Data Sheet

FEATURES

Latch-up immune under all circumstances Human body model (HBM) ESD rating: $\mathbf{8 k V}$
Low on resistance: 13.5Ω
$\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation
9 V to 40 V single-supply operation
48 V supply maximum ratings
Fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and $+\mathbf{3 6} \mathrm{V}$
V_{DD} to V_{ss} analog signal range

APPLICATIONS

High voltage signal routing

Automatic test equipment
Analog front-end circuits
Precision data acquisition
Industrial instrumentation
Amplifier gain select
Relay replacement

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC 0 INPUT
Figure 1. ADG5421

SWITCHES SHOWN FOR A LOGIC 0 INPUT $\stackrel{\text { © }}{=}$
Figure 2. ADG5423

GENERAL DESCRIPTION

The ADG5421/ADG5423 are monolithic industrial, complementary metal oxide semiconductor (CMOS) analog switches containing two independent latch-up immune single-pole/single-throw (SPST) switches. Each switch conducts equally well in both directions when on, and has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked. Both ADG5421 switches are turned on with a Logic 1 input, whereas the ADG5423 has one switch turned on and one switch turned off for a Logic 1 input. The ADG5423 exhibits break-before-make action for use in multiplexer applications.
The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications where low distortion is critical. The latch-up immune construction and high ESD rating make these switches more robust in harsh environments.

PRODUCT HIGHLIGHTS

1. Trench isolation guards against latch-up. A dielectric trench separates the P channel and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.
2. Low Ron of 13.5Ω.
3. Dual-supply operation. For applications where the analog signal is bipolar, the ADG5421/ADG5423 can operate from dual supplies up to $\pm 22 \mathrm{~V}$.
4. Single-supply operation. For applications where the analog signal is unipolar, the ADG5421/ADG5423 can operate from a single-rail power supply up to 40 V .
5. 3 V logic compatible digital inputs: $\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.
6. No V_{L} logic power supply required.
7. Available in 10 -lead MSOP package.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagrams. 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 4
12 V Single Supply. 5
36 V Single Supply 6
Continuous Current per Channel, Sx or Dx7
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configurations and Function Descriptions 9
Typical Performance Characteristics 10
Test Circuits 13
Terminology 15
Applications Information 16
Trench Isolation 16
Outline Dimensions 17
Ordering Guide 17

REVISION HISTORY

9/13-Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (ON)	$\begin{aligned} & 13.5 \\ & 15 \\ & 0.1 \\ & 0.8 \\ & 1.8 \\ & 2.2 \end{aligned}$	19 1.3 2.7	VDD to $V_{S S}$ 23 1.4 3.1	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{S}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 24 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{I}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	± 1 ± 1 ± 4	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 20 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; see Figure } 22 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.002 \\ & 6 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{DD}
DYNAMIC CHARACTERISTICS ${ }^{1}$					
ton toff Break-Before-Make Time Delay, to	$\begin{aligned} & 185 \\ & 220 \\ & 163 \\ & 196 \\ & 73 \end{aligned}$	$\begin{aligned} & 273 \\ & 219 \end{aligned}$	$\begin{aligned} & 313 \\ & 242 \end{aligned}$	ns typ ns max ns typ ns max ns typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} \text {; see Figure } 29 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} \text {; see Figure } 29 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{L}=35 \mathrm{pF} \end{aligned}$
(ADG5423 Only) Charge Injection, Q_{IN}	95		21	ns min pC typ	$\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=10 \mathrm{~V}$; see Figure 31 $V_{S}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega, C_{L}=1 \mathrm{nF}$; see Figure 30
Off Isolation	-55			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see }$ Figure 25
Channel-to-Channel Crosstalk	-85			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 28
Total Harmonic Distortion + Noise	0.01			\% typ	$\mathrm{RL}_{\mathrm{L}}=1 \mathrm{k} \Omega, 15 \mathrm{~V}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to }$ 20 kHz ; see Figure 26
-3 dB Bandwidth	250			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 27
Insertion Loss	-1			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see }$ Figure 27
C_{s} (Off)	12			pF typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	13			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\text {S }}(\mathrm{On})$	44			pF typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS IDD Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	$\begin{aligned} & 45 \\ & 55 \\ & 0.001 \end{aligned}$		70 1 $\pm 9 / \pm 22$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min/V max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { GND }=0 \mathrm{~V} \end{aligned}$

