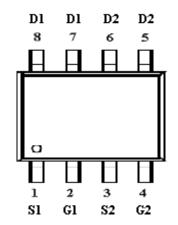
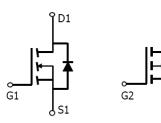


DESCRIPTION

The SPC4533 is the N- and P-Channel enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology. This high density process is especially tailored to minimize on-state resistance and provide superior switching performance. These devices are particularly suited for low voltage applications such as notebook computer power management and other battery powered circuits where high-side switching, low in-line power loss, and resistance to transients are needed.

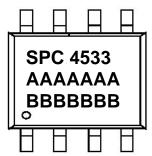

FEATURES


- N-Channel 30V/8.0A,RDS(ON)= $18\Omega@V_{GS}=10V$ 30V/6.0A,RDS(ON)= $36m\Omega@V_{GS}=4.5V$
- ◆ P-Channel
 - -30V/-6.0A,Rds(on)= 36m Ω @VGs=- 10V
 - -30V/-4.0A, RDS(ON)= $65m\Omega$ @VGS=-4.5V
- Super high density cell design for extremely low RDS (ON)
- Exceptional on-resistance and maximum DC current capability
- ♦ SOP 8P package design

APPLICATIONS

- Power Management in Note book
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch
- DSC
- LCD Display inverter

PIN CONFIGURATION(SOP - 8P)



n-channel

p-channel

PART MARKING

AAAAAAA : Lot NO. BBBBBBBB : Date Code

PIN DESCRIPTION						
Pin	Symbol	Description				
1	S1	Source 1				
2	G1	Gate 1				
3	S2	Source 2				
4	G2	Gate 2				
5	D2	Drain 2				
6	D2	Drain 2				
7	D1	Drain 1				
8	D1	Drain 1				

ORDERING INFORMATION

Part Number	Package	Part Marking
SPC4533S8RGB	SOP- 8P	SPC4533

[※] SPC4533S8RGB: 13" Tape Reel; Pb − Free; Halogen - Free

ABSOULTE MAXIMUM RATINGS

(Ta=25°C Unless otherwise noted)

Donometen	Parameter			Typical		
rarameter		Symbol	N-Channel	P-Channel	Unit	
Drain-Source Voltage			30	-30	V	
Gate –Source Voltage		VGSS	±20	±20	V	
Continuous Davin Comment/Ty-150°C)	Ta=25°C	T	8.4	-6.0	Α	
Continuous Drain Current(T _J =150°C)	Ta=70°C	Id	6.7	-4.0		
Pulsed Drain Current		IDM	30	-30	Α	
Power Dissipation	Ta=25°C	PD	2.0		W	
Operating Junction Temperature		Тл	-55/150		$^{\circ}\!\mathbb{C}$	
Storage Temperature Range	Tstg	-55/150		$^{\circ}\!\mathbb{C}$		
Thermal Resistance-Junction to Ambient	$T \le 10 \text{sec}$	R _θ JA	50	52	°C/W	
	Steady State		80	80	ĺ	

N-CH Electrical Characteristics@ T_i=25°C(unless otherwise specified)

