
Sx01E & SxN1 Series RoHS

Littelfuse

Expertise Applied | Answers Delivered

Description

Excellent for lower current heat, lamp, and audible alarm controls for home goods.

Standard phase control SCRs are triggered with few milliamperes of current at less than 1.5V potential.

Typical applications are AC solid-state switches,

fluidlevel sensors, strobes, and capacitive-discharge

Features & Benefits

• RoHS compliant

Applications

ignition systems.

- Glass passivated junctions
- Voltage capability up to 600 V
- Surge capability up to 30 Å

Main Features Symbol Value Unit 1 А I V_{DRM}/V_{RRM} 400 to 600 V

10

Ι_{gt}

mΑ

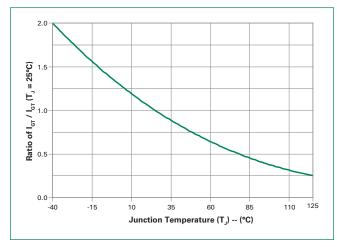
Absolute Maximum Ratings – Standard SCRs

Symbol	Parameter	Test Conditions	Value	Unit
I _{T(RMS)}	RMS on-state current	T _c = 90°C	1	A
1	Peak non-repetitive surge current	single half cycle; f = 50Hz; T _J (initial) = 25°C	25	A
ITSM	reak non-repetitive surge current	single half cycle; f = 60Hz; T _J (initial) = 25°C	30	A
l²t	I_2 t Value for fusing $t_0 = 8.3$ ms		3.7	A²s
di/dt	Critical rate of rise of on-state current	$f = 60Hz$; $T_{J} = 125^{\circ}C$	50	A/µs
I _{GM}	Peak gate current	$T_{J} = 125^{\circ}C$	1.5	A
P _{G(AV)}	Average gate power dissipation	0.3	W	
T _{stg}	Storage temperature range	-40 to 150	°C	
T,	Operating junction temperature range	-40 to 125	°C	

Electrical Characteristics (T₁ = 25°C, unless otherwise specified)

Symbol	Test Conditions	Value	Unit	
		MAX.	10	
I _{GT}	$V_{D} = 12V; R_{L} = 60 \Omega$	MIN.	1	mA
V _{gt}		MAX.	1.5	V
dv/dt	$V_{\rm D} = V_{\rm DRM}$; gate open; $T_{\rm J} = 100^{\circ}{\rm C}$ MIN.		20	\//
av/at	$V_{\rm D} = V_{\rm DRM}$; gate open; $T_{\rm J} = 125^{\circ}{\rm C}$	IVIIIN.	40	V/µs
V _{gd}	$V_{\rm D} = V_{\rm DRM}$; $R_{\rm L} = 3.3 \text{ k}\Omega$; $T_{\rm J} = 125^{\circ}\text{C}$	MIN.	0.2	V
I _H	I _τ = 200mA (initial)	MAX.	30	mA
t _q	(1)	MAX.	35	μs
t _{gt}	$I_{g} = 2 \times I_{gT}$; PW = 15 μ s; $I_{T} = 2A$	TYP.	2	μs

(1) I_T=1A; t_p=50µs; dv/dt=20V/µs; di/dt=-10A/µs


Static Characteristics							
Symbol	Test Condit	ions		Value	Unit		
V _{TM}	$I_{T} = 2A; t_{p} = 380 \ \mu s$	MAX.	1.6	V			
		$T_J = 25^{\circ}C$		10			
I _{drm} / I _{rrm}	V _{DRM} = V _{RRM}	$T_J = 100^{\circ}C$	MAX.	200	μA		
		T _J = 125°C		500			

Thermal Resistances							
Symbol	Parameter		Value	Unit			
P	Junction to case (AC)		50	°C/W			
$R_{_{\theta(J-C)}}$		SxN1	35*				
R _{θ(J-A)}	Junction to ambient	Sx01E	145	°C/W			