[^0]
± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-20 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, $\mathrm{R}_{\text {FLAt (ON) }}$	$\begin{aligned} & 12.5 \\ & 14 \\ & 0.1 \\ & 0.8 \\ & 2.3 \\ & 2.7 \end{aligned}$	18 1.3 3.3	VDD to $V_{S S}$ 22 1.4 3.7	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 24 \\ & \mathrm{~V}_{\mathrm{DD}}=+18 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $I_{D}(O n), I_{s}(O n)$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	± 1 ± 1 ± 4	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 20 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-22 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15 \mathrm{~V} \text {; see Figure } 22 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, Vinl Input Current, $\mathrm{l}_{\mathrm{INL}}$ or $\mathrm{l}_{\mathrm{INH}}$ Digital Input Capacitance, CIN	$\begin{aligned} & 0.002 \\ & 6 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	$V_{\text {min }}$ $V_{\text {max }}$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or V_{DD}
```DYNAMIC CHARACTERISTICS' ton toff Break-Before-Make Time Delay, to (ADG5423 Only) Charge Injection, QinJ Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth Insertion Loss Cs(Off) CD (Off) CD (On), Cs (On)```	$\begin{aligned} & 168 \\ & 199 \\ & 156 \\ & 184 \\ & 65 \\ & 120 \\ & \\ & -55 \\ & -85 \\ & 0.01 \\ & 250 \\ & -0.8 \\ & 11 \\ & 12 \\ & 44 \\ & \hline \end{aligned}$	243 204	$\begin{aligned} & 276 \\ & 218 \\ & 38 \end{aligned}$	ns typ   ns max   ns typ   ns max   ns typ   ns min   pC typ   dB typ   dB typ   \% typ   MHz typ   dB typ   pF typ   pF typ   pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} \text {; see }$   Figure 29   $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$; see Figure 29   $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$   $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$; see Figure 29   $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$   $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{s} 2}=10 \mathrm{~V}$; see Figure 31   $V_{S}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see   Figure 30 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see }$   Figure 25 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see }$   Figure 28 $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 20 \mathrm{~V} p-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to }$   20 kHz ; see Figure 26   $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 27 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$   see Figure 27 $\begin{aligned} & \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS   IDD   Iss   $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	$\begin{aligned} & 50 \\ & 70 \\ & 0.001 \end{aligned}$		$\begin{aligned} & 110 \\ & 1 \\ & \pm 9 / \pm 22 \end{aligned}$	$\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   $\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   V min/V max	$\mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-22 \mathrm{~V}$   Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$   Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$ $\mathrm{GND}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

## 12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.


[^1]
## 36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

${ }^{1}$ Guaranteed by design; not subject to production test.

## Data Sheet <br> ADG5421/ADG5423

## CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx

Table 5.

Parameter	$\mathbf{2 5}^{\circ} \mathbf{C}$	$\mathbf{8 5}^{\circ} \mathbf{C}$	$\mathbf{1 2 5}{ }^{\circ} \mathbf{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, Sx OR Dx					MSOP $\left(\theta_{\mathrm{JA}}=133.1^{\circ} \mathrm{C} / \mathrm{W}\right)$
$\mathrm{V}_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}$	84	58	39	mA maximum	
$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{S S}=-20 \mathrm{~V}$	89	60	41	mA maximum	
$\mathrm{V}_{D D}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	67	47	32	mA maximum	
$\mathrm{V}_{D D}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	87	59	40	mA maximum	

## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{S S}$	48 V
$V_{\text {DD }}$ to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	+0.3 V to -48 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, Sx or Dx Pins	300 mA (pulsed at 1 ms , $10 \%$ duty cycle maximum)
Continuous Current, Sx or Dx ${ }^{2}$	Data + 15\%
Temperature Range	
Operating	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, $\theta_{\mathrm{JA}}$ 10-Lead MSOP (4-Layer Board)	$133.1{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb Free	As per JEDEC J-STD-020
Human Body Model (HBM) ESD	8 kV

[^2]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Only one absolute maximum rating can be applied at any one time.

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

S1 1		10 D 1
S2 2		9 D2
NC 3	ADG5421／   ADG5423	$8 \mathrm{v}_{\text {ss }}$
GND 4	TOP VIEW	7 T N1
$\mathrm{V}_{\mathrm{DD}} 5$	（Not to Scale）	6 － 1 2

## NOTES

1．NC＝NO CONNECT．NOT INTERNALLY CONNECTED．．．⿳亠口冋口
Figure 3．Pin Configuration

Table 7．Pin Function Descriptions

Pin No．	Mnemonic	Description
1	S1	Source Terminal 1．This pin can be an input or output．
2	S2	Source Terminal 2．This pin can be an input or output．
3	NC	No Connect．Not internally connected．
4	GND	Ground（0 V）Reference．
5	VDD	Most Positive Power Supply Potential．
6	IN2	Logic Control Input．
7	IN1	Logic Control Input．
8	VSS	Most Negative Power Supply Potential．
9	D2	Drain Terminal 2．This pin can be an input or output．
10	D1	Drain Terminal 1．This pin can be an input or output．

Table 8．ADG5421 Truth Table

INx	Switch Conditions
0	Off
1	On

Table 9．ADG5423 Truth Table

INx	Switch 1 Condition	Switch 2 Condition
0	Off	On
1	On	Off