	<u> </u>	•			•	
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	30	-	-	V
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V, I _D =8A	-	-	18	mΩ
		V _{GS} =4.5V, I _D =6A	-	-	36	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250uA	1	-	3	٧
9 _{fs}	Forward Transconductance	V _{DS} =10V, I _D =8A	-	13	-	S
IDSS	Drain-Source Leakage Current	V _{DS} =24V, V _{GS} =0V	-	-	1	uA
	Drain-Source Leakage Current (T _J =70°C)	V _{DS} =24V, V _{GS} =0V	-	-	25	uA
I _{GSS}	Gate-Source Leakage	V _{GS} = <u>+</u> 20V, V _{DS} =0V	-	-	<u>+</u> 30	uA
Qg	Total Gate Charge ²	I _D =8A	-	6.5	10.5	nC
Q _{g5}	Gate-Source Charge	V _{DS} =15V	-	2.5	-	nC
Q _{gd}	Gate-Drain ("Miller") Charge	V _{GS} =4.5V	-	3.3	-	nC
t _{d(on)}	Turn-on Delay Time ²	V _{DS} =15V	-	8	-	ns
t _r	Rise Time	I _D =1A	-	6	-	ns
t _{d(off)}	Turn-off Delay Time	R _G =3.3 Ω, V _{GS} =10V	-	17	-	ns
t _r	Fall Time	R _D =15Ω	-	6	-	ns
C _{ISS}	Input Capacitance	V _{GS} =0V	-	540	860	pF
Coss	Output Capacitance	V _{DS} =25V	-	150	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	90	-	pF

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _{SD}	Forward On Voltage ²	I _S =1.5A, V _{GS} =0V	-	-	1.3	V
t _{rr}	Reverse Recovery Time ²	I _S =8A, V _{GS} =0V	-	20	-	ns
Q _{rr}	Reverse Recovery Charge	dl/dt=100A/µs	-	12	-	nC

P-CH Electrical Characteristics@T_i=25°C(unless otherwise specified)

	O ,	•			,	
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =-250uA	-30	-	-	V
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =-10V, I _D =-6A	-	-	36	mΩ
		V _{GS} =-4.5V, I _D =-4A	-	-	65	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =-250uA	-1	-	-3	٧
9fs	Forward Transconductance	V _{DS} =-10V, I _D =-6A	-	9.4	-	S
IDSS	Drain-Source Leakage Current	V _{DS} =-24V, V _{GS} =0V	-	-	-1	uA
	Drain-Source Leakage Current (T _J =70°C)	V _{DS} =-24V, V _{GS} =0V	-	-	-25	uA
I _{GSS}	Gate-Source Leakage	V _{GS} = <u>+</u> 20V, V _{DS} =0V	-	-	<u>+</u> 30	uA
Qg	Total Gate Charge ²	I _D =-6A	-	9	14.5	nC
Q _{gs}	Gate-Source Charge	V _{DS} =-15V	-	2.5	-	nC
Q _{gd}	Gate-Drain ("Miller") Charge	V _{GS} =-4.5V	-	5.5	-	nC
t _{d(an)}	Turn-on Delay Time ²	V _{DS} =-15V	-	8	-	ns
t _r	Rise Time	I _D =-1A	-	9.5	-	ns
t _{d(aff)}	Turn-off Delay Time	R _G =3.3Ω,V _{GS} =-10V	-	20	-	ns
t _r	Fall Time	R _D =15Ω	-	20	-	ns
Clss	Input Capacitance	V _{GS} =0V	-	500	800	pF
Coss	Output Capacitance	V _{DS} =-25V	-	180	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	135	-	pF
	-	!		-	-	

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _{SD}	Forward On Voltage ²	I _S =-1.5A, V _{GS} =0V	-	•	-1.3	V
trr	Reverse Recovery Time ²	I _S =-6A, V _{GS} =0V	-	25	-	ns
Q _{rr}	Reverse Recovery Charge	dl/dt=-100A/μs	1	17	-	nC

Notes:

- 1. Pulse width limited by Max. junction temperature.
- 2.Pulse test
- 3.Surface mounted on 1 in² copper pad of FR4 board, t ≤10sec; 135°C/W when mounted on min. copper pad.

THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.

USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.

APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.