Notes : x = voltage * = Mounted on 1 cm² copper (two-ounce) foil surface

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

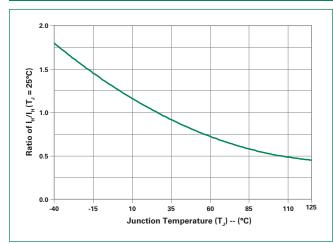


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

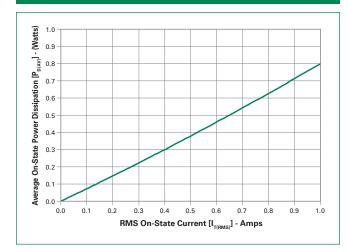
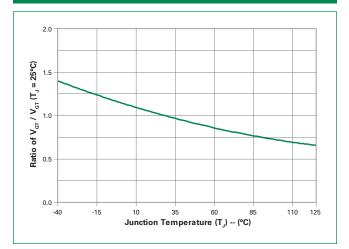



Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

Figure 4: On-State Current vs. On-State Voltage (Typical)

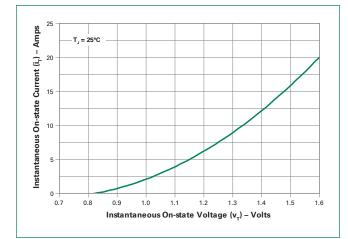
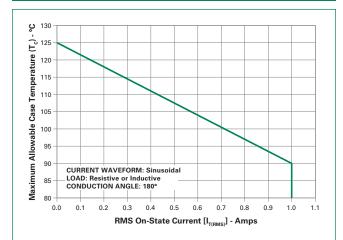



Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

©2008 Littelfuse, Inc. Specifications are subject to change without notice. Please refer to http://www.littelfuse.com for current information.

Revised: July 9, 2008

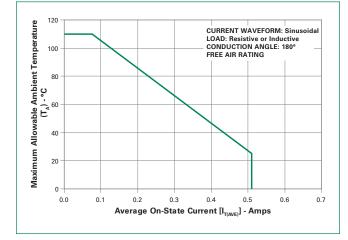


Figure 7: Maximum Allowable Case Temperature vs. Average On-State Current

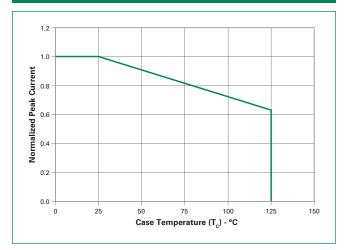

Figure 8: Maximum Allowable Ambient Temperature vs. RMS On-State Current

Figure 9: Maximum Allowable Ambient Temperature vs. Average On-State Current

Figure 11: Peak Capacitor Discharge Current Derating

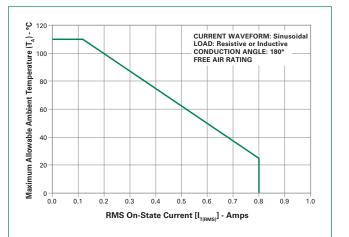
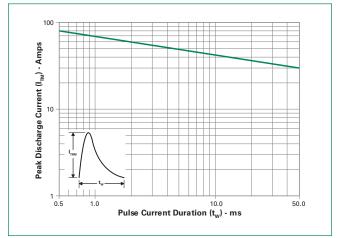
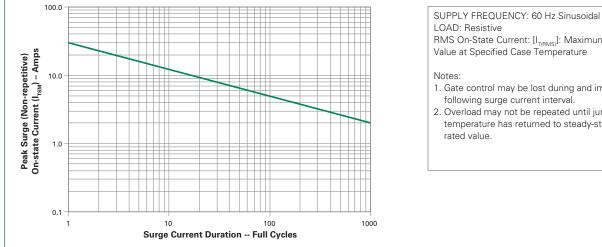



