WINSTAR Display

OLED SPECIFICATION

Model No:
WEG005016ALPP5N00000

OLED Specification

Contents

5	Module Classification Information
6	General Specification
6	Absolute Maximum Ratings
7	Electrical Characteristics

7	Optical Characteristics
8	Interface Pin Function
9	Counter Drawing \& Block Diagram
11	Function Description
24	Character Generator ROM Pattern
28	Instruction Table
29	Timing Characteristics
32	Initializing of LCM
51	OLED Life Time
Technology - Innovation - Value	
52	Reliability
54	Inspection Friendly - Revolution
60	Precautions in use of OLED Modules

CUSTOMER :

MODULE NO.: WEG005016ALPP5N00000

APPROVED BY:
(FOR CUSTOMER USE ONLY)

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY
ISSUED DATE:			

MODLE NO :

1. Module Classification Information

W E G 005016 A L P P $\underline{5} \underline{N} \underline{00000}$
 (4) (5) (0)
 (11)

1	Brand : WINSTAR DISPLAY CORPORATION		
2	E : OLED		
3	Display Type : H \rightarrow Character Type, G \rightarrow Graphic Type		
4	Number of dots : 50*16 Dots		
5	Serials code		
6	Emitting Color	A : Amber	R : RED
		B : Blue	C : Full color
		G: Green	W : White
		Y : Yellow Green	L : Yellow
7	Polarizer	P : With Polarizer; N: Without Polarizer	
8	Display Mode	P : Passive Matrix ; A: Active Matrix	
9	Driver Voltage	3: $3.0 \mathrm{~V} ; 5: 5.0 \mathrm{~V}$	
10	Touch Panel	N: Without touch panel; T: With touch panel	
11	Serial No.	00000: Sales code	

2. General Specification

Item	Dimension	Unit
Number of Characters	$50^{* 16 ~ D o t s ~}$	-
Module dimension	$58.0 \times 32.0 \times 10.0(\mathrm{MAX})$	mm
View area	38.0×16.0	mm
Active area	29.96×11.16	mm
Dot size	0.56×0.66	mm
Dot pitch	0.60×0.70	mm
LCD type	OLED , Yellow	
Duty	$1 / 16$	

3. Absolute Maximum Ratings

Item	Symbol	Min	Max	Unit	Notes
Operating Temperature	Top $_{\text {OP }}$	-40	+80	${ }^{\circ} \mathrm{C}$	
Storage Temperature	$\mathrm{T}_{\text {ST }}$	-40	+80	${ }^{\circ} \mathrm{C}$	
Input Voltage	$\mathrm{V}_{\text {I }}$	-0.3	VDD	V	
Supply Voltage For Logic	VDD-V				

4. Electrical Characteristicsical

Item	Symbol	Condition	Min	Typ	Max	Unit
Supply Voltage For Logic	VDD-VSS	-	3.0	5.0	5.3	V
Input High Volt.	VIH	-	0.9 VDD	-	VDD	V
Input Low Volt.	VIL	-	GND	-	0.1 VDD	V
Output High Volt.	VOH	IOH=-0.5mA	0.8 VDD	-	VDD	V
Output Low Volt.	VOL	IOL=0.5mA	GND	-	0.2 VDD	V
Supply Current	IDD	VDD=5V	-	16	-	mA
CIEx(Yellow)		$\mathrm{x}, \mathrm{y}(\mathrm{CIE1931)}$	0.44	0.48	0.52	
CIEy(Yellow)		$\mathrm{x}, \mathrm{y}(\mathrm{CIE1931)}$	0.46	0.50	0.54	

5. Optical Characteristics

Item	Symbol	Condition	Min	Typ	Max	Unit
View Angle	$(\mathrm{V}) \theta$		160			deg
	$(\mathrm{H}) \varphi$		160			deg
Contrast Ratio	CR	Dark	$2000: 1$		-	-
Response Time	T rise	-		10		$\mu \mathrm{~s}$
	T fall	-		10		$\mu \mathrm{~s}$
Supply Voltage For Logic 5V 50% CheckBoard Brightness	With polarizer		125		nits	
Supply Voltage For Logic 3V 50% CheckBoard Brightness	With polarizer		175		nits	

