

PRELIMINARY

ICS810251I

VCXO AND SYNCHRONOUS ETHERNET JITTER ATTENUATOR

General Description

The ICS8102511 is a high-performance, low jitter/ low phase noise VCXO and jitter attenuator for synchronous ethernet applications.

Features

- One Single-Ended output (LVCMOS or LVTTL levels), output Impedance: 15Ω
- Phase jitter attenuation by the VCXO-PLL using a 25MHz pullable external crystal (XTAL)
- Input frequencies: 25MHz or 125MHz
- Output frequency: 25MHz
- PLL loop bandwidth adjustable by external components
- Absolute pull range is ±50 ppm (using the internal oscillator)
- 25MHz or 125MHz auto input frequency detect
- Output frequency free runs at 25MHz if no input is present PPM accuracy is dependent on external XTAL spec
- Full 3.3V or 2.5V supply voltage
- -40°C to 85°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages.

Applications

- Synchronous Ethernet v0.39a
- End equipment compliant with Std IEEE 802.039a

Block Diagram

Pin Assignment

ICS810251I

16-Lead TSSOP 4.4mm x 5.0mm x 0.925mm package body G Package Top View

The Design Target information presented herein represents a product currently in design or being considered for design. The noted characteristics are design targets. Integrated Device Technologies, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.

Number	Name	T	уре	Description
1	PLL_SEL	Input	Pullup	When logic HIGH, the VCXO-PLL is enabled. When LOW, the VCXO-PLL is in Bypass mode. LVCMOS/LVTTL interface levels.
2, 9, 12	GND	Power		Power supply ground.
3	Reserved	Reserved		Reserved pin. Leave floating and not connected
4	Q	Output		Single-ended clock output. LVCMOS/ LVTTL interface levels.
5	V _{DDO}	Power		Output power supply pin.
6	OE	Input	Pullup	Output enable pin for Q output. LVCMOS/LVTTL interface levels.
7	V _{DDA}	Power		Analog supply pin.
8, 15	V _{DD}	Power		Power supply pins.
10, 11	XTAL_OUT, XTAL_IN	Input		VCXO crystal oscillator interface. XTAL_IN is the input. XTAL_OUT is the output.
13, 14	LF0, LF1	Analog Input/ Output		Single-ended clock input. LVCMOS/ LVTTL interface levels.
16	CLK_IN	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.

Table 1. Pin Descriptions

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD}	Power Dissipation Canaditaneo	$V_{DD,} V_{DDO} = 3.465 V$		8		pF
	Power Dissipation Capacitance	$V_{DD,} V_{DDO} = 2.625 V$		5		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
R _{OUT}	Output Impedance	V _{DDO} = 3.3V±5%		15		Ω
		V _{DDO} = 2.5V±5%		20		Ω

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, V _O	-0.5V to V _{DD} + 0.5V
Package Thermal Impedance, θ_{JA}	92.4°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, V_{DD} = V_{DDO} = 3.3V \pm 5%, T_{A} = -40°C to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		V _{DD} – 0.05	3.3	V _{DD}	V
V _{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current			30		mA
I _{DDA}	Analog Supply Current			5		mA
I _{DDO}	Output Supply Current	No Load		0		mA

Table 3B. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDA}	Analog Supply Voltage		V _{DD} - 0.05	2.5	V _{DD}	V
V _{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current			30		mA
I _{DDA}	Analog Supply Current			5		mA
I _{DDO}	Output Supply Current	No Load		0		mA

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V	Input		V _{DD} = 3.465V	2		V _{DD} + 0.3	V
⊻IH	High Voltage		V _{DD} = 2.625V	1.7		V _{DD} + 0.3	V
, Input			V _{DD} = 3.465V	-0.3		0.8	V
VIL	Low Voltage		V _{DD} = 2.625V	-0.3		0.7	V
	Input High Current	CLK_IN	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			150	μA
ЧН		OE, PLL_SEL	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			5	μA
	Input	CLK_IN	$V_{DD} = 3.465 V \text{ or } 2.625 V, V_{IN} = 0 V$	-5			μA
١L	Low Current	OE, PLL_SEL	V_{DD} = 3.465V or 2.625V, V_{IN} = 0V	-150			μA
V	Output High Vo		$V_{DDO} = 3.3V \pm 5\%$	2.6			V
∨он	Output high voltage; NOTE T		$V_{DDO} = 2.5V \pm 5\%$	1.8			V
V _{OL}	Output Low Vol	tage; NOTE 1	$V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$			0.5	V

Table 3C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $T_A = -40^{\circ}$ C to 85°C

NOTE 1: Outputs terminated with 50 Ω to V_{DDO}/2. See Parameter Measurement Information section. Load Test Circuit diagrams.

AC Electrical Characteristics

Table 4A. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f	Input Beference Frequency			25		MHz
'REF	input reference r requency			125		MHz
f _{VCO}	VCXO-PLL Frequency Range			25		MHz
f _{OUT}	Output Frequency			25		MHz
t _{JIT(CC)}	Cycle-to-Cycle Jitter; NOTE 1				TBD	ps
tjit	RMS Phase Jitter (Random); NOTE 2	Integration Range: 12kHz – 10MHz (f _{OUT} = 25MHz)		0.22	1	ps
t _{JIT(PER)}	Period jitter				TBD	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%		845		ps
odc	Output Duty Cycle		45	50	55	%

NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 2: Please refer to the Phase Noise Plot.

