180
			0x8D	MCS 13	2	1	04	216	240
			0x8E	MCS 14	2	1	17	243	270
			0x8F	MCS 15	2	1	30	270	300
					not listed h HT20 mode			l. Note that for t	the short guard
	15:8	tx_rate1	Tx rate for	transmissi	ion series 1	l. See t	he rate t	able in "tx_rate	e0".
	23:16	tx_rate2	Tx rate for	transmissi	ion series 2	2. See t	he rate t	able in "tx_rate	e0".
	31:24	tx_rate3	Tx rate for	transmissi	ion series 3	3. See t	ne rate t	able in "tx_rate	e0".
6	14:0	packet_duration0	Packet dur Duration o include RT	f the actua	al Tx frame				is time does not
	15	rts_cts_qual0						x descriptor fo	or Tx series 0.
								s_enable" and '	
	30:16	packet_duration1	Packet duration 1 (in μ s) Duration of the actual Tx frame associated with TXRate1. This time does not include RTS, CTS, ACK, or any associated SIFS.						
	31	rts_cts_qual1	Qualifies "	rts_enable	or "cts_e	enable"	in the T	x descriptor fo	or Tx series 1.
			1 I	Default bel	navior with	n respe	ct to "rts	s_enable" and '	"cts_enable"

Table 3-2. Tx Control Descriptor Format (Words 2–13) (continued)

Word	Bits	Field Name	Descript	ion				
7	14:0	packet_duration2	Duration include I	Packet duration 2 (in μ s) Duration of the actual Tx frame associated with TXRate2. This time does not include RTS, CTS, ACK, or any associated SIFS.				
	15	rts_cts_qual2	Qualifies	"rts_enable"	or "cts_enable" in the Tx descriptor for Tx series 2.			
			1	Default beha	avior with respect to "rts_enable" and "cts_enable"			
	30:16	packet_duration3	Packet duration 3 (in μs) Duration of the actual Tx frame associated with TXRate3. This time does no include RTS, CTS, ACK, or any associated SIFS.					
	31	rts_cts_qual3	Qualifies	"rts_enable"	or "cts_enable" in the Tx descriptor for Tx series 3.			
			1	Default beha	avior with respect to "rts_enable" and "cts_enable"			
8	15:0	agg_length	Aggrega	te length				
	17:16	RES	Reserved	l				
	25:18	pad_delim		of delimiters for all descrip	to add at the end of a packet. The encryption field must otions.			
	28:26	encrypt_type	Encrypti	on type				
			0	None	0 pad bytes			
			1	WEP	4 pad bytes			
			2	AES	8 pad bytes			
			3	TKIP	12 pad bytes			
	31:29	RES	Reserved					
9	0	20_40_0	20_40 control for Tx series 0					
			0	HT20 Tx pac	eket			
			1	HT40 Tx pac	cket			
	1	GI_0	Guard in	terval control	for Tx series 0			
			0	Normal guar	rd interval			
			1	Short guard	interval			
	4:2	chain_sel_0	Chain se	lect for Tx ser	ries 0. 1, 2, and 3 are the only valid values.			
			Bit [0]	Chain 0 is ac	tive			
			Bit [1]	Chain 1 is ac	tive			
			Bit [2]	Reserved				
	5	20_40_1	20_40 co	ntrol for Tx se	eries 1			
			0	HT20 Tx pac	cket			
			1	HT40 Tx pac	cket			
	6	GI_1	Guard in	terval control	for Tx series 1			
			0	Normal guar	rd interval			
			1	Short guard	interval			
	9:7	chain_sel_1	Chain se	lect for Tx ser	ries 1. 1, 2, and 3 are the only valid values.			
			Bit [0]	Chain 0 is ac	etive			
			Bit [1]	Chain 1 is ac	etive			
			Bit [2]	Reserved				
	10	20_40_2		ntrol for Tx se	eries 2			
			0	НТ20 Тх рас	cket			
			1	HT40 Tx pac				

Table 3-2. Tx Control Descriptor Format (Words 2–13) (continued)

Word	Bits	Field Name	Description		
9	11	GI_2	Guard interval control for Tx series 2		
(cont.)			0 Normal guard interval		
			1 Short guard interval		
	14:12	chain_sel_2	Chain select for Tx series 2. 1, 2, and 3 are the only valid values.		
			Bit [0] Chain 0 is active		
			Bit [1] Chain 1 is active		
			Bit [2] Reserved		
	15	20_40_3	20_40 control for Tx series 3		
			0 HT20 Tx packet		
			1 HT40 Tx packet		
	16	GI_3	Guard interval control for Tx series 3		
			0 Normal guard interval		
			1 Short guard interval		
	19:17	chain_sel_3	Chain select for Tx series 3. 1, 2, and 3 are the only valid values.		
			Bit [0] Chain 0 is active		
			Bit [1] Chain 1 is active		
			Bit [2] Reserved		
	27:20	rts_cts_rate	RTS or self-CTS rate selection		
			Specifies the rate at which the RTS will send if "rts_enable" is set, or at which self CTS will send if cts_enable is set. See the rate table in "tx_rate0".		
	31:28	stbc	The STBC settings for all four series If bit 0 is set, STBC is enabled for Tx series 0, etc. Only the lower bit of the two-bit STBC will be set because STBC is only supported for single stream.		
10	23:0	antenna_0	Antenna switch for Tx series 0		
	31:24	RES	Reserved		
11	23:0	antenna_1	Antenna switch for Tx series 1		
	29:24	tpc_1	Tx power control (TPC) for Tx series 1 These bits pass unchanged to the baseband to control Tx power for the frame.		
	31:30	RES	Reserved		
12	23:0	antenna_2	Antenna switch for Tx series 2		
	29:24	tpc_2	Tx power control (TPC) for Tx series 2 These bits pass unchanged to the baseband to control Tx power for the frame.		
	31:30	RES	Reserved		
13	23:0	antenna_3	Antenna switch for Tx series 3		
	29:24	tpc_3	Tx power control (TPC) for Tx series 3 These bits pass unchanged to the baseband to control Tx power for the frame.		
	31:30	RES	Reserved		

Table 3-3. Tx Status Descriptor Format (Words 14-23)

Word	Bits	Field Name	Description					
14	7:0	rssi_ant00	Rx ACK signal strength indicator of control channel chain 0.					
14			A value of 0x80 (-128) indicates an invalid number.					
	15:8	rssi_ant01	Rx ACK signal strength indicator of control channel chain 1. A value of 0x80 (–128) indicates an invalid number.					
	23:16	RES	Reserved					
	29:24	RES	Reserved					
	30	ba_status	Block ACK status If set this bit indicates that the ba_bitmap values are valid.					
	31	RES	Reserved					
15	0	frm_xmit_ok	Frame transmission success					
			set The frame was transmitted successfully					
			clear No ACK or BA was received during frame transmission					
	1	excessive_retries	Excessive tries If set, transmission of the frame failed because the try limit was reached before the frame was transmitted successfully. Valid only for the final descriptor of a frame, and only if "frm_xmit_ok" is clear.					
	2	fifo_underrun	Tx FIFO underrun flag If set, frame transmission failed because the DMA engine was not able to supply the PCU with data as quickly as the baseband was requesting data. Valid only for non-aggregate or non-RIFS underrun conditions unless the underrun occurred on the first packet of the aggregate or RIFS burst. See also the description for "tx_dlmtr_ underrun_err" and "tx_data_"					
	3	filtered	underrun_err". Valid only if "frm_xmit_ok" is clear. Frame transmission filter indication If set, indicates that frame was not transmitted because the corresponding destination mask bit was set when the frame reached the PCU, or the frame violated TXOP on the first packet of a burst. Valid if "frm_xmit_ok" is clear.					
	7:4	rts_fail_cnt	RTS failure count Reports the number of times an RTS was sent but no CTS was received for the final transmission series (see "final_tx_index"). For frames with "rts_enable" clear, this count is always zero. Note that this count increments only when the RTS/CTS exchange fails. In particular, this count does not increment if the RTS/CTS exchange succeeds but the frame itself fails because no ACK was received. Valid only for the final descriptor of a frame, regardless of the state of "frm_xmit_ok".					
	11:8	data_fail_cnt	Data failure count Reports the number of times the actual frame (as opposed to the RTS) was sent but no ACK was received for the final transmission series (see "final_tx_index"). Valid only for the final descriptor of a frame, regardless the state of "frm_xmit_ok".					
	15:12	virtual_retry_cnt	Virtual collision count Reports the number of virtual collisions that occurred before transmission of the frame ended. The counter value saturates at 0xF. A virtual collision refers to the case, as described in the 802.11e QoS specification, in which two or more output queues contend for a TXOP simultaneously. In such cases, all lower-priority output queues experience a "virtual collision" in which the frame is treated as if it had been sent on the air but failed to receive an ACK.					
	16	tx_dlmtr_ underrun_err	Tx delimiter underrun error This error only occurs on aggregate frames when the underrun conditions happens while the MAC is sending delimiters.					

Table 3-3. Tx Status Descriptor Format (Words 14–23) (continued)

Word	Bits	Field Name	Description
15 (cont.)	17	tx_data_ underrun_err	Tx data underrun error. This error only occurs on aggregate frames when the underrun condition happens while the MAC is sending the data portion of the frame or delimiters.
	18	desc_config_error	Descriptor configuration error. This error occurs if the current 20_40 values are not among the four valid combinations, or if "tx_dlmtr_ underrun_err" or "tx_data_ underrun_err" are set.
	19	tx_timer_expired	Tx timer expired. This bit is set when the Tx frame takes longer to send to the baseband than is allowed based on the TX_TIMER register. Some regulatory domains require that Tx packets may not exceed a certain amount of transmit time.
	31:20	RES	Reserved
16	31:0	send_timestamp	Timestamp at the start of transmit. A snapshot of the lower 32 bits of PCU's timestamp (TSF value). This field can aid the software driver in implementing requirements associated with the aMaxTransmitMSDULifetime MAC attribute.
			The Tx timestamp is sampled upon tx_frame signal rising that goes from the MAC to the baseband. This value corresponds to the last attempt at packet transmission (not the first attempt).
17	31:0	ba_bitmap_0-31	Block ACK bitmap 0 to 31. The values from the block that ACK received after successful transmission of an aggregate frame. Bit 0 if set represents the successful reception of the packet with the sequence number matching the seq_num value.
18	31:0	ba_bitmap_32-63	Block ACK bitmap 32 to 63. The values from the block that ACK received after successful transmission of an aggregate frame. Bit 0 if set represents the successful reception of the packet with the sequence number matching seq_num + 32.
19	7:0	rssi_ant10	Receive ACK signal strength indicator of extension channel chain 0. A value of 0x80 (–128) indicates an invalid number.
	15:8	rssi_ant11	Receive ACK signal strength indicator of extension channel chain 1. A value of 0x80 (–128) indicates an invalid number.
	23:16	RES	Reserved
	31:24	ack_rssi_combined	Receive ACK signal strength indicator of combination of all active chains on the control and extension channels. The value of 0x80 (–128) is used to indicate an invalid number.
20	31:0	EVM	Error vector magnitude 0. EVM is not calculated for legacy frames so this value should always be 0x80 because ACK/BA should be sent at legacy rates.
21	31:0	EVM	Error vector magnitude 1. EVM is not calculated for legacy frames so this value should always be 0x80 because ACK/BA should be sent at legacy rates.
22	31:0	EVM	Error vector magnitude 2. EVM is not calculated for legacy frames so this value should always be 0x80 because ACK/BA should be sent at legacy rates.

Table 3-3. Tx Status Descriptor Format (Words 14–23) (continued)

Word	Bits	Field Name	Description
23	0	done	Descriptor completion flag. Set to one by the DMA engine when it has finished processing the descriptor and has updated the status information. Valid only for the final descriptor of a frame, regardless of the state of "frm_xmit_ok". The driver is responsible for tracking what descriptors are associated with a frame. When the DMA engine sets the Done flag in the final descriptor of a frame, the driver must be able to determine what other descriptors belong to the same frame and thus also have been consumed.
	12:1	SeqNum	Tx sequence number. Indicates the sequence number from the response block ACK. This field should only be consulted if the Tx frame was an aggregate. Because hardware does not update the sequence number, this field does not need to be consulted for non-aggregate frames. For aggregates, this sequence number may not be the sequence number of the first Tx frame of the aggregate. More than likely has an older sequence number if the hardware of the other side keeps track of prior sequence numbers. It may sometimes have a newer sequence number if the first packet of the aggregate failed.
	16:13	RES	Reserved
17 tx		txop_exceeded	TXOP has been exceeded. Indicates that this Tx frame had to be filtered because the amount of time to transmit this packet sequence would exceed the TXOP limit (which should only occur when software programs the TXOP limit improperly).
	20:18	RES	Reserved
	22:21	final_tx_index	Final transmission attempt series index. Specifies the number of the Tx series that caused frame transmission to terminate.
	24:23	RES	Reserved
	25	pwr_mgmt	Power management state. Indicates the value of the power management bit in the frame control field of the response ACK frame.
	27:26	RES	Reserved
	31:28	tid	Traffic indentifier of block ACK. This field indicates the TID of the response block ACK. This field is only valid on the last descriptor of the last packet of an aggregate.

The DMA Rx logic (the DRU block) manages Rx descriptors and transfers the incoming frame data and status to the host through the PCI Interface. The Rx descriptor format for words 2 and 3 is described in Table 3-4.

Table 3-4. Rx Control Descriptor Format (Words 2-3)

Word	Bits	Field Name	Description
2	31:0	RES	Reserved
3	11:0	buf_len	Data buffer length (in bytes). Specifies the length of the data buffer associated with this descriptor. Rx data buffers must have a length that is an integral multiple of four bytes.
	12	RES	Reserved
	13	int_req	Interrupt request flag. Indicates whether the DMA engine should generate an interrupt upon frame completion.
			0 Do not generate an InterReq interrupt upon frame completion
			1 Generate an InterReq interrupt upon frame completion
	31:14	RES	Reserved

The Rx descriptor format for words 4 through 13 is described in Table 3-5.

Table 3-5. Rx Status Descriptor Format (Words 4-12)

Word	Bits	Field Name	Description
4	7:0	rssi_ant00	Receive signal strength indicator of control channel chain 0. A value of 0x80 (–128) indicates an invalid number.
	15:8	rssi_ant01	Receive signal strength indicator of control channel chain 1. A value of 0x80 (–128) indicates an invalid number.
	23:16	RES	Reserved
	31:24	rx_rate	Rx rate indication. Indicates the rate at which this frame transmits from the source. Encodings match those used for the tx_rate_* field in word 5 of the Tx descriptor. Valid only if "frame_rx_ok" is set, or if it is clear and the "phy_error" flag is clear.
5	11:0	data_len	Received data length Specifies the length, in bytes, of the data actually received into the data buffer associated with this descriptor. The actual received data length is between zero and the total size of the data buffer, as specified originally in this field (see the description for "buf_len"). Valid for all descriptors.
	12	more	More descriptors in this frame flag If set, then this is not the final descriptor of the frame. If clear, this descriptor is the final one of the frame. Valid for all descriptors.
			0 No more descriptors for the current frame
			1 The current frame is continued in the next descriptor
	13	RES	Reserved
	21:14	num_delim	Number of zero length pad delimiters after current packet This field does not include the start delimiter required between each packet in an aggregate. This field is only valid for aggregate packets except for the last packet of an aggregate
	31:22	RES	Reserved

Table 3-5. Rx Status Descriptor Format (Words 4-12) (continued)

Word	Bits	Field Name	Description
6	31:0	rcv_timestamp	A snapshot of the PCU's timestamp (TSF value) (in ms) Bits [31:0] of the PCU's 64-bit TSF. Intended for packet logging and packet sniffing. The timestamp is sampled on the rising edge of rx_clear, which goes from the baseband to the MAC.
7	0	gi	Rx packet guard interval. If this value is clear, the Rx frame used a long guard interval. If this value is set, the receive frame used a short guard interval.
	1	20_40	Rx packet 20 or 40 MHz bandwidth indicator. If this value is clear, the Rx frame was a HT20 packet (20 MHz bandwidth). If this value is set, then the receive frame was a HT40 packet (40 MHz bandwidth).
	2	duplicate	Rx packet duplicate indicator. If this value is set, the baseband has determined that this packet is a duplicate packet.
	7:3	RES	Reserved
	31:8	rx_antenna	Rx antenna value
8	7:0	rssi_ant10	Receive signal strength indicator of control channel chain 0. A value of 0x80 (–128) indicates an invalid number.
	15:8	rssi_ant11	Receive signal strength indicator of control channel chain 1. A value of 0x80 (–128) indicates an invalid number.
	23:16	RES	Reserved
	31:24	rssi_combined	Rx signal strength indicator of combination of all active chains on the control and extension channels. The value of 0x80 (-128) is used to indicate an invalid number.
9	31:0	EVM	Rx packet error vector magnitude 0.
10	31:0	EVM	Rx packet error vector magnitude 1.
11	31:0	EVM	Rx packet error vector magnitude 2.
12	0	done	Descriptor completion flag Set to one by the DMA engine when it has finished processing the descriptor and has updated the status information. Valid for all descriptors.
			0 The MAC has not finished processing the descriptor.
			Valid only for the final descriptor of a frame
			1 The MAC has finished processing the descriptor and has updated the status information
	1	frame_rx_ok	Frame reception success flag If set, the frame was received successfully. If clear, an error occurred during frame reception.
			0 An error occurred during frame reception
			1 Frame received successfully
	2	crc_error	Cyclic redundancy code (CRC) error flag Valid only for the final descriptor of a frame, and only if the "frame_rx_ok" flag is clear.
			0 Frame received without a CRC error
			1 Reception of frame failed because of an incorrect CRC value
	3	decrypt_crc_err	Decryption CRC failure flag. Valid only for the final descriptor of a frame, and only if the FrmRcvOK flag is clear.

Table 3-5. Rx Status Descriptor Format (Words 4–12) (continued)

Word	Bits	Field Name	Description
12 (cont.)	4	phy_error	PHY error flag.
			If set, then reception of the frame failed because the PHY encountered an error. In this case, bits [15:8] of this word indicate the specific type of PHY error; see the baseband specification for details. Valid only if the 'frame_rx_ok' flag is clear.
	5	mic_error	Michael integrity check error flag.
			If set, then the frame's TKIP Michael integrity check value did not verify correctly. Valid only when all of the following are true:
			■ The "frame_rx_ok" bit is clear
			■ The frame was decrypted using TKIP
			■ The frame is not a fragment
	6	pre_delim_crc _err	Delimiter CRC error detected before this current frame
	7	RES	Reserved
	8	key_idx_valid	■ If "frame_rx_ok" is set, then this field contains the decryption key table index valid flag. If set, indicates that the PCU successfully located the frame's source address in its on-chip key table and that the Keyldx field reflects the table index at which the destination address was found. If clear, indicates that the PCU failed to locate the destination address in the key table and that the contents of Keyldx field are undefined.
			■ If "frame_rx_ok" is clear and the "phy_error" bit is set, then this field contains bit [0] of the PHY error code. In both cases, this field is valid only for the final descriptor of a frame.
	15:9	key_idx	 ■ If "frame_rx_ok" is set, then this field contains the decryption key table index valid flag. If set, indicates that the PCU successfully located the frame's source address in its on-chip key table and that the KeyIdx field reflects the table index at which the destination address was found. If clear, indicates that the PCU failed to locate the destination address in the key table and that the contents of KeyIdx field are undefined. ■ If "frame_rx_ok" is clear and the "phy_error" bit is set, then this field
			contains bits [4:1] of the PHY error code, the upper three bits are zero. In both cases, this field is valid only for the final descriptor of a frame.
	16	more_agg	More aggregate flag. This bit is only set for the last descriptor of the last packet of an aggregate.
	17	aggregate	Aggregate flag. If set indicates that this packet is part of an aggregate.
	18	post_delim_crc_	Delimiter CRC error detected after this current frame.
		err	Only occurs when the start delimiter of the last frame in an aggregate is bad.
	27:17	RES	Reserved
	28	hi_rx_chain	If set indicates that the Rx chain control in high power mode.
	29	first_agg	First packet of aggregate. If set indicates that this packet is the first packet of an aggregate.
	30	decrypt_busy _err	Decrypt busy error. If set it indicates new frame arrived before decryption completed for the previous frame.
	31	key_miss	Key cache miss indication. If set, indicates that the PCU could not locate a valid description key for the frame. Valid only if the "frame_rx_ok" is clear.

3.4 Queue Control Unit (QCU)

The queue control unit performs two tasks:

- Managing the Tx descriptor chain processing for frames pushed to the QCU from the host by traversing the linked list of Tx descriptors and transferring frame data from the host to the targeted DCU.
- Managing the queue Tx policy to determine when the frame at the head of the queue should be marked as available to transmit.

The MAC contains ten QCUs, each with all the logic and state registers needed to manage a single queue (linked list) of Tx descriptors. A QCU is associated with exactly one DCU. When a QCU prepares a new frame, it signals ready to the DCU. When the DCU accepts the frame, the QCU responds by getting the frame data and passing it to the DCU for eventual transmission to the PCU and on to the air. The host controls how the QCU performs these tasks by writing to various QCU configuration registers (see "QCU Registers" on page 66).

3.4.1 DCF Control Unit (DCU)

Collectively, the ten DCUs implement the EDCF channel access arbitration mechanism defined in the Task Group E (TGe) QoS extension to the 802.11 specification. Each DCU is associated with one of the eight EDCF priority levels and arbitrates with the other DCUs on behalf of all QCUs associated with it. A central DCU arbiter monitors the state of all DCUs and grants one the next access to the PCU (that is, access to the channel).

Because the EDCF standard defines eight priority levels, the first eight DCUs (DCUs 0–7) map directly to the eight EDCF priority levels. The two additional DCUs handle beacons and beacon-gated frames for a total of ten DCUs.

The mapping of physical DCUs to absolute channel access priorities is fixed and cannot be altered by software:

The highest-priority DCU is DCU 9. Typically, this DCU is the one associated with beacons. The next highest priority DCU is DCU 8. Typically, this DCU is the one associated with beacon-gated frames. The remaining eight DCUs priority levels are filled with DCUs 7 through 0. Among these 8 DCUs, DCU 7 has highest priority, DCU 6 the next highest priority, and so on through DCU 0, which has the lowest priority. Typically, these DCUs are associated with EDCF priorities seven through zero, respectively.

3.5 Protocol Control Unit (PCU)

The PCU is responsible for the details of sending a frame to the baseband logic for transmission, for receiving frames from the baseband logic and passing the frame data to the DRU, including:

- Buffering Tx and Rx frames
- Encrypting and decrypting
- Generating ACK, RTS, and CTS frames
- Maintaining the timing synchronization function (TSF)
- Inserting and verifying FCS
- Generating virtual clear channel assessment (CCA)
- Updating and parsing beacons
- The PCU is primarily responsible for buffering outgoing and incoming frames and conducting medium access compatible with the IEEE 802.11 DCF protocol.

Figure 3-2 shows the PCU functional block diagram.

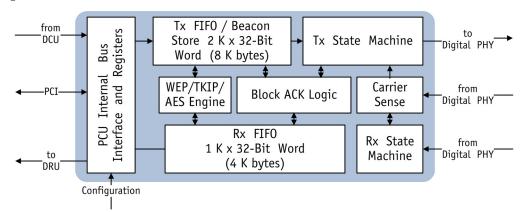


Figure 3-2. PCU Functional Block Diagram

4. Digital PHY Block

The digital physical layer (PHY) block is described in 802.11 draft-n mode and 802.11 a/b/g legacy mode. Transmit and receive paths are provided and shown as block diagrams for 802.11 draft-n mode.

4.1 Overview

The digital PHY block is a half-duplex, OFDM, CCK, DSSS baseband processor compatible with IEEE 802.11n and 802.11a/b/g. The AR9220 supports PHY data rates up to 300 Mbps in 20- and 40-MHz channel modes and all data rates defined by the IEEE 802.11a/b/g standard (1–54Mbps). Modulation schemes include BPSK, QPSK, 16-QAM, 64-QAM and forward error correction coding with rates of 1/2, 2/3, 3/4, 5/6.

4.2 802.11n (MIMO) Mode

Frames beginning with training symbols are used for signal detection, automatic gain control, frequency offset estimation, symbol timing, and channel estimation. This process uses 56 sub-carriers for 20-MHz HT mode: 52 for data transmission and 4 for pilots. It uses 114 sub-carriers for 40-MHz HT mode: 108 for data transmission and 6 for pilots.

4.2.1 Transmitter (Tx)

Figure 4-1 shows the Tx path digital PHY 802.11n (MIMO mode) block diagram.

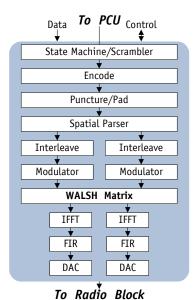


Figure 4-1. Digital PHY 802.11n Tx

The PCU block initiates transmission. The digital PHY powers on the digital to analog converter (DAC) and transmit portions of the AR9220. The training symbols are a fixed waveform and are generated within the digital PHY in parallel with the PCU sending the Tx header (frame length, data rate, etc.). The PCU must send transmitted data quickly enough to prevent buffers in the digital PHY from becoming empty. The PCU is prevented from sending data too quickly by pauses generated within the digital PHY.

Figure 4-1 shows a 2x2 MIMO system with two spatial data streams. The spatial parser splits the coded data into multiple data streams by allocating the proper number of bits to each data stream so that the number of data symbols resulted in each stream is the same. Then it interleaves coded bits across different data subcarriers followed by the modulation. To achieve the maximum spatial diversity, the Walsh matrix can be used to orthogonally mix the two modulated streams before the streams undergo IFFT processing to produce time domain signals.

4.2.2 Receiver (Rx)

Figure 4-2 shows the Rx path digital PHY 802.11n (MIMO mode) block diagram.

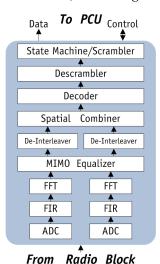


Figure 4-2. Digital PHY 802.11n Rx

The receiver inverts the transmitter's steps, performing a fast fourier transform (FFT), extracting bits from received constellations, deinterleaving, accounting for puncturing, decoding, and descrambling. The Rx block shows 2x2 MIMO configuration. Figure 4-2 shows a frequency-domain equalizer handling degradation due to multi-path.

4.3 802.11 a/b/g Legacy Mode

4.3.1 Transmitter

The AR9220 digital PHY incorporates an OFDM and DSSS transceiver that supports all data rates defined by IEEE 802.11a/b/g. Legacy mode is detected on per-frame basis. PLCP frames are detected for legacy network information. The transmitter switches dynamically to generate legacy signals (802.11b/g in 2.4 GHz and 802.11a in 5 GHz).

4.3.2 Receiver

The receiver is capable of dynamically detecting legacy, HT 20MHz or 40 MHz frames and will demodulate the frame according to the detected frame type.

5. Radio Block

The transceiver of the AR9220 solution consists of these major functional blocks:

- 2 x Receive chainEach chain = Radio + BB programmable gain filter
- 2 x Transmit chainEach chain = Radio + BB programmable gain filter
- Frequency synthesizer (SYNTH)
- Associated bias/control (BIAS)

See Figure 5-1.

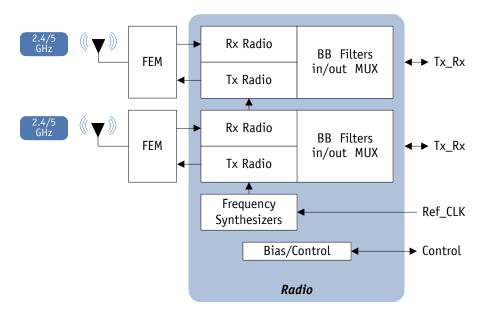


Figure 5-1. Radio Functional Block Diagram

5.1 Receiver (Rx) Block

The receiver converts an RF signal (with 20 MHz or 40 MHz bandwidth) to baseband I and Q outputs. The dual band receiver operates in the 2.4 GHz and 5 GHz bands to support CCK and OFDM signals for 802.11a, 802.11b, 802.11g, and 802.11n.

The 2.4 GHz receiver implements a direct conversion architecture. The 5 GHz receiver implements an integrated dual conversion architecture that eliminates the need for an external intermediate frequency filter while providing the advantages of traditional heterodyne approaches.