6. Interface Pin Function

Pin No.	Symbol	Level	Description
1	VSS	OV	Ground
2	VDD	5.0 V	Supply Voltage for logic
3	NC	-	
4	RS	H/L	H: DATA, L: Instruction code
5	R/W	H/L	H: Read(MPU \rightarrow Module) L: Write(MPU \rightarrow Module)
6	E	H,H \rightarrow L	Chip enable signal
7	DB0	H/L	Data bit 0
8	DB1	H/L	Data bit 1
9	DB2	H/L	Data bit 2
10	DB3	H/L	Data bit 3
11	DB4	H/L	Data bit 4
12	DB5	H/L	Data bit 5
13	DB6	H/L	Data bit 6
14	DB7	H/L	Data bit 7
15	NC	-	
16	NC	-	

Brightness Control

Brightness(nits)	Power consumption(measured with random texts)
$125($ typical $)$	$80 \mathrm{~mW}\left(5 \mathrm{~V}^{*} 16 \mathrm{~mA}\right)$

Notes: 1. When random texts pattern is running, averagely, at any instance, about $1 / 2$ of pixels will be on.
2. You can to use the display off mode to make long life.

7. Counter Drawing \& Block Diagram

MPU	FS	WS0010	COML-16	50X16Pixels OLFD
	R/W			
68 Series	E	Cantroller IC	SEG1-50	
	IBa-IB7		\checkmark	

Address Farmat	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
GXA(Graphic X-avis Address)	1	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
GYA(Graphic Y-avis Address)	0	1	0	0	0	0	0	©GA0

$C G A=1$	CGA $=0$	
$\begin{aligned} & \text { GXA }=10000000 \\ & \text { GYA }=01000001 \end{aligned}$	$\begin{aligned} & G X A=10000000 \\ & G Y A=01000000 \end{aligned}$	
$\begin{aligned} & \text { GXA }=10000001 \\ & \text { GYA }=01000001 \end{aligned}$	$\begin{aligned} & G X A=10000001 \\ & G Y A=01000000 \end{aligned}$	
$\begin{aligned} & \text { GXA }=10000010 \\ & \text { GYA }=01000001 \end{aligned}$	$\begin{aligned} & G X A=10000010 \\ & G Y A=01000000 \end{aligned}$	
$\begin{aligned} & \text { GXA }=10000011 \\ & \text { GYA }=01000001 \end{aligned}$	$\begin{aligned} & \mathrm{GXA}=10000011 \\ & \mathrm{GYA}=01000000 \end{aligned}$	-
!		!
!	!	
$\begin{aligned} & \text { GXA=10101110 } \\ & \text { GYA }=01000001 \end{aligned}$	$\begin{aligned} & \text { GXA=10101110 } \\ & \text { GYA }=01000000 \end{aligned}$	
$\begin{aligned} & \mathrm{GXA}=10101111 \\ & \mathrm{GYA}=01000001 \end{aligned}$	$\begin{aligned} & \mathrm{GXA}=10101111 \\ & \mathrm{GYA}=01000000 \end{aligned}$	¢
$\begin{aligned} & G X A=10110000 \\ & G Y A=01000001 \end{aligned}$	$\begin{aligned} & \text { GXA=10110000 } \\ & \text { GYA }=01000000 \end{aligned}$	-
$\begin{aligned} & G X A=10110001 \\ & G Y A=01000001 \end{aligned}$	$\begin{array}{\|l\|} \hline G X A=10110001 \\ G Y A=01000000 \end{array}$	

REGISTERS

IC provides two types of 8-bit registers, namely: Instruction Register (IR) and Data Register (DR). The register is selected using the RS Pin. When the RS pin is set to "0", the Instruction Register Type is selected. When RS pin is set to "1", the Data Register Type is selected. Please refer to the table below.

RS	R/WB	Operation
0	0	Instruction register write as an internal operation.
0	1	Read busy flag (DB7) and address counter (DB0 to DB6)
1	0	Data register write as an internal operation (DR to DDRAM or CGRAM)
1	1	Data register read as an internal operation (DDRAM or CGRAM to DR)

INSTRUCTION REGISTER (IR)

The Instruction Register is used to store the instruction code (i.e. Display Clear, Cursor Home and others), Display Data RAM (DDRAM) Address, and the Character Generator RAM (CGRAM) Address. Instruction register can only be written from the MPU.

DATA REGISTER (DR)

The Data Register is used as a temporary storage for data that are going to be written into the DDRAM or CGRAM as well as those data that are going to be read from the DDRAM or CGRAM.

BUSY FLAG (BF)

The Busy Flag is used to determine whether IC is idle or internally operating. When IC is performing some internal operations, the Busy Flag is set to "1". Under this condition, the no other instruction will not be accepted. When RS Pin is set to "0" and R/WB Pin is set to "1", the Busy Flag will be outputted to the DB7 pin.