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 4. On Resistance as a Function of $V_{S}, V_{D}$ (Dual Supply: $\pm 10 \mathrm{~V}, \pm 15 \mathrm{~V}$ )


Figure 5. On Resistance as a Function of $V_{S,} V_{D}$ (Dual Supply: $\pm 20 \mathrm{~V}$ )


Figure 6. On Resistance as a Function of $V_{S}, V_{D}($ Single Supply: $10 \mathrm{~V}, 12 \mathrm{~V}$ )


Figure 7. On Resistance as a Function of $V_{S}, V_{D}$ (Single Supply: 36 V )


Figure 8. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, $\pm 15$ V Dual Supply


Figure 9. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, $\pm 20$ V Dual Supply


Figure 10. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, 12 V Single Supply


Figure 11. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, 36 V Single Supply


Figure 12. Leakage Currents as a Function of Temperature, $\pm 15$ V Dual Supply


Figure 13. Leakage Currents as a Function of Temperature, $\pm 20$ V Dual Supply


Figure 14. Leakage Currents as a Function of Temperature, 12 V Single Supply


Figure 15. Leakage Currents as a Function of Temperature, 36 V Single Supply


Figure 16. Off Isolation vs. Frequency


Figure 17. Crosstalk vs. Frequency


Figure 18. Charge Injection vs. Source Voltage (Vs)


Figure 19. THD $+N$ vs. Frequency


Figure 20. Bandwidth


Figure 21. tTRANsition $^{\text {Times vs. Temperature }}$

## ADG5421/ADG5423

TEST CIRCUITS



Figure 30. Charge Injection


Figure 31. Break-Before-Make Time Delay

## TERMINOLOGY

## $I_{D D}$

IDD represents the positive supply current.
Iss
Iss represents the negative supply current.

## $\mathbf{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{s}}$

$V_{D}$ and $V_{S}$ represent the analog voltage on Terminal $D$ and Terminal S, respectively.
Ron
RoN is the ohmic resistance between Terminal D and Terminal S.
$\Delta R_{\text {on }}$
$\Delta \mathrm{R}_{\text {ON }}$ represents the difference between the Ron of any two channels.
$\mathbf{R}_{\text {flat (on) }}$
$\mathrm{R}_{\text {FLAT (ON) }}$ represents the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
$I_{s}$ (Off)
Is (Off) is the source leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}$ (Off)
$\mathrm{I}_{\mathrm{D}}$ (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathbf{O n}), \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{s}}(\mathrm{On})$ represent the channel leakage currents with the switch on.

Vinl
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$V_{\text {INH }}$
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}, \mathrm{I}_{\text {INH }}$
$\mathrm{I}_{\mathrm{INL}}$ and $\mathrm{I}_{\mathrm{INH}}$ represent the low and high input currents of the digital inputs.
$\mathrm{C}_{\mathrm{D}}$ (Off)
$C_{D}$ (Off) represents the off switch drain capacitance, which is measured with reference to ground.
$\mathrm{C}_{\mathrm{s}}$ (Off)
$\mathrm{C}_{S}$ (Off) represents the off switch source capacitance, which is measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\mathrm{s}}(\mathrm{On})$
$C_{D}(\mathrm{On})$ and $\mathrm{C}_{S}(\mathrm{On})$ represent on switch capacitances, which are measured with reference to ground.

## Cin

$\mathrm{C}_{\mathrm{IN}}$ represents digital input capacitance.
ton
$t_{\text {on }}$ represents the delay time between the $50 \%$ and $90 \%$ points of the digital input and switch on condition.
$t_{\text {off }}$
toff represents the delay time between the $50 \%$ and $90 \%$ points of the digital input and switch off condition.

## $t_{D}$

$t_{D}$ represents the off time measured between the $80 \%$ point of both switches when switching from one address state to another.

## Off Isolation

Off isolation is a measure of unwanted signal coupling through an off channel.

## Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

## Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

## Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB from its dc level.

## Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental is represented by THD +N .

## APPLICATIONS INFORMATION

The ADG54xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5421/ ADG5423 high voltage switches allow single-supply operation from 9 V to 40 V and dual-supply operation from $\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$. The ADG5421/ADG5423 (as well as other select devices within this family) achieve an 8 kV human body model ESD rating, which provides a robust solution, eliminating the need for separate protection circuitry designs in some applications.

## TRENCH ISOLATION

In the ADG5421/ADG5423, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction-isolated switches, are eliminated, and the result is a completely latch-up immune switch.
In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. The two transistors form a silicon-controlled rectifier (SCR) type circuit, causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up immune switch.


Figure 32. Trench Isolation

OUTLINE DIMENSIONS


COMPLIANT TO JEDEC STANDARDS MO-187-BA
Figure 33. 10-Lead Mini Small Outline Package [MSOP] (RM-10)
Dimensions shown in millimeters

## ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADG5421BRMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S47
ADG5421BRMZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S47
ADG5423BRMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 -Lead Mini Small Outline Package [MSOP]	RM-10	S3D
ADG5423BRMZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S3D

[^3]
## NOTES

$\square$
NOTES

## NOTES


[^0]:    ${ }^{1}$ Guaranteed by design; not subject to production test.

[^1]:    ${ }^{1}$ Guaranteed by design; not subject to production test.

[^2]:    Overvoltages at the $\mathrm{INx}, \mathrm{Sx}$, and Dx pins are clamped by internal diodes.
    Limit current to the maximum ratings given.
    ${ }^{2}$ See Table 5.

[^3]:    ${ }^{1} Z=$ RoHS Compliant Part.