The receivers consist of a low noise amplifier (LNA), radio frequency (RF) and intermediate frequency (IF) mixers, and a baseband programmable gain amplifier (PGA). The mixer(s) convert the output of the on-chip LNA to baseband I and Q signals. The I and Q signals are low-pass filtered and amplified by a baseband programmable gain filter controlled by digital logic. The baseband signals are sent to the ADC within the MAC/Baseband processor.

The DC offset of the receive chain is reduced using multiple DACs controlled by the MAC/ Baseband processor. Additionally, the receive chain can be digitally powered down to conserve power.

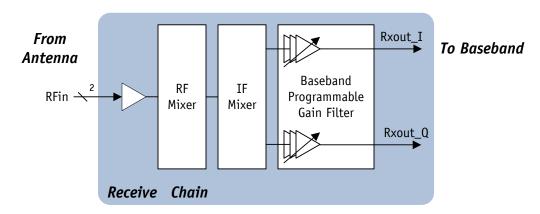


Figure 5-2. Radio Receive Chain Block Diagram

5.2 Transmitter (Tx) Block

The transmitter converts baseband I and Q inputs to 2.4/5 GHz RF outputs as shown in Figure 5-3. The inputs to the transmitter are current outputs of the DAC within the MAC/ Baseband processor. These currents are lowpass filtered through an on-chip reconstruction filter to remove spectral images and out-ofband quantization noise.

The I and Q signals are converted to RF signals using an integrated up-conversion architecture. The mixer(s) convert the baseband signals to radio frequency signals. These signals are driven off-chip through a power amplifier.

The transmit chain can be digitally powered down to conserve power. To ensure that the FCC limits are observed and the output power stays close to the maximum allowed, the transmit output power is adjusted by a closed loop, digitally programmed, control loop at the start of each packet. The AR9220 provides a closed loop power control based on an off-chip power detector.

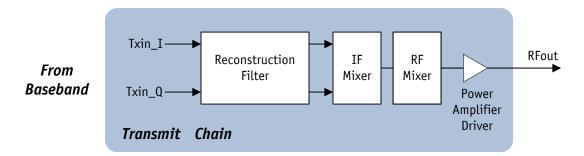


Figure 5-3. Radio Transmit Chain Block Diagram

5.3 Synthesizer (SYNTH) Block

The radio supports one on-chip synthesizer to generate local oscillator (LO) frequencies for the receiver and transmitter mixers. The synthesizer has the topology shown in Figure 5-4.

The AR9220 generates the reference input from a 40 MHz crystal for the synthesizer. An on-chip voltage controlled oscillator (VCO) provides the desired LO signal based on a phase/frequency locked loop.

Upon power up or channel reselection, the synthesizer takes approximately 0.2 ms to settle.

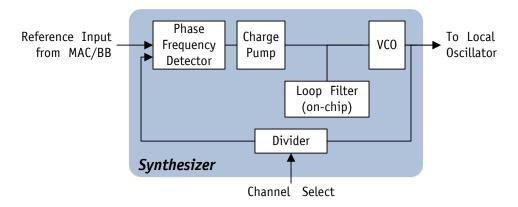


Figure 5-4. Radio Synthesizer Block Diagram

5.4 Bias/Control (BIAS) Block

The bias/control block provides the reference voltages and currents for all other circuit blocks (see Figure 5-5). An on-chip bandgap reference circuit provides the needed voltage and current references based on an external 6.19 K Ω ±1% resistor.

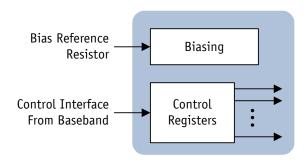


Figure 5-5. Bias/Control Block Diagram

6. Register Descriptions

6.1 Host PCI Configuration Space Registers

Table 6-1 summarizes the AR9220 host PCI Configuration Space registers. These registers are accessed by the host using PCI configure operations and are used at boot time by the host to detect the type of card present and to perform low-level configuration, such as assigning base addresses to the card.

At reset, some of these registers are hard coded on the chip but new values can be loaded from an off-chip serial EEPROM, while others must be programmed by the host or are initialized by the AR9220 hardware. Refer to "EEPROM Interface Registers" on page 84 for register values that are loaded from the EEPROM upon reset. Registers that are loaded by the host or initialized by the AR9220 are identified in Table 6-1. Refer to version 2.3 of the PCI bus standard for detailed information on these registers.

Table 6-1. Host PCI Configuration Space Registers

Offset	Name	Description	Initialized By	Page
0x00	Vendor ID	Identification of the Manufacturer	EEPROM	page 40
0x02	Device ID	Identification of the Device Type	EEPROM	page 40
0x04	Command	Controls Accessibility of the Device	Host	page 40
0x06	Status	Provides Status of the Device's Functionality	AR9220/ EEPROM	page 41
0x08	Revision ID	Identification of the Device's Revision	EEPROM	page 42
0x09	Class Code	Identification of the Device's Basic Function	EEPROM	page 42
0x0C	Cache Line Size	Specifies System Cache Line Size	Host	page 42
0x0D	Latency Timer	Defines the Minimum Time (in PCI Bus Cycles) the Bus Master can Retain Ownership of the PCI Bus	Host	page 42
0x0E	Header Type	Defines Device's Configuration Header Format	EEPROM	page 43
0x10	Base Address	Base Address for Accessing the WLAN Memory Mapped Registers	Host	page 43
0x2C	Subsystem Vendor ID	Identification of the Subsystem Manufacturer	EEPROM	page 43
0x2E	Subsystem ID	Identification of the Subsystem Device Type	EEPROM	page 43
0x34	Capabilities Pointer	Pointer to the Device's List of capabilities	EEPROM	page 44
0x3C	Interrupt Line	Defines Whether the Device's Interrupts are Generated Using the PCI Interrupt Pins, or Using the Message-Signaled Interrupts (MSI) Capability	Host	page 44
0x3D	Interrupt Pin	Defines Specific PCI Interrupt Pins Associated with Particular Functions of the Device	EEPROM	page 44
0x3E	MinGnt	Indicates How Long the Device Retains PCI Bus Ownership	EEPROM	page 44
0x3F	MaxLat	Indicates How Often the Device Accesses the PCI Bus	EEPROM	page 44

6.1.1 Vendor ID

Offset: 0x00 Access: Read Only Size: 16 bits

Contains the vendor identification number. Value of this register can be loaded from the EEPROM when the EEPROM is attached, or if the EEPROM content is not valid, a value of 0x168C returns when read from the register.

Bit	Name	Description
15:0	VENDOR_ID	Vendor identification

6.1.2 Device TD

Offset: 0x02 Access: Read Only Size: 16 bits

This register identifies the device type. Value of this register can be loaded from the EEPROM when the EEPROM is attached, or if the EEPROM content is not valid, a value of 0xFF1D returns when read from the register.

Bit	Name	Description
15:0	DEVICE_ID	Device identification

6.1.3 Command

Offset: 0x04 Access: Read/Write

Size: 16 bits

Reset Value: Undefined

This register provides access control of the AR9220 PCI interface. The register is controlled

by the host.

Bit	Name	Description
0	IO_SPACE	I/O Space
		0 Disable
		1 Enable
1	MEM_SPACE	Memory space
2	BUS_MSTR	Bus master
3	SPEC_CYCLES	Special cycles
4	MEM_WR_INV	Memory write and invalidate enable
5	VGA_SNOOP	VGA palette snoop
6	PAR_ERR_RESP	Parity error response
7	STEP_CNTL	Stepping control
8	SERR_EN	System error enable
9	FAST_BB_EN	Fast back-to-back enable
15:10	RES	Reserved. Must be written with zero. On read, can contain any value.

6.1.4 Status

Offset: 0x06

Access: Read/Write, except as noted

Size: 16 bits

Reset Value: 0x0290

This register provides status of the functionality provided by the AR9220 PCI interface. This register is mostly controlled by the AR9220.

Bit	Name	Description
3:0	RES	Reserved. Must be written with zero. On read, can contain any value.
4	CAP_LIST	Capabilities list. Read only.
5	66MHZ_EN	66 MHz capable. Read only.
6	RES	Reserved. Must be written with zero. On read, can contain any value.
7	FAST_BB	Fast back-to-back capable. Read-only.
		0 Disabled
		1 Enabled
8	MD_PAR_ERR	Master data parity error
		On Read:
		0 No error
		1 Error
		On Write:
		0 Do not clear bit
		1 Clear error bit
10:9	DEVSEL_TIMING	Device Select Timing. Read only.
		01 Medium
11	SIG_TARG_ABORT	Signaled Target Abort
		On Read:
		0 No abort
		1 Abort
		On Write:
		0 Do not clear bit
		1 Clear abort bit
12	RX_TARG_ABORT	Received target abort
13	RX_MAS_ABORT	Received master abort
14	SIG_SYS_ERR	Signaled system error
		On Read:
		0 No error
		1 Error
		On Write:
		0 Do not clear bit
		1 Clear error bit
15	DETECT_PAR_ERR	Detected parity error

6.1.5 Revision ID

Offset: 0x08

Access: Read/Write

Size: 8 bits

This register contains the device revision identification number. Value of this register can be loaded from the EEPROM when the EEPROM is attached, or if the EEPROM content is not valid, a value of 0x1 returns when read from the register.

Bit	Name	Description
7:0	REVISION_ID	Revision identification

6.1.6 Class Code

Offset: 0x09 Access: Read only

Size: 24 bits

This register contains the class code identification number that identifies the basic function of the device. Value of this register can be loaded from the EEPROM when the EEPROM is attached, or if the EEPROM content is not valid, a value of 0x0D8000 returns when read from the register.

Bit	Name	Description
23:0	CLASS_CODE	Class code identification value

6.1.7 Cache Line Size

Offset: 0x0C

Access: Read/Write

Size: 8 bits Reset Value: 0x00 This register contains the size of the system cache line. This register is controlled by the

host.

Bit	Name	Description
7:0	CACHE_SZ	Cache line size, in units of 32-bit words (4 bytes)

6.1.8 Latency Timer

Offset: 0x0D

Access: Read/Write

Size: 8 bits Reset Value: 0x00 This register provides the minimum amount of time, in PCI clock cycles, that the bus master can retain ownership of the bus whenever it initiates a new transaction. This register is

controlled by the host.

Bit	Name	Description
7:0	LATENCY_TMR	Latency timer

6.1.9 Header Type

Offset: 0x0E Access: Read Only

Size: 8 bits

This register contains the header type information. Value can be loaded from the EEPROM.

Bit	Name	Description
7:0	HDR_TYPE	Header type
		0 Nonbridge PCI device

6.1.10 Base Address

Offset: 0x10

Access: Bits [15:0] are Read Only (always return 0); Bits [31:16] are Read/Write

Size: 32 bits

Reset Value: Undefined

This register contains the base address for accessing the AR9220 WLAN memory mapped registers. This register is controlled by the host.

Bit	Name	Description
31:0	BASE_ADDR	Base address

6.1.11 Subsystem Vendor ID

Offset: 0x2C

Access: Read Only

Size: 16 bits

This register contains the subsystem vendor identification number. Value of this register can be loaded from the EEPROM when the EEPROM is attached, or if the EEPROM content is not valid, a value of 0x168C returns when read from the register.

Bit	Name	Description
15:0	SSYS_VEND_ID	Subsystem vendor ID

6.1.12 Subsystem ID

Offset: 0x2E Access: Read Only

Size: 16 bits

This register contains the subsystem device identification number. Value of this register can be loaded from the EEPROM when the EEPROM is attached, or if the EEPROM content is not valid, a value of 0xEE1C returns

when read from the register.

Bit	Name	Description	
15:0	SSYS_ID	Subsystem ID	

6.1.13 Capabilities Pointer (CAP_PTR)

Offset: 0x34 Access: Read Only Size: 8 bits Reset Value: 0x40

This register contains the value of the capabilities pointer. Default value is provided by the AR9220.

Bit	Name	Description	
7:0	CAP_PTR	Capabilities pointer value	

6.1.14 Interrupt Line (INT_LINE)

Offset: 0x3C Access: Read/Write Size: 8 bits

Reset Value: 0x00

This register contains the host interrupt controller's interrupt line value that the device's interrupt pin is connected to. This

register is controlled by the host.

Bit	Name	Description	
7:0	INT_LINE	Interrupt line value	

6.1.15 Interrupt Pin (INT_PIN)

Offset: 0x3D Access: Read only Size: 8 bits Reset Value: 0x01

This register defines which of the four PCI interrupt request pins, a PCI function is connected to. Value can be loaded from the

EEPROM.

Bit	Name	Description	
7:0	INT_PIN	Interrupt pin value	

6.1.16 MinGnt

Offset: 0x3E Access: Read only Size: 8 bits Reset Value: 0x00

This register contains a value that indicates how long the device (bus-master) retains PCI bus ownership. Value can be loaded from the

EEPROM.

Bit	Name	Description	
7:0	MIN_GNT	Minimum grant value	

6.1.17 MaxLat

Offset: 0x3F Access: Read only Size: 8 bits Reset Value: 0x00

This register contains the maximum latency value. Value can be loaded from the EEPROM.

Bit	Name	Description	
7:0	MAX_LAT	Maximum latency value	

6.2 AR9220 Internal Register Descriptions

This section describes the AR9220 internal registers.

Offset	Туре	Page
0x0000-0x00FC	General DMA and Rx-Related (MAC Interface)	page 45
0x0800-0x0A40	QCU	page 66
0x1000-0x12F0	DCU	page 72
0x1F00-0x1F0C	Serial Flash	page 82
0x2000-0x3FFC	EEPROM Interface	page 84
0x4000-0x409C	Host Interface	page 84
0x7000-0x7FFC	RTC Interface	page 94
0x8000-0x97FC	MAC PCU	page 97

6.2.1 General DMA and Rx-Related Registers

Table 6-2 shows the mapping of the general DMA and Rx-related (MAC interface) registers.

Table 6-2. General DMA and Rx-Related Registers

Offset	Name	Description	Page	
0x0008	CR	Command	page 46	
0x000C	RXDP	Receive Queue Descriptor Pointer	page 46	
0x0014	CFG	Configuration and Status	page 47	
0x0020	MIRT	Maximum Interrupt Rate Threshold	page 48	
0x0024	IER	Interrupt Global Enable	page 48	
0x0028	TIMT	Transmit Interrupt Mitigation Thresholds	page 48	
0x002C	RIMT	Receive Interrupt Mitigation Thresholds	page 49	
0x0030	TXCFG	Transmit Configuration	page 49	
0x0034	RXCFG	Receive Configuration	page 50	
0x0040	MIBC	MIB Control	page 50	
0x0044	TOPS	Timeout Prescale	page 50	
0x0048	RXNF	Rx No Frame	page 51	
0x004C	TXNF	Tx No Frame	page 51	
0x0050	RFGTO	Receive Frame Gap Timeout	page 51	
0x0054	RFCNT	Receive Frame Count Limit	page 51	
0x0064	GTT	Global Transmit Timeout	page 52	
0x0068	GTTM	Global Transmit Timeout Mode	page 52	
0x006C	CST	Carrier Sense Timeout	page 52	
0x0080	ISR_P	Primary Interrupt Status	page 53	
0x0084	ISR_S0	Secondary Interrupt Status 0	page 55	
0x0088	ISR_S1	Secondary Interrupt Status 1	page 55	
0x008C	ISR_S2	Secondary Interrupt Status 2	page 56	
0x0090	ISR_S3	Secondary Interrupt Status 3	page 56	

Table 6-2. General DMA and Rx-Related Registers (continued)

Offset	Name	Description	Page
0x0094	ISR_S4	Secondary Interrupt Status 4	page 57
0x0098	ISR_S5	Secondary Interrupt Status 5	page 57
0x00A0	IMR_P	Primary Interrupt Mask	page 58
0x00A4	IMR_S0	Secondary Interrupt Mask 0	page 59
0x00A8	IMR_S1	Secondary Interrupt Mask 1	page 59
0x00AC	IMR_S2	Secondary Interrupt Mask 2	page 60
0x00B0	IMR_S3	Secondary Interrupt Mask 3	page 60
0x00B4	IMR_S4	Secondary Interrupt Mask 4	page 61
0x00B8	IMR_S5	Secondary Interrupt Mask 5	page 61
0x00C0	ISR_P_RAC	Primary Interrupt Status Read-and-Clear	page 62
0x00C4	ISR_S0_S	Secondary Interrupt Status 0 (Shadow Copy)	page 62
0x00C8	ISR_S1_S	Secondary Interrupt Status 1 (Shadow Copy)	page 62
0x00CC	ISR_S2_S	Secondary Interrupt Status 2 (Shadow Copy)	page 62
0x00D0	ISR_S3_S	Secondary Interrupt Status 3 (Shadow Copy)	page 63
0x00D4	ISR_S4_S	Secondary Interrupt Status 4 (Shadow Copy)	page 63
0x00D8	ISR_S5_S	Secondary Interrupt Status 5 (Shadow Copy)	page 63

6.2.1.1 Command (CR)

Offset: 0x0008 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Name	Description	
31:7	RES	Reserved	
6	SWI	ftware interrupt; this bit is one-shot/auto-cleared, so it always reads as 0	
5	RXD	x disable	
4:3	RES	eserved	
2	RXE	Receive (Rx) enable	
1:0	RES	Reserved	

6.2.1.2 Rx Queue Descriptor Pointer (RXDP)

Offset: 0x000C Access: Read/Write Cold Reset: (Undefined) Warm Reset: (Unaffected)

Bit	Name	Description	
31:2	RXDP	Rx descriptor pointer	
1:0	RES	Reserved	

6.2.1.3 Configuration and Status (CFG)

Offset: 0x0014 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Name	Reset	Descrip	tion	
31:19	RES	0x0	Reserved		
18:17	FULL_THRESHOLD	0x0	PCI core	e master request queue full threshold	
			0	Use default value of 4	
			3:1	Use indicated value	
16:13	RES	0x0	Reserve	Reserved	
12	CFG_HALT_ACK	0x0	DMA h	alt status	
			0	DMA has not yet halted	
			1	DMA has halted	
11	CFG_HALT_REQ	0x0	DMA h	alt in preparation for reset request	
			0	DMA logic operates normally	
			1	Request DMA logic to stop so software can reset the MAC Bit [12] of this register indicates when the halt has taken effect; the DMA halt IS NOT recoverable; once software sets bit [11] to request a DMA halt, software must wait for bit [12] to be set and reset the MAC.	
10	CFG_CLKGATE_DIS	0x0	Clock gating disable		
			0	Allow clock gating in all DMA blocks to operate normally	
			1	Disable clock gating in all DMA blocks (for debug use)	
9	EEPROM_BUSY	0x1	Reserved; hardwired to 0 Used as EEPROM busy, which indicates whether the PCI core is using off-chip serial EEPROM. Resets to 0x1, but will clear when PCI core has completed loading the EEPROM contents after the negation of PCI_RST_L		
8	PHY_OK	0x0	PHY OF	C; hardwired to 1	
7:6	RES	0x0	Reserve	d	
5	REG_CFG_ADHOC	0x0	AP/ad	hoc indication	
			0	AP mode MAC is operating either as an access point (AP) or as a station (STA) in a BSS	
			1	Ad hoc mode MAC is operating as a STA in an independent basic service set (IBSS)	
4	MODE_MMR	0x0	Byteswa	ap register access (MMR) data words	
3	MODE_RCV_DATA	0x0	Byteswa	ap Rx data buffer words	
2	MODE_RCV_DESC	0x0	Byteswap Rx descriptor words		
1	MODE_XMIT_DATA	0x0	Byteswap Tx data buffer words		
0	MODE_XMIT_DESC	0x0	Byteswa	ap Tx descriptor words	

October 2009

6.2.1.4 Maximum Interrupt Rate Threshold (MIRT)

Offset: 0x0020 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Name	Description	
31:16	RES	Reserved	
15:0	INTR_RATE_THRESH	Maximum interrupt rate threshold	
		This register is described in μ s up to a maximum of 65.535 ms. If this register is 0x0, the interrupt mitigation mechanism is disabled. The maximum interrupt rate timer is started when either the TXINTM or RXIMTM status bits are set. TXMINTR or RXMINTR are asserted at this time. No future TXINTM or RXINTM events can cause the TXMINTR or TXMINTR to be asserted until this timer has expired. If both the TXINTM and RXINTM status bits are set while the timer is expired then the TXMINTR and RXMINTR will round robin between the two.	

6.2.1.5 Interrupt Global Enable (IER)

Offset: 0x0024 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Name	Description	
31:1	RES	Reserved	
0	REG_IER	Enable hardware signalling of interrupts	

6.2.1.6 Tx Interrupt Mitigation Thresholds (TIMT)

Offset: 0x0028 Access: Read/Write Cold Reset: 0x0

Bit	Name	Description	
31:16	TX_FIRST_PKT_THRESH	Tx first packet threshold This register is in μ s up to a maximum of 65.535 ms. If this register is 0x0, the interrupt mitigation mechanism is disabled. The Tx first packet timer starts counting after any Tx completion. If the timer is still counting when the next Tx completion occurs, it resets and starts over. The first Tx packet timer expires when either the last Tx packet threshold equals the last Tx packet timer count or the first Tx packet threshold equals the first Tx packet timer count.	
15:0	TX_LAST_PKT_THRESH	Tx last packet threshold This register is in μ s up to a maximum of 65.535 ms. If this register is 0x0, the interrupt mitigation mechanism is disabled. The Tx last packet timer starts counting after any Tx completion. If the timer is still counting when the next Tx completion occurs, it resets and starts over. The last Tx packet timer expires when either the last Tx packet threshold equals the last Tx packet timer count or the first Tx packet threshold equals the first Tx packet timer count.	

Rx Interrupt Mitigation Thresholds (RIMT) 6.2.1.7

Offset: 0x002C Access: Read/Write

Cold Reset: (See Field Descriptions) Warm Reset: (Same as Cold Reset)

Bit	Name	Description	
31:16	RX_FIRST_PKT_THRESH	Receive first packet threshold This register is in µs up to a maximum of 65.535 ms. If this register is 0x0, the interrupt mitigation mechanism is disabled. The receive first packet timer starts counting after any receive completion. If the timer is still counting when the next receive completion occurs, it resets and starts over The first receive packet timer expires when either the last receive packet threshold equals the last receive packet timer count or the first receive packet threshold equals the first receive packet timer count.	
15:0	RX_LAST_PKT_THRESH	Receive last packet threshold This register is in µs up to a maximum of 65.535 ms. If this register is 0x0, the interrupt mitigation mechanism is disabled. The receive last packet timer starts counting after any receive completion. If the timer is still counting when the next receive completion occurs, it resets and starts over. The last receive packet timer expires when either the last receive packet threshold equals the last receive packet timer count or the first receive packet threshold equals the first receive packet timer count.	

Tx Configuration (TXCFG) 6.2.1.8

Offset: 0x0030 Access: Read/Write

Cold Reset: (See Field Descriptions) Warm Reset: (Same as Cold Reset)

Bit	Name	Reset	Descrip	otion
31:18	RES	0x0	Reserve	rd .
17	DIS_RETRY	0x1	Disable retry of underrun packets	
	_UNDERRUN		0	Underrun packets will retry indefinitely
			1	Underrun packets will quit after first underrun attempt and write status indicating underrun
16:15	RES	0x0	Reserve	ed .
14:10	RES	0x0	Reserve	rd
9:4	TXCFG_TRIGLVL	0x1	Specifie must be sending	rigger level as the minimum number of bytes, in units of 64 bytes, that a DMAed into the PCU TXFIFO before the PCU initiates the frame on the air. Resets to 0x1 (meaning 64B or a full whichever occurs first).
3	RES	0x0	Reserve	ed
2:0	TXCFG_DMA_SIZE	0x5	Maxim	um DMA request size for master reads
			0	4 B
			1	8 B
			2	16 B
			3	32 B
			4	64 B
			5	128 B
			6	256 B
			7	Reserved

October 2009

Rx Configuration (RXCFG) 6.2.1.9

Offset: 0x0034 Access: Read/Write

Cold Reset: (See Field Descriptions) Warm Reset: (Same as Cold Reset)

Bit	Name	Reset	Description		
31:5	RES	0x0	Reserved		
4:3	ZERO_LEN	0x0	Zero-length frame DMA enable		
	_DMA_EN		O Disable DMA of zero-length frames. In this mode, DMA logic suppresses all zero-length frames. Reception of zero-length frames is invisible to the host (they do not appear in host memory or consume a Rx descriptor).		
			 Reserved Enable DMA of all zero-length frames. In this mode, all zero-length fram (chirps, double-chirps, and non-chirps) DMA into host memory just like normal (non-zero-length) frames. 		
			3 Reserved		
2:0	DMA_SIZE	0x4	Maximum DMA size for master writes (See the encodings for the register "Tx Configuration (TXCFG)" on page 49)		

6.2.1.10 MIB Control (MIBC)

Offset: 0x0040 Access: Read/Write

Cold Reset: (See Field Descriptions) Warm Reset: (Same as Cold Reset)

Bit	Name	Reset	Description		
31:4	RES	0x0	Reserv	Reserved	
3	MIBC_MIBS	0x0	MIB co	MIB counter strobe. This one-shot bit always reads as zero. For writes:	
			0	No effect	
			1	Causes every MIB counter to increment by one	
2	MIBC_ACLR	0x1	Clear all counters		
1	MIBC_FRZ	0x1	Freeze all counters		
0	MIBC_WRN_COMP	0x0	Warning test indicator. Read Only		

6.2.1.11 Timeout Prescale (TOPS)

Offset: 0x0044 Access: Read/Write Cold Reset: 0x0000

Bit	Name	Description	
31:16	RES	Reserved	
15:0	TOPS	Timeout prescale count	

6.2.1.12 Rx No Frame (RXNF)

Offset: 0x0048 Access: Read/Write Cold Reset: 0x000

Warm Reset: (Same as Cold Reset)

Bit	Name	Description	
31:10	RES	Reserved	
9:0	RXNPTO	Timeout count limit	

6.2.1.13 Tx No Frame (TXNF)

Offset: 0x004C Access: Read/Write Cold Reset: 0x000

Warm Reset: (Same as Cold Reset)

Bit	Name	Description
31:20	RES	Reserved
19:10	TXNPMASK	QCU mask; Specifies the set of QCUs for which frame completions cause a reset of the TXNOFR timeout.
9:0	TXNPTO	Timeout count limit

6.2.1.14 Rx Frame Gap Timeout (RFGTO)

Offset: 0x0050 Access: Read/Write Cold Reset: 0x000

Warm Reset: (Same as Cold Reset)

Bit	Name	Description	
31:10	RES	Reserved	
9:0	RPGTO	Timeout count limit	

6.2.1.15 Rx Frame Count Limit (RFCNT)

Offset: 0x0054 Access: Read/Write

Cold Reset: (See Field Descriptions) Warm Reset: (Same as Cold Reset) Note: Set to 0x1F (decimal 31) to disable

Bit	Name	Reset	Description
31:5	RES	0x0	Reserved
4:0	RPCNT	0x1F	Frame count limit

6.2.1.16 Global Tx Timeout (GTT)

Offset: 0x0064 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Name	Description
31:16	GTT_LIMIT	Timeout limit (in TU: $1024 \mu s$) On reset, this value is set to 25 TU.
15:0	GTT_CNT	Timeout counter (in TU: $1024~\mu s$) The current value of the timeout counter that is reset on every transmit. If no Tx frame is queued up and ready to transmit, the timeout counter stays at 0 or else the counter increments every $1024~\mu s$. If the timeout counter is equal to or greater than the timeout limit, the global transmit timeout interrupt is set in the ISR. This mechanism can be used to detect whether a Tx frame is ready and is unable to be transmitted.

6.2.1.17 Global Tx Timeout Mode (GTTM)

Offset: 0x0064 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Name	Description
31:5	RES	Reserved
4	GTT_QCU_FR_DISABLE	Disable QCU_FR_ACTIVE for GTT If this bit is set, then GTT logic uses the PCI_TX_QCU_STATUS signal for GTT. If this bit is clear, then QCU_FR_ACTIVE is used instead.
3	CST_USEC_STROBE	CST µs strobe If this bit is set, then the CST timer will not use the TU based strobe but rather use the µs strobe to increment the timeout counter.
2	RESET_ON_CHAN_IDLE	Reset count on chan idle low. Reset count every time channel idle is low.
1	IGNORE_CHAN_IDLE	Ignore channel idle If this bit is set then the GTT timer does not increment if the channel idle indicates the air is busy or NAV is still counting down.
0	USEC_STROBE	μs strobe If this bit is set then the GTT timer will not use the TU based strobe but rather use a μs strobe to increment the timeout counter.

