2/5/10MHz V/F Converters

Models MD3902/3905/3910 are highperformance, precision $2 / 5 / 10 \mathrm{MHz}$ fullscale voltage-to-frequency converters, intended for those applications that require maximum performance at the most economical cost. These converters feature $>126 / 134 / 142-\mathrm{dB}$ dynamic range, $\pm 0.01 / 0.02 / 0.05 \%$ linearity, and $\pm 5 \%$ overrange capability. The MD3902/3905/ 3910 devices feature overall performance and stability virtually identical to that of similar units costing 40% or more.

All models accept a $-100 \mu \mathrm{~V}$ to -10 V full-scale single-ended analog input signal that is converted to an output signal whose frequency is proportional to the full-scale frequency, within 0.01/0.02/ 0.05% linearity, using the long-proven charge-balance technique. The devices offer 5% overrange capability, and buffered complimentary TTL-compatible frequency outputs that will drive capacitive loads as high as 50 pF .

Stability of the MD3902/3905/3910 Series is excellent for V/F converters in the respective price ranges, with $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical, $30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum offset and $60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical, $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum gain temperature coefficients. Warm-up time to specified accuracy is less than two minutes.

In applications where overall system throughput must be maintained at a specific rate, or where fixed offset or different scale voltages would be more convenient, custom frequencies and/or custom trimming can be easily accommodated. By increasing the full-scale output frequency by 10 to 20%, for example, additional time would be available for the system microprocessor to access the results of each conversion. Please contact the factory to discuss your specific timing requirements.

All models are packaged in a 1.31" x 0.69 " x 0.22" 24-pin ceramic DIL package. Power dissipation is lower than 0.65/0.80/0.85 watts, and operation to specified accuracy is guaranteed over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

For additional information regarding Custom Microelectronic Products and Services, please contact Micro Networks at:

Features:

■ Outstanding Price/ Performance Ratio

■ Guaranteed Minimum/ Maximum Specifications

- Wide Dynamic Range >2,000,000/5,000,000/ 10,000,000:1
$>126 / 134 / 142 \mathrm{~dB}$
- Excellent Linearity $\pm 0.01 / 0.02 / 0.05 \%$ FSR $\pm 0.01 / 0.02 / 0.05 \%$ of Input
- Excellent Stability $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Offset $60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Gain
- Voltage or Current Inputs

■ Offset and Gain Error Trimmable to Zero

■ Complementary Frequency Outputs-TTL/CMOS Compatible
■ Small 24-Pin DIP
Low Power <0.65/0.80/0.85W

Applications:

- Precision Integration
- Digital Data Transmission
- Frequency Synthesis
- Analytical Instrumentation
- Medical Instrumentation
- Telemetry
- Data Recording
- Weighing Systems
- Tachometers
- Accelerometers
- Flow Meters
- Robotics

2/5/10MHz V/F Converters

Absolute Maximum Ratings

Ordering Information
Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
+15V Supply (Pin 1)
-15V Supply (Pin 5)
+5V Supply (Pin 20)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
+15.45 Volts
-15.45 Volts
+5.25 Volts
-15 Volts to +15 Volts

Specifications

Specifications @ $T_{A}=+25^{\circ} \mathrm{C}$, Supplies $= \pm 15 \mathrm{~V}$ and +5 V , unless otherwise indicated

		Min.	тур.	Max.	Units
ANALOG INPUTS					
ANALOG Voltage Range		0 to -10			Volts
Nonsaturating Overrange		5			\%
		Single-Ended			
Input Impedance	MD3902 MD3905 MD3910		$\begin{gathered} 15 \\ 6 \\ 6 \end{gathered}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Offset Voltage (trimmable to zero)			± 7	± 10	mV
TRANSFER CHARACTERISTICS					
Full-Scale Output	$\begin{aligned} & \hline \text { MD3902 } \\ & \text { MD3905 } \\ & \text { MD3910 } \\ & \hline \end{aligned}$	$\begin{gathered} 2 \\ 5 \\ 10 \end{gathered}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Transfer Function	$\begin{aligned} & \text { MD3902 } \\ & \text { MD3905 } \\ & \text { MD3910 } \\ & \hline \end{aligned}$				
Gain Error (trimmable to zero)				± 1	\%
Nonlinearity (max.) (not specified under overrange conditions)	MD3902 MD3905 MD3910	$\begin{aligned} & \pm 0.01 \% \mathrm{FS} \pm 0.01 \% \mathrm{~V}_{\text {IN }} \\ & \pm 0.02 \% \mathrm{FS} \pm 0.02 \% \mathrm{~V}_{\text {IN }} \\ & \pm 0.05 \% \mathrm{FS} \pm 0.05 \% \mathrm{~V}_{\mathbb{N}} \end{aligned}$			
Full-Scale Step Response (maximum; to 0.01\%)	$\begin{aligned} & \text { MD3902 } \\ & \text { MD3905 } \end{aligned}$ MD3910	2 cycles of new $f_{\text {out }}+20 \mu \mathrm{sec}$ 2 cycles of new $\mathrm{f}_{\text {out }}+10 \mu \mathrm{sec}$ 2 cycles of new fou $+5 \mu \mathrm{sec}$			
Overload Recovery	$\begin{aligned} & \text { MD3902 } \\ & \text { MD3905 } \\ & \text { MD3910 } \end{aligned}$	$\begin{aligned} & 8 \text { cycles of new } f_{\text {out }} \\ & 10 \text { cycles of new } f_{\text {out }} \\ & 12 \text { cycles of new } f_{\text {out }} \\ & \hline \end{aligned}$			
STABILITY					
Gain Temperature Coefficient			60	100	ppm of FSR/ ${ }^{\circ} \mathrm{C}$
Offset Temperature Coefficient			10	30	ppm of FSR/ ${ }^{\circ} \mathrm{C}$
Power Supply Rejection	Gain Offset			$\begin{gathered} 200 \\ 10 \\ \hline \end{gathered}$	ppm of FSR/\%Vs $\mu \mathrm{V} / \% \mathrm{Vs}$
Warm-up Time (to specified accuracy)				2	Minutes
OUTPUT					
Pulse Width	$\begin{aligned} & \text { MD3902 } \\ & \text { MD3905 } \\ & \text { MD3910 } \\ & \hline \end{aligned}$	$\begin{array}{r} 200 \\ 80 \\ 35 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 100 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 120 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline \text { nsec } \\ & \text { nsec } \\ & \text { nsec } \\ & \hline \end{aligned}$
Logic Levels: Logic "1" Logic "0" (3 mA sink)		+3.5	+4.0	$\begin{gathered} +4.5 \\ 0.4 \end{gathered}$	Volts Volts
POWER SUPPLY REQUIREMENTS					
$\pm 15 \mathrm{~V}$ Supplies +5 V Supply		$\begin{gathered} \pm 14.55 \\ +4.75 \end{gathered}$		$\begin{gathered} \pm 15.45 \\ \pm 5.25 \end{gathered}$	Volts Volts
+15V Current Drain	$\begin{aligned} & \text { MD3902 } \\ & \text { MD3905 } \end{aligned}$ MD3910			$\begin{aligned} & 20 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
-15V Current Drain				10	mA
+5V Current Drain	MD3902 MD3905 MD3910			$\begin{aligned} & 40 \\ & 40 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Power Dissipation	$\begin{aligned} & \text { MD3902 } \\ & \text { MD3905 } \end{aligned}$ MD3910			$\begin{aligned} & 650 \\ & 800 \\ & 850 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mWW} \\ & \mathrm{mWW} \\ & \mathrm{~mW} \end{aligned}$