When IC is idle or has completed its previous internal operation, the Busy Flag is set to "0". The next instruction can now be processed or executed.

ADDRESS COUNTER (AC)

The address counter is used to assign the Display Data RAM (DDRAM) Address and the Character Generator RAM (CGRAM) Address. When Address information is written into the Instruction Register (IR), this Address information is sent from the Instruction Register to the Address Counter. At the same time, the nature of the Address (either CGRAM or DDRAM) is determined by the instruction. After writing into or reading from the DDRAM or CGRAM, the Address Counter is automatically increased or decreased by 1 (for Write or Read Function). It must be noted that when the RS pin is set to " 0 " and R/WB is set to " 1 ", the contents of the Address Counter are outputted to the pins -- DB0 to DB6.

DISPLAY DATA RAM (DDRAM)

The Display Data RAM (DDRAM) is used to store the Display Data which is represented as 8 -bit character code. The Display Data RAM supports an extended capacity of 128×8-bits or 128 characters.

The Display Data RAM Address (ADD) is set in the Address Counter as a hexadecimal.

	High Order Bits			Low Order Bits			
Address Counter (hex)	AC6	AC5	AC4	AC3	AC2	AC1	AC0

An example of a DDRAM Address=39 is given below.

DDRAM Address: 39						
AC6	AC5	AC4	AC3	AC2	AC1	AC0
0	1	1	1	0	0	1

1-LINE DISPLAY (N=0)

When the number of characters displayed is less than 128, the first character is displayed at the head position. The relationship between the DDRAM Address and position on the OLED Panel is shown below.

Display Position (digit)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\ldots \ldots \ldots .$.	$\mathbf{1 2 6}$	127	128
DDRAM address (hexadecimal)	00	01	02	03	$\ldots \ldots \ldots \ldots$	7 D	7 E	7 F

For example, when only 8 characters are displayed in one Display Line, the relationship between the DDRAM Address and position on the OLED Panel is shown below.

Display Position	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
DDRAM address	00	01	02	03	04	05	06	07
Shift left	01	02	03	04	05	06	07	08
Shift right	$7 F$	00	01	02	03	04	05	06

2-LINE DISPLAY ($\mathrm{N}=1$)

Case 1: The Number of Characters displayed is less than 64×2 lines
When the number of characters displayed is less than 64×2 lines, then the first character of the first and second lines are displayed starting from the head. It is important to note that every line reserve 64 x8bits DDRAM space. $1^{\text {st }}$ line is 00 to $3 F$, second line is 40 to 7 F . Please refer the figure below.

Display Position	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\ldots \ldots .$.	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$
$\mathbf{6 4}$								
DDRAM Address (hexadecimal)	00	01	02	03	$\ldots \ldots \ldots$	3C	$3 D$	3 E

To illustrate, for 2-line x 20 characters display, the relationship between the DDRAM address and position of the OLED panel is shown below.

Display Position	1	2	3	4	18	19	20
DDRAM address (hexadecimal)	00	01	02	03	...	11	12	13
	40	41	42	43	51	52	53
Shift left	01	02	03	04	12	13	14
	41	42	43	44	52	53	54
Shift right	3F	00	01	02	10	11	12
	7F	40	41	42	50	51	52

Case 2: 40-Character x 2 Lines Display
IC(Master) can be extended to display 40 characters $x 2$ lines by cascade the other IC(Slave). When there is a Display Shift operation, the DDRAM Address is also shifted. Please refer to the example below.

Display Position	1	2	3	4	5	6	7	8	9	10	11		37	38	39	40
DDRAM address	00	01	02	03	04	05	06	07	08	09	0A	...	24	25	26	27
	40	41	42	43	44	45	46	47	48	49	4A	64	65	66	67
	IC display (Master)								Cascade $2^{\text {nd }}$ IC(Slave)							
Shift left	01	02	03	04	05	06	07	08	09	0A	OB	25	26	27	28
	41	42	43	44	45	46	47	48	49	4A	4B	65	66	67	68
Shift right	3F	00	01	02	03	04	05	06	07	08	09	23	24	25	26
	7F	40	41	42	43	44	45	46	47	48	49	...	63	64	65	66

SLAVE MODE DATA INPUT

When IC is under slave mode, display data is send from the other IC(master).The input data "D" is shifted at the falling edge of CL

M/S	Mode	D	CL	LAT
H	Master	Output	Output	Output
L	Slave	Input	Input	Input