6.2.1.18 Carrier Sense Timeout (CST)

Offset: 0x006C Access: Read/Write Cold Reset: 0x0

Bit	Name	Description
31:16	CST_LIMIT	Timeout limit (in TU: 1024 μs). On reset, this value is set to 16 TU.
15:0	CST_CNT	Timeout counter (in TU: 1024 μs)
		The current value of the timeout counter that is reset on every transmit. If no Tx frame is queued up and ready to transmit, the timeout counter stays at 0 or else the counter increments every 1024 µs. If the timeout counter is equal to or greater than the timeout limit then carrier sense timeout (CST) interrupt is set in the ISR. This counter starts counting if any queues are ready to transmit. It continues counting when RX_CLEAR is low, which is useful to determine whether the transmit is stuck because RX_CLEAR is low for a long time.

6.2.1.19 Primary Interrupt Status (ISR_P)

Offset: 0x0080

Access: Read/Write-One-to-Clear

Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Note:

- The bits that are logical ORs of bits in the secondary ISRs are generated by logically ORing the secondary ISR bits after the secondary ISR bits have been masked with the appropriate bits from the corresponding secondary interrupt mask register.
- A write of one to a bit that is a logical OR of bits in a secondary ISR clears the secondary ISR bits from which the primary ISR bit is generated. E.g.: A write of a one to the TXOK bit (bit [6]) in ISR_P clears all 10 TXOK bits in ISR_S0 (bits [9:0] of "Secondary Interrupt Status 0 (ISR_S0)").
- Only the bits in this register (ISR_P) and the primary interrupt mask register ("Primary Interrupt Mask (IMR_P)") control whether the MAC's INTA# output is asserted. The bits in the several secondary interrupt status/mask registers control what bits are set in the primary interrupt status register; however, the IMR_S* registers do not determine whether INTA# is asserted. That is, INTA# is asserted only when the logical AND of ISR_P and IMR_P is non-zero. The secondary interrupt mask/status registers affect which bits are set in ISR_P, but do not directly affect whether INTA# is asserted.

Bit	Name	Description
31	RXINTM	Rx completion interrupt after mitigation; either the first Rx packet or last Rx packet interrupt mitigation count has reached its threshold (see the register "Rx Interrupt Mitigation Thresholds (RIMT)" on page 49)
30	TXINTM	Tx completion interrupt after mitigation; either the first Tx packet or last Tx packet interrupt mitigation count has reached its threshold (see the register "Tx Interrupt Mitigation Thresholds (TIMT)" on page 48)
29	HCFTO	HCF poll timeout
28	GENTMR	Logical or of all GENERIC TIMER bits in the secondary ISR 5 which include the GENERIC_TIMER_TRIGGER[7:0], GENERIC_TIMER_THRESH[7:0], GENERIC_TIMER_OVERFLOW
27	QTRIG	Logical or of all QTRIG bits in secondary ISR 4; indicates that at least one QCU's frame scheduling trigger event has occurred
26	QCBRURN	Logical or of all QCBRURN bits in secondary ISR 3; indicates that at least one QCU's frame scheduling trigger event occurred when no frames were present on the queue
25	QCBROVF	Logical or of all QCBROVF bits in secondary ISR 3; indicates that at least one QCU's CBR expired counter has reached the value of the QCU's cbr_ovf_thresh parameter
24	RXMINTR	RXMINTR maximum receive interrupt rate; same as RXINTM with the added requirement that maximum interrupt rate count has reached its threshold; this interrupt alternates with TXMINTR.
23	BCNMISC	Miscellaneous beacon-related interrupts
		This bit is the logical OR of the CST, GTT, TIM, CABEND, DTIMSYNC, BCNTO, CABTO, TSFOOR, DTIM, and TBTT_TIME bits in secondary ISR 2.
22	HCFPOLL	Received directed HCF poll
21	RES	Reserved
20	BNR	Beacon not ready
		Indicates that the QCU marked as being used for beacons received a DMA beacon alert when the queue contained no frames.

Bit	Name	Description
19	TXMINTR	TXMINTR maximum Tx interrupt rate
18	BMISS	The PCU indicates that is has not received a beacon during the previous N (N is programmable) beacon periods
17	BRSSI	The PCU indicates that the RSSI of a beacon it has received has fallen below a programmable threshold
16	SWBA	The PCU has signalled a software beacon alert
15	RXKCM	Key cache miss; a frame was received with a set key cache miss Rx status bit
14	RXPHY	The PHY signalled an error on a received frame
13	SWI	Software interrupt signalled; see the register "Command (CR)" on page 46
12	MIB	One of the MIB regs has reached its threshold
11	TXURN	Logical OR of all TXURN bits in secondary ISR 2. Indicates that the PCU reported a txfifo underrun for at least one QCU's frame
10	TXEOL	Logical OR of all TXEOL bits in secondary ISR 1; indicates that at least one Tx desc fetch state machine has no more Tx descs available
9	TXNOFR	Have not transmitted a frame in TXNOFR timeout clocks. Each QCU has only one TXNOFR bit; see the register "Tx No Frame (TXNF)" on page 51
8	TXERR	Logical OR of all TXERR bits in secondary ISR 1; indicates that at least one frame was completed with an error, regardless of whether the InterReq bit was set
7	TXDESC	Logical or of all TXDESC bits in secondary ISR 0; indicates that at least one frame was sent and last desc had the InterReq bit set
6	TXOK	Logical or of all TXOK bits in secondary ISR 0; indicates that at least one frame was completed with no errors and at the requested rate, regardless of whether the InterReq bit was set.
5	RXORN	Rxfifo overrrun
4	RXEOL	Rx desc fetch logic has no more Rx descs available
3	RXNOFR	No frame was received for RXNOFR timeout clocks
2	RXERR	The frame was received with errors
1	RXDESC	The frame was received and the desc InterReq field was such that an interrupt was generated
0	RXOK	The frame was received with no errors

6.2.1.20 Secondary Interrupt Status 0 (ISR_S0)

Offset: 0x0084

Access: Read/Write-One-to-Clear

Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Description
31:26	Reserved
25	TXDESC for QCU 9
17	TXDESC for QCU 1
16	TXDESC for QCU 0
15:10	Reserved
9	TXOK for QCU 9
1	TXOK for QCU 1
0	TXOK for QCU 0

6.2.1.21 Secondary Interrupt Status 1 (ISR_S1)

Offset: 0x0088

Access: Read/Write-One-to-Clear

Cold Reset: 0x0

Bit	Description
31:26	Reserved
25	TXEOL for QCU 9
17	TXEOL for QCU 1
16	TXEOL for QCU 0
15:10	Reserved
9	TXERR for QCU 9
1	TXERR for QCU 1
0	TXERR for QCU 0

6.2.1.22 Secondary Interrupt Status 2 (ISR_S2)

Offset: 0x008C

Access: Read/Write-One-to-Clear

Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Name	Description
31	TBTT_TIME	TBTT-referenced timer interrupt; indicates the PCU's TBTT-referenced timer has elapsed.
30	TSFOOR	TSF out of range; indicates that the corrected TSF received from a beacon differs from the PCU's internal TSF by more than a (programmable) threshold
29	DTIM	A beacon was received with the DTIM bit set and a DTIM count value of zero. Beacons with a set DTIM bit but a non-zero DTIM count do not generate it.
28	CABTO	CAB timeout; a beacon was received that indicated that the STA should expect to receive CAB traffic. However, the PCU's CAB timeout expired either because the station received no CAB traffic, or because the STA received some CAB traffic but never received a CAB frame with the more data bit clear in the frame control field (which would indicate the final CAB frame).
27	BCNTO	Beacon timeout; a TBTT occurred and the STA began waiting to receive a beacon, but no beacon was received before the PCU's beacon timeout expired
26	DTIMSYNC	DTIM synchronization lost; a beacon was received that was expected to be a DTIM but was not, or a beacon was received that was not expected to be a DTIM but was
25	CABEND	End of CAB traffic; a CAB frame was received with the more data bit clear in the frame control field
24	TIM	A beacon was received with the local station's bit set in the TIM element
23	GTT	Global Tx timeout; indicates the GTT count ≥ than the GTT limit
22	CST	Carrier sense timeout; indicates the CST count ≥ than the CST limit
21:10	Reserved	
9	TXURN for QCU	J 9
1	TXURN for QCU	
0	TXURN for QCU	J 0

6.2.1.23 Secondary Interrupt Status 3 (ISR_S3)

Offset: 0x0090

Access: Read/Write-One-to-Clear

Cold Reset: 0x0

Bit	Description
31:26	Reserved
25	QCBRURN for QCU 9
17	QCBRURN for QCU 1
16	QCBRURN for QCU 0
15:10	Reserved
9	QCBROVF for QCU 9
1	QCBROVF for QCU 1
0	QCBROVF for QCU 0

6.2.1.24 Secondary Interrupt Status 4 (ISR_S4)

Offset: 0x0094

Access: Read/Write-One-to-Clear

Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Description
31:10	Reserved
9	QTRIG for QCU 9
1	QTRIG for QCU 1
0	QTRIG for QCU 0

6.2.1.25 Secondary Interrupt Status 5 (ISR_S5)

Offset: 0x0094

Access: Read/Write-One-to-Clear

Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

NOTE: The trigger indicates that the TSF matched or exceeded the timer. The threshold is set when the TSF exceeds the timer by the GENERIC_TIMER_THRESH value. The GENERIC_TIMER overflow occurs when the TSF exceeds the timer by such a large amount that TSF ≥ Timer + Period, indicating incorrect software programming. The GENERIC_TIMER 0 threshold was removed because timer 0 is special and does not generate threshold event.

Bit	Description
31	GENERIC_TIMER 15 threshold
17	GENERIC_TIMER 1 threshold
16	GENERIC_TIMER overflow
15	GENERIC_TIMER 15 trigger
1	GENERIC_TIMER 1 trigger
0	GENERIC_TIMER 0 trigger

6.2.1.26 Primary Interrupt Mask (IMR_P)

Offset: 0x00A0 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

NOTE: Only the bits in this register control whether the MAC's INTA# output are asserted. The bits in the secondary interrupt mask registers control what bits are set in the "Primary Interrupt Mask (IMR_P)" register; however, the IMR_S* registers do not determine whether INTA# is asserted.

31 RXINTM interrupt enable 30 TXINTM interrupt enable 29 HCFTO interrupt enable 28 GENTMR interrupt enable 27 QTRIG interrupt enable 26 QCBRURN interrupt enable 27 QCBROVF interrupt enable 28 RXMINTR interrupt enable 29 RXMINTR interrupt enable 20 BCNMISC interrupt enable 21 Reserved 20 BNR interrupt enable 21 Reserved 20 BNR interrupt enable 19 TXMINTR interrupt enable 18 BMISS interrupt enable 18 BMISS interrupt enable 18 BMISS interrupt enable 19 RXKCM interrupt enable 11 BRSSI interrupt enable 12 MIB interrupt enable 13 SWI interrupt enable 14 RXPHY interrupt enable 15 RXKCM interrupt enable 16 SWBA interrupt enable 17 XURN interrupt enable 18 SWI interrupt enable 19 TXMOFR interrupt enable 10 TXEOL interrupt enable 11 TXERN interrupt enable 12 TXDESC interrupt enable 13 TXERR interrupt enable 14 RXPHY interrupt enable 15 RXCM interrupt enable 16 TXOK interrupt enable 17 TXDESC interrupt enable 18 TXERR interrupt enable 19 RXOK interrupt enable 20 RXORN interrupt enable 30 RXNOFR interrupt enable 41 RXEOL interrupt enable 42 RXERR interrupt enable 43 RXNOFR interrupt enable 44 RXEOL interrupt enable 55 RXORN interrupt enable 66 RXORN interrupt enable 77 RXDESC interrupt enable 78 RXERR interrupt enable 89 RXERR interrupt enable 90 RXOK interrupt enable	Bit	Description
29 HCFTO interrupt enable 28 GENTMR interrupt enable 27 QTRIG interrupt enable 26 QCBRURN interrupt enable 25 QCBROVF interrupt enable 26 RXMINTR interrupt enable 27 RESEAURA (STATE AND	31	RXINTM interrupt enable
28 GENTMR interrupt enable 27 QTRIG interrupt enable 26 QCBRURN interrupt enable 25 QCBROVF interrupt enable 24 RXMINTR interrupt enable 23 BCNMISC interrupt enable 24 HCFPOLL interrupt enable 25 HCFPOLL interrupt enable 26 DBNR interrupt enable 27 Reserved 28 BNR interrupt enable 29 BNR interrupt enable 19 TXMINTR interrupt enable 19 BMISS interrupt enable 10 SWBA interrupt enable 11 BRSSI interrupt enable 12 RXKCM interrupt enable 13 SWI interrupt enable 14 RXPHY interrupt enable 15 RXKCM interrupt enable 16 SWBA interrupt enable 17 RXFUN interrupt enable 18 TXURN interrupt enable 19 TXVIN interrupt enable 10 TXEOL interrupt enable 11 TXURN interrupt enable 12 TXDESC interrupt enable 13 TXDESC interrupt enable 14 RXPHY interrupt enable 15 RXORN interrupt enable 16 TXOK interrupt enable 17 RXDESC interrupt enable 28 RXERR interrupt enable 39 RXNOFR interrupt enable 40 RXEOL interrupt enable 41 RXPEOL interrupt enable 42 RXERR interrupt enable 43 RXNOFR interrupt enable 44 RXEOL interrupt enable 55 RXORN interrupt enable 67 RXORN interrupt enable 78 RXERR interrupt enable 80 RXERR interrupt enable 90 RXERR interrupt enable	30	TXINTM interrupt enable
27 QTRIG interrupt enable 26 QCBRURN interrupt enable 25 QCBROVF interrupt enable 24 RXMINTR interrupt enable 23 BCNMISC interrupt enable 22 HCFPOLL interrupt enable 22 HCFPOLL interrupt enable 23 BCNMISC interrupt enable 24 RXMINTR interrupt enable 25 Reserved 26 BNR interrupt enable 27 ITXMINTR interrupt enable 28 BMISS interrupt enable 29 BMS interrupt enable 19 TXMINTR interrupt enable 10 BRSSI interrupt enable 11 BRSSI interrupt enable 12 RXKCM interrupt enable 13 SWIA interrupt enable 14 RXPHY interrupt enable 15 RXKCM interrupt enable 16 TXURN interrupt enable 17 TXURN interrupt enable 18 TXERR interrupt enable 19 TXNOFR interrupt enable 4 TXDESC interrupt enable 5 RXORN interrupt enable 5 RXORN interrupt enable 4 RXEOL interrupt enable 5 RXORN interrupt enable 7 RXDESC interrupt enable 7 RXDESC interrupt enable 8 RXERR interrupt enable 9 RXERR interrupt enable 10 RXDESC interrupt enable	29	HCFTO interrupt enable
26 QCBRURN interrupt enable 25 QCBROVF interrupt enable 24 RXMINTR interrupt enable 23 BCNMISC interrupt enable 22 HCFPOLL interrupt enable 22 HCFPOLL interrupt enable 23 BR interrupt enable 24 Reserved 26 BNR interrupt enable 27 TXMINTR interrupt enable 28 BMISS interrupt enable 29 BNR interrupt enable 20 BNR interrupt enable 30 BMSS interrupt enable 31 BRSSI interrupt enable 42 BRSSI interrupt enable 43 SWBA interrupt enable 44 RXPHY interrupt enable 45 SWI interrupt enable 46 TXURN interrupt enable 47 TXDESC interrupt enable 48 TXERR interrupt enable 49 TXNOFR interrupt enable 50 TXOK interrupt enable 51 TXOK interrupt enable 52 RXORN interrupt enable 53 RXNOFR interrupt enable 54 RXEOL interrupt enable 55 RXORN interrupt enable 66 RXORN interrupt enable 77 RXDESC interrupt enable 78 RXORN interrupt enable 79 RXEOR interrupt enable 80 RXEOR interrupt enable 91 RXDESC interrupt enable 92 RXERR interrupt enable 93 RXNOFR interrupt enable 94 RXEOL interrupt enable 95 RXERR interrupt enable	28	GENTMR interrupt enable
25 QCBROVF interrupt enable 24 RXMINTR interrupt enable 23 BCNMISC interrupt enable 22 HCFPOLL interrupt enable 21 Reserved 20 BNR interrupt enable 19 TXMINTR interrupt enable 18 BMISS interrupt enable 17 BRSSI interrupt enable 16 SWBA interrupt enable 15 RXKCM interrupt enable 16 RXPHY interrupt enable 17 BRSFI interrupt enable 18 BMISS interrupt enable 19 TXMINTR interrupt enable 10 TXMINTR interrupt enable 11 TXMINTR interrupt enable 12 MIB interrupt enable 13 SWI interrupt enable 14 RXPHY interrupt enable 15 TXURN interrupt enable 16 TXORN interrupt enable 17 TXDESC interrupt enable 18 TXERR interrupt enable 19 TXOFR interrupt enable 20 RXORN interrupt enable 31 RXNOFR interrupt enable 42 RXERI interrupt enable 33 RXNOFR interrupt enable 44 RXEOL interrupt enable 55 RXCRR interrupt enable 67 RXDESC interrupt enable 78 RXERR interrupt enable 79 RXERR interrupt enable 80 RXNOFR interrupt enable 91 RXDESC interrupt enable 92 RXERR interrupt enable 93 RXNOFR interrupt enable 94 RXEOL interrupt enable 95 RXERR interrupt enable	27	QTRIG interrupt enable
24 RXMINTR interrupt enable 23 BCNMISC interrupt enable 22 HCFPOLL interrupt enable 21 Reserved 20 BNR interrupt enable 19 TXMINTR interrupt enable 18 BMISS interrupt enable 17 BRSSI interrupt enable 16 SWBA interrupt enable 17 RXKCM interrupt enable 18 RXFPHY interrupt enable 19 RXFPHY interrupt enable 10 TXURN interrupt enable 11 TXURN interrupt enable 12 MIB interrupt enable 13 SWI interrupt enable 14 RXPHY interrupt enable 15 RXKCM interrupt enable 16 TXURN interrupt enable 17 TXURN interrupt enable 18 TXER interrupt enable 19 TXNOFR interrupt enable 20 RXFR interrupt enable 30 RXNOFR interrupt enable 41 RXEOL interrupt enable 42 RXEOL interrupt enable 43 RXNOFR interrupt enable 44 RXEOL interrupt enable 55 RXNOFR interrupt enable 66 RXNOFR interrupt enable 77 RXDESC interrupt enable 78 RXEOL interrupt enable 79 RXERR interrupt enable 70 RXDESC interrupt enable 70 RXDESC interrupt enable 70 RXEOL interrupt enable 71 RXDESC interrupt enable 72 RXERR interrupt enable 73 RXDESC interrupt enable 74 RXDESC interrupt enable	26	QCBRURN interrupt enable
23 BCNMISC interrupt enable 22 HCFPOLL interrupt enable 21 Reserved 20 BNR interrupt enable 19 TXMINTR interrupt enable 18 BMISS interrupt enable 17 BRSSI interrupt enable 16 SWBA interrupt enable 17 RXKCM interrupt enable 18 RXYHY interrupt enable 19 TXMINTR interrupt enable 10 TXURN interrupt enable 11 TXURN interrupt enable 12 MIB interrupt enable 13 TXEOL interrupt enable 14 TXEOL interrupt enable 15 TXEOL interrupt enable 16 TXOK interrupt enable 17 TXDESC interrupt enable 18 TXERR interrupt enable 19 TXNOFR interrupt enable 10 TXOFS interrupt enable 11 TXURN interrupt enable 12 RXEOL interrupt enable 13 RXNOFR interrupt enable 14 RXEOL interrupt enable 15 RXORN interrupt enable 16 RXEOL interrupt enable 17 RXDESC interrupt enable 18 RXDESC interrupt enable 10 RXDESC interrupt enable 11 RXDESC interrupt enable	25	QCBROVF interrupt enable
22 HCFPOLL interrupt enable 21 Reserved 20 BNR interrupt enable 19 TXMINTR interrupt enable 18 BMISS interrupt enable 17 BRSSI interrupt enable 16 SWBA interrupt enable 15 RXKCM interrupt enable 14 RXPHY interrupt enable 13 SWI interrupt enable 14 RXPHY interrupt enable 15 MIB interrupt enable 16 TXURN interrupt enable 17 TXURN interrupt enable 18 TXEOL interrupt enable 19 TXNOFR interrupt enable 20 TXNOFR interrupt enable 31 TXEOL interrupt enable 42 TXERS interrupt enable 43 TXERR interrupt enable 44 RXEOL interrupt enable 55 RXORN interrupt enable 46 RXEOL interrupt enable 47 RXDESC interrupt enable 48 RXEOL interrupt enable 49 RXEOL interrupt enable 40 RXEOL interrupt enable 41 RXDESC interrupt enable 42 RXERR interrupt enable 43 RXNOFR interrupt enable 44 RXEOL interrupt enable 55 RXORN interrupt enable 66 RXORN interrupt enable 77 RXDESC interrupt enable 78 RXORN interrupt enable 89 RXERR interrupt enable 90 RXERR interrupt enable 10 RXDESC interrupt enable	24	RXMINTR interrupt enable
21 Reserved 20 BNR interrupt enable 19 TXMINTR interrupt enable 18 BMISS interrupt enable 17 BRSSI interrupt enable 16 SWBA interrupt enable 15 RXKCM interrupt enable 14 RXPHY interrupt enable 13 SWI interrupt enable 14 IXURN interrupt enable 10 TXEOL interrupt enable 10 TXEOL interrupt enable 10 TXEOK interrupt enable 11 TXURN interrupt enable 12 RXRR interrupt enable 13 TXURN interrupt enable 14 RXPHY interrupt enable 15 RXORN interrupt enable 16 RXORN interrupt enable 17 TXDESC interrupt enable 18 RXEOL interrupt enable 19 RXORN interrupt enable 20 RXERR interrupt enable 21 RXERR interrupt enable 22 RXERR interrupt enable 33 RXNOFR interrupt enable 44 RXEOL interrupt enable 55 RXCRN interrupt enable 56 RXCRN interrupt enable	23	BCNMISC interrupt enable
20 BNR interrupt enable 19 TXMINTR interrupt enable 18 BMISS interrupt enable 17 BRSSI interrupt enable 16 SWBA interrupt enable 15 RXKCM interrupt enable 14 RXPHY interrupt enable 13 SWI interrupt enable 14 IXURN interrupt enable 10 TXURN interrupt enable 11 TXURN interrupt enable 10 TXEOL interrupt enable 10 TXEOL interrupt enable 11 TXURN interrupt enable 12 RXPHY interrupt enable 13 SWI interrupt enable 14 RXEOL interrupt enable 15 RXORN interrupt enable 16 TXOK interrupt enable 17 TXDESC interrupt enable 18 RXORN interrupt enable 19 RXORN interrupt enable 20 RXERR interrupt enable 21 RXDESC interrupt enable 22 RXERR interrupt enable 33 RXNOFR interrupt enable 44 RXEOL interrupt enable 55 RXORN interrupt enable	22	HCFPOLL interrupt enable
19 TXMINTR interrupt enable 18 BMISS interrupt enable 17 BRSSI interrupt enable 16 SWBA interrupt enable 15 RXKCM interrupt enable 14 RXPHY interrupt enable 13 SWI interrupt enable 14 IXURN interrupt enable 10 TXURN interrupt enable 11 TXURN interrupt enable 12 MIB interrupt enable 13 TXURN interrupt enable 14 TXURN interrupt enable 15 TXEOL interrupt enable 16 TXOK interrupt enable 17 TXDESC interrupt enable 18 TXERR interrupt enable 19 TXNOFR interrupt enable 10 TXOK interrupt enable 11 TXURN interrupt enable 12 RXEOL interrupt enable 13 RXNOFR interrupt enable 14 RXEOL interrupt enable 15 RXORN interrupt enable 16 RXDESC interrupt enable 17 RXDESC interrupt enable 18 RXDESC interrupt enable 10 RXDESC interrupt enable	21	Reserved
18 BMISS interrupt enable 17 BRSSI interrupt enable 16 SWBA interrupt enable 15 RXKCM interrupt enable 14 RXPHY interrupt enable 13 SWI interrupt enable 11 TXURN interrupt enable 10 TXEOL interrupt enable 9 TXNOFR interrupt enable 8 TXERR interrupt enable 7 TXDESC interrupt enable 6 TXOK interrupt enable 5 RXORN interrupt enable 4 RXEOL interrupt enable 3 RXNOFR interrupt enable 4 RXEOL interrupt enable 5 RXORN interrupt enable 6 RXORN interrupt enable 7 RXERR interrupt enable 8 RXERR interrupt enable 1 RXDESC interrupt enable	20	BNR interrupt enable
17 BRSSI interrupt enable 16 SWBA interrupt enable 15 RXKCM interrupt enable 14 RXPHY interrupt enable 13 SWI interrupt enable 11 TXURN interrupt enable 10 TXEOL interrupt enable 9 TXNOFR interrupt enable 8 TXERR interrupt enable 7 TXDESC interrupt enable 6 TXOK interrupt enable 5 RXORN interrupt enable 4 RXEOL interrupt enable 3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable 1 RXDESC interrupt enable	19	TXMINTR interrupt enable
16 SWBA interrupt enable 15 RXKCM interrupt enable 14 RXPHY interrupt enable 13 SWI interrupt enable 11 TXURN interrupt enable 11 TXURN interrupt enable 10 TXEOL interrupt enable 9 TXNOFR interrupt enable 8 TXERR interrupt enable 7 TXDESC interrupt enable 6 TXOK interrupt enable 5 RXORN interrupt enable 4 RXEOL interrupt enable 3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable 1 RXDESC interrupt enable	18	BMISS interrupt enable
15 RXKCM interrupt enable 14 RXPHY interrupt enable 13 SWI interrupt enable 12 MIB interrupt enable 11 TXURN interrupt enable 10 TXEOL interrupt enable 9 TXNOFR interrupt enable 8 TXERR interrupt enable 7 TXDESC interrupt enable 6 TXOK interrupt enable 5 RXORN interrupt enable 4 RXEOL interrupt enable 3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable	17	BRSSI interrupt enable
14 RXPHY interrupt enable 13 SWI interrupt enable 12 MIB interrupt enable 11 TXURN interrupt enable 10 TXEOL interrupt enable 9 TXNOFR interrupt enable 8 TXERR interrupt enable 7 TXDESC interrupt enable 6 TXOK interrupt enable 5 RXORN interrupt enable 4 RXEOL interrupt enable 3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable	16	SWBA interrupt enable
13 SWI interrupt enable 12 MIB interrupt enable 11 TXURN interrupt enable 10 TXEOL interrupt enable 9 TXNOFR interrupt enable 8 TXERR interrupt enable 7 TXDESC interrupt enable 6 TXOK interrupt enable 5 RXORN interrupt enable 4 RXEOL interrupt enable 3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable 1 RXDESC interrupt enable	15	RXKCM interrupt enable
12 MIB interrupt enable 11 TXURN interrupt enable 10 TXEOL interrupt enable 9 TXNOFR interrupt enable 8 TXERR interrupt enable 7 TXDESC interrupt enable 6 TXOK interrupt enable 5 RXORN interrupt enable 4 RXEOL interrupt enable 3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable	14	RXPHY interrupt enable
11 TXURN interrupt enable 10 TXEOL interrupt enable 9 TXNOFR interrupt enable 8 TXERR interrupt enable 7 TXDESC interrupt enable 6 TXOK interrupt enable 5 RXORN interrupt enable 4 RXEOL interrupt enable 3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable	13	SWI interrupt enable
10 TXEOL interrupt enable 9 TXNOFR interrupt enable 8 TXERR interrupt enable 7 TXDESC interrupt enable 6 TXOK interrupt enable 5 RXORN interrupt enable 4 RXEOL interrupt enable 3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable	12	MIB interrupt enable
9 TXNOFR interrupt enable 8 TXERR interrupt enable 7 TXDESC interrupt enable 6 TXOK interrupt enable 5 RXORN interrupt enable 4 RXEOL interrupt enable 3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable	11	TXURN interrupt enable
8 TXERR interrupt enable 7 TXDESC interrupt enable 6 TXOK interrupt enable 5 RXORN interrupt enable 4 RXEOL interrupt enable 3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable	10	TXEOL interrupt enable
7 TXDESC interrupt enable 6 TXOK interrupt enable 5 RXORN interrupt enable 4 RXEOL interrupt enable 3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable	9	TXNOFR interrupt enable
6 TXOK interrupt enable 5 RXORN interrupt enable 4 RXEOL interrupt enable 3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable	8	TXERR interrupt enable
5 RXORN interrupt enable 4 RXEOL interrupt enable 3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable	7	TXDESC interrupt enable
4 RXEOL interrupt enable 3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable	6	TXOK interrupt enable
3 RXNOFR interrupt enable 2 RXERR interrupt enable 1 RXDESC interrupt enable	5	RXORN interrupt enable
2 RXERR interrupt enable 1 RXDESC interrupt enable	4	RXEOL interrupt enable
1 RXDESC interrupt enable	3	RXNOFR interrupt enable
	2	RXERR interrupt enable
0 RXOK interrupt enable	1	RXDESC interrupt enable
	0	RXOK interrupt enable

6.2.1.27 Secondary Interrupt Mask 0 (IMR_S0)

Offset: 0x00A4 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Description
31:26	Reserved
25	TXDESC for QCU 9 interrupt enable
•••	
17	TXDESC for QCU 1 interrupt enable
16	TXDESC for QCU 0 interrupt enable
15:10	Reserved
9	TXOK for QCU 9 interrupt enable
•••	
1	TXOK for QCU 1 interrupt enable
0	TXOK for QCU 0 interrupt enable

6.2.1.28 Secondary Interrupt Mask 1 (IMR_S1)

Offset: 0x00A8 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Atheros Communications, Inc. COMPANY CONFIDENTIAL

Bit	Description
31:26	Reserved
25	TXEOL for QCU 9 interrupt enable
17	TXEOL for QCU 1 interrupt enable
16	TXEOL for QCU 0 interrupt enable
15:10	Reserved
9	TXERR for QCU 9 interrupt enable
1	TXERR for QCU 1 interrupt enable
0	TXERR for QCU 0 interrupt enable

6.2.1.29 Secondary Interrupt Mask 2 (IMR_S2)

Offset: 0x00AC Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Name	Description
31	TBTT_TIME interrupt enable	
30	TSFOOR interruj	pt enable
29	DTIM interrupt 6	enable
28	CABTO interrup	t enable
27	BCNTO interrup	t enable
26	DTIMSYNC inte	rrupt enable
25	CABEND interru	ıpt enable
24	TIM interrupt enable	
23	GTT interrupt enable	
22	CST interrupt enable	
21:19	Reserved	
18	DPERR interrupt	t enable
17	SSERR interrupt	enable
16	MACBT interrup	ot enable
15:10	Reserved	
9	TXURN for QCU 9 interrupt enable	
1	TXURN for QCU	J 1 interrupt enable
0	TXURN for QCU 0 interrupt enable	

6.2.1.30 Secondary Interrupt Mask 3 (IMR_S3)

Offset: 0x00B0 Access: Read/Write Cold Reset: 0x0

Bit	Description
31:26	Reserved
25	QCBRURN for QCU 9 interrupt enable
17	QCBRURN for QCU 1 interrupt enable
16	QCBRURN for QCU 0 interrupt enable
15:10	Reserved
9	QCBROVF for QCU 9 interrupt enable
1	QCBROVF for QCU 1 interrupt enable
0	QCBROVF for QCU 0 interrupt enable

6.2.1.31 Secondary Interrupt Mask 4 (IMR_S4)

Offset: 0x00B4 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Description
31:10	Reserved
9	QTRIG for QCU 9 interrupt enable
1	QTRIG for QCU 1 interrupt enable
0	QTRIG for QCU 0 interrupt enable

6.2.1.32 Secondary Interrupt Mask 5 (IMR_S5)

Offset: 0x0094

Access: Read/Write-One-to-Clear

Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

NOTE: The trigger indicates the TSF matched or exceeded the timer; threshold is set when the TSF exceeds the timer by the GENERIC_TIMER_THRESH value. The GENERIC_TIMER overflow occurs when the TSF exceeds the timer by such a large amount that TSF ≥ Timer + Period, indicating incorrect software programming. The threshold GENERIC_TIMER 0 was removed because timer 0 is special and does not generate a threshold event.

Bit	Description
31	GENERIC_TIMER_THRESHOLD 15
30	GENERIC_TIMER_THRESHOLD 14
18	GENERIC_TIMER_THRESHOLD 2
17	GENERIC_TIMER_THRESHOLD 1
16	GENERIC_TIMER overflow enable
15	GENERIC_TIMER 15 trigger enable
1	GENERIC_TIMER 1 trigger enable
0	GENERIC_TIMER 0 trigger enable

6.2.1.33 Primary Interrupt Status Read and Clear (ISR_P_RAC)

Offset: 0x00C0

Access: Read-and-Clear (No Write Access)

Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

NOTE: A read from this location atomically:

- Copies all secondary ISRs into the corresponding secondary ISIS lines and corresponding secondary ISIS shadow registers (ISR_SO is copied to ISR_SO_S, etc.)
- Clears all bits of the primary ISR (ISR_P) and all bits of all secondary ISRs (ISR_SO-ISR_S4)
- Returns the contents of the primary ISR (ISR_P)

Bit	Name	Description
31:0	ISR_P	Same format as "Primary Interrupt Status (ISR_P)"

6.2.1.34 Secondary Interrupt Status 0 (ISR_SO_S)

Offset: 0x00C4 Access: Read-Only Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 0 (ISR_S0)"

6.2.1.35 Secondary Interrupt Status 1 (ISR_S1_S)

Offset: 0x00C8 Access: Read-Only Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 1 (ISR_S1)"

6.2.1.36 Secondary Interrupt Status 2 (ISR_S2_S)

Offset: 0x00CC Access: Read-Only Cold Reset: 0x0

Bit	Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 2 (ISR_S2)"

6.2.1.37 Secondary Interrupt Status 3 (ISR_S3_S)

Offset: 0x00D0 Access: Read-Only Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 3 (ISR_S3)"

6.2.1.38 Secondary Interrupt Status 4 (ISR_S4_S)

Offset: 0x00D4 Access: Read-Only Cold Reset: 0x0

Warm Reset: (Same as Cold Reset)

Bit	Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 4 (ISR_S4)"

6.2.1.39 Secondary Interrupt Status 5 (ISR_S5_S)

Offset: 0x00D4 Access: Read-Only Cold Reset: 0x0

Bit	Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 5 (ISR_S5)"

6.2.2 Beacon Handling

Table 6-3. AP in a BSS: Sending Beacon and CAB

QCU	Description			
QCU 9	QCU 9 is used only for beacons QCU 9 feeds into DCU 9, and is the only QCU to feed into DCU 9			
	For QCU 9	For DCU 9		
	1. Set FSP to DBA-gated (see bits [3:0] of "Misc. QCU Settings (Q_MISC)").	Set the bit so DCU sends beacons (bit [16] of "Misc. DCU-Specific Settings (D_MISC)").		
	2. Set the bit so the QCU sends beacons (Q_MISC bit [7]).	2. Set the bit to enable global lockout (set D_MISC bits [18:17] to 0x2).		
	3. Set the bit to disable CBRExpired counter increment if the local queue has no frames (Q_MISC bit [5]).	3. Set both CW_MIN and CW_MAX to zero (see "DCU-Specific IFS Settings (D_LCL_IFS)").		
QCU 8	QCU 8 is used only for CAB (for a BSS, CAB is BCA QCU 8 feeds into DCU 8, and is the only QCU to feed	·		
	For QCU 8	For DCU 8		
	1. Set FSP to DBA-gate	1. Set the bit to enable global lockout.		
	2. Set the ReadyTimeEn bit and set the ReadyTimeDuration (RTD) to:	2. Software tasks at SBA (all of these must occur before DBA):		
	RTD = BeaconInterval - (SBA - DBA)	■ Build beacon and pass it to QCU 9.		
	■ BeaconInterval is the interval between TBTTs■ SBA is the amount of time before TBTT that	■ Build CAB and pass it to QCU 8.		
	SBA is generated	■ Clear all Tx filter bits for DCUs 9 and 8.		
	■ <i>DBA</i> is the amount of time before TBTT that DBA is generated			
	3. Set the bit to disable the CBRExpired counter increment if the beacon queue has no frames (bit [6] of "Misc. QCU Settings (Q_MISC)").			
	Set the bit to disable the CBRExpired counter increment if the local queue has no frames (Q_MISC bit [5]).			

Table 6-4. STA in an IBSS: Sending Beacon and CAB

QCU	Description			
QCU 9	QCU 9 is used only for beacons QCU 9 feeds into DCU 9, and is the only QCU to feed into DCU 9			
	For QCU 9	For DCU 9		
	1. Set FSP to DBA-gated (Q_MISC bits [3:0]).	1. Set DCU to send beacons (D_MISC bit [16]).		
	2. Set the bit so the QCU sends beacons (Q_MISC bit [7]).	2. Set the bit to enable global lockout (set D_MISC bits [18:17] to 0x2).		
		3. Set both CW_MIN and CW_MAX to twice the usual CW_MIN value (refer to the 802.11 specifications).		
QCU 8	QCU 8 is used only for CAB (for an IBSS, CAB is ATIM reception) QCU 8 feeds into DCU 8, and is the only QCU to fe	, 1 01		
	For QCU 8	For DCU 8		
	1. Set FSP to DBA-gate	1. Set the bit to enable global lockout.		
	2. Set the ReadyTimeEn bit and set the ReadyTimeDuration (RTD) to:	2. Software tasks at SBA (all of these must occur before DBA):		
	RTD = BeaconInterval - (SBA - DBA)	■ Build beacon and pass it to QCU 9.		
	3. Set the bit to disable the CBRExpired counter increment if the beacon queue has no frames	■ Build CAB and pass it to QCU 8.		
	(bit [6] of "Misc. QCU Settings (Q_MISC)").	■ Clear all Tx filter bits for DCUs 9 and 8.		
	4. Set the bit to disable the CBRExpired counter increment if the beacon queue has no frames (Q_MISC bit [6]).			
	5. Set the bit to disable the CBRExpired counter increment if the local queue has no frames (Q_MISC bit [5]).			
	6. Set the bit to clear TXE if ReadyTime expires (Q_MISC bit [9]).			

6.2.3 QCU Registers

The QCU registers occupy the offset range 0x0800-0x0A40 in the AR9220 address space. The AR9220 has ten QCUs, numbered from 0 to 9.

Table 6-5. **QCU Registers**

Offset	Name	Description	Page
$0x0800 + (Q << 2)^{[1]}$	Q_TXDP	Transmit Queue Descriptor Pointer	page 66
0x0840	Q_TXE	Transmit Queue Enable	page 66
0x0880	Q_TXD	Transmit Queue Disable	page 67
$0x08C0 + (Q << 2)^{[1]}$	Q_CBRCFG	CBR Configuration	page 67
$0x0900 + (Q << 2)^{[1]}$	Q_RDYTIMECFG	ReadyTime Configuration	page 67
0x0940	Q_ONESHOTARM_SC	OneShotArm Set Control	page 68
0x0980	Q_ONESHOTARM_CC	OneShotArm Clear Control	page 68
$0x09C0 + (Q << 2)^{[1]}$	Q_MISC	Miscellaneous QCU Settings	page 69
$0x0A00 + (Q << 2)^{[1]}$	Q_STS	Miscellaneous QCU Status	page 71
0x0A40	Q_RDYTIMESHDN	ReadyTimeShutdown Status	page 71

^[1] The variable Q in the register addresses refers to the QCU number.

6.2.3.1 Tx Queue Descriptor (Q_TXDP)

Offset: 0x0800 + (Q < 2)Access: Read/Write Cold Reset: (Undefined) Warm Reset: (Unaffected)

Bit	Name	Description
31:2	TXDP	Tx descriptor pointer
1:0	RES	Reserved

6.2.3.2 Tx Queue Enable (Q_TXE)

Offset: 0x0840 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as cold reset)

NOTE: Writing a 1 in bit position *N* sets the TXE bit for QCU N. Writing a O in bit position N has no effect; in particular, it does not clear the TXE bit for the QCU.

Bit	Description
31:10	Reserved
9	Enable QCU 9
1	Enable QCU 1
0	Enable QCU 0

Tx Queue Disable (Q_TXD) 6.2.3.3

Offset: 0x0880 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as cold reset)

NOTE:

To stop transmission for QCU Q:

- 1. Write a 1 to QCU Q's TXD bit
- 2. Poll the "Tx Queue Enable (Q_TXE)" register until QCU Q's TXE bit is clear
- 3. Poll QCU Q's "Misc. QCU Status (Q_STS)" register until its pending frame count (Q STS bits [1:0]) is zero
- 4. Write a 0 to QCU Q's TXD bit

At this point, QCU Q has shut down and has no frames pending in its associated DCU.

Software must not write a 1 to a QCU's TXE bit when that QCU's TXD bit is set; an undefined operation will result. Software must ensure that it sets a QCU's TXE bit only when the QCU's TXD bit is clear. It is fine to write a 0 to TXE when TXD is set, but this has no effect on the QCU.

Bit	Description
31:10	Reserved
9	Enable QCU 9
1	Enable QCU 1
0	Enable QCU 0

CBR Configuration (Q_CBRCFG)

Offset: 0x08C0 + (O < 2)Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as cold reset)

Bit	Name	Description
31:24	CBR_OVF_THRESH	CBR overflow threshold
23:0	CBR_INTV	CBR interval in µs

ReadyTime Configuration (Q_RDYTIMECFG) 6.2.3.5

Offset: 0x0900 + (Q < 2)Access: Read/Write Cold Reset: 0x0

Bit	Name	Description	
31:25	RES	Reserved	
24	RDYTIME_EN	ReadyTime enable	
		0 Disable ReadyTime use	
		1 Enable ReadyTime use	
23:0	RDYTIME_DUR	ReadyTime duration in µs	

6.2.3.6 OneShotArm Set Control (Q_ONESHOTARM_SC)

Offset: 0x0940 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as cold reset)

NOTE: A read to this register returns the current state of all OneShotArm bits (QCU Q's OneShotArm bit is returned in bit position Q).

Bit	Descrip	Description		
31:10	Reserve	ed		
9	0	No effect		
	1	Set OneShot arm bit for QCU 9		
1	0	No effect		
	1	Set OneShot arm bit for QCU 1		
0	0	No effect		
	1	Set OneShot arm bit for QCU 0		

6.2.3.7 OneShotArm Clear Control (Q_ONESHOTARM_CC)

Offset: 0x0980 **NOTE:** A read to this register returns the current

Access: Read/Write state of all OneShotArm bits (QCU Q's

Cold Reset: 0x0 OneShotArm bit is returned in bit position Q). Warm Reset: (Same as cold reset)

Bit	Descri	Description		
31:10	Reserve	ed		
9	0	No effect		
	1	Clear OneShot arm bit for QCU 9		
1	0	No effect		
	1	Clear OneShot arm bit for QCU 1		
0	0	No effect		
	1	Clear OneShot arm bit for QCU 0		

Misc. QCU Settings (Q_MISC) 6.2.3.8

Offset: 0x09C0 + (Q < 2)Access: Read/Write

Cold Reset: (See field descriptions) Warm Reset: (Same as cold reset)

Bit	Name	Reset	Description	
31:12	RES	0x0	Reserved	
11	QCU_FR	0x1	DCU frame early termination request control	
	_ABORT _REQ_EN		Never request early frame termination. Once a frame enters the DCU, it will remain active until its normal retry count has been reached or the frame succeeds.	
			Allow this QCU to request early frame termination. When requested, the DCU attempts to complete processing the frame more quickly than it normally would.	
10	CBR_EXP_CNT _CLR_EN	0x0	CBR expired counter force-clear control. Write-only (always reads as zero). Write of:	
			0 No effect	
			1 Resets the CBR expired counter to zero	
9	TXE_CLR_ON_	0x0	ReadyTime expiration and VEOL handling policy	
	CBR_END		On expiration of ReadyTime or on VEOL, the TXE bit is not cleared. Only reaching the physical end-of-queue (that is, a NULL LinkPtr) will clear TXE	
			The TXE bit is cleared on expiration of ReadyTime, on VEOL, and on reaching the physical end-of-queue	
8	CBR_EXP_INC_	0x0	CBR expired counter limit enable	
	LIMIT		The maximum CBR expired counter value is 255, but a CBROVF interrupt is generated when the counter reaches the value set in the CBR overflow threshold field of the "CBR Configuration (Q_CBRCFG)" register.	
			The maximum CBR expired counter is limited to the value of the CBR overflow threshold field of the "CBR Configuration (Q_CBRCFG)" register. Note that in addition to limiting the maximum CBR expired counter to this value, a CBROVF interrupt is also generated when the CBR expired counter reaches the CBR overflow threshold.	
7	QCU_IS_BCN	0x0	Beacon use indication. Indicates whether the QCU is being used for beacons	
			0 QCU is being used for non-beacon frames only	
			1 QCU is being used for beacon frames (and possibly for non-beacon frames)	
6	CBR_EXP_INC_ DIS_NOBCNFR	P_INC_ 0x0 BCNFR	Disable the CBR expired counter increment if the frame scheduling trigger occurs and the QCU marked as being used for beacon transmission (i.e., the QCU that has bit [7] set in its "Misc. QCU Settings (Q_MISC)" register) contains no frames	
			Increment the CBR expired counter each time the frame scheduling trigger occurs, regardless of whether the beacon queue contains frames	
			Increment the CBR expired counter only when both the frame scheduling trigger occurs and the beacon queue is valid (the beacon queue is valid whenever its TXE is asserted)	

Bit	Name	Reset	Description	
5	CBR_EXP_INC _DIS_NOFR	0x0	Disable the CBR expired counter increment if the frame scheduling trigger occurs and the queue contains no frames	
			0	Increment the CBR expired counter each time the frame scheduling trigger occurs, regardless of whether the queue contains frames
			1	Increment the CBR expired counter only when both the frame scheduling trigger occurs and the queue is valid (the queue is valid whenever TXE is asserted)
4	ONESHOT_EN	0x0	OneSho	t enable
			0	Disable OneShot function
			1	Enable OneShot function Note that OneShot must not be enabled when the QCU is set to an ASAP frame scheduling policy.
3:0	FSP	0x0	Frame s	cheduling policy setting
			0	ASAP The QCU is enabled continuously.
			1	CBR The QCU is enabled under control of the settings in the "CBR Configuration (Q_CBRCFG)" register.
			2	DBA-gated The QCU will be enabled at each occurrence of a DMA beacon alert.
			3	TIM-gated The QCU will be enabled whenever: ■ In STA mode, the PCU indicates that a beacon frame has been received with the local STA's bit set in the TIM element ■ In IBSS mode, the PCU indicates that an ATIM frame has been received
			4	Beacon-sent-gated The QCU will be enabled when the DCU that is marked as being used for beacon transmission (see bit [16] of the "Misc. DCU-Specific Settings (D_MISC)" register) indicates that it has sent the beacon frame on the air
			5	Beacon-received-gated The QCU will be enabled when the PCU indicates that it has received a beacon.
			6	HCF Poll gated The QCU will be enabled whenever the Rx HCF poll event occurs; the signals come from the PCU when a directed HCF poll frame type is received with valid FCS.
			15:7	Reserved

6.2.3.9 Misc. QCU Status (Q_STS)

Offset: 0x0A00 + (Q < 2)Access: Read-Only Cold Reset: 0x0

Warm Reset: (Same as cold reset)

Bit	Description	
31:16	Reserved	
15:8	Current value of the CBR expired counter	
7:2	Reserved	
1:0	Pending frame count Indicates the number of frames this QCU presently has pending in its associated DCU.	

6.2.3.10 ReadyTimeShutdown Status (Q_RDYTIMESHDN)

Offset: 0x0A40 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Same as cold reset)

Bit	Description					
31:10	Reserve	Reserved				
9	ReadyTi	eadyTimeShutdown status for QCU 9				
•••						
1	ReadyTi	ReadyTimeShutdown status for QCU 1				
0	_	ReadyTimeShutdown status for QCU 0 On read, returns ReadyTimeShutdown indication. Write of:				
	0	No effect				
	1	Set OneShot arm bit for QCU 0				

October 2009

6.2.4 DCU Registers

The DCU registers occupy the offset range 0x1000-0x12F0 in the AR9220 address space. The AR9220 has ten DCUs, numbered from 0 to 9.

Table 6-6. DCU Registers

0ffset	Name	Description	Page
$0 \times 1000 + (D << 2)^{[1]}$	D_QCUMASK	QCU Mask	page 72
$0x1040 + (D << 2)^{[1]}$	D_LCL_IFS	DCU-Specific IFS Settings	page 73
$0x1080 + (D << 2)^{[1]}$	D_RETRY_LIMIT	Retry Limits	page 73
$0x10C0 + (D << 2)^{[1]}$	D_CHNTIME	ChannelTime Settings	page 74
$0x1100 + (D << 2)^{[1]}$	D_MISC	Miscellaneous DCU-Specific Settings	page 74
0x1030	D_GBL_IFS_SIFS	DCU-Global IFS Settings: SIFS Duration	page 77
0x1070	D_GBL_IFS_SLOT	DCU-Global IFS Settings: Slot Duration	page 77
0x10B0	D_GBL_IFS_EIFS	DCU-Global IFS Settings: EIFS Duration	page 77
0x10F0	D_GBL_IFS_MISC	DCU-Global IFS Settings: Misc. Parameters	page 78
0x1270	D_TXPSE	DCU Transmit Pause Control/Status	page 79
0x12F0	D_TXSLOTMASK	DCU Transmission Slot Mask	page 79
(Varies)	D_TXBLK	DCU Transmit Filter Bits	page 80

^[1] The variable D in the register addresses refers to the DCU number.

6.2.4.1 QCU Mask (D_QCUMASK)

Offset: 0x1000 + (D < 2)Access: Read/Write Cold Reset: 0x0

Warm Reset: (Unaffected)

NOTE: To achieve lowest power consumption, software should set this register to 0x0 for all DCUs that are not in use. The hardware detects that the QCU mask is set to zero and shuts down certain logic in response, helping to save power.

Bit	Name	Description
31:10	RES	Reserved
9:0	QCU_MASK	QCU mask Setting bit <i>Q</i> means that QCU <i>Q</i> is associated with (i.e., feeds into) this DCU. These register have reset values which corresponding to a 1 to 1 mapping between QCUs and DCUs. A register offset of 0x1000 maps to 0x1, 0x1004 maps to 0x2, 0x1008 maps to 0x4, etc.

6.2.4.2 DCU-Specific IFS Settings (D_LCL_IFS)

Offset: 0x1040 + (D < 2)Access: Read/Write

Cold Reset: (See field descriptions)

Warm Reset: (Unaffected)

Bit	Name	Reset	Description	
When L	ong AIFS is 0:			
31:28	RES	0x0	Reserved	
27:20	DATA_AIFS_D[7:0]	0x2	AIFS value, in slots beyond SIFS	
			For example, a setting of 2 (the reset value) means AIFS is equal to DIFS.	
			NOTE: Although this field is 17 bits wide (including the 9 MSBs accessed using the long AIFS field), the maximum supported AIFS value is 0x1FFFC. Setting the AIFS value to 0x1FFFD, 0x1FFFE, or 0x1FFFF does not work correctly and causes the DCU to hang.	
19:10	DATA_CW_MAX	0x3FF	CW_MAX value; must be equal to a power of 2, minus 1	
9:0	DATA_CW_MIN	0xF	CW_MIN value; must be equal to a power of 2, minus 1	
When L	ong AIFS is 1:			
31:29	RES	0x0	Reserved	
28	LONG_AIFS [DCU_IDX_D]	0x0	Long AIFS bit; used to read or write to the nine MSBs of the AIFS value	
27:9	RES	0x0	Reserved	
8:0	DATA_AIFS_D[16:8]	0x2	Upper nine bits of the AIFS value (see bits [27:20] listed in this register)	

6.2.4.3 Retry Limits (D_RETRY_LIMIT)

Offset: 0x1080 + (D < 2)Access: Read/Write

Cold Reset: (See field descriptions)

Warm Reset: (Unaffected)

Bit	Name	Reset	Description	
31:20	RES	0x20	Reserved	
19:14	SDFL	0x20	STA data failure limit Specifies the number of times a frame's data exchange may fail before CW is reset to CW_MIN. Note: A value of 0x0 is unsupported.	
13:8	SRFL	0x20	STA RTS failure limit Specifies the number of times a frame's RTS exchange may fail before the CW is reset to CW_MIN. Note: A value of 0x0 is unsupported.	
7:4	RES	0x0	Reserved	
3:0	FRFL	0x4	Frame RTS failure limit Specifies the number of times a frame's RTS exchange may fail before the current transmission series is terminated. A frame's RTS exchange fails if RTS is enabled for the frame, but when the MAC sends the RTS on the air, no CTS is received. Note: A value of 0x0 is unsupported.	

6.2.4.4 ChannelTime Settings (D_CHNTIME)

Offset: 0x10C0 + (D < 2)Access: Read/Write Cold Reset: 0x0

Warm Reset: (Unaffected)

Bit	Name	Description		
31:21	RES	Reserved		
20	CHANNEL_TIME	ChannelTime enable		
	_EN	0 Disable ChannelTime function		
		1 Enable ChannelTime function		
19:0	DATA_CT_MMR	ChannelTime duration in µs		

6.2.4.5 Misc. DCU-Specific Settings (D_MISC)

Offset: 0x1100 + (D < 2)Access: Read/Write

Cold Reset: (See field descriptions) Warm Reset: (Unaffected)

Bit	Name	Reset	Description		
31:24	RES	0x0	Reserved		
23	RETRY_ON _BLOWN_IFS_EN	0x0	Blown IFS handling policy This setting controls how the DCU handles the case in which the DMA of a frame takes so long that the IFS spacing is met before the frame trigger level is reached.		
			Send the frame on the air anyway (i.e., ignore the IFS violation). This will cause the frame to be sent on the air at a time that is later than called for in the 802.11 spec.		
			Do not send the frame on the air. Instead, act as if the frame had been sent on the air but failed and initiate the retry procedure. A retry will be charged against the frame. If more retries are permitted, the frame will be retried. If the retry limit has been reached, the frame will fail.		
22		0x0	Virtual collision CW increment policy		
	_INC_EN		0 Virtual collisions do not increment (advance) the frame's contention window (CW)		
			1 Virtual collisions do increment the frame's contention window (CW)		
21	POST_BKOFF_SKIP	0x0	Post-frame backoff disable		
			0 DCU performs a backoff after each frame finishes, as required by the 802.11a spec		
			DCU skips the post-frame backoff (or, equivalently, acts as if it always selects a post-frame backoff count of zero)		

Bit	Name	Reset	Description
20	SEQNUM_FREEZE	0x0	Sequence number increment disable
			Allow the DCU to use a normal sequence number progression (the DCU increments the sequence number for each new frame)
			1 Force the sequence number to be frozen at its current value
19	DCU_ARB	0x0	DCU arbiter lockout ignore control
	_LOCKOUT _IGNORE		0 Obey DCU arbiter lockouts from higher-priority DCUs
			Ignore DCU arbiter lockouts from higher-priority DCUs (i.e., allow the current DCU to arbitrate for access to the PCU even if one or more higher-priority DCUs is asserting a DCU arbiter lockout)
18:17	DCU_ARB	0x0	DCU arbiter lockout control
	_LOCKOUT_IF_EN		No lockout. Allows lower-priority DCUs to arbitrate for access to the PCU concurrently with this DCU.
			Intra-frame lockout only. Forces all lower-priority DCUs to defer arbitrating for access to the PCU while the current DCU is either arbitrating for access to the PCU or performing an intra-frame backoff.
			2 Global lockout. Forces all lower-priority DCUs to defer arbitrating for access to the PCU whenever: ■ At least one of the QCUs that feed into the current DCU has
			a frame ready
			■ The current DCU is actively processing a frame (i.e., is not idle). This includes arbitrating for access to the PCU, performing an intra-frame or post-frame backoff, DMA'ing frame data to the PCU, or waiting for the PCU to complete the frame.
			3 Reserved
16	DCU_IS_BRN	0x0	Beacon use indication
			Indicates whether the DCU is being used for beacons.
			0 DCU is being used for non-beacon frames only
			1 DCU is being used for beacon frames only
15:14	VIRT_COLL _POLICY		Virtual collision handling policy
	_1 OLIC I		O Default handling. A virtual collision is processed such as a collision on the air except that the retry count for the frame is not incremented (i.e., just perform the backoff).
			Ignore. Virtual collisions are ignored (i.e., the DCU immediately rearbitrates for access to the PCU without doing a backoff or incrementing the retry count).
			3:2 Reserved
13	RES	0x0	Reserved
12	MEM_RD	0x1	Backoff persistence factor setting
	_DATA_PF		0 New CW equals old CW
			1 Use binary-exponential CW progression
11:10	RES	0x0	Reserved

Bit	Name	Reset	Descrip	tion
9	FRAG_BURST _BKOFF_EN	0x0	This bit transmis	nt burst backoff policy controls whether the DCU performs a backoff after each ssion of a fragment (i.e., a frame with the MoreFrag bit set in the ontrol field).
			0	The DCU handles fragment bursts normally
			1	Modified handling. The DCU performs a backoff after all fragments, even those transmitted successfully.
8	FRAG_BURST _WAIT_QCU_EN	0x0	This bit fragmen	nt burst frame starvation handling policy controls the DCU operation when the DCU is in the middle of a at burst and finds that the QCU sourcing the fragments does not e next fragment available.
			0	The DCU terminates the fragment burst. Note that when this occurs, the remaining fragments (when the QCU eventually has them available) will be sent as a separate fragment burst with a different sequence number.
			1	The DCU waits for the QCU to have the next fragment available. While doing so, all other DCUs will be unable to transmit frames.
7	TS_END_DIS	0x0	This bit transition frame. The attempt	ransmission series CW reset policy controls only whether the contention window is reset when oning from one transmission series to the next within a single The CW is reset per the 802.11 spec when the entire frame terminates (because the frame was sent successfully or because mission series failed).
			0	Reset the CW to CW_MIN at the end of each intraframe transmission series
			1	Do not reset the CW at the end of each intraframe transmission series
6	SFC_RST_AT _TS_END_EN	0x0	Note that reset wh within a entire fr	ransmission series station RTS/data failure count reset policy at this bit controls only whether the two STA failure counts are nen transitioning from one transmission series to the next single frame. The counts are reset per the 802.11 spec when the ame attempt terminates (either because the frame was sent fully or because all transmission series failed).
			0	Do not reset the station RTS failure count or the STA data failure count at the end of each transmission series
			1	Reset both the station RTS failure count and the STA data failure count at the end of each transmission series
5:0	DATA _BKOFF_THRESH	0x2	Determi	threshold setting ines the backoff count at which the DCU will initiate arbitration so to the PCU and commit to sending the frame.