Table 4B. AC Characteristics, V_{DD} = V_{DDO} = 2.5V \pm 5%, T_{A} = -40°C to 85°C

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f	Input Reference Frequency			25		MHz
'REF	input helefence i requency			125		MHz
f _{VCO}	VCXO-PLL Frequency Range			25		MHz
f _{OUT}	Output Frequency			25		MHz
t _{JIT(CC)}	Cycle-to-Cycle Jitter; NOTE 1				TBD	ps
tjit	RMS Phase Jitter (Random); NOTE 2	Integration Range: 12kHz – 10MHz (f _{OUT} = 25MHz)		0.24	1	ps
t _{JIT(PER)}	Period jitter				TBD	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%		1330		ps
odc	Output Duty Cycle		45	50	55	%

NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 2: Please refer to the Phase Noise Plot.

Typical Phase Noise at 25MHz (3.3V)

Typical Phase Noise at 25MHz (2.5V)

Parameter Measurement Information

3.3V Core/3.3V LVCMOS Output Load AC Test Circuit

2.5V Core/2.5V LVCMOS Output Load AC Test Circuit

Cycle-to-Cycle Jitter

Period Jitter

RMS Phase Jitter

Output Rise/Fall Time

Parameter Measurement Information, continued

Output Duty Cycle/Pulse Width/Period

Application Information

Recommendations for Unused Input Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Schematic Example

Figure 1 shows an example of the 810251I application schematic. In this example, the device is operated either at $V_{DD} = 3.3V$ or 2.5V. The decoupling capacitors should be located as close as possible to the power pin. The input is driven by an LVCMOS driver. An optional 3-pole filter can also be used for additional spur reduction. It is recommended that the loop filter components be laid out for the 3-pole option. This will also allow the 2-pole filter to be used.

Figure 1. P.C. ICS810251I Schematic Example

Application Information

VCXO-PLL EXTERNAL COMPONENTS

Choosing the correct external components and having a proper printed circuit board (PCB) layout is a key task for quality operation of the VCXO-PLL. In choosing a crystal, special precaution must be taken with the package and load capacitance (C_L). In addition, frequency, accuracy and temperature range must also be considered. Since the pulling range of a crystal also varies with the package, it is recommended that a metal-canned package like HC49 be used. Generally, a metal-canned package has a larger pulling range than a surface mounted device (SMD). For crystal selection information, refer to the VCXO Crystal Selection Application Note.

The crystal's load capacitance C_L characteristic determines its resonating frequency and is closely related to the VCXO tuning range. The total external capacitance seen by the crystal when installed on a board is the sum of the stray board capacitance, IC package lead capacitance, internal varactor capacitance and any installed tuning capacitors (C_{TUNE}).

If the crystal C_L is greater than the total external capacitance, the VCXO will oscillate at a higher frequency than the crystal specification. If the crystal C_L is lower than the total external

capacitance, the VCXO will oscillate at a lower frequency than the crystal specification. In either case, the absolute tuning range is reduced. The correct value of C_L is dependant on the characteristics of the VCXO. The recommended C_L in the *Crystal Parameter Table* balances the tuning range by centering the tuning curve.

The VCXO-PLL Loop Bandwidth Selection Table shows R_S , C_S and C_P values for recommended high, mid and low loop bandwidth configurations. The device has been characterized using these parameters. For other configurations, refer to the Loop Filter Component Selection for VCXO Based PLLs Application Note.

The crystal and external loop filter components should be kept as close as possible to the device. Loop filter and crystal traces should be kept short and separated from each other. Other signal traces should be kept separate and not run underneath the device, loop filter or crystal components.

VCXO Characteristics Table

Symbol	Parameter	Typical	Units
k _{VCXO}	VCXO Gain	15000	Hz/V
C _{V_LOW}	Low Varactor Capacitance	9.8	pF
C_{V_HIGH}	High Varactor Capacitance	22.7	pF

VCXO-PLL Loop Bandwidth Selection Table

Bandwidth	Crystal Frequency (MHz)	${f R}_{\sf S}$ (k Ω)	C _S (μF)	C _Ρ (μF)
246Hz (Low)	25	0.4	10	0.01
616Hz (Mid)	25	1.0	10	0.001
1000Hz (High)	25	1.65	10	0.001

Crystal Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
	Mode of Oscillation			Fundamenta	ıl	
f _N	Frequency			25		MHz
f _T	Frequency Tolerance				±20	ppm
f _S	Frequency Stability				±20	ppm
	Operating Temperature Range		-40		+85	0C
CL	Load Capacitance			10		pF
CO	Shunt Capacitance			4		pF
C _O / C ₁	Pullability Ratio			220	240	
ESR	Equivalent Series Resistance				20	Ω
	Drive Level				1	mW
	Aging @ 25 ⁰ C				±3 per year	ppm

Reliability Information

Table 5. θ_{JA} vs. Air Flow Table for a 16 Lead TSSOP

θ_{JA} vs. Air Flow						
Meters per Second	0	1	2.5			
Multi-Layer PCB, JEDEC Standard Test Boards	92.4°C/W	88.0°C/W	85.9°C/W			

Transistor Count

The transistor count for ICS810251I: 937

Package Outline and Package Dimension

Package Outline - G Suffix for 16 Lead TSSOP

Table 6. Package Dimensions for 16 Lead TSSOP

All Dimensions in Millimeters				
Symbol	Minimum Maximum			
N	16			
Α		1.20		
A1	0.5	0.15		
A2	0.80	1.05		
b	0.19	0.30		
С	0.09	0.20		
D	4.90	5.10		
E	6.40 Basic			
E1	4.30	4.50		
е	0.65 Basic			
L	0.45	0.75		
α	0°	8 °		
aaa	0.10			

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 7. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
810251AGI	TBD	16 Lead TSSOP	Tube	-40°C to 85°C
810251AGIT	TBD	16 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C
810251AGILF	810251AL	16 Lead "Lead-Free" TSSOP	Tube	-40°C to 85°C
810251AGILFT	810251AL	16 Lead "Lead-Free" TSSOP	2500 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 378851

© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA