20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (201) 376-2922

(212) 227-6005

FAX: (201) 376-8960

MPS-U55 (SILICON) MPS-U56

PNP SILICON ANNULAR AMPLIFIER TRANSISTORS

 \dots designed for general-purpose, high-voltage amplifier and driver applications.

- High Collector-Emitter Breakdown Voltage –
 BVCEO = 60 Vdc (Min) @ IC = 1.0 mAdc MPS-U56
 80 Vdc (Min) @ IC = 1.0 mAdc MPS-U56
- High Power Dissipation − PD = 10 W @ TC = 25°C
- Complements to NPN MPS-U05 and MPS-U06

PNP SILICON AMPLIFIER TRANSISTORS

MAXIMUM RATINGS

Rating	Symbol	MPS-U55	MPS-U56	Unit
Collector-Emitter Voltage	VCEO	60	80	Vdc
Collector-Base Voltage	VCB	60	80	Vdc
Emitter-Base Voltage	VEB	4.0		Vdc
Collector Current - Continuous	lc .	2.0		Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0		Watt mW/ ^O C
Total Device Dissipation @ T _C × 25°C Derate above 25°C	PD	10 80		Watts mW/ ^O C
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	θJC	12.5	oc/w
Thermal Resistance, Junction to Ambient	θJA	125	°C/W

Quality Semi-Conductors

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (201) 376-2922

(212) 227-6005

FAX: (201) 376-8960

MPS-U55, MPS-U56 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
FF CHARACTERISTICS					 ,	
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	MPS-U55 MPS-U56	BVCEO	60 80	<u>-</u>		Vdc
Emitter-Base Breakdown Voltage (IE = 100 µAdc, IC = 0)		8VEBO	4.0	-		Vdc
Collector Cutoff Current (VCB = 40 Vdc, IE = 0) (VCB = 60 Vdc, IE = 0)	MPS-U55 MPS-U56	СВО	<u>-</u>	- -	100 100	nAdo
ON CHARACTERISTICS						
DC Current Gain (1) (IC = 50 mAdc, VCE = 1.0 Vdc) (IC = 250 mAdc, VCE = 1.0 Vdc) (IC = 500 mAdc, VCE = 1.0 Vdc)		pEE	80 50 	160 130 80	- - -	_
Collector-Emitter Saturation Voltage(1) (IC = 250 mAdc, IB = 10 mAdc) (IC = 250 mAdc, IB = 25 mAdc)		VCE(sat)	<u>-</u>	0.22 0.15	0.5 —	Vdc
Base-Emitter On Voltage (1) (IC = 250 mAdc, V _{CE} = 5.0 Vdc)		VBE(on)	-	0.78	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain—Bandwidth Product (IC = 200 mAdc, VCE = 5.0 Vdc, f = 100 MHz)		fτ	50	100	_	MHz
Output Capacitance (VCR = 10 Vdc, IE = 0, f = 100 kHz)		Cop	<u> </u>	10	15	pF

(1)Pulse Test: Pulse Width ≤300 μs, Duty Cycle ≤2.0%.

There are two limitations on the power handling ability of a transistor: junction temperature and secondary breakdown. Safe operating area curves indicate $|C-VC_E|$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 3 is based on $T_{J(pk)} = 150^{\circ}$ C; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown

N J

Quality Sami-Conductors