6.2.4.6 DCU-Global IFS Settings: SIFS Duration (D_GBL_IFS_SIFS)

Offset: 0x1030 Access: Read/Write

Cold Reset: 640 (16 µs at 40 MHz)

Warm Reset: (Unaffected)

Bit	Name	Description
31:16	RES	Reserved
15:0	SIFS_DUR	SIFS duration in core clocks (40 MHz in non-Turbo mode, 80 MHz in Turbo mode)

DCU-Global IFS Settings: Slot Duration (D_GBL_IFS_SLOT) 6.2.4.7

Offset: 0x1070 Access: Read/Write

Cold Reset: 360 (9 µs at 40 MHz) Warm Reset: (Unaffected)

Bit	Name	Description
31:16	RES	Reserved
15:0	SLOT_DUR	Slot duration in core clocks (40 MHz in non-Turbo mode, 80 MHz in Turbo mode)

DCU-Global IFS Settings: EIFS Duration (D_GBL_IFS_EIFS) 6.2.4.8

Offset: 0x10B0 Access: Read/Write

Cold Reset: 3480 (87 µs at 40 MHz)

Warm Reset: (Unaffected)

Bit	Name	Description	
31:16	RES	Reserved	
15:0	EIFS_DUR	EIFS duration in core clocks (40 MHz in non-Turbo mode, 80 MHz in Turbo mode)	

October 2009

6.2.4.9 DCU-Global IFS Settings: Misc. Parameters (D_GBL_IFS_MISC)

Offset: 0x10F0 Access: Read/Write

Cold Reset: (See field descriptions) Warm Reset: (Unaffected)

Bit	Name	Reset	Description		
31:29	RES	0x0	Reserved		
26:25	CHAN_SLOT _WIN_DUR	0x0	Slot transmission window length Specifies the number of core clocks after a slot boundary during which the MAC is permitted to send a frame. Specified in units of 8 core clocks, with the value 0x0 being special. If set to a value of 0x0 (the reset value), the MAC is permitted to send at any point in the slot.		
28	IGNORE _BACKOFF	0x0	Ignore back off Allows the DCU to ignore backoff as well as EIFS; it should be set during fast channel change to guarantee low latency and flush the Tx pipe.		
27	CHAN_SLOT _ALWAYS	0x0	Force transmission always on slot boundaries When bits [26:25] of this register are non-zero, the MAC transmits on slot boundaries as required by the 802.11 spec. When bits [26:25] are not 0x0 and this bit is non-zero, the MAC always transmits on slot boundaries.		
24	LFSR_SLICE	0x0	Random LFSR slice selection disable		
	_RANDOM_DIS		Allow the IFS logic to randomly generate the LFSR slice select value (see bits [2:0] of this register). The random selection ensures independence of the LFSR output values both for nodes on different PCI busses but on the same network as well as for multiple nodes connected to the same physical PCI bus.		
			Disable random LFSR slice selection and use the value of the LFSR slice select field (bits [2:0] of this register) instead		
23	AIFS_RST		AIFS counter reset policy (debug use only)		
	_UNCOND		0 Reset the AIFS counter only when PCU_RST_AIFS is asserted and the counter already has reached AIFS		
			1 Reset the AIFS counter unconditionally whenever PCU_RST_AIFS is asserted		
22	SIFS_RST	SIFS_RST 0x0 _UNCOND	SIFS counter reset policy (debug use only)		
	_UNCOND		0 Reset the SIFS counter only when PCU_RST_SIFS is asserted and the counter already has reached SIFS		
			1 Reset the SIFS counter unconditionally whenever PCU_RST_SIFS is asserted		
21:3	RES	0x0	Reserved		
2:0	LFSR_SLICE_SEL	0x0	LFSR slice select Determines which slice of the internal LFSR will generate the random sequence used to determine backoff counts in the PCU's DCUs and scrambler seeds. This allows different STAs to contain different LFSR slice values (e.g., by using bits from the MAC address) to minimize random sequence correlations among STAs in the same BSS/IBSS. NOTE: This field affects the MAC only when the random LFSR slice selection disable bit (bit [24] of this register) is set. When random LFSR slice selection is enabled (the default), this field is ignored.		

6.2.4.10 DCU Tx Pause Control/Status (D_TXPSE)

Offset: 0x1270 Access: Read/Write

Cold Reset: (See field descriptions)

Warm Reset: (Unaffected)

Bit	Name	Reset	Description	
31:17	RES	0x0	Reserved	
16	TX_PAUSED	0x1	Tx pause status	
			Tx pause request has not yet taken effect, so some DCUs for which a transmission pause request has been issued using bits [9:0] of this register are still transmitting and have not paused.	
			All DCUs for which a transmission pause request has been issued via bits [9:0] of this register, if any, have paused their transmissions. Note that if no transmission pause request is pending (i.e., bits [9:0] of this register are all set to 0), then this Tx pause status bit will be set to one.	
15:10	RES	0x0	Reserved	
9:0	DCU_REG_TXPSE	0x0	Request that some subset of the DCUs pause transmission. For bit D of this field $(9 \ge D \ge 0)$:	
			0 Allow DCU <i>D</i> to continue to transmit normally	
			1 Request that DCU <i>D</i> pause transmission as soon as it is able	

6.2.4.11 DCU Transmission Slot Mask (D_TXSLOTMASK)

Offset: 0x12F0 Access: Read/Write Cold Reset: 0x0

Warm Reset: (Unaffected)

NOTE: When bits [26:25] of the "DCU-Global IFS Settings: Misc. Parameters (D_GBL_IFS_MISC)" register are non-zero, D_TXSLOTMASK controls which slots DCUs can start frame transmission on. The slot occurring coincident with SIFS elapsing is slot 0. Slot numbers increase thereafter, whether the channel was idle or busy during the slot. If bits [26:25] of D_GBL_IFS_MISC are zero, this register has no effect.

Bit	Descrip	otion					
31:16	Reserve	Reserved					
15	Specifie	s whether transmission may start on slot numbers that are congruent to 15 (mod 16)					
	0	Transmission may start on such slots					
	1	Transmission may not start on such slots					
1	Specifie	cifies whether transmission may start on slot numbers that are congruent to 1 (mod 16)					
	0	Transmission may start on such slots					
	1	Transmission may not start on such slots					
0	Specifies whether transmission may start on slot numbers that are congruent to 0 (mod 16)						
	0	Transmission may start on such slots					
	1	Transmission may not start on such slots					

6.2.4.12 DCU Tx Filter Bits (D_TXBLK)

Offset: Varies (see Table 6-7)

Access: Read/Write Cold Reset: 0x0

Warm Reset: (Unaffected)

Each DCU has 128 Tx filter bits, for a total of 10 * 128=1280 Tx filter bits for all ten DCUs.

For reads of the Tx filter bits, the 1280 bits are accessed via reads within a range of 64 32-bit register locations.

For writes of the Tx filter bits, only three of the 64 register locations are used. One location allows specific bits of a specific DCU's Tx filter bits to be set or cleared. Two other locations allow all 128 Tx filter bits for any subset of the ten DCUs to be set or cleared atomically.

For both reads and writes, the PCI offset issued by the host is mapped to one of the 64 register locations. The 6-bit internal address resulting from mapping is called MMR_ADDR, and its value controls what portion of the Tx filter bits is affected by the host's register read or write. In general, the PCI offset that maps to the internal MMR_ADDR is given by the equation:

 $PCI ext{ offset} = 0x1038 +$ $((mmr_addr \& 0x1f) << 6) +$ $((mmr_addr \& 0x20) >> 3)$

Thus the proper PCI offset can be determined from the desired MMR_ADDR (see Table 6-7).

Table 6-7. MMR ADDR and PCI Offset

MMR_ADDR	PCI Offset
0	0x1038
1	0x1078
2	0x10B8
3	0x10F8
4	0x1138
5	0x1178
6	0x11B8
7	0x11F8
8	0x1238
9	0x1278
10	0x12B8
11	0x12F8
12	0x1338
13	0x1378

Table 6-7. MMR ADDR and PCI Offset

MMD ADDD	DCI Off t
MMR_ADDR	PCI Offset
14	0x13B8
15	0x13F8
16	0x1438
17	0x1478
18	0x14B8
19	0x14F8
20	0x1538
21	0x1578
22	0x15B8
23	0x15F8
24	0x1638
25	0x1678
26	0x16B8
27	0x16F8
28	0x1738
29	0x1778
30	0x17B8
31	0x17F8
48	0x143C
49	0x147C

Writes

Only three register locations (MMR_ADDR values) are supported for writes. Writes to other values yield undefined results and may corrupt Tx filter bits.

Table 6-8. MMR_ADDR Usage for Tx Filter Bits (Write Data)

MMR_ADDR	Description				
49				DCU that has a 1 in bits [9:0] of the write data (e.g., a write of 0x5 to bits for DCUs 0 and 2 to be set)	
48		ll 128 filter bits for each DCU that has a 1 in bits [9:0] of the write data (e.g., a write of 0x5 ess 48 causes all 128 filter bits for DCUs 0 and 2 to be cleared)			
0				ticular DCU's 128 Tx filter bits to modify. The write data determines at operation is performed. The write data is split into several fields:	
	31:28	1:28 Reserved			
	27:24	Command	determin	es what operation will be performed on the selected filter bits:	
		0	Clear the	selected bits	
		1	Set the se	lected bits	
		15:2	Reserved		
	23:20	DCU number; determines which DCU's Tx filter bits are affected by writes. Setting thi field to a value of D ($9 \ge D \ge 0$) causes DCU D 's Tx filter bits to be affected by the write			
	19:16	Slice numb	er; selects	a 16-bit bitslice from the selected DCU's 128 affected Tx filter bits:	
		0	Filter bits	[15:0] are affected	
		1	Filter bits	[31:16] are affected	
		7	Filter bits	[127:112] are affected	
		15:8	Reserved		
	15:0			ich bits within the selected bitslice are affected. Bit N (15 \geq N \geq 0) of the selected bitslice (see examples):	
		0	Bit N rem	nains unchanged	
		1	Bit N of t	he selected bitslice is modified per the command field (bits [27:24])	
		Example W	/rite Data	Example Effect	
		0x130)404	Clears bits [50] and [58] of DCU 1's Tx filter bits	
		0x0097	78001	Clears bits [127] and [112] of DCU 9's Tx filter bits	

Reads

Table 6-9. MMR_ADDR Usage for Tx Filter Bits (Read Data)

MMR_ADDR	Description
7:4	Returns filter bits for DCU 1, bits [31:0] – [127:96]
49:48	No effect
39:36	Returns filter bits for DCU 9, bits [31:0] – [127:96]
3	Returns filter bits for DCU 0, bits [127:96]
2	Returns filter bits for DCU 0, bits [95:64]
1	Returns filter bits for DCU 0, bits [63:32]
0	Returns filter bits for DCU 0, bits [31:0]

6.2.5 Serial Flash Registers

The Serial Flash registers occupy the offset range 0x1F00-0x1F0C in the AR9220 address

Table 6-6. Serial Flash Registers

Offset	Name	Description	Page
0x1F00	SPI_FUNCTION_SELECT	Control SPI Interface Function	page 82
0x1F04	SPI_CONTROL	SPI Control	page 82
0x1F08	SPI_IO_CONTROL	SPI I/O Bit to Output	page 83
0x1F0C	SPI_READ_DATA	SPI Data Read	page 83

Control SPI Interface Function (SPI_FUNCTION_SELECT) 6.2.5.1

Offset: 0x1F00 Access: Read/Write

Reset: 0x0

Bit	Name	Descrip	tion
31:1	RES	Reserved	
0	FUNCTION_SELECT	Controls the function of the SPI interface.	
		0	Enables SPI
		1	Makes the other registers visible

6.2.5.2 SPI Control (SPI_CONTROL)

Offset: 0x1F04 Access: Read/Write Reset: See field description **NOTE:** This register can be written only if the register SPI_FUNCTION_SELECT is set to one.

Bit	Name	Reset	Description
31:7	RES	0x0	Reserved
6	REMAP_DISABLE	0x0	Remaps 4 MB space over unless explicitly disabled by setting this bit to 1. If set to 1, 16 MB is accessible.
5:0	CLOCK_DIVIDER	0x8	Specifies the clock divider setting. Actual clock frequency would be (AHB_CLK/((CLOCK_DIVIDER+1)*2)). Therefore, by default, if AHB_CLK is 200 MHz, this would give 200/18 = ~11 MHz.

6.2.5.3 SPI I/O Control (SPI_IO_CONTROL)

Offset: 0x1F08 Access: Read/Write

Reset: 0x0

NOTE: Supports big bang mode, where every bit is controlled through the register access.

Bit	Name	Description
31:19	RES	Reserved
18	IO_CS_2	Chip select 2 bit to output
17	IO_CS_1	Chip select 1 bit to output
16	IO_CS_0	Chip select 0 bit to output
15:9	RES	Reserved
8	IO_CLK	Clock bit to output
7:1	RES	Reserved
0	IO_DO	Data bit to output

SPI Read Data (SPI_READ_DATA) 6.2.5.4

Offset: 0x1F0C Access: Read/Write

Reset: 0x0

Bit	Name	Description
31:0	READ_DATA	Returns data read from the flash device with bits sampled every clock

October 2009

6.2.6 EEPROM Interface Registers

This EEPROM registers access the external EEPROM. Upon power reset, a state machine inside the host interface reads the EEPROM and writes registers within the AR9220. The EEPROM map is shown in Figure 6-1:

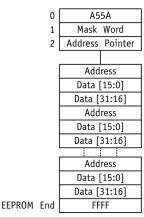


Figure 6-1. EEPROM Address Map

Each EEPROM location is 16 bits wide. As shown in Figure 6-1, the first location must contain the 16-bit word A55A, indicating that the EEPROM is valid. If the first location is not this value, then the state machine assumes the EEPROM contents have been corrupted and immediately stops running.

The next EEPROM location contains the mask word as described. Location 2 contains an address pointer to the next valid data segment. Each data segment consists of three locations: a 16-bit address location and two locations for the 32-bit write data as shown in Figure 6-1. The state machine reads each data segment and writes to the corresponding AR9220 register. The state machine stops when it comes to an address equal to FFFF.

6.2.7 Host Interface Registers

Table 6-5. Host Interface Registers

Offset	Name	Description	Page
0x4000	H_RC	Reset the MAC AHB/APB Interface	page 85
0x4018	H_TIMEOUT	Host Timeout	page 85
0x401C	H_EEPROM_CTRL	EEPROM Control	page 85
0x4020	H_SREV_ID	MAC Silicon Revision ID	page 86
0x4028	H_INTR_CAUSE_CLR	Interrupt Cause Clear	page 86
0x4028	H_INTR_SYNC_CAUS	Synchronous Interrupt Cause	page 87
0x402C	H_INTR_SYNC_ENAB	Synchronous Interrupt Enable	page 87
0x4030	H_INTR_ASYN_MASK	Asynchronous Interrupt Mask	page 87
0x4034	H_INTR_SYN_MASK	Synchronous Interrupt Mask	page 87
0x4038	H_INTR_ASYN_CAUS	Asynchronous Interrupt Cause	page 88
0x403C	H_INTR_ASYN_ENAB	Asynchronous Interrupt Enable	page 88
0x4048	H_GPIO_IN_OUT	GPIO Input and Output	page 88
0x404C	H_GPIO_OE_BITS	GPIO Output Enable Bits	page 89
0x4050	H_GPIO_IRQ_POLAR	GPIO Interrupt Polarity	page 89
0x4054	H_GP_INPT_EN_VAL	GPIO Input Enable and Value	page 89
0x405C	H_GP_INPT_MUX2	GPIO Input MUX2	page 90
0x4060	H_GP_OUTPT_MUX1	GPIO Output MUX1	page 90
0x4064	H_GP_OUTPT_MUX2	GPIO Output MUX2	page 90
0x406C	H_INPUT_STATE	Input Values	page 91
0x4078	H_PCI_CLKRUN	PCI CLKRUN	page 91
0x407C	H_EEP_STS_DATA	EEPROM Status and Read Data	page 92
0x4084	H_RFSILENT	RFsilent-Related Registers	page 92
0x4088	H_GPIO_PDPU	GPIO Pull-Up/Pull-Down	page 93
0x408C	H_GPIO_DS	GPIO Drive Strength	page 93

Reset the MAC AHB/APB Interface (H_RC) 6.2.7.1

Offset: 0x4000 Access: Read/Write Reset Value: 0000_0000

Bit	Descri	ption	
31:9	Reserve	ed	
8	0	Normal host master interface	
	1	Hold PCI master interface in reset	
7:2	Reserved		
1	0 Normal MAC APB interface operation		
	1	Hold MAC APB interface in reset	
0	0 Normal MAC AHB interface operation		
	1	Hold MAC AHB interface in reset	

Host Timeout (H_TIMEOUT) 6.2.7.2

Offset: 0x4018 Access: Read/Write Reset Value: 1000_1000

Bit	Description
31:16	AHB bus timeout counter for DMA transfers
15:0	APB bus timeout counter for register access

EEPROM Control (H_EEPROM_CTRL) 6.2.7.3

Offset: 0x401C Access: Read/Write Reset Value: 0000_00FC

Bit	Description
31:26	Reserved
25:10	EEPROM protect mask
9	EEPROM is corrupt
8	EEPROM not present
7:2	CLKDIV value for the APB EEPROM module APB_EEPROM
1:0	Reserved

6.2.7.4 MAC Silicon Revision ID (H_SREV_ID)

Offset: 0x4020 Access: Read-Only Reset Value: 0008_50FF

Bit	Description	
31:18	2	Version
17:12	5	Туре
11:8	2	Revision
7:0	255	Old Revision

Table 6-11 describes all of the signals capable of generating a system interrupt and lists their corresponding bits. The bits are the same for synchronous as well as asynchronous interrupts.

Table 6-11. System Interrupt Registers: Bit Descriptions

Bit	Name	Description
31:18	RES	Reserved
17	MAC_SLEEP_ACCESS	Software is trying to access a register within the MAC while it is asleep
16	MAC_ASLEEP	The MAC has gone to sleep
15	MAC_AWAKE	The MAC has become awake
14	PM_ACCESS	The AHB master is requesting that a DMA transfer to the core while it is asleep
13	LOCAL_TIMEOUT	A local bus timeout has occurred
12:4	RES	Reserved
3	APB_TIMEOUT	No response from one of the AR9220 modules within the programmed timeout period during a register access
2	EEPROM_ILLEGAL_ACCESS	Software attempted to either access a protected area within the EEPROM, or access the EEPROM while it is busy or absent
1	MAC_IRQ	The MAC has requested an interrupt
0	RTC_IRQ	The RTC is in shutdown state

6.2.7.12 Interrupt Cause Clear (H_INTR_CAUSE_CLR)

Offset: 0x4028 Access: Write-Only Reset Value: 0000_0000

Bit	Description
	Writing a 1 to any bit in this register clears the corresponding bit in the "Synchronous Interrupt Cause (H_INTR_SYNC_CAUS)" register.
	See Table 6-11 for bit descriptions.

6.2.7.13 Synchronous Interrupt Cause (H_INTR_SYNC_CAUS)

Offset: 0x4028 Access: Read-Only Reset Value: 0000_0000

Bit	Description
31:0	Setting any bit in this register indicates that the corresponding interrupt has been triggered in synchronous mode; for any bit to be to set in this register, the corresponding bit in the "Synchronous Interrupt Enable (H_INTR_SYNC_ENAB)" register must also be set.
	See Table 6-11 for bit descriptions.

6.2.7.14 Synchronous Interrupt Enable (H_INTR_SYNC_ENAB)

Offset: 0x402C Access: Read/Write Reset Value: 0000_0000

Bit	Description
31:0	Setting any bit in this register allows the corresponding interrupt signal to set its corresponding bit in the "Synchronous Interrupt Cause (H_INTR_SYNC_CAUS)" register.
	See Table 6-11 for bit descriptions.

6.2.7.15 Asynchronous Interrupt Mask (H_INTR_ASYN_MASK)

Offset: 0x4030 Access: Read/Write Reset Value: 0000_0002

Bit	Description
31:0	Setting any bit in this register allows the corresponding interrupt signal to trigger a PCI interrupt provided that the corresponding "Asynchronous Interrupt Cause (H_INTR_ASYN_CAUS)" register bit is set. Note that for this register bit to be set, the corresponding "Asynchronous Interrupt Enable (H_INTR_ASYN_ENAB)" register bit must also be set by software.
	See Table 6-11 for bit descriptions.

6.2.7.16 Synchronous Interrupt Mask (H_INTR_SYN_MASK)

Offset: 0x4034 Access: Read/Write Reset Value: 0000_0000

Bit	Description
31:0	Setting any bit in this register allows the corresponding interrupt signal to trigger a PCI interrupt provided that the corresponding "Synchronous Interrupt Cause (H_INTR_SYNC_CAUS)" register bit is set. Note that for this register bit to be set, the corresponding "Synchronous Interrupt Enable (H_INTR_SYNC_ENAB)" register bit must also be set by software. See Table 6-11 for bit descriptions.

6.2.7.17 Asynchronous Interrupt Cause (H_INTR_ASYN_CAUS)

Offset: 0x4038 Access: Read-Only Reset Value: 0000_0000

Bit	Description
31:0	Setting any bit in this register indicates that the corresponding interrupt has been triggered in asynchronous mode. For any bit to be to set in this register, the corresponding bit in the "Asynchronous Interrupt Enable (H_INTR_ASYN_ENAB)" register must also be set. See Table 6-11 for bit descriptions.

6.2.7.18 Asynchronous Interrupt Enable (H_INTR_ASYN_ENAB)

Offset: 0x403C Access: Read/Write Reset Value: 0000_0002

Bit	Description
31:0	Setting any bit in this register indicates that the corresponding interrupt has been triggered in asynchronous mode. For any bit to be to set in this register, the corresponding bit in the "Asynchronous Interrupt Enable (H_INTR_ASYN_ENAB)" register must also be set. See Table 6-11 for bit descriptions.

6.2.7.19 GPIO Input and Output (H_GPIO_IN_OUT)

Offset: 0x4048

Access: See field description Reset Value: 000F_8C00

Bit	Access	Description
31:20	R/W	Reserved
19:20	RO	Actual value of each GPIO signal
9:0	R/W	Output value of each GPIO Used when the corresponding GPIO enable bits and GPIO output MUX registers are set correctly

6.2.7.20 GPIO Output Enable Bits (H_GPIO_OE_BITS)

Offset: 0x404C Access: Read/Write Reset Value: 0000_0000 **NOTE:** Each 2-bit field controls the drive mechanism for each GPIO. The mapping for this 2-bit field is:

- 0 = Never drive output
- 1 = Drive if the output is low
- 2 = Drive if the output is high
- 3 = Always drive output

Bit	Description
31:20	Reserved
19:18	Configuration for GPIO9
17:16	Configuration for GPIO8
15:14	Configuration for GPIO7
13:12	Configuration for GPIO6
11:10	Configuration for GPIO5
9:8	Configuration for GPIO4
7:6	Configuration for GPIO3
5:4	Configuration for GPIO2
3:2	Configuration for GPIO1
1:0	Configuration for GPIO0

6.2.7.21 GPIO Interrupt Polarity (H_GPIO_IRQ_POLAR)

Offset: 0x4050 Access: Read/Write Reset Value: 0000_0000

Bit	Description	
31:10	Reserved	
9:0	GPIO interrupt polarity	
	0	Corresponding GPIO can interrupt if it is high
	1	Corresponding GPIO can interrupt system if it is low

6.2.7.22 GPIO Input Enable and Value (H_GP_INPT_EN_VAL)

Offset: 0x4054 Access: Read/Write Reset Value: 0000 0000

Bit	Description	
31:18	Reserved	
17	0	JTAG enabled; GPIO[4:0] is controlled by JTAG controller
	1	JTAG disabled; software must set this bit before using GPIO[4:0]
16	0	RTC reset controlled entirely by software
	1	RTC reset controllable through a GPIO pin and software
15:0	Reserved	

6.2.7.23 GPIO Input MUX2 (H_GP_INPT_MUX2)

Offset: 0x405C Access: Read/Write Reset Value: 0000_E000

Bit	Description
31:12	Reserved
11:8	GPIO_INPUT_MUX[8] for RTC reset input
7:0	Reserved

6.2.7.24 GPIO Output MUX1 (H_GP_OUTPT_MUX1)

Offset: 0x4060 Access: Read/Write Reset Value: 0000_0000 **NOTE:** See Table 6-12.

Bit	Description
31:26	Reserved
29:25	GPIO_OUTPUT_MUX[5]
24:20	GPIO_OUTPUT_MUX[4]
19:15	GPIO_OUTPUT_MUX[3]
14:10	GPIO_OUTPUT_MUX[2]
9:5	GPIO_OUTPUT_MUX[1]
4:0	GPIO_OUTPUT_MUX[0]

6.2.7.25 GPIO Output MUX2 (H_GP_OUTPT_MUX2)

Offset: 0x4064 Access: Read/Write Reset Value: 000E_8000 **NOTE:** See Table 6-12.

Bit	Description
31:20	Reserved
19:15	GPIO_OUTPUT_MUX[9]
14:10	GPIO_OUTPUT_MUX[8]
9:5	GPIO_OUTPUT_MUX[7]
4:0	GPIO_OUTPUT_MUX[6]

Table 6-12 shows the output MUX value for each GPIO.