N-Channel

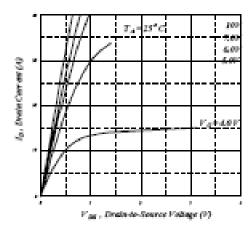


Fig 1. Typical Output Characteristics

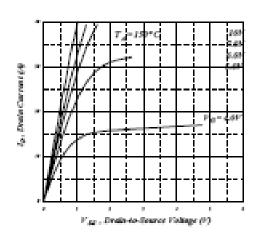


Fig 2. Typical Output Characteristics

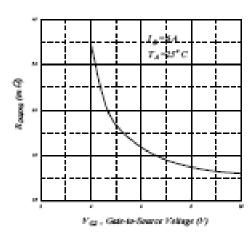


Fig 3. On-Resistance v.s. Gate Voltage

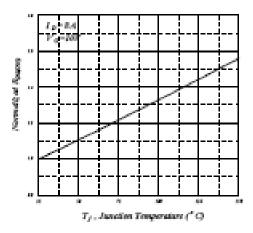


Fig 4. Normalized On-Resistance v.s. Junction Temperature

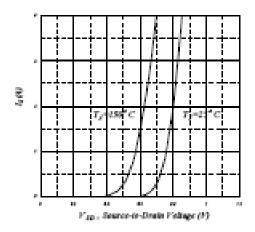


Fig 5. Forward Characteristic of Reverse Diode

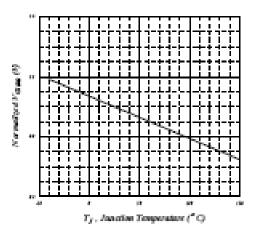


Fig 6. Gate Threshold Voltage v.s. Junction Temperature

N-Channel

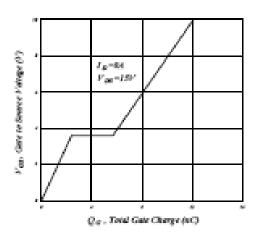


Fig 7. Gate Charge Characteristics

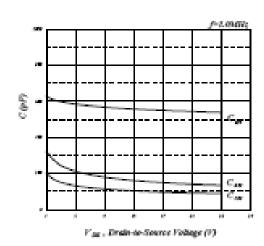


Fig 8. Typical Capacitance Characteristics

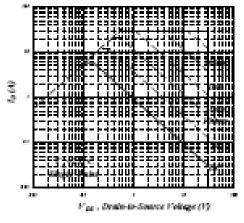


Fig 9. Maximum Safe Operating Area

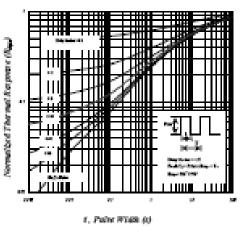


Fig 10. Effective Transient Thermal Impedance

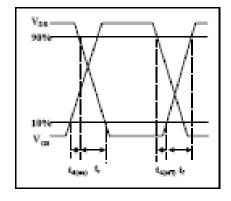


Fig 11. Switching Time Waveform

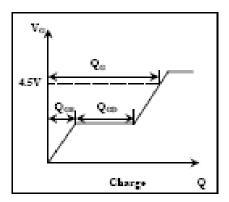


Fig 12. Gate Charge Waveform

P-Channel

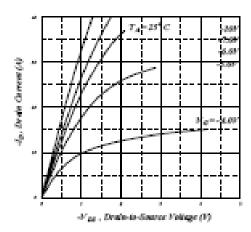


Fig 1. Typical Output Characteristics

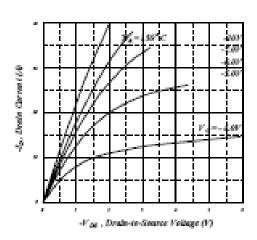


Fig 2. Typical Output Characteristics

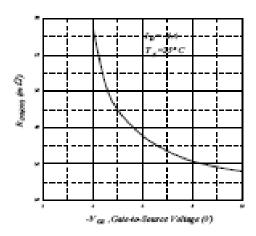


Fig 3. On-Resistance v.s. Gate Voltage

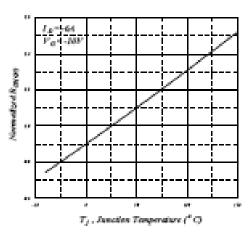


Fig 4. Normalized On-Resistance v.s. Junction Temperature

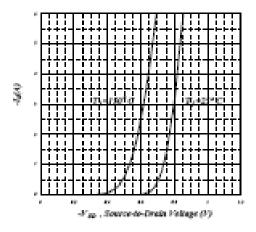


Fig 5. Forward Characteristic of Reverse Diode

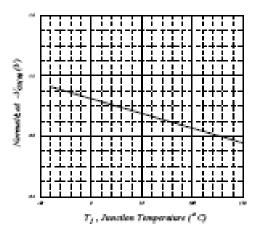


