3.3V, Wide Bandwidth, 8-Channel, 2:1, Mux/Demux USB 2.0 Switch with Single Enable

Product Features

- R_{ON} is 4Ω typical
- Low bit-to-bit skew: 200ps
- Low crosstalk: -27 dB @ 250 MHz
- Low Current Consumption: $20 \mu \mathrm{~A}$
- Near Zero propagation delay: 250ps
- Switching speed: 9ns
- Channel On capacitance: 6 pF (typical)
- V_{CC} Operating Range: +3.0 V to +3.6 V
- ESD $>2000 \mathrm{~V}$. . . Human Body Model
- $>500 \mathrm{MHz}$ bandwidth (or data frequency)
- Package (Pb-free available):

48-pin 240 mil wide plastic TSSOP (A)

Applications

- Routes physical layer signals for USB 2.0

Logic Block Diagram

Product Description

Pericom Semiconductor's PI3USB series of logic circuits are produced using the Company's advanced sub-micron CMOS technology, achieving industry leading performance.

The PI3USB40 is a 16 - to 8-channel multiplexer/demultiplexer USB Switch with Hi-Z outputs. Industry leading advantages include a propagation delay of less than 250 ps, resulting from its low channel resistance and I/O capacitance. The device multiplexes differential outputs from a USB transceiver device to one of two corresponding outputs. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. It is designed for low bit-to-bit skew, high channel-tochannel noise isolation and is compatible with various standards, such as High Speed USB 2.0 ($480 \mathrm{Mb} / \mathrm{s}$).

Pin Description

VDD 1	480011
Yo 2	$47{ }^{111}$
GND 3	46 GND
Y1 4	45012
GND $\dagger 5$	44712
VDD 6	$43 \sim$ GND
GND $\dagger 7$	$42 \mathrm{l}{ }^{1} 1$
Y2 8	41 311
GND $\dagger 9$	$40 \sim$ GND
Y3 10	397212
GND 11	38 - 312
VDD 12	37 G GND
GND 13	367 VDD
NC 14	$35-411$
Y4 15	347511
GND 16	337 GND
Y5 17	$32-412$
GND 18	$31 \sim 512$
VDD 19	307 GND
GND 20	297611
Y6 21	287711
GND 22	27 GND
Y7 23	2676
SEL 24	25 -712

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Truth Table

Function	SEL
Y_{N} to NI_{1}	L
Y_{N} to NI_{2}	H

Note:
Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics for USB 2.0 Switching over Operating Range
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$)

Paramenter	Description	Test Conditions	Min.	Typ.(2)	Max.	Units
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	Guaranteed HIGH level	2	-	-	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed LOW level	-0.5	-	0.8	
VIK	Clamp Diode Voltage	VCC = Max., IIN = -18mA	-	-0.7	-1.2	
IIH	Input HIGH Current	VCC = Max., VIN = VCC	-	-	± 5	$\mu \mathrm{A}$
IIL	Input LOW Current	VCC = Max., VIN = GND	-	-	± 5	
IOFF	Power Down Leakage Current	$\mathrm{VCC}=0 \mathrm{~V}, \mathrm{VA}=0 \mathrm{~V}, \mathrm{VB} \leq 3.6$	-	-	-	
RON	Switch On-Resistance(3)	$\begin{aligned} & \mathrm{VCC}=\mathrm{Min} ., 1.5 \mathrm{~V} \leq \mathrm{VIN} \leq \mathrm{VCC} \text { IIN } \\ & =-40 \mathrm{~mA} \end{aligned}$	-	4	8	Ω
$\mathrm{R}_{\mathrm{FLAT}}(\mathrm{ON})$	On-Resistance Flatness(4)	$\begin{aligned} & \mathrm{VCC}=\mathrm{Min} ., \mathrm{VIN} @ 1.5 \mathrm{~V} \text { and VCC } \\ & \mathrm{IIN}=-40 \mathrm{~mA} \end{aligned}$	-	1	-	
$\Delta \mathrm{R}_{\mathrm{ON}}$	On-Resistance match from center ports to any other port (4)	$\begin{aligned} & \text { VCC }=\text { Min., } 1.5 \mathrm{~V} \leq \mathrm{VIN} \leq \mathrm{VCC} \\ & \mathrm{IIN}=-40 \mathrm{~mA} \end{aligned}$	-	0.9	2	