Table 6-12. Output MUX Values for Each GPIO

Bit	Description
31	Set GPIO output to the value set in the GPIO output register
30:29	Reserved
28	Set GPIO to RX_CLEAR_EXTENSION
27:8	Reserved
7	Set GPIO to PCI_CLKRUN signal
6	Set GPIO to MAC power LED signal
5	Set GPIO to MAC network signal
4	Set GPIO to Rx-clear-external signal
3	Set GPIO to Tx-frame signal
2:1	Reserved
0	Set GPIO output to value set in the GPIO output register

6.2.7.13 Input Values (H_INPUT_STATE)

Offset: 0x406C Access: Read-Only Reset Value: 0000_0013

Bit	Description
31:7	Reserved
6	Status of TX_FRAME from the MAC
5	Status of RX_CLEAR_EXTERNAL from the MAC
4	Status of the power LED from the MAC
3	Status of the network LED from the MAC
2	Status of PCI_CLKRUN from PCI core
1	Status of POWER_LED from PCI core
0	Reserved

6.2.7.14 PCI CLKRUN (H_CLKRUN)

Offset: 0x4078 Access: Read/Write Reset Value: 0000_0200

Bit	Description	
31:1	CLKRUN delay parameter	
0	0	Allow the PCI core to deassert CLKRUN and stop the clock
	1	Force the PCI core to assert CLKRUN and keep the clock running

6.2.7.15 EEPROM Status and Read Data (H_EEP_STS_DATA)

Offset: 0x407C Access: Read-Only Reset Value: 0000_0000

Bit	Description	
31:20	Reserved	
19	This bit indicates that software attempted to access the EEPROM even though it is not present	
18	This bit indicates that the last software access to the EEPROM occurred to a protected area within the EEPROM and was therefore not forwarded to the EEPROM	
17	This bit indicates that the last software access to the EEPROM occurred when it was busy and was therefore not forwarded to the EEPROM	
16	0	EEPROM is idle
	1	EEPROM is busy
15:0	Results of the last EEPROM read transfer	

6.2.7.16 RFSilent-Related Registers (H_RFSILENT)

Offset: 0x4084 Access: Read/Write Reset Value: 0000_0000

Bit	Description	
31:3	Reserved	
2	RTC reset invert This bit is only relevant if RTC reset override (bit [16]) in the "GPIO Input Enable and Value (H_GP_INPT_EN_VAL)" register is set. If the RTC reset override bit is cleared, then the RTC reset is entirely controlled by software (bit [0] of the register at 0x7040).	
	O A low in the corresponding GPIO input holds the RTC in reset; a high allows the RTC reset to be controlled by software	
	A high in the corresponding GPIO input holds the RTC in reset; a low allows the RTC Reset to be controlled by software	
1	RFSILENT_FORCE signal to the baseband	
0	RFSilent polarity	
	0 Do not invert the RFSILENT_BB_L signal to the baseband	
	1 Invert the RFSILENT_BB_L signal to the baseband	

6.2.7.17 GPIO Pull-Up/Pull-Down (H_GPIO_PDPU)

Offset: 0x4088 Access: Read/Write Reset Value: 0000_0001 **NOTE:** Each 2-bit field controls the drive mechanism for each GPIO. The mapping for this 2-bit field is:

- 0 = No pull-up or pull-down
- 1 = Pull-down
- 2 = Pull-up
- 3 = Reserved

Bit	Description
31:20	Reserved
19:18	Configuration for GPIO9
17:16	Configuration for GPIO8
15:14	Configuration for GPIO7
13:12	Configuration for GPIO6
11:10	Configuration for GPIO5
9:8	Configuration for GPIO4
7:6	Configuration for GPIO3
5:4	Configuration for GPIO2
3:2	Configuration for GPIO1
1:0	Configuration for GPIO0

6.2.7.18 GPIO Drive Strength (H_GPIO_DS)

Offset: 0x408C Access: Read/Write Reset Value: 0000_0000 **NOTE:** Every 2-bit field corresponds to a particular value; the possibilities are:

- 0 = Default drive strength = 6 mA
- 1 = Drive strength = 12 mA
- 2 = Drive strength = 18 mA
- 3 = Drive strength = 24 mA

Bit	Description
31:20	Reserved
19:18	Configuration for GPIO9
17:16	Configuration for GPIO8
15:14	Configuration for GPIO7
13:12	Configuration for GPIO6
11:10	Configuration for GPIO5
9:8	Configuration for GPIO4
7:6	Configuration for GPIO3
5:4	Configuration for GPIO2
3:2	Configuration for GPIO1
1:0	Configuration for GPIO0

6.2.8 RTC Interface Registers

RTC registers occupy the offset range 0x7000–0x7FFC in the AR9220 address space. Within this address range, the 0x7040–0x7058 registers are always on and available for software access regardless of whether the RTC is asleep. Table 6-13 shows the register mapping.

Table 6-13. RTC Interface Registers (Always On)

Offset	Name	Description	Page
0x7040	RTC_RESET	RTC Reset and Force Sleep and Force Wakeup	page 94
0x7044	RTC_STATUS	RTC Sleep Status	page 94
0x7048	RTC_DERIVED	RTC Force Derived RTC and Bypass Derived RTC	page 94
0x704C	RTC_FORCE_WAKE	RTC Force Wake	page 95
0x7050	RTC_INT_CAUSE	RTC Interrupt Cause	page 95
0x7050	RTC_CAUSE_CLR	RTC Interrupt Cause Clear	page 95
0x7054	RTC_INT_ENABLE	RTC Interrupt Enable	page 96
0x7058	RTC_INT_MASK	RTC Interrupt Mask	page 96

6.2.8.1 RTC Reset and Force Sleep and Force Wakeup (RTC_RESET)

Offset: 0x7040 Access: Read/Write

Default: 0

Bit	Description
31:1	Reserved
0	RTC reset (active low)

6.2.8.2 RTC Sleep Status (RTC_STATUS)

Offset: 0x7044 Access: Read-Only Default: N/A

Bit	Description
31:6	Reserved
5	PLL_CHANGING signal from RTC
4	RTC cold reset (active high)
3	RTC in wakeup state
2	RTC in sleep state
1	RTC in on state
0	RTC in shutdown state

6.2.8.3 RTC Force Derived RTC and Bypass Derived RTC (RTC_DERIVED)

Offset: 0x7048 Access: Read/Write

Default: 0

Bit	Description
31:2	Reserved
1	Force derived RTC
0	Bypass derived RTC

6.2.8.4 RTC Force Wake (RTC_FORCE_WAKE)

Offset: 0x704C Access: Read/Write

Default: 3

Bit	Description	
31:2	Reserve	d
1	0	Do not assert FORCE_WAKE on MAC interrupt
	1	Assert FORCE_WAKE on MAC interrupt
0	FORCE_WAKE signal to the MAC	

6.2.8.5 RTC Interrupt Cause (RTC_INT_CAUSE)

Offset: 0x7050 Access: Read-Only

Default: 0

Note: The RTC Interrupt controller works the same way as the host interface interrupt controller. Each bit in this interrupt cause register pertains to an event as described.

Bit	Description
31:6	Reserved
5	PLL_CHANGING
4	Software access of an RTC register when it is not in the on state
3	RTC in wakeup state
2	RTC in sleep state
1	RTC in on state
0	RTC in shutdown state

6.2.8.6 RTC Interrupt Cause Clear (RTC_CAUSE_CLR)

Offset: 0x7050 Access: Write-Only

Default: 0

Note: A write of 1 to any bit in this register clears that bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" register until the corresponding event reoccurs.

Bit	Description
31:6	Reserved
5	Writing 1 to this bit clears the PLL_CHANGING interrupt from the "RTC Interrupt Cause (RTC_INT_CAUSE)" register.
4	Writing 1 to this bit clears the software access of an RTC register interrupt from the "RTC Interrupt Cause (RTC_INT_CAUSE)" register.
3	Writing 1 to this bit clears the RTC in wakeup state interrupt from the "RTC Interrupt Cause (RTC_INT_CAUSE)" register.
2	Writing 1 to this bit clears the RTC in sleep state interrupt from the "RTC Interrupt Cause (RTC_INT_CAUSE)" register.
1	Writing 1 to this bit clears the RTC in on state interrupt from the "RTC Interrupt Cause (RTC_INT_CAUSE)" register.
0	Writing 1 to this bit clears the RTC in shutdown state interrupt from the "RTC Interrupt Cause (RTC_INT_CAUSE)" register.

6.2.8.7 RTC Interrupt Enable (RTC_INT_ENABLE)

Offset: 0x7054 Access: Read/Write

Default: 0

Note: Writing a 1 to any bit in this register allows that bit in the "RTC Interrupt Cause

(RTC_INT_CAUSE)" register to be set when the corresponding event occurs. Writing a 0 to any bit in this register automatically clears the corresponding bit in the interrupt cause register regardless of the corresponding event.

Bit	Description	
31:6	Reserved	
5	0	Clears the PLL_CHANGING bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)".
	1	Allows the PLL changing bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" to be set when the corresponding event occurs.
4	0	Clears the software access of an RTC register bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)".
	1	Allows the software access of an RTC register bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" to be set when the corresponding event occurs.
3	0	Clears the RTC in wakeup state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)".
	1	Allows the RTC in wakeup state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" to be set when the corresponding event occurs.
2	0	Clears the RTC in sleep state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)".
	1	Allows the RTC in sleep state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" to be set when the corresponding event occurs.
1	0	Clears the RTC in on state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)".
	1	Allows the RTC in on state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" to be set when the corresponding event occurs.
0	0	Clears the RTC in shutdown state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)".
	1	Allows the RTC in shutdown state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" to be set when the corresponding event occurs.

6.2.8.8 RTC Interrupt Mask (RTC_INT_MASK)

Offset: 0x7058 Access: Read/Write

Default: 0

Note: Writing a 1 to any bit in this register allows the corresponding event to generate an

RTC interrupt to the host interface which can in turn be programmed to generate a system interrupt. The corresponding bit in the "RTC Interrupt Enable (RTC_INT_ENABLE)" register must also be set.

Bit	Description
31:6	Reserved
5	Writing 1 to this bit allows the corresponding PLL_CHANGING event to generate an RTC interrupt to the host interface.
4	Writing 1 to this bit allows the corresponding software access of an RTC register event to generate an RTC interrupt to the host interface.
3	Writing 1 to this bit allows the corresponding RTC in wakeup state event to generate an RTC interrupt to the host interface.
2	Writing 1 to this bit allows the corresponding RTC in sleep state event to generate an RTC interrupt to the host interface.
1	Writing 1 to this bit allows the corresponding RTC in on state event to generate an RTC interrupt to the host interface.
0	Writing 1 to this bit allows the corresponding RTC in shutdown state event to generate an RTC interrupt to the host interface.

6.2.9 MAC PCU Registers

Table 6-14 shows the mapping of these registers.

Table 6-14. MAC PCU Registers

Address	Name	Description	Page
0x08000	MAC_PCU_STA_ADDR_L32	STA Address Lower 32 Bits	page 99
0x08004	MAC_PCU_STA_ADDR_U16	STA Address Upper 16 Bits	page 99
0x08008	MAC_PCU_BSSID_L32	BSSID Lower 32 Bits	page 100
0x0800C	MAC_PCU_BSSID_U16	BSSID Upper 16 Bits	page 100
0x08010	MAC_PCU_BCN_RSSI_AVE	Beacon RSSI Average	page 100
0x08014	MAC_PCU_ACK_CTS_TIMEOUT	ACK and CTS Timeout	page 100
0x08018	MAC_PCU_BCN_RSSI_CTL	Beacon RSSI Control	page 101
0x0801C	MAC_PCU_USEC_LATENCY	Millisecond Counter and Rx/Tx Latency	page 101
0x08020	MAC_PCU_RESET_TSF	Reset TSF	page 101
0x08038	MAC_PCU_MAX_CFP_DUR	Maximum CFP Duration	page 102
0x0803C	MAC_PCU_RX_FILTER	Rx Filter	page 102
0x08040	MAC_PCU_MCAST_FILTER_L32	Multicast Filter Mask Lower 32 Bits	page 102
0x08044	MAC_PCU_MCAST_FILTER_U32	Multicast Filter Mask Upper 32 Bits	page 103
0x08048	MAC_PCU_DIAG_SW	Diagnostic Switches	page 103
0x0804C	MAC_PCU_TSF_L32	TSF Lower 32 Bits	page 104
0x08050	MAC_PCU_TSF_U32	TSF Upper 32 Bits	page 104
0x0805C	MAC_PCU_AES_MUTE_MASK_0	AES Mute Mask 0	page 104
0x08060	MAC_PCU_AES_MUTE_MASK_1	AES Mute Mask 1	page 105
0x08080	MAC_PCU_LAST_BEACON_TSF	Last Receive Beacon TSF	page 105
0x08084	MAC_PCU_NAV	Current NAV	page 105
0x08088	MAC_PCU_RTS_SUCCESS_CNT	Successful RTS Count	page 105
0x0808C	MAC_PCU_RTS_FAIL_CNT	Failed RTS Count	page 106
0x08090	MAC_PCU_ACK_FAIL_CNT	FAIL ACK Count	page 106
0x08094	MAC_PCU_FCS_FAIL_CNT	Failed FCS Count	page 106
0x08098	MAC_PCU_BEACON_CNT	Beacon Count	page 106
0x080D4	MAC_PCU_SLP1	Sleep 1	page 107
0x080D8	MAC_PCU_SLP2	Sleep 2	page 107
0x080E0	MAC_PCU_ADDR1_MASK_L32	Address 1 Mask Lower 32 Bits	page 107
0x080E4	MAC_PCU_ADDR1_MASK_U16	Address 1 Mask Upper 16 Bits	page 107
0x080E8	MAC_PCU_TPC	Tx Power Control	page 108
0x080EC	MAC_PCU_TX_FRAME_CNT	Tx Frame Counter	page 108
0x080F0	MAC_PCU_RX_FRAME_CNT	Rx Frame Counter	page 108
0x080F4	MAC_PCU_RX_CLEAR_CNT	Rx Clear Counter	page 108
0x080F8	MAC_PCU_CYCLE_CNT	Cycle Counter	page 108
0x080FC	MAC_PCU_QUIET_TIME_1	Quiet Time 1	page 109
0x08100	MAC_PCU_QUIET_TIME_2	Quiet Time 2	page 109

Table 6-14. MAC PCU Registers

Address	Name	Description	Page
0x08108	MAC_PCU_QOS_NO_ACK	QoS no ACK	page 109
0x0810C	MAC_PCU_PHY_ERROR_MASK	PHY Error Mask	page 110
0x08114	MAC_PCU_RXBUF_THRESHOLD	Rx Buffer Threshold	page 110
0x08118	MAC_PCU_MIC_QOS_CONTROL	QoS Control	page 111
0x0811C	MAC_PCU_MIC_QOS_SELECT	Michael QoS Select	page 111
0x08120	MAC_PCU_MISC_MODE	Miscellaneous Mode	page 111
0x08124	MAC_PCU_FILTER_OFDM_CNT	Filtered OFDM Counter	page 113
0x08128	MAC_PCU_FILTER_CCK_CNT	Filtered CCK Counter	page 113
0x0812C	MAC_PCU_PHY_ERR_CNT_1	PHY Error Counter 1	page 113
0x08130	MAC_PCU_PHY_ERR_CNT_1_MASK	PHY Error Counter 1 Mask	page 114
0x08134	MAC_PCU_PHY_ERR_CNT_2	PHY Error Counter 2	page 114
0x08138	MAC_PCU_PHY_ERR_CNT_2_MASK	PHY Error Counter 2 Mask	page 114
0x0813C	MAC_PCU_TSF_THRESHOLD	TSF Threshold	page 115
0x08144	MAC_PCU_PHY_ERROR_EIFS_MASK	PHY Error EIFS Mask	page 115
0x08168	MAC_PCU_PHY_ERR_CNT_3	PHY Error Counter 3	page 115
0x0816C	MAC_PCU_PHY_ERR_CNT_3_MASK	PHY Error Counter 3 Mask	page 115
0x08178	MAC_PCU_HCF_TIMEOUT	HCF Timeout	page 116
0x081D0	MAC_PCU_TXSIFS	SIFS, Tx Latency and ACK Shift	page 116
0x081EC	MAC_PCU_TXOP_X	TXOP for Non-QoS Frames	page 116
0x081F0	MAC_PCU_TXOP_0_3	TXOP for TID 0 to 3	page 117
0x081F4	MAC_PCU_TXOP_4_7	TXOP for TID 4 to 7	page 117
0x081F8	MAC_PCU_TXOP_8_11	TXOP for TID 8 to 11	page 117
0x081FC	MAC_PCU_TXOP_12_15	TXOP for TID 0 to 3	page 117
0x08200	MAC_PCU_GENERIC_TIMERS[0:15]	Generic Timers	page 118
0x08240	MAC_PCU_GENERIC_TIMERS_MODE	Generic Timers Mode	page 118
0x08244	MAC_PCU_SLP32_MODE	32 KHz Sleep Mode	page 118
0x08248	MAC_PCU_SLP32_WAKE	32 KHz Sleep Wake	page 119
0x0824C	MAC_PCU_SLP32_INC	32 KHz Sleep Increment	page 119
0x08250	MAC_PCU_SLP_MIB1	Sleep MIB Sleep Count	page 119
0x08254	MAC_PCU_SLP_MIB2	Sleep MIB Cycle Count	page 119
0x08258	MAC_PCU_SLP_MIB3	Sleep MIB Control Status	page 120
0x08318	MAC_PCU_20_40_MODE	Global Mode	page 120
0x08328	MAC_PCU_RX_CLEAR_DIFF_CNT	Difference Rx_Clear Counter	page 120
0x08330	MAC_PCU_BA_BAR_CONTROL	Control Registers for Block BA Control Fields	page 121
0x08334	MAC_PCU_LEGACY_PLCP_SPOOF	Legacy PLCP Spoof	page 121
0x08338	MAC_PCU_PHY_ERROR_MASK_CONT	PHY Error Mask and EIFS Mask	page 121
0x0833C	MAC_PCU_TX_TIMER	Tx Timer	page 122
0x08800	MAC_PCU_KEY_CACHE[0:1023]	Key Cache Lower Half	page 122

STA Address Lower 32 Bits (MAC_PCU_STA_ADDR_L32)

This register contains the lower 32 bits of the

STA address. Offset: 0x08000

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	ADDR_31_0	Lower 32 bits of STA MAC address (PCU_STA_ADDR[31:0])

STA Address Upper 16 Bits (MAC_PCU_STA_ADDR_U16) 6.2.9.2

This register contains the lower 32 bits of the

STA address. Offset: 0x08004

Access: Hardware = Read-Only Software = Read/Write Reset Value: 0x2000_0000

Bit	Name	Descrip	otion
15:0	PCU_STA_ADDR[47:32]	Upper :	16 bits of station MAC address
16	PCU_AP	Set if S	ΓA is an AP
17	PCU_ADHOC	Set if S	ΓA is in an ad hoc network
18	PCU_PSMODE	Set if S	ΓA is in power-save mode
19	PCU_NO_KEYSEARCH	Disable	key search
20	PCU_PCF	Set if as	sociated AP is PCF capable
23:21	RES	Reserve	ed
24	PCU_ACKCTS_6MB	Use 6 M	Obps rate for ACK and CTS
25	PCU_BSRATE_11B	802.11b	base rate
		0	Use all rates
		1	Use only 1–2 Mbps
26	RES	Reserve	ed
27	REG_CRPT_MIC_ENABLE	Enables	s the checking and insertion of MIC in TKIP
28	PCU_KSRCH_MODE	■ If KS	key cache first. If not, match use offset for IV = 0, 1, 2, 3. SRCH_MODE = 0 then do not search = 1, 2, or 3, then search = 0, do not search
29	REG_PRESERVE_SEQNUM		CU from replacing the sequence number; must be set to 1
	-		ess of IV in CBC nonce
30	PCU_CBCIV_ENDIAN		
31	REG_ADHOC_MCAST_SEARCH	Enables	s the key cache search for ad hoc MCAST packets

6.2.9.3 BSSID Lower 32 Bits (MAC_PCU_BSSID_L32)

Offset: 0x08008 This register contains the lower 32 bits of the

Access: Hardware = Read/Write BSS identification information.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	PCU_BSSID[31:0]	Lower 32 bits of BSSID

6.2.9.4 BSSID Upper 16 Bits (MAC_PCU_BSSID_U16)

Offset: 0x0800C This register contains the upper 32 bits of the

Access: Hardware = Read/Write BSS identification information.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
15:0	PCU_BSSID[47:32]	Upper 16 bits of BSSID
26:16	PCU_AID	Association ID
31:17	RES	Reserved

6.2.9.5 Beacon RSSI Average (MAC_PCU_BCN_RSSI_AVE)

Offset: 0x08010

Access: Hardware = Read/Write Software = Read-Only

Reset Value: 0x800

Bit	Name	Description
11:0	REG_BCN_RSSI_AVE	Holds the average RSSI with 1/16 dB resolution. The RSSI is averaged over multiple beacons which matched our BSSID. AVE_VALUE is 12 bits with 4 bits below the normal 8 bits. These lowest 4 bits provide for a resolution of 1/16 dB. The averaging function is depends on the BCN_RSSI_WEIGHT; determines the ratio of weight given to the current RSSI value compared to the average accumulated value.
31:12	RES	Reserved

6.2.9.6 ACK and CTS Timeout (MAC_PCU_ACK_CTS_TIMEOUT)

Offset: 0x08014

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
13:0	PCU_ACK_TIMEOUT	Timeout while waiting for ACK (in cycles)
29:16	PCU_CTS_TIMEOUT	Timeout while waiting for CTS (in cycles)
31:30	RES	Reserved

Beacon RSSI Control (MAC_PCU_BCN_RSSI_CTL) 6.2.9.7

Offset: 0x08018

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
7:0	PCU_RSSI_THR	The threshold at which the beacon low RSSI interrupt is asserted when the average RSSI ("BCN_RSSI_AVE") below this level
15:8	PCU_BCN_MISS_THR	Threshold at which the beacon miss interrupt asserts. Because the beacon miss counter increments at TBTT, it increments to 1 before the first beacon.
28:24	REG_BCN_RSSI_WEIGHT	Used to calculate "BCN_RSSI_AVE"
29	REG_BCN_RSSI_RST_ STROBE	The BCN_RSSI_RESET clears "BCN_RSSI_AVE" to aid in changing channels
31:30	RES	Reserved

6.2.10 Ms Counter and Rx/Tx Latency (MAC_PCU_USEC_LATENCY)

Offset: 0x0801C

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
6:0	RES	Reserved
22:14	PCU_TXDELAY	Baseband Tx latency to start of timestamp in beacon frame (in μs)
28:23	PCU_RXDELAY	Baseband Rx latency to start of SIGNAL (in μs)
31:29	RES	Reserved

6.2.10.8 Reset TSF (MAC_PCU_RESET_TSF)

Offset: 0x08020 Access: Hardware = Read/Write

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
23:0	RES	Reserved
24	ONE_SHOT	Setting this bit causes the TSF to reset. This register clears immediately after being reset.
31:25	RES	Reserved

Controls beacon operation by the PCU.

6.2.10.9 Maximum CFP Duration (MAC_PCU_MAX_CFP_DUR)

Offset: 0x08038 Contains the maximum time for a CFP.

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
15:0	PCU_MAX_CFPDUR	Maximum contention free period duration (in μs)
31:16	RES	Reserved

6.2.10.10 Rx Filter (MAC_PCU_RX_FILTER)

Offset: 0x0803C

Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x0

This register determines Rx frame filtering.

NOTE: If any bit is set, the corresponding packet types pass the filter and are DMAed. All filter conditions except the promiscuous setting rely on the no early PHY error and protocol version being checked to ensure it is version 0.

Bit	Name	Description
0	UNICAST	Unicast frame enable Enable reception of unicast (directed) frames that match the STA address
		0 Disable. No ACK will return 1 Enable
1	MULTICAST	Multicast frame Enable
-	1,10 21101101	Enable reception of multicast frames that match the multicast filter
2	BROADCAST	Broadcast frame enable Enable reception of non beacon broadcast frames that originate from the BSS whose ID matches BSSID
3	CONTROL	Control frame enable Enable reception of control frames
4	BEACON	Beacon frame enable Enable reception of beacon frames.
5	PROMISCUOUS	Promiscuous receive enable Enable reception of all frames, including errors
6	RES	Reserved
7	PROBE_REQ	Probe request enable. Enables reception of all probe request frames
8	RES	Reserved
9	MY_BEACON	Retrieves any beacon frame with matching SSID
13:10	RES	Reserved
14	PS_POLL	Enables receipt of PS-POLL
15	MCAST_BCAST_ALL	Enables receipt of all multicast and broadcast frames
31:10	RES	Reserved

6.2.10.11 Multicast Filter Mask Lower 32 Bits (MAC_PCU_MCAST_FILTER_L32)

This register contains the lower 32 bits of the Offset: 0x08040

multicast filter mask. Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	PCU_MCAST_MASK	Multicast filter mask low. Lower 32 bits of multicast filter mask.

6.2.10.12 Multicast Filter Mask Upper 32 Bits (MAC_PCU_MCAST_FILTER_U32)

Offset: 0x08044

This register contains the upper 32 bits of the Access: Hardware = Read-Only multicast filter mask.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	PCU_MCAST_MASK	Multicast filter mask high. Upper 32 bits of multicast filter mask.

6.2.10.13 Diagnostic Switches (MAC_PCU_DIAG_SW)

Offset: 0x08048

Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x0

Controls the operation of the PCU, including enabling/disabling acknowledgements, CTS, transmission, reception, encryption, loopback, FCS, channel information, and scrambler seeds.

Bit	Name	Description
0	PCU_INVALKEY_NOACK	Enable or disable acknowledgement when a valid key is not found for the received frames in the key cache.
1	NO_ACK	Enable or disable acknowledgement generation for all frames
2	NO_CTS	Enable or disable CTS generation
3	NO_ENCRYPT	Enable or disable encryption
4	NO_DECRYPT	Enable or disable decryption
5	HALT_RX	Enable or disable reception
6	LOOP_BACK	Enable or disable Tx data loopback
7	CORRUPT_FCS	Enable or disable corrupt FCS. Enabling this bit causes an invalid FCS to be appended to a frame during transmission.
16:8	RES	Reserved
17	ACCEPT_NON_V0	Enable or disable protocol field
19:18	RES	Reserved
20	RX_CLEAR_HIGH	Force RX_CLEAR high
21	IGNORE_NAV	Ignore virtual carrier sense (NAV)
22	CHAN_IDLE_HIGH	Force channel idle high
23	PHYERR_ENABLE_EIFS_CTL	Uses framed and wait_wep in the pcu_rx_err logic if bits is set to 0
24	RES	Reserved
25	FORCE_RX_ABORT	Force Rx abort bit in conjunction with Rx block aids quick channel change to shut down Rx. The force Rx abort bit kills with the Rx_abort any frame currently transferring between the MAC and baseband. while the RX block bit prevents any new frames from getting started.
26	SATURATE_CYCLE_CNT	The saturate cycle count bit, if set, causes the "Cycle Counter (MAC_PCU_CYCLE_CNT)" register to saturate instead of shifting to the right by 1 every time the count reaches 0xFFFFFFF. This saturate condition also holds the rx_clear, rx_frame, and tx_frame counts.
27	RES	Reserved
28	RX_CLEAR_CTL_LOW	Force the RX_CLEAR_CTL signal to appear to the MAC as being low
29	RX_CLEAR_EXT_LOW	Force the RX_CLEAR_EXT signal to appear to the MAC as being low
31:30	RES	Reserved

6.2.10.14 TSF Lower 32 Bits (MAC_PCU_TSF_L32)

Offset: 0x0804C

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0xFFFFFFF

Bit	Name	Description
31:0	VALUE	The timestamp value in µs.
		Writes to this register do not cause the TSF to change. Rather, the value is held in a temporary staging area until this register is written, at which point both the lower and upper parts of the TSF are loaded.
		A read result of 0xFFFFFFFF indicates that the read occurred before TSF logic came out of sleep. It may take up to 45 μ s after the chip is brought out of sleep for the TSF logic to wake.

6.2.10.15 TSF Upper 32 Bits (MAC_PCU_TSF_U32)

Offset: 0x08050

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0xFFFFFFF

Bit	Name	Description
31:0	VALUE	The timestamp value in µs

6.2.10.16 AES Mute Mask 0 (MAC_PCU_AES_MUTE_MASK_0)

Offset: 0x0805C

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0xC7FF

Bit	Name	Description
15:0	FC_MUTEMASK	AES mute mask for frame control field
31:16	QOS_MUTEMASK	AES mute mask for TID field

6.2.10.17 AES Mute Mask 1 (MAC_PCU_AES_MUTE_MASK_1)

Offset: 0x08060

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x000F

Bit	Name	Description
15:0	SEQ_MUTEMASK	AES mute mask for sequence number field
31:16	FC)MGMT	AES mute mask for management frame control field

6.2.10.18 Last Rx Beacon TSF (MAC_PCU_LAST_BEACON_TSF)

Offset: 0x08080

Access: Hardware = Write-only

Software = Read-Only

Reset Value: 0x0

This threshold register indicates the minimum amount of data required before initiating a

transmission.