Fig 6. Gate Threshold Voltage v.s. Junction Temperature

P-Channel

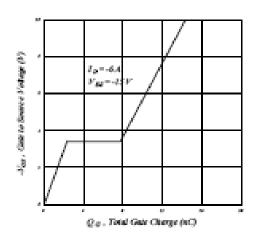


Fig 7. Gate Charge Characteristics

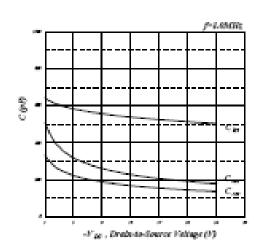


Fig 8. Typical Capacitance Characteristics

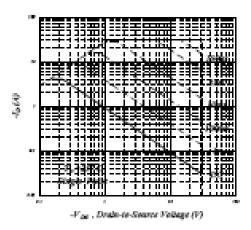


Fig 9. Maximum Safe Operating Area

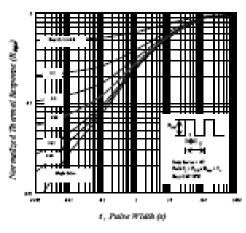


Fig 10. Effective Transient Thermal Impedance

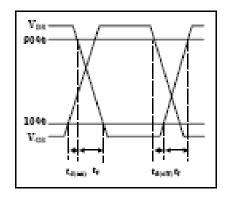
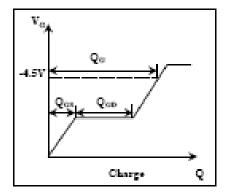
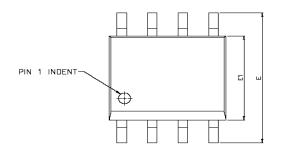
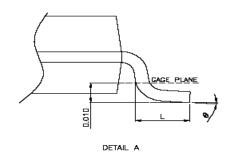
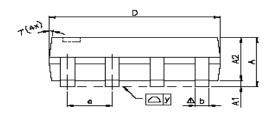
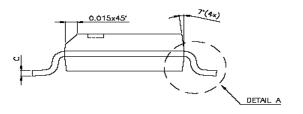


Fig 11. Switching Time Waveform


Fig 12. Gate Charge Waveform


2010/12/03 **Ver.2**



SOP- 8 PACKAGE OUTLINE

0)////D01.0	DIMENSIO	NS IN MILL	IMETERS	DIMEN	NSIONS IN I	NCHES
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.47	1.60	1.73	0.058	0.063	0.068
A1	0.10		0.25	0.004		0.010
A2		1.45			0.057	
Ь	0.33	0.41	0.51	0.013	0.016	0.020
С	0.19	0.20	0.25	0.0075	0.008	0.0098
D	4.80	4.85	4.95	0.189	0.191	0.195
Е	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е	_	1.27	_		0.050	
L	0.38	0.71	1.27	0.015	0.028	0.050
<u>∕</u> 2∖ y			0.076			0.003
0	0°	_	8*	0,		8*

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

©The SYNC Power logo is a registered trademark of SYNC Power Corporation
©2004 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved
SYNC Power Corporation
7F-2, No.3-1, Park Street
NanKang District (NKSP), Taipei, Taiwan 115
Phone: 886-2-2655-8178

Fax: 886-2-2655-8468

©http://www.syncpower.com