Specifications subject to change without notification as Micro Networks reserves the right to make improvements and changes in its products.

micro networks corporation

324 Clark St., Worcester, MA 01606
Tel. (508) 852-5400 • FAX (508) 853-8296
E-Mail - sales@mnc.com
Web Site - http://www.mnc.com

Block Diagram

USING THE MD39XX

GENERAL CONSIDERATIONS - Figure 2 depicts a typical circuit configuration for the MD39XX. The layout should be clean, with output pulses routed as far away from the input analog signals as possible. To obtain maximum performance, bypass capacitors, as shown in Figure 2, should be mounted right at the appropriate pins of the MD39XX.

Figure 2. Typical Circuit Configuration.

OFFSET AND GAIN TRIMMING - The Offset adjustment potentiometer should be a $20 \mathrm{k} \Omega$, 10 -turn unit. To ensure that the temperature coefficient of the potentiometer does not become significant relative to the overall offset tempco specification, a 100 ppm or better potentiometer is recommended. With this pot in the circuit, initial offsets of up to $\pm 10 \mathrm{mV}$ may be trimmed to zero.

The Gain adjustment potentiometer should be a $200 \Omega, 10$-turn unit with a recommended temperature coefficient of 100 ppm or better. With this pot in the circuit, initial gain errors of up to $\pm 2 \%$ may be trimmed to zero.

GROUNDING - The Analog and Digital grounds are internally separated in the MD39XX. The use of ground plane is not necessary for proper operation of the MD39XX. However, a ground plane is recommended with any analog signal conditioning circuitry that may be used in front of the V/F, especially if this circuitry involves high gains. Any amplifiers used ahead of the MD39XX should be decoupled to eliminate potential problems with the high-frequency output of the V/F.

324 Clark St., Worcester, MA 01606
Tel. (508) 852-5400 • FAX (508) 853-8296
E-Mail - sales@mnc.com
Web Site - http://www.mnc.com

MD3902/3905/3910

2/5/10MHz V/F Converters

OFFSET AND GAIN CALIBRATION

OFFSET CALIBRATION - Offset calibration should be performed prior to gain calibration. With a -10 mV analog input signal at pin 11 of the MD39XX, adjust the Offset potentiometer until a frequency of $2.000 / 5.000 / 10.000 \mathrm{kHz}$ is observed on output pins 21,23 or 24 .

GAIN CALIBRATION - With a full scale analog input voltage of -10.00 V on pin 11 , adjust the Gain potentiometer until a full-scale frequency of $2.000 / 5.000 / 10.000 \mathrm{MHz}$ is observed on output pin 21, 23 or 24.

N/C PINS - Pins marked as No Connect have no electrical connection to the internal circuitry of the MD39XX.

OUTPUT PINS - Pins 23 and 24 are tied together internally. Either or both may be used as the source of the frequency output of the MD39XX, as long as the load specifications are not exceeded. Pin 21 provides a complementary signal relative to pins 23 and 24 with similar loading limits.

Pin Designations

Pin 1	
12	13

$1+15 \mathrm{~V}$ Supply	24 Output
2 Analog Ground	23 Output
3 Analog Ground	22 Digital Ground
4 Analog Ground	21 Output
5 -15V Supply	$20+5 \mathrm{~V}$ Supply
6 No Connect	19 No Connect
7 No Connect	18 No Connect
8 Offset Trim	17 No Connect
9 No Connect	16 No Connect
$10 \mathrm{I}_{\mathrm{IN}}$	15 No Connect
11 V IN	14 No Connect
12 No Connect	13 No Connect