Bit	Name	Description
31:0	LAST_TSTP	Beacon timestamp. Lower 32 bits of timestamp of the last beacon received.

6.2.10.19 Current NAV (MAC_PCU_NAV)

Offset: 0x08084

Access: Hardware = Read/Write

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
25:0	CS_NAV	Current NAV value (in μs)
31:26	RES	Reserved

6.2.10.20 Successful RTS Count (MAC_PCU_RTS_SUCCESS_CNT)

Offset: 0x08088

Access: Hardware = Read/Write

Software = Read-Only

This register counts the number of successful RTS exchanges. The counter stops at 0xFFFF. After a read, automatically resets to 0.

Reset Value: 0x0

Bit	Name	Description
15:0	RTS_OK	RTS/CTS exchange success counter
31:16	RES	Reserved

6.2.10.21 Failed RTS Count (MAC_PCU_RTS_FAIL_CNT)

Offset: 0x0808C Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

This register counts the number of failed RTS exchanges. The counter stops at 0xFFFF. After a read, this register is automatically reset to 0.

Bit	Name	Description
15:0	RTS_FAIL	RTS/CTS exchange failure counter
31:16	RES	Reserved

6.2.10.22 FAIL ACK Count (MAC_PCU_ACK_FAIL_CNT)

Offset: 0x08090 Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

This register counts the number of failed acknowledgements. The counter stops at 0xFFFF. After a read, this register is

automatically reset to 0.

Bit	Name	Description
15:0	ACK_FAIL	DATA/ACK failure counter
31:16	RES	Reserved

6.2.10.23 Failed FCS Count (MAC_PCU_FCS_FAIL_CNT)

Offset: 0x08094

Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

This register counts the number of failed frame check sequences. The counter stops at 0xFFFF. After a read, this register is automatically reset

Bit	Name	Description
15:0	FCS_FAIL	FCS failure counter
31:16	RES	Reserved

6.2.10.24 Beacon Count (MAC_PCU_BEACON_CNT)

Offset: 0x08098

Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

This register counts the number of valid beacon frames received. The counter stops at 0xFFFF. After a read, automatically resets to 0.

Bit	Name	Description
15:0	BEACONCNT	Valid beacon counter
31:16	RES	Reserved

6.2.10.25 Sleep 1 (MAC_PCU_SLP1)

Offset: 0x080D4

Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

The Sleep 1 register in conjunction with the "Sleep 2 (MAC_PCU_SLP2)" register, controls when the AR9220 should wake when waiting for AP Rx traffic. Sleep registers are only used when the AR9220 is in STA mode.

Bit	Name	Description
18:0	RES	Reserved
19	ASSUME_DTIM	A mode bit which indicates whether to assume a beacon was missed when the SLP_BEACON_TIMEOUT occurs with no received beacons, in which case is assumes the DTIM was missed, and waits for CAB.
20	RES	Reserved
31:21	CAB_TIMEOUT	Time in TU that the PCU waits for CAB after receiving the beacon or the previous CAB, insuring that if no CAB is received after the beacon is received or if a long gap occurs between CABs, the CAB powersave state returns to idle.

6.2.10.26 Sleep 2 (MAC_PCU_SLP2)

Offset: 0x080D8

Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

Bit	Name	Description
20:0	RES	Reserved
31:21	BEACON_TIMEOUT	Time in TU that the PCU waits for a beacon after waking up. If this time expires, the PCU woke due to SLP_NEXT_DTIM, and SLP_ASSUME_DTIM is active, then it assumes the beacon was missed and goes directly to watching for CAB. Otherwise when this time expires, the beacon powersave state returns to idle.

6.2.10.27 Address 1 Mask Lower 32 Bits (MAC_PCU_ADDR1_MASK_L32)

Offset: 0x080E0 Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0xFFFFFFFF

This STA register provides multiple BSSID support when the AR9220 is in AP mode.

Bit	Name	Description
31:0	STA_MASK_L	STA address mask lower 32-bit register. Provides multiple BSSID support.

6.2.10.28 Address 1 Mask Upper 16 Bits (MAC_PCU_ADDR1_MASK_U16)

Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0xFFFF

This STA register provides multiple BSSID Offset: 0x080E4 support when the AR9220 is in AP mode.

Bit	Name	Description
31:0	STA_MASK_L	STA address mask upper 16-bit register. Provides multiple BSSID support.

6.2.10.29 Tx Power Control (MAC_PCU_TPC)

Offset: 0x080E8

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x003F_3F3F

This register set the transmit power for self-

generated response frames.

Bit	Name	Description
5:0	ACK_PWR	ACK self-generated response frames
7:6	RES	Reserved
13:8	CTS_PWR	CTS self-generated response frames
15:14	RES	Reserved
21:16	CHIRP_PWR	Chirp self-generated response frames
31:22	RES	Reserved

6.2.10.30 Tx Frame Counter (MAC_PCU_TX_FRAME_CNT)

Offset: 0x080EC The Tx frame counter counts the number of

Access: Hardware = Read/Write cycles the tx_frame signal is active.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	TX_FRAME_CNT	Counts the number of cycles the tx_frame signal is active

6.2.10.31 Rx Frame Counter (MAC_PCU_RX_FRAME_CNT)

Offset: 0x080F0 The receive frame counter counts the number

Access: Hardware = Read/Write of cycles the rx_frame signal is active.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	RX_FRAME_CNT	Counts the number of cycles the rx_frame signal is active

6.2.10.32 Rx Clear Counter (MAC_PCU_RX_CLEAR_CNT)

Offset: 0x080F4 The receive clear counter counts the number of

Access: Hardware = Read/Write cycles the rx_clear signal is not active.

Software = Read/Write Cycles the 1x_clear signar is not action and the street of the signar is not action.

Reset Value: 0x0

Bit	Name	Description
31:0	RX_CLEAR_CNT	Counts the number of cycles the rx_clear signal is low

6.2.10.33 Cycle Counter (MAC_PCU_CYCLE_CNT)

Offset: 0x080F8 The cycle counter counts the number of clock

Access: Hardware = Read/Write cycles.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	CYCLE_CNT	Counts the number of clock cycles

6.2.10.34 Quiet Time 1 (MAC_PCU_QUIET_TIME_1)

Offset: 0x080FC

Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x0

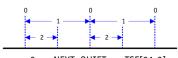
The quiet time registers implement the quiet time function specified in the proposed 802.11h extension supporting radar detection.

Bit	Name	Description
16:0	RES	Reserved
17	QUIET_ACK_CTS_ENABLE	If set, then the MAC sends an ACK or CTS in response to a received frame
31:18	RES	Reserved

6.2.10.35 Quiet Time 2 (MAC_PCU_QUIET_TIME_2)

Offset: 0x080FC

Access: Hardware = Read-Only


Software = Read/Write

Reset Value: 0x0

The Quiet Time registers implement the quiet time function specified in the proposed 802.11h

extension supporting radar detection.

NOTE: QUIET_ENABLE is implemented as GENERIC_TIMER_ENABLE and NEXT_QUIET as GENERIC_TIMER_NEXT. QUIET_PERIOD is implemented as GENERIC_TIMER_PERIOD.

 $0 = NEXT_QUIET = TSF[31:0]$

1 = QUIET_PERIOD

2 = QUIET_DURATION (Chip remains awake during QUIET_DURATION)

Bit	Name	Description
15:0	RES	Reserved
31:16	QUIET_DURATION	The length of time in TUs that the chip is required to be quiet

6.2.10.36 QoS No ACK (MAC_PCU_QOS_NO_ACK)

Offset: 0x08108

Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x52

This register provides a mechanism to locate the NoACK information in the QoS field and determine which encoding means NOACK.

Bit	Name	Description	
3:0	NOACK_2_BIT_VALUES	These values are of a two bit field that	indicate No ACK
		NOACK_2_BIT_VALUE	Encoding Matching No ACK
		xxx1	00
		xx1x	01
		x1xx	10
		1xxx	11
6:4	NOACK_BIT_OFFSET	Offsets from the byte where the No Accan range from 0 to 6 only	k information should be stored; offset
8:7	NOACK_BYTE_OFFSET	Number of bytes from the byte after er byte location where No Ack information at byte offset 25 for 3-address packets a	on is stored. (The end of the header is
31:9	RES	Reserved	

6.2.10.37 PHY Error Mask (MAC_PCU_PHY_ERROR_MASK)

Offset: 0x0810C Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x2

NOTE: Provides the ability to choose which PHY errors from the baseband to filter. The error number offsets into this register. If the mask value at the offset is 0, this error filters and does not show up on the Rx queue.

Bit	Name	Description
0	ERROR TRANSMIT_UNDERRUN	Transmit underrun error
3:1	RES	Reserved
4	ERROR PANIC	Panic error
5	ERROR RADAR_DETECT	Radar detect error
6	ERROR ABORT	Abort error
7	ERROR TX_INTERRUPT_RX	Transmit interrupt
16:8	RES	Reserved
17	ERROR OFDM TIMING	False detection for OFDM
18	ERROR OFDM SIGNAL_PARITY	OFDM signal parity error
19	ERROR OFDM RATE_ILLEGAL	OFDM illegal rate error
20	ERROR OFDM LENGTH_ILLEGAL	OFDM illegal length error
21	ERROR OFDM POWER_DROP	OFDM power drop error
22	ERROR OFDM SERVICE	OFDM service error
23	ERROR OFDM RESTART	OFDM restart error
24	RES	Reserved
25	ERROR CCK TIMING	False detection for CCK
26	ERROR CCK HEADER_CRC	CCK CRC header error
27	ERROR CCK RATE_ILLEGAL	CCK illegal rate error
29:28	RES	Reserved
30	ERROR CCK SERVICE	CCK service error
31	ERROR CCK RESTART	CCK restart error

6.2.10.38 Rx Buffer Threshold (MAC_PCU_RXBUF_THRESHOLD)

Offset: 0x08114

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
10:0	RXBUF_THRSHD	When the number of valid entries in the Rx buffer is larger than this threshold, host interface logic gives higher priority to the Rx side to prevent Rx buffer overflow.
31:11	RES	Reserved

6.2.10.39 QoS Control (MAC_PCU_MIC_QOS_CONTROL)

Offset: 0x08118

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0xAA

Bit	Name	Description	
1:0	MIC_QOS_CONTROL [0]	MIC QOS control [0]	
		0 Use 0 when calculating Michael	
		1 Use 1 when calculating Michael	
		2 Use MIC_QOS_SELECT when calculating Michael	
		3 Use inverse of MIC_QOS_SELECT when calculating Michael	
3:2	MIC_QOS_CONTROL [1]	MIC QOS control [1]. See options for "MIC_QOS_CONTROL [0]".	
5:4	MIC_QOS_CONTROL [2]	MIC QOS control [2]. See options for "MIC_QOS_CONTROL [0]".	
7:6	MIC_QOS_CONTROL [3]	MIC QOS control [3]. See options for "MIC_QOS_CONTROL [0]".	
9:8	MIC_QOS_CONTROL [4]	MIC QOS control [4]. See options for "MIC_QOS_CONTROL [0]".	
11:10	MIC_QOS_CONTROL [5]	MIC QOS control [5]. See options for "MIC_QOS_CONTROL [0]".	
13:12	MIC_QOS_CONTROL [6]	MIC QOS control [6]. See options for "MIC_QOS_CONTROL [0]".	
15:14	MIC_QOS_CONTROL [7]	MIC QOS control [7]. See options for "MIC_QOS_CONTROL [0]".	
16	MIC_QOS_ENABLE	Enable MIC QOS control	
		0 Disable hardware Michael	
		1 Enable hardware Michael	
31:17	RES	Reserved	

6.2.10.40 Michael QoS Select (MAC_PCU_MIC_QOS_SELECT)

Offset: 0x0811C

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x3210

Bit	Name	Description
3:0	MIC_QOS_SELECT [0]	MIC QOS select [0]. Select the OOS TID bit when calculating Michael.
7:4	MIC_QOS_SELECT [1]	MIC QOS select [1]. Select the OOS TID bit when calculating Michael.
11:8	MIC_QOS_SELECT [2]	MIC QOS select [2]. Select the OOS TID bit when calculating Michael.
15:12	MIC_QOS_SELECT [3]	MIC QOS select [3]. Select the OOS TID bit when calculating Michael.
19:16	MIC_QOS_SELECT [4]	MIC QOS select [4]. Select the OOS TID bit when calculating Michael.
23:20	MIC_QOS_SELECT [5]	MIC QOS select [5]. Select the OOS TID bit when calculating Michael.
27:24	MIC_QOS_SELECT [6]	MIC QOS select [6]. Select the OOS TID bit when calculating Michael.
31:28	MIC_QOS_SELECT [7]	MIC QOS select [7]. Select the OOS TID bit when calculating Michael.

6.2.10.41 Miscellaneous Mode (MAC_PCU_MISC_MODE)

Offset: 0x08120

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
0	BSSID_MATCH_FOR CE	If the BSSID_MATCH_FORCE bit is set, all logic based on matching the BSSID thinks that the BSSID matches.
1	RES	Reserved
2	MIC_NEW_ LOCATION_ENABLE	If MIC_NEW_LOCATION_ENABLE is set, the Tx Michael Key is assumed to be co-located in the same entry that the Rx Michael key is located.
3	TX_ADD_TSF	If the TX_ADD_TSF bit is set, the TSF in the transmit packet will be added to the internal TSF value for transmit beacons and prob_response frames.
4	CCK_SIFS_MODE	If the CCK_SIFS_MODE is set, the chip assumes that it is using 802.11g mode where SIFS is set to 10 μ s and non-CCK frames must add 6 to SIFS to make it CCK frames. This bit is needed in the duration calculation, which also needs the SIFS_TIME register.
11:5	RES	Reserved
12	TXOP_TBTT_LIMIT_ ENABLE	If this limit is set, then logic to limit the value of the duration to fit the time remaining in TXOP and time remaining until TBTT is turned on. This logic will also filter frames, which will exceed TXOP.
17:13	RES	Reserved
18	FORCE_QUIET_ COLLISION	If the FORCE_QUIET_COLLISION bit is set, the PCU thinks that it is in quiet collision period, kills any transmit frame in progress, and prevents any new frame from starting.
20:19	RES	Reserved
21	TBTT_PROTECT	If the TBTT_PROTECT bit is set, then the time from TBTT to 20 μ s after TBTT is protected from transmit. Turn this off in ad hoc mode or if this MAC is used in the AP.
22	HCF_POLL _CANCELS_NAV	If the HCF_POLL_CANCELS_NAV bit is set when a directed HCF poll is received, the current NAV is cancelled and HCF data burst can proceed at SIFS.
23	RX_HCF_POLL _ENABLE	If the RX_HCF_POLL_ENABLE bit is set, then the MAC is enabled to receive directed HCF polls. If this bit is not set the receive state machine does not tell the rest of the MAC that it has received a directed HCF poll.
24	CLEAR_VMF	If the CLEAR_VMF bit is set, then the VMF mode in the transmit state machine will be cleared. Set this bit to enter fast channel change mode and clear it once fast channel change is over.
25	CLEAR_FIRST_HCF	If the CLEAR_FIRST_HCF bit is set, then the first_hcf state will be cleared. Set this bit to enter fast channel change mode and clear the bit once fast channel change is over.
26	CLEAR_BA_VALID	If the CLEAR_BA_VALID bit is set, the state of the block ACK storage is invalidated.
27	SEL_EVM	If the SEL_EVM bit is set, the evm field of the Rx descriptor status contains the EVM data received from the baseband. If this bit is cleared, the evm field of the Rx descriptor status contains 3 bytes of Legacy PLCP, 2 service bytes, and 6 bytes of HP PLCP.
28	ALWAYS_PERFORM	If this bit is set, key search is performed for every frame in an aggregate. If this
	KEY_SEARCH	bit is cleared, key search is only performed for the first frame of an aggregate. Unless the transmitter address is different between the frames in an aggregate. This bit has no effect on non-aggregate frame packets.
31:29	RES	Reserved

6.2.10.42 Filtered OFDM Counter (MAC_PCU_FILTER_OFDM_CNT)

Offset: 0x08124 The filtered OFDM counters use the MIB control signals.

Access: Hardware = Read/Write

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
23:0	FILTOFDM_CNT	Counts the OFDM frames that were filtered using MIB control signals. The MIB freeze register holds all the values of these registers, and MIB zeros out all the values of these registers. PIB MIB forces incrementation of all registers in each cycle. This counter saturates at the highest value and is writable. If the upper two bits of these counters are b11, PCU_MIB_THRESHOLD is asserted and an interrupt generated.
31:24	RES	Reserved

6.2.10.43 Filtered CCK Counter (MAC_PCU_Filter_CCK_CNT)

Offset: 0x08128

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
23:0	FILTCCK_CNT	Counts the CCK frames that were filtered using MIB control signals. The MIB freeze register holds all the values of these registers, and MIB zeros out all the values of these registers. PIB MIB forces incrementation of all registers in each cycle. This counter saturates at the highest value and is writable. If the upper two bits of these counters are b11, PCU_MIB_THRESHOLD is asserted and an interrupt generated.
31:24	RES	Reserved

6.2.10.44 PHY Error Counter 1 (MAC PCU PHY ERR CNT 1)

Offset: 0x0812C

Access: Hardware = Read/Write

Software = Read/Write

Reset Value: 0x0

The PHY error counters count any PHY error matching the respective mask. The bits of 32-bit masks correspond to the first 32 encoded values of the error. Setting multiple bits in the mask provides an ORing function to provide flexibility in counting. For example, if setting the mask bits to 0xFF0000FF, then all PHY errors from 0-7 and 24-31 are counted.

Bit	Name	Description
23:0	PHY_ERROR_CNT1	Counts any PHY error1 using MIB control signals.
		The MIB freeze register holds all the values of these registers, and MIB zeros out all the values of these registers. PIB MIB forces incrementation of all registers in each cycle.
		Counter saturates at the highest value and is writable. If the upper two counter bits are b11, PCU_MIB_THRESHOLD is asserted and an interrupt generated.
31:24	RES	Reserved

6.2.10.45 PHY Error Counter 1 Mask (MAC_PCU_PHY_ERR_CNT_1_MASK)

Offset: 0x08130

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0		Counts any error that matches the PHY error1 mask. The values of any 32-bit masks correspond to the first 32 encoded values of the error. Setting multiple bits in the mask provides an ORing function to allow counting flexibility (e.g., setting the mask to 0xFF0000FF means all PHY errors from 0:7 and 24:31 are counted).

6.2.10.46 PHY Error Counter 2 (MAC_PCU_PHY_ERR_CNT_2)

Offset: 0x08134

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
23:0	PHY_ERROR_CNT	Counts any error that matches the PHY error2 mask.
		The values of any 32-bit masks correspond to the first 32 encoded values of the error. Setting multiple bits in the mask provides an ORing function to allow counting flexibility (e.g., setting the mask to 0xFF0000FF means all PHY errors from 0:7 and 24:31 are counted).
31:24	RES	Reserved

6.2.10.47 PHY Error Counter 2 Mask (MAC_PCU_PHY_ERR_CNT_2_MASK)

Offset: 0x08138

Access: Hardware = Read-Only

Software = Read/Write

Bit	Name	Description
31:0	PHY_ERROR_CNT_MASK2	Counts any PHY error2 using MIB control signals.
		The MIB freeze register holds all the values of these registers, and MIB zeros out all the values of these registers. PIB MIB forces incrementation of all registers in each cycle.
		This counter saturates at the highest value and is writable. If the upper two bits of these counters are b11, PCU_MIB_THRESHOLD is asserted and an interrupt generated.

6.2.10.48 TSF Threshold (MAC_PCU_TSF_THRESHOLD)

Offset: 0x0813C

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
15:0	TSF_THRESHOLD	Asserts the PCU_TSF_OUT_OF_RANGE_INTER if the corrected receive TSF in a beacon is different from the internal TSF by more than this threshold.
31:16	RES	Reserved

6.2.10.49 PHY Error EIFS Mask (MAC_PCU_PHY_ERROR_EIFS_MASK)

Offset: 0x08144

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	VALUE	This mask provides the ability to choose which PHY errors from the baseband cause EIFS delay. The error number is used as an offset into this mask. If the mask value at the offset is 1, then this error will not cause EIFS delay.

6.2.10.50 PHY Error Counter 3 (MAC_PCU_PHY_ERR_CNT_3)

Offset: 0x08168

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
23:0	PHY_ERROR_CNT3	Count of PHY errors that pass the PHY_ERR_CNT_3_MASK filter
31:24	RES	Reserved

6.2.10.51 PHY Error Counter 3 Mask (MAC_PCU_PHY_ERR_CNT_3_MASK)

Offset: 0x0816C

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
31:0	PHY_ERROR_CNT_ MASK3	Mask of the PHY error number allowed to be counted

6.2.10.52 HCF Timeout (MAC_PCU_HCF_TIMEOUT)

Offset: 0x08178

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
15:0	VALUE	The time the PCU waits after the HCF trigger timer occurs before the PCU returns to sleep mode, unless the HCF poll has been detected. An interrupt is generated if the timeout occurs before a HCF poll is detected.
31:16	RES	Reserved

6.2.10.53 SIFS, Tx Latency and ACK Shift (MAC_PCU_TXSIFS)

Offset: 0x081D0

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description	
7:0	SIFS_TIME	SIFS_TIME is the number of µs in SIFS.	
		For example, in 802.11a, SIFS_TIME would be set to 16. This value is used to determine quiet collision and filtering due to TBTT and TXOP limits.	
11:8	TX_LATENCY	TX_LATENCY is the latency in µs from tx_frame being asserted by the MAC to when the energy of the frame is on the air. This value is used to decrease the time to TBTT and time remaining in TXOP in the calculation to determine quiet collision.	
14:12	ACK_SHIFT	ACK_SHIFT is used to generate the ACK_TIME, which is used to generate the ACK_SIFS_TIME. The ACK_TIME table in the hardware assumes a channel width of 2.5 MHz. This value should be 3 for CCK rates.	
		0 2.5 MHz	
		1 5 MHz	
31:15	RES	Reserved	

6.2.10.54 TxOP for Non-QoS Frames (MAC_PCU_TXOP_X)

Offset: 0x081EC

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
7:0	SIFS_TIME	TXOP in units of 32 μs.
		A TXOP value exists for each QOS TID value.
		When a new burst starts, the TID is used to select one of the 16 TXOP values. This TXOP decrements until the end of the burst to make sure that the packets are not sent out by the time TXOP expires. TXOPX is used for legacy non QOS bursting.
31:8	RES	Reserved

6.2.10.55 TxOP for TID 0 to 3 (MAC_PCU_TXOP_0_3)

Offset: 0x081F0

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
7:0	VALUE_0	Value in units of 32 μs
15:8	VALUE_1	Value in units of 32 μs
23:16	VALUE_2	Value in units of 32 μs
31:24	VALUE_3	Value in units of 32 μs

6.2.10.56 TXOP for TID 4 to 7 (MAC_PCU_TXOP_4_7)

Offset: 0x081F4

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
7:0	VALUE_4	Value in units of 32 μs
15:8	VALUE_5	Value in units of 32 μs
23:16	VALUE_6	Value in units of 32 μs
31:24	VALUE_7	Value in units of 32 μs

6.2.10.57 TXOP for TID 8 to 11 (MAC_PCU_TXOP_8_11)

Offset: 0x081F8

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
7:0	VALUE_8	Value in units of 32 μs
15:8	VALUE_9	Value in units of 32 µs
23:16	VALUE_10	Value in units of 32 µs
31:24	VALUE_11	Value in units of 32 µs

6.2.10.58 TXOP for TID 0 to 3 (MAC_PCU_TXOP_12_15)

Offset: 0x081FC

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
7:0	VALUE_12	Value in units of 32 μs
15:8	VALUE_13	Value in units of 32 μs
23:16	VALUE_14	Value in units of 32 μs
31:24	VALUE_15	Value in units of 32 μs

6.2.10.59 Generic Timers (MAC_PCU_GENERIC_TIMERS[0:15])

Offset: 0x08200

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Address	Default	Description
0x8200- 0x821C	0x0	GENERIC_TIMER_NEXT
0x8220- 0x823C	0x0	GENERIC_TIMER_PERIOD

NOTE: GENERIC _TIMER_0, unlike other generic timers, does not wake the MAC before timer expiration and its overflow mechanism does not generate an interrupt. Instead, it silently adds this period repeatedly until the next timer has advanced past the TSF. Thus when MAC wakes after sleeping for multiple TBTTs, the TGBTT does not assert repeatedly or cause the beacon miss count to jump.

Generic Timer	Function
0	TBTT
1	DMA beacon alert
2	SW beacon alert
3	HCF trigger timer
4	NEXT_TIM
5	NEXT_DTIM
6	Quiet time trigger
7	No dedicated function

6.2.10.60 Generic Timers Mode (MAC_PCU_GENERIC_TIMERS_MODE)

Offset: 0x08240

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x00100000

Bit	Name	Description
7:0	ENABLE	
10:8	OVERFLOW_INDEX	Indicates the last generic timer that overflowed
31:11	THRESH	Number of μs that generate a threshold interrupt if exceeded in TSF comparison

6.2.10.61 32 KHz Sleep Mode (MAC_PCU_SLP32_MODE)

Offset: 0x08244

Access: Hardware = Read-Only Software = Read/Write Reset Value: See field description

Bit	Name	Description
19:0	HALF_CLK_LATENCY	Time in μs from the detection of the falling edge of the 32 KHz clk to the rising edge of the 32 KHz clk. Reset Value: $0xF424$
20	ENABLE	When set, indicates that the TSF should be allowed to increment on its own. Reset Value: 0x1
21	TSF_WRITE_STATUS	The TSF write status. Reset Value: 0x1
22	DISABLE_32KHZ	Indicates the 32 KHz clock is not used to control the TSF, but the MAC clock increments the TSF. Only used on AP class devices that do not go to sleep. Reset Value: 0x0
31:23	RES	Reserved

6.2.10.62 32 KHz Sleep Wake (MAC_PCU_SLP32_WAKE)

Offset: 0x08248

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x800

Bit	Name	Description
15:0	XTL_TIME	Time in μs before a generic timer should expire that the wake signal asserts to the crystal wake logic. Add an extra 31 μs due to 32 KHz clock resolution.

6.2.10.63 32 KHz Sleep Increment (MAC_PCU_SLP32_INC)

Offset: 0x0824C

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x1E848

Bit	Name	Description
19:0	TSF_INC	Time in $1/2^{12}$ of a μ s the TSF increments on the rising edge of the 32 KHz clk (30.5176 μ s period). The upper 8 bits are at μ s resolution. The lower 12 bits are the fractional portion. $\frac{1 \text{ unit}}{1/212 \text{ ms}} = \frac{X}{30.5176 \text{ ms}}$ Where $X = 125000$, or $0x1E848$ is the default setting for 32.768 MHz clock.
31:20	RES	Reserved

6.2.10.64 Sleep MIB Sleep Count (MAC_PCU_SLP_MIB1)

Offset: 0x08250

Access: Hardware = Read/Write

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	SLEEP_CNT	Counts the number of 32 KHz clock cycles that the MAC has been asleep

6.2.10.65 Sleep MIB Cycle Count (MAC_PCU_SLP_MIB2)

Offset: 0x08254

Access: Hardware = Read/Write Software = Read/Write

Bit	Name	Description
31:0	CYCLE_CNT	Counts the absolute number of 32 KHz clock cycles. When CYCLE_CNT bit 31 is 1, the MIB interrupt will be asserted. SLEEP_CNT and CYCLE_CNT are saturating counters when the value of CYCLE_CNT reaches 0xFFFF_FFFF both counters will stop incrementing.