Figure 10: Peak Capacitor Discharge Current

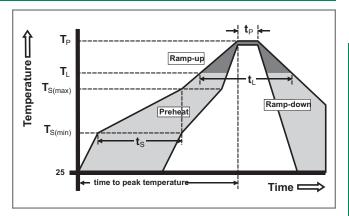

Teccor[®] brand Thyristors

1 Amp Standard SCRs

Figure 12: Surge Peak On-State Current vs. Number of Cycles

Littelfuse

Expertise Applied | Answers Delivered



LOAD: Resistive RMS On-State Current: $[I_{T(RMS)}]$: Maximum Rated Value at Specified Case Temperature

- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

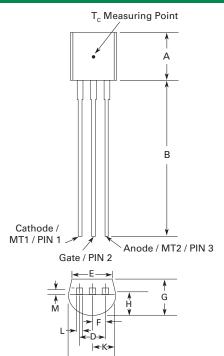
Soldering Parameters

Reflow Co	ndition	Pb – Free assembly
	-Temperature Min (T _{s(min)})	150°C
Pre Heat	-Temperature Max (T _{s(max)})	200°C
	-Time (min to max) (t _s)	60 – 190 secs
Average ra (T _L) to pea	amp up rate (LiquidusTemp) k	5°C/second max
$T_{S(max)}$ to T_L	- Ramp-up Rate	5°C/second max
Reflow	-Temperature (T _L) (Liquidus)	217°C
nellow	-Temperature (t _L)	60 – 150 seconds
PeakTemp	erature (T _P)	260 ^{+0/-5} °C
Time with Temperatu	in 5°C of actual peak ıre (t _p)	20 – 40 seconds
Ramp-dov	vn Rate	5°C/second max
Time 25°C	to peakTemperature (T _P)	8 minutes Max.
Do not exc	ceed	280°C

Expertise Applied Answers Delivered

Physical Specifications

Terminal Finish	100% Matte Tin-plated
Body Material	UL recognized epoxy meeting flammability classification 94V-0
Lead Material	Copper Alloy

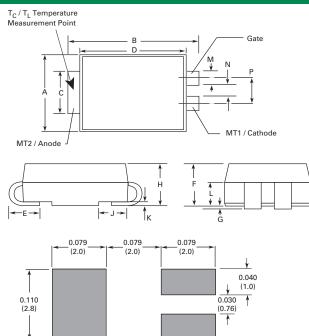

Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwell- time at each temperature; 10 sec (max) transfer time between temperature
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

Environmental Specifications

Dimensions – TO-92 (E Package)


Dimension	Inc	hes	Millin	neters
Dimension	Min	Max	Min	Max
А	0.176	0.196	4.47	4.98
В	0.500		12.70	
D	0.095	0.105	2.41	2.67
Е	0.150		3.81	
F	0.046	0.054	1.16	1.37
G	0.135	0.145	3.43	3.68
Н	0.088	0.096	2.23	2.44
J	0.176	0.186	4.47	4.73
К	0.088	0.096	2.23	2.44
L	0.013	0.019	0.33	0.48
Μ	0.013	0.017	0.33	0.43

All leads insulated from case. Case is electrically nonconductive.

Teccor® brand Thyristors 1 Amp Standard SCRs

Dimensions - Compak (C Package)

Dimension	Incl	hes	Millin	neters
Dimension	Min	Max	Min	Max
А	0.140	0.155	3.56	3.94
В	0.205	0.220	5.21	5.59
С	0.077	0.083	1.96	2.11
D	0.166	0.180	4.22	4.57
E	0.036	0.063	0.91	1.60
F	0.066	0.083	1.67	2.11
G	0.004	0.008	0.10	0.20
Н	0.077	0.086	1.96	2.18
J	0.043	0.053	1.09	1.35
К	0.008	0.012	0.20	0.30
L	0.039	0.049	0.99	1.24
М	0.022	0.028	0.56	0.71
Ν	0.027	0.033	0.69	0.84
Р	0.052	0.058	1.32	1.47