Capacitance ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameters ${ }^{(5)}$	Description	Test Conditions	Typ.	Max.	Units
C IN	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	2.0	3.0	pF
COFF	Port I Capacitance, Switch OFF		4.0	6.0	
CON	Switch Capacitance, Switch ON		6.0	10.0	

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Measured by the voltage drop between A and B pins at indicated current through the switch. ON-resistance is determined by the lower of the voltages on the two (A \& B) pins.
4. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Units
I_{CC}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{CC}	-	-	800	$\mu \mathrm{~A}$

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Per TTL driven input (control inputs only); A and B pins do not contribute to $I_{C C}$.

Dynamic Electrical Characteristics Over the Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$)

Parameter	Description	Test Conditions	Min.	Typ. ${ }^{(2)}$	Max.	Units
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\mathrm{RL}=100 \Omega, \mathrm{f}=250 \mathrm{MHz}$	-	-27	-	dB
OIRR	OFF Isolation		-	-32	-	
BW	Bandwidth -3dB	$\mathrm{RL}=100 \Omega$	-	500	-	MHz

Switching Characteristics

Paramenter	Description	Test Conditions	Min.	Typ.(2)	Max.	Units
tpD	Propagation Delay(2,3)		-	0.25		
tPZH, tpZL	Line Enable Time - SEL to YN, IN		0.5	-	15	
tPHZ, tPLZ	Line Disable Time - SEL to YN, IN		0.5	-	9	n
tSK(o)	Output Skew between center port (Y4 to Y5) to any other port(2)		-	0.1	0.2	
tSK(p)	Skew between opposite transitions of the same output (tPHL - tPLH) (2)		-	0.1	0.2	

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Guaranteed by design.
3. The bus switch contributes no propagational delay other than the RC delay of the ON-resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 10 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.

Test Circuit for Electrical Characteristics ${ }^{(1)}$

Notes:

1. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance: includes jig and probe capacitance.
2. $\mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to $\mathrm{Z}_{\text {OUT }}$ of the Pulse Generator
3. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
4. All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
5. The outputs are measured one at a time with one transition per measurement.

Switch Positions

Test	Switch
t $_{\text {PLZ }}$, t $_{\text {PZL }}$ (output on B-side)	6.0 V
t PHZ, tPZH (output on B-side)	GND
Prop Delay	Open

Test Circuit for Dynamic Electrical Characteristics

Switching Waveforms

Voltage Waveforms Propagation Delay Times

Output Skew - $\mathbf{t s K}_{\text {SK }}$ (

Voltage Waveforms Enable and Disable Times

Pulse Skew - $\mathbf{t}_{\mathbf{S K}(\mathbf{p})}$

Applications Information

Logic Inputs

The logic control inputs can be driven up to +3.6 V regardless of the supply voltage. For example, given a +3.3 V supply, the output enables or select pins may be driven low to 0 V and high to 3.6 V . Driving IN Rail-to-Rail \mathbb{R} minimizes power consumption.

Power-Supply Sequencing
Proper power-supply sequencing is advised for all CMOS devices. It is recommended to always apply V_{CC} before applying signals to the input/output or control pins.
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd

Packaging Mechanical: 48-Pin TSSOP (A)

Ordering Information

Ordering Code	Package Code	Package Type
PI3USB40A	A	$48-$ pin 240 mil wide plastic TSSOP (A)
PI3USB40AE	A	Pb-free, 48-pin 240 mil wide plastic TSSOP (A)

Notes:

1. Thermal characteristics can be found on the company web site at http://www.pericom.com/packaging/mechanicals.php