6.2.10.66 Sleep MIB Control Status (MAC_PCU_SLP_MIB3)

Offset: 0x08258

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
0	CLR_CNT	CLR_CNT clears both SLEEP_CNT and CYCLE_CNT. Pending is asserted while the clearing of these registers is pending.
1	PENDING	SLEEP_CNT, CYCLE_CNT, and CLR_CNT are writable for diagnostic purposes. Before every read/write, the pending bit should be polled to verify any pending write has cleared.
31:2	RES	Reserved

6.2.10.67 Global Mode (MAC_PCU_20_40_MODE)

Offset: 0x08318

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
0	JOINED_RX_CLEAR	Setting this bit causes the rx_clear used in the MAC to be the AND of the control channel rx_clear and the extension channel rx_clear. If this bit is clear then the MAC will use only the control channel rx_clear.
31:1	RES	Reserved

6.2.10.68 Difference Rx_Clear Counter (MAC_PCU_RX_CLEAR_DIFF_CNT)

Offset: 0x08328

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
31:0	RX_CLEAR_DIFF_CNT	A cycle counter MIB register. On every cycle of the MAC clock, this counter increments every time the extension channel rx_clear is low when the MAC is not actively transmitting or receiving. Due to a small lag between tx_frame and rx_clear as well as between rx_clear and rx_frame, the count may have some residual value even when no activity is on the extension channel.

6.2.10.69 Control Registers for Block BA Control Fields (MAC_PCU_BA_BAR_CONTROL)

Offset: 0x08330

Access: Hardware = Read-Only Software = Read/Write Reset Value: See field description

Bit	Name	Description
3:0	COMPRESSED_OFFSET	Indicates the bit offset in the block ACK or block ACK request control field which defines the location of the COMPRESSED bit. Reset Value: 0x2
7:4	ACK_POLICY_OFFSET	Indicates the bit offset in the block ACK or block ACK request control field which defines the location of the ACK policy bit. Reset Value: 0x0
8	COMPRESSED_VALUE	The value of the compressed bit. Reset Value: 0x1
9	ACK_POLICY_VALUE	The value of the ACK policy bit. Reset Value: 0x1
31:10	RES	Reserved

6.2.10.70 Legacy PLCP Spoof (MAC_PCU_LEGACY_PLCP_SPOOF)

Offset: 0x08334

Access: Hardware = Read-Only Software = Read/Write Reset Value: See field description

Bit	Name	Description
7:0	EIFS_MINUS_DIFS	Defines the number of μ s to be subtracted from the transmit packet duration to provide fairness for legacy devices as well as HT devices. Reset Value: $0x0$
12:8	MIN_LENGTH	This register defines the minimum spoofed legacy PLCP length. Reset Value: 0xE
31:9	RES	Reserved

6.2.10.71 PHY Error Mask and EIFS Mask (MAC_PCU_PHY_ERROR_MASK_CONT)

Offset: 0x08338

Access: Hardware = Read-Only Software = Read/Write

Bit	Name	Description
7:0	MASK_VALUE	Continuation of register MAC_PCU_PHY_ERROR_MASK_VALUE. Bits [2], [1], and [0] correspond to PHY errors 34, 33, and 32. All others PHY errors above 39 will be filtered.
15:8	RES	Reserved
23:16	EIFS_VALUE	Continuation of register MAC_PCU_PHY_ERROR_MASK_VALUE. Bits [2], [1], and [0] correspond to PHY errors 34, 33, and 32. All others PHY errors above 39 cause EIFS delay.
31:19	RES	Reserved

6.2.10.72 Tx Timer (MAC_PCU_TX_TIMER)

Offset: 0x0833C

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
14:0	TX_TIMER	Guarantees the transmit frame does not take more time than the values programmed in this timer. The unit for this timer is in μ s.
15	TX_TIMER_ENABLE	Enabled when this bit is set to 1.
31:16	RES	Reserved

6.2.10.73 Key Cache (MAC_PCU_KEY_CACHE[0:1023])

Offset: 0x08800

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Table 6-15. Offset to First Dword of Nth Key [1]

Tuble 0 19: Offset to Thist Dword of Well Rey						
Intra Key	Offset Bits	Desc	ription			
8*N + 00	31:0	Key[3	31:0]			
8*N + 04	15:0	Key[4	Key[47:32]			
8*N + 08	31:0	Key[2	79:48]			
8*N + 0C	15:0	Key[9	Key[95:79]			
8*N + 10	31:0	Key[127:96]			
8*N + 14	2:0	Key t	уре:			
		0	40b			
		1	104b			
		2	TKIP without MIC			
		3	128b			
		4	TKIP			
		5	Reserved			
		6	AES_CCM			
		7	Do nothing			
8*N + 14	14:3	Reser	rved			
8*N + 18	31:0	Addı	[32:1]			
8*N + 1C	14:0	Addı	[47:33]			
	15	Key v	valid			
	17:16	Key I	D			

[1]key = (PCI Address: 8800 + 20*N)

When the key type is 4 (TKIP) and key is valid, this entry + 64 contains the Michael key.

Table 6-16. Offset to First Dword of Nth Key (continued)

Intra Key	Offset Bits	Description
8*N + 800	31:0	Rx Michael key 0
8*N + 804	15:0	Tx Michael key 0 [31:16]
8*N + 808	31:0	Rx Michael key 1
8*N + 80C	15:0	Tx Michael key 0 [15:0]
8*N + 810	31:0	Tx Michael key 1
8*N + 814	RES	Reserved
8*N + 818	RES	Reserved
8*N + 81C	RES	Reserved
	15	Key Valid = 0

TKIP keys are not allowed to reside in the entries 64–127 because they require the Michael key. Entries 64–67 are always reserved for Michael.

NOTE: Internally this memory is 50 bits wide, thus to write a line of the memory requires two 32-bit writes. All writes to registers with an offset of 0x0 or 0x8 actually write to a temporary holding register. A write to register with an offset of 0x4 or 0xC writes to the memory with the current write value concatenated with the temporary holding register.

7. Electrical Characteristics

7.1 Absolute Maximum Ratings

Table 7-1 summarizes the absolute maximum ratings and Table 7-2 lists the recommended operating conditions for the AR9220.

Absolute maximum ratings are those values beyond which damage to the device can occur. Functional operation under these conditions, or at any other condition beyond those indicated in the operational sections of this document, is not recommended.

Table 7-1. Absolute Maximum Ratings

Symbol	Parameter	Max Rating	Unit
V _{dd12}	Supply voltage	-0.3 to 1.8	V
V _{dd33}	Maximum I/O supply voltage	-0.3 to 4.0	V
RF _{in}	Maximum RF input (reference to $50~\Omega$)	+10	dBm
T _{store}	Storage temperature	-60 to 150	°C
T_j	Junction temperature	125	°C
ESD	Electrostatic Discharge Tolerance	2000	V
	Electrostatic Discharge Tolerance (XTALO and XTALI pins)	1500	V

7.2 Recommended Operating Conditions

Table 7-2. Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{dd12}	Supply voltage ^[1]	±5%	1.14	1.2	1.26	V
V _{dd33}	I/O voltage	±10%	2.97	3.3	3.63	V
T _{case}	Case temperature	_	0	_	95	°C
Psi _{JT}	Thermal Parameter ^[2]	_	_	_	2.0	°C/W

^[1] Since the 1.2 V supply is derived from 3.3 V, the AR9220 expects that 1.2 V lags 3.3 V.

October 2009

^[2]For 12x12 mm BGA package.

Figure 7-1 shows the supply voltage ramp-up and reset timing diagram.

Figure 7-1. Voltage Ramp-Up and Reset Timing

7.3 40 MHz Clock Characteristics

When using an external clock, the XTALI pin is grounded and the XTALO pin should be driven with a square wave clock.

The DC voltage level of XTALO should be approximately 0.6 V. The external clock driving XTALO must have sharp rise and fall times to reduce jitter.

Table 7-3. 40 MHz Clock Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	Input High Voltage	_	1	_	3.3	V
V _{IL}	Input Low Voltage	_	-0.2	_	0.2	V
T _{DCycle}	Duty Cycle	_	40	50	60	%
T _{Rise}	Clock Rise Time	_	_	_	2	ns
T _{Fall}	Clock Fall Time	_		_	2	ns

7.4 Radio Characteristics

The following conditions apply to the typical characteristics unless otherwise specified:

7.4.1 Receiver Characteristics

Table 7-3 and Table 7-4 summarize the AR9220 receiver characteristics.

$$V_{dd2} = 1.2 \text{ V}$$

 $V_{dd3} = 3.3 \text{ V}, T_{amb} = 25 \text{ }^{\circ}\text{C}$

Table 7-4. Receiver Characteristics for 2.4 GHz Operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F_{rx}	Receive input frequency range	5 MHz center frequency	2.412	_	2.472	GHz
NF	Receive chain noise figure (max gain)	See Note [1]	_	4.5		dB
S _{rf}	Sensitivity					
	CCK, 1 Mbps	See Note [2]	-80	-96	_	dBm
	CCK, 11 Mbps		-76	-91	_	
	OFDM, 6 Mbps		-82	-95	_	
	OFDM, 54 Mbps		-65	-81	_	
	HT20, MCS0, 1 stream, 1 Tx, 1 Rx	See Note [2]	-82	-95	_	dBm
	HT20, MCS7, 1 stream, 1 Tx, 1 Rx		-64	-77	_	
	HT20, MCS8, 2 stream, 2 Tx, 2 Rx		-82	-94		
	HT20, MCS15, 2 stream, 2 Tx, 2 Rx		-64	-75	_	
	HT40, MCS0, 1 stream, 1 Tx, 1 Rx	See Note [2]	-79	-92		dBm
	HT40, MCS7, 1 stream, 1 Tx, 1 Rx		-61	-75		
	HT40, MCS8, 2 stream, 2 Tx, 2 Rx		-79	-91		
	HT40, MCS15, 2 stream, 2 Tx, 2 Rx		-61	-71		
IP1dB	Input 1 dB compression (min. gain)	_	_	-8		dBm
IIP3	Input third intercept point (min. gain)	_	_	5	_	dBm
Z _{RFin_input}	Recommended LNA differential drive impedance	Ch 0, Ch 1	_	16-j23 ^[3]		Ω
ER _{phase}	I,Q phase error	_	_	1 ^[4]		0
ERamp	I,Q amplitude error	_	_	$0.1^{[4]}$		dB
R _{adj}	Adjacent channel rejection					
,	CCK	10 to 20 MHz ^[5]	35	36	_	dB
	OFDM, 6 Mbps		16	36	_	
	OFDM, 54 Mbps		-1	26	_	
	HT20, MCS0	10 to 20 MHz ^[5]	16	35	_	dB
	HT20, MCS7		-2	23	_	
	HT20, MCS8		16	36	_	
	HT20, MCS15		-2	20	_	
TRpowup	Time for power up (from synthesizer on)	_	_	1.5	_	μs

^[1] For improved sensitivity performance, an external LNA may be used.

^[2]Sensitivity performance based on Atheros reference design, which includes Tx/Rx antenna switch, and XLNA. Minimum values based on IEEE 802.11 specifications.

^[3]Estimated value.

^[4]IQ Phase Error and IQ Amplitude Error are analog values prior to digital correction.

^[5] Typical values measured with reference design. Minimum values based on IEEE 802.11 specifications.

Table 7-5. Receiver Characteristics for 5 GHz Operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{rx}	Receive input frequency range	20 MHz center frequency	5.18	_	5.825	GHz
NF	Receive chain noise figure (max. gain)	See Note [1]	_	10	_	dB
S _{rf}	Sensitivity	-				II.
	6 Mbps	See Note [2]	-82	-95	79 — 95 — 76 — 93 — 73 — 74 — 90 — 70 — 44 — 14 ^[3] —	dBm
	54 Mbps		-65	-79	_	
	HT20, MCS0, 1 stream, 1 Tx, 1 Rx	See Note [2]	-84	-95	_	dBm
	HT20, MCS7, 1 stream, 1 Tx, 1 Rx		-64	-76	_	
	HT20, MCS8, 2 stream, 2 Tx, 2 Rx		-84	-93	_	
	HT20, MCS15, 2 stream, 2 Tx, 2 Rx		-64	-73	_	
	HT40, MCS0, 1 stream, 1 Tx, 1 Rx	See Note [2]	-79	-92	_	dBm
	HT40, MCS7, 1 stream, 1 Tx, 1 Rx		-61	-74	_	
	HT40, MCS8, 2 stream, 2 Tx, 2 Rx		-79	-90	_	
	HT40, MCS15, 2 stream, 2 Tx, 2 Rx		-61	-70	_	-
IP1dB	Input 1 dB compression (min. gain)	_		-4	_	dBm
IIP3	Input third intercept point (min. gain)	_	_	5	_	dBm
Z _{RFin_input}	Recommended LNA differential drive impedance	Ch 0, Ch 1	_	17+j14 ^[3]	_	Ω
ER _{phase}	I,Q phase error	_	_	0.98 ^[4]	_	0
ERamp	I,Q amplitude error	_		0.23 ^[4]	_	dB
R _{adj}	Adjacent channel rejection			1		
,	6 Mbps	10 to 20 MHz ^[5]	16	34	_	dB
	54 Mbps		-1	18	_	
	HT20, MCS0	10 to 20 MHz ^[5]	16	34	_	dB
	HT20, MCS7		-2	18	_	
	HT20, MCS8		16	34	_	-
	HT20, MCS15		-2	16	_	
	HT40, MCS0	10 to 20 MHz ^[5]	16	25	_	dB
	HT40, MCS7		-2	12	_	-
	HT40, MCS8		16	26	_	-
	HT40, MCS15		-2	10	_	-

Table 7-5. Receiver Characteristics for 5 GHz Operation (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{alt}	Alternate channel rejection		J.	1	II.	
	6 Mbps	20 to 30 MHz ^[5]	32	43	_	dB
	54 Mbps		14	19	_	
	HT20, MCS0	20 to 30 MHz ^[5]	32	43	_	dB
	HT20, MCS7		14	19	_	
	HT20, MCS8		32	42	_	
	HT20, MCS15		14	18	_	
	HT40, MCS0	20 to 30 MHz ^[5]	32	37	_	dB
	HT40, MCS7		14	19	_	
	HT40, MCS8		32	37	_	
	HT40, MCS15		14	19	_	
TRpowup	Time for power up (from synthesizer on)	_	_	1.5	_	μs

^[1]For improved sensitivity performance, an external LNA may be used.

^[2] Sensitivity performance based on Atheros reference design, which Tx/Rx antenna switch, and XLNA. Minimum values based on IEEE 802.11 specifications.

^[3]Estimated value.

^[4]IQ Phase Error and IQ Amplitude Error are analog values prior to digital correction.

^[5] Typical values measured with reference design. Minimum values based on IEEE 802.11 specifications.

7.4.2 Transmitter Characteristics

Table 7-5 summarizes the transmitter characteristics for the AR9220.

Table 7-6. Transmitter Characteristics for 2.4 GHz Operation

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
F _{tx}	Transmit o	utput frequency range	5 MHz center frequency	2.412	_	2.472	GHz
P _{out}	Mask Com	pliant CCK output power	See Note [1]	_	17	_	dBm
	EVM Com 64 QAM	pliant OFDM output power for	See Note [1]	_	17	_	dBm
	HT20, MC	S15	_	_	15	_	dBm
	HT40, MC	S15		_	14	_	
SPgain	PA gain ste	ep	See Note [2]	_	0.5	_	dB
A _{pl}	Accuracy of	of power leveling loop	See Notes [3] [4]	_	±0.5	_	dB
Z _{RFout_load}	Recommended differential PA load impedance		See Notes ^[5]	_	109-j238	_	Ω
OP1dB	Output P1dB (max. gain)		2.442 GHz	_	11	_	dBm
OIP3	Output third order intercept point (max. gain)		2.442 GHz	_	20	_	dBm
SS	Sideband suppression		_	_	-37	_	dBc
RS	Synthesize	r reference spur:	_	_	-63	_	dBc
Tx _{mask}	Transmit s	pectral mask					
	CCK	At 11 MHz offset	See Note [6]		-38	-30	dBr
		At 22 MHz offset			-53	-50	
	OFDM	At 11 MHz offset	See Note [6]	_	-25	-20	dBr
		At 20 MHz offset		_	-39	-28	
		At 30 MHz offset		_	-47	-40	
	HT20	At 11 MHz offset	See Note [6]	_	-24	-20	dBr
		At 20 MHz offset		_	-39	-28	
		At 30 MHz offset		_	-48	-40	
	HT40	At 21 MHz offset	See Note [6]	_	-27	-20	dBr
		At 40 MHz offset			-39	-28	
		At 60 MHz offset			-49	-45	
TTpowup	Time for po	ower up (from synthesizer on)		_	1.5	_	μs

^[1] Measured using the balun/XPA recommended by Atheros under closed-loop power control.

^[2]Guaranteed by design.

^[3] Manufacturing calibration required.

^[4] Not including tolerance of external power detector and its temperature variation.

^[5] See the impedance matching circuit in the Atheros reference design schematics. To achieve good RF performance, it is strongly recommended not to alter the RF portion of the Atheros reference design for different matching

^[6] Measured at the antenna connector port. Average conducted transmit power levels = 17 dBm for CCK and OFDM, 17 dBm for HT20 and HT40. System includes external PA. Maximum values based on IEEE 802.11 specifications.

Table 7-7. Transmitter Characteristics for 5 GHz Operation

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
F_{tx}	Transmit ou	itput frequency range	20 MHz center frequency	5.18	_	5.825	GHz
P _{out}	EVM Comp 64 QAM	oliant OFDM output power for	See Note [1]	_	16	_	dBm
	HT20, MCS	15	_		11	_	dBm
	HT40, MCS	15			9	_	
SP _{gain}	PA gain ste	р	See Note [2]		0.5	_	dB
A _{pl}	Accuracy o	f power leveling loop	See Note [3]	_	±0.5	_	dB
Z _{RFout_load}	Recommendad imped	ded differential PA ance	See Notes ^[4]	_	49-j57	_	Ω
OP1dB	Output P1d	lB (max gain)	5.25 GHz		14	_	dBm
OIP3	Output thir (max gain)	d order intercept point	5.25 GHz		23	_	dBm
SS	Sideband si	appression	_		-39	_	dBc
LO _{leak}	LO leakage	: at 2/3 of the RF output	1				
	@ RF=5.15-	5.35 GHz (FCC)	_	_	-35	_	dBm
	@ RF=5.35-	5.725 GHz (ETSI)			-32	_	
	@ RF=5.725	-5.825 GHz (FCC)		-	-30	_	
RS	Synthesizer	reference spur	_		-61	_	dBc
Tx _{mask}	Transmit sp	ectral mask	-				•
	OFDM At 11 MHz offset		See Note [5]	_	-26	-20	dBr
		At 20 MHz offset			-36	-28	
		At 30 MHz offset			-43	-40	
	HT20	At 11 MHz offset	See Note [5]		-24	-20	dBr
		At 20 MHz offset			-35	-28	
		At 30 MHz offset			-43	-40	
	HT40	At 21 MHz offset	See Note [5]	_	-25	-20	dBr
		At 40 MHz offset		_	-36	-28	
		At 60 MHz offset		_	-46	-45	
TTpowup	Time for po	wer up (from synthesizer on)	_	_	1.5	_	μs

^[1] Measured using the balun/XPA recommended by Atheros under closed-loop power control.

^[2]Guaranteed by design.

^[3] Manufacturing calibration required.

^[4] See the impedance matching circuit in the Atheros reference design schematics. To achieve good RF performance, it is strongly recommended not to alter the RF portion of the Atheros reference design for different matching

^[5] Measured at the antenna connector port. Average conducted transmit power levels = 17 dBm for OFDM, 16 dBm for HT20 and 14 dBm for HT40. System includes external PA. Maximum values based on IEEE 802.11 specifications.

7.4.3 Synthesizer Characteristics

Table 7-7 and Table 7-8 summarize the synthesizer characteristics for the AR9220.

Table 7-8. Synthesizer Composite Characteristics for 2.4 GHz Operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Pn	Phase noise (at Tx_Out)					
	At 30 KHz offset		_	-101	_	dBc/
	At 100 KHz offset		_	-103	_	Hz
	At 500 KHz offset		_	-110	_	
	At 1 MHz offset		_	-114	_	
F _C	Center channel frequency	Center frequency at	2.412	_	2.472	GHz
		5 MHz spacing ^[1]				
F _{ref}	Reference oscillator frequency	± 20 ppm ^[2]		40		MHz
TS _{powup}	Time for power up	_	_	200	_	μs

^[1]Frequency is measured at the Tx output.

Table 7-9. Synthesizer Composite Characteristics for 5 GHz Operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Pn	Phase noise (at Tx_Out)					
	At 30 KHz offset		_	-96	_	dBc/
	At 100 KHz offset		_	-97	_	Hz
	At 500 KHz offset		_	-101	_	
	At 1 MHz offset		_	-111	_	
F _c	Center channel frequency	Center frequency at 5 MHz spacing ^[1]	5.18	_	5.825	GHz
F _{ref}	Reference oscillator frequency	± 20 ppm ^[2]	_	40	_	MHz
TS _{powup}	Time for power up	_	_	200	_	μs

^[1]Frequency is measured at the Tx output.

^[2]Over temperature variation and aging.

^[2]Over temperature variation and aging.

7.5 Power Consumption Parameters

The following conditions apply to the typical characteristics unless otherwise specified:

$$V_{dd2} = 1.2 \text{ V}$$

 $V_{dd3} = 3.3 \text{ V}, T_{amb} = 25 \text{ }^{\circ}\text{C}$

Table 7-9 and Table 7-10 show the typical power drain on each of the four on-chip power supply domains as a function of the AR9220's operating mode.

Table 7-10. Power Consumption for 2.4 GHz Operation

Operating Mode	3.3 V Supply (mA)	1.2 V Supply (mA)
Sleep	3	6
Idle (Two-chain Rx)	69	225
Tx (Two-chain)	173	195
Rx (Two-chain)	97	310

Table 7-11. Power Consumption for 5 GHz Operation

Operating Mode	3.3 V Supply (mA)	1.2 V Supply (mA)
Sleep	3	6
Idle (Two-chain Rx)	95	206
Tx (Two-chain)	252	220
Rx (Two-chain)	127	304

October 2009

8. AC Specifications

8.1 PCI Interface Timing

The AR9220 PCI interface supports PCI 2.3 standards. Refer to the applicable standard for further details.

8.2 PCI_CLK Specifications

The clock waveform delivered to the AR9220, as measured at the AR9220 input pins must meet the specifications shown in Figure 8-1 and Table 8-1.

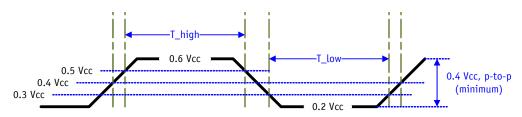


Figure 8-1. PCI Interface Clock Waveform

8.3 PCI Clock Specifications

Table 8-1 depicts the clock specifications.

Table 8-1. Clock Specifications

			MHz	33 MHz		
Symbol	Parameter	Min	Max	Min	Max	Units
T _{cyc}	CLK Cycle Time	15	30	30	∞	ns
T _{high}	CLK High Time	6	_	11	_	ns
T _{low}	CLK Low Time	6	_	11	_	ns
_	CLK Slew Rate	1.5	4	1	4	V/ns

8.3.10 PCI Timing Parameters

Table 8-2 provides the timing parameters for the AR9220 PCI interface.

Table 8-2. PCI Timing Parameters

		66 MHz		33 MHz			
Symbol	Parameter	Min	Max	Min	Max	Units	
T _{val}	CLK to Signal Valid Delay Bussed Signals	2	6	2	11	ns	
T _{val} (PTP)	CLK to Signal Valid Delay Point-to-Point Signals	2	6	2	12	ns	
T_{su}	Input Setup Time to CLK Bussed Signals	3	_	7	_	ns	
T _{su} (PTP)	Input Setup Time to CLK Point-to-Point Signals ^[1]	5	_	10, 12	_	ns	
T_h	Input Hold Time from CLK	0	_	0	_	ns	

^[1]PCI_REQ_L and PCI_GNT_L are point-to-point signals with differing output valid delay and input setup times from bussed signals. PCI_GNT_L has a setup of 10; PCI_REQ_L has a setup of 12. All other signals are bussed.

8.4 EEPROM Timing

Figure 8-2 defines the timing parameters for the EEPROM interface.

Symbol	Parameter		Min	Max	Unit
T _{sck}	EPRM_SCK Cycle Time	33 MHz PCI	15.36		μs
		66 MHz PCI	7.68		μs
T _{high}	High Time of EPRM_SC (Parameter Scales with T	0.35 * T _{sck}	0.40 * T _{sck}	μs	
T_{w_val}	Write Data Valid from Fallin EPRM_SCK (Parameter Scales	0.10 * T _{sck}	0.15 * T _{sck}	μs	
T_{r_su}	Read Data Setup Time to Rising Edge of EPRM_SCK		50	_	ns
T _{r_h}	Read Data Hold Time from Rising Edg	50	_	ns	

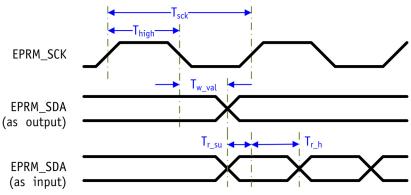


Figure 8-2. **EEPROM Interface Timing**

9. Package Dimensions

The AR9220 BGA-337 package drawings and dimensions are provided in Figure 9-1 and Table 9-1.

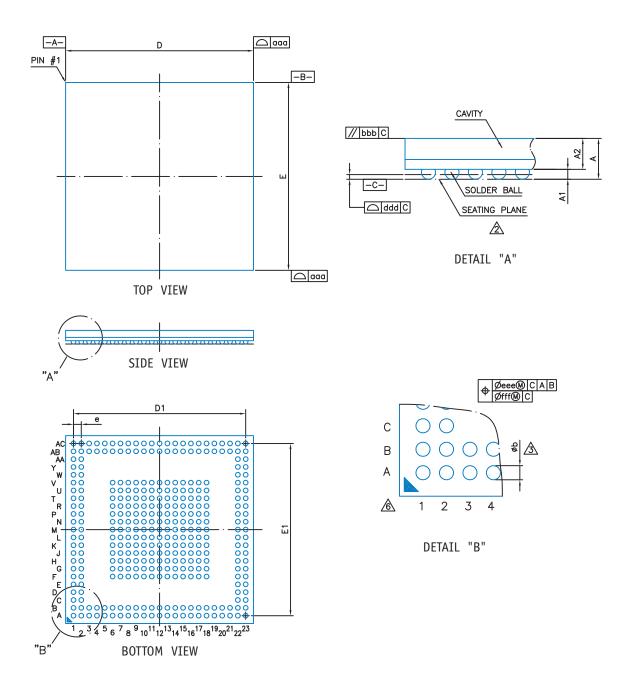


Figure 9-1. Package Details

Table 9-1. Package Dimensions

Dimension Label	Min	Nom	Max	Unit	Min	Nom	Max	Unit
A	0.77	0.96	1.14	mm	0.030	0.037	0.045	inches
A1	0.16	0.22	0.28	mm	0.006	0.008	0.011	inches
A2	0.61	0.74	0.86	mm	0.024	0.029	0.033	inches
b	0.25	0.30	0.35	mm	0.010	0.012	0.014	inches
D/E	11.90	12.00	12.10	mm	0.468	0.472	0.476	inches
D1/E1	_	11.00	_	mm	_	0.433	_	inches
e	_	0.50	_	mm	_	0.020	_	inches
aaa		0.10		mm	0.004			inches
bbb		0.10		mm	0.004			inches
ddd	0.08		mm	0.003			inches	
eee	0.15		mm	0.006			inches	
fff	0.05		mm	0.002			inches	
MD/ME		23,	/23			23/23		

^[1]Controlling dimension: Millimeters.

^[2]Primary datum C and seating plane are defined by the spherical crowns of the solder balls.

^[3]Dimension b is measured at the maximum solder ball diameter, parallel to primary datum C.

^[4] There shall be a minimum clearance of 0.25 mm between the edge of the solder ball and the body edge.

^[5]Reference document: JEDEC MO-195.

^[6] The pattern of pin 1 fiducial is for reference only.

^[7]Special characteristics c class: bbb, ddd.

10.0rdering Information

The order number AR9220-AC1A specifies a lead-free standard-temperature version of the AR9220.

The order number AR9220-AC2A specifies a halogen-free standard-temperature version of the AR9220.

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Atheros assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any updates. Atheros reserves the right to make changes, at any time, to improve reliability, function or design and to attempt to supply the best product possible.

Document Number: 981-00078-001 MKG-0707 Rev. 4

Atheros Communications, Incorporated

5480 Great America Parkway Santa Clara, CA 95054 t: 408/773-5200 f: 408/773-9940 www.atheros.com