Pad Outline

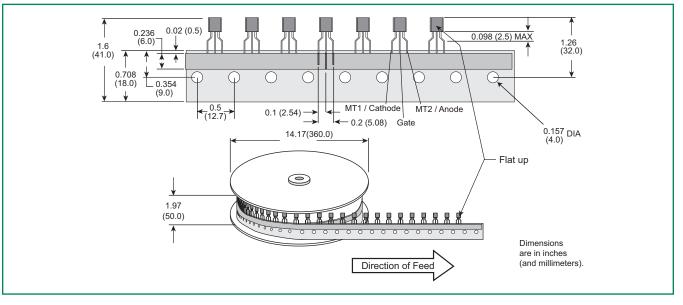
Prod	luct	Sel	ector
	ave	00	0000

Part Number		Volt	age		Coto Consitivity	Tune	Deskore
Part Number	400V	600V	800V	1000V	Gate Sensitivity	Туре	Package
Sx01E	Х	Х			10mA	Standard SCR	TO-92
SxN1	Х	Х			10mA	Standard SCR	Compak

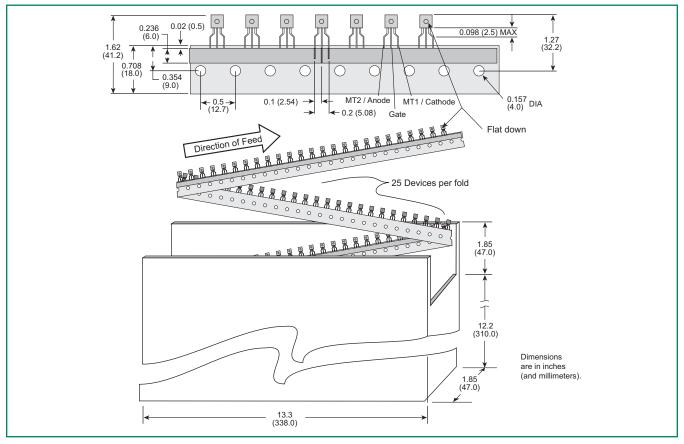
Note: x = Voltage

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
Sx01E	Sx01E	0.19 g	Bulk	2000
Sx01ERP	Sx01E	0.19 g	Reel Pack	2000
Sx01EAP	Sx01E	0.19 g	Ammo Pack	2000
SxN1RP	SxN1	0.08 g	Embossed Carrier	2500

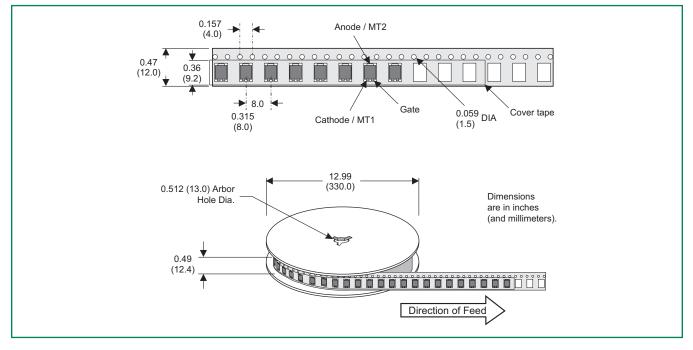

Dimensions are in inches (and millimeters).

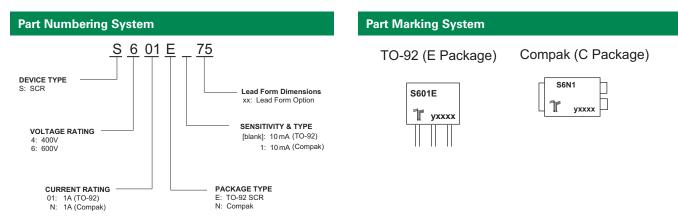
Note: x = Voltage


TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-B 1994 Standards

TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications


Meets all EIA-468-B 1994 Standards



Compak Embossed Carrier Reel Pack (RP) Specifications

Meets all EIA-481-1 Standards

