

Power MOSFET 20 V, 5.6 A Single N-Channel, TSOP-6

Features

- Leading Edge Trench Technology for Low On Resistance
- Low Gate Charge for Fast Switching
- Small Size (3 x 2.75 mm) TSOP-6 Package
- This is a Pb-Free Device

Applications

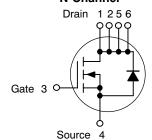
- DC-DC Converters
- Lithium Ion Battery Applications
- Load/Power Switching

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating			Symbol	Value	Unit	
Drain-to-Source Voltage		V _{DSS}	20	V		
Gate-to-Source Voltage			V _{GS}	±8	V	
Continuous Drain Current (Note 1)	Steady State	T _A = 25°C		5.6		
		T _A = 85°C	I _D	4.1	Α	
	t ≤ 10 s	T _A = 25°C		6.2		
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	1.1	W	
	t ≤ 10 s	,	J	1.4		
Continuous Drain Current	Steady	T _A = 25°C		4.2	Α	
(Note 2)		T _A = 85°C	I _D	3.0		
Power Dissipation (Note 2)	State	T _A = 25°C	P _D	0.6	W	
Pulsed Drain Current	t _P ≤	≤10 s	I _{DM}	19	Α	
Operating and Storage Temperature Range		T _J , T _{stg} -55 t		°C		
Source Current (Body Diode)			IS	1.0	Α	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C	

THERMAL RESISTANCE RATINGS

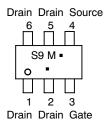
Parameter	Symbol	Max	Unit	
Junction-to-Ambient - Steady State (Note 1)		110		
Junction-to-Ambient - t ≤ 10 s (Note 1)	$R_{\theta JA}$	90	°C/W	
Junction-to-Ambient - Steady State (Note 2)		200		


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
- 2. Surface-mounted on FR4 board using the minimum recommended pad size

NTGS3130N

V _{(BR)DSS}	R _{DS(on)} mAX	I _D Max
20 V	24 mΩ @ 4.5 V	5.6 A
	32 mΩ @ 2.5 V	4.9 A


N-Channel

MARKING DIAGRAM & PIN ASSIGNMENT

TSOP-6 CASE 318G STYLE 1

S9 = Specific Device Code

M = Date Code*

= Pb-Free Package
 (Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGS3130NT1G	TSOP-6 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NTGS3130N

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Test Co	ndition	Min	Тур	Max	Unit	
OFF CHARACTERISTICS	- 1			•		l	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V;$	I _D = 250 μA	20			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				9.8		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}; V_{DS} = 16 \text{ V},$ $T_{J} = 25^{\circ}\text{C}$				1.0	μΑ	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0, V _{GS} = ±8 V				100	nA	
ON CHARACTERISTICS (Note 3)								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS,}$	I _D = 250 μA	0.4	0.6	1.4	V	
Negative Temperature Coefficient	V _{GS(TH)} /T _J				3.4		mV/°C	
Durin to Occurre Oc Bestitants	5	V _{GS} = 4.5 \	⁷ , I _D = 5.6 A		19	24	mΩ	
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 2.5 \	⁷ , I _D = 4.9 A		25	32		
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 5.6 A			8.2		S	
CHARGES, CAPACITANCE, & GATE RESI	STANCE					•		
Input Capacitance	C _{ISS}	V	0.1/		935			
Output Capacitance	C _{OSS}	V _{GS} = f = 1	MHz,		169			
Reverse Transfer Capacitance	C _{RSS}	V _{DS} = 16 V			104		pF	
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 10 V			965			
Output Capacitance	C _{OSS}				198			
Reverse Transfer Capacitance	C _{RSS}				110			
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V V _{DS} = 16 V I _D = 5.6 A			13.2	20.3		
Threshold Gate Charge	Q _{G(TH)}				0.60			
Gate-to-Source Charge	Q _{GS}				1.5			
Gate-to-Drain Charge	Q _{GD}				4.2			
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V V _{DS} = 5.0 V I _D = 6.2 A			11.8	18.0	nC	
Threshold Gate Charge	Q _{G(TH)}				0.6			
Gate-to-Source Charge	Q _{GS}				1.4			
Gate-to-Drain Charge	Q _{GD}				2.7			
SWITCHING CHARACTERISTICS, V _{GS} = 4	.5 V (Note 4)			-		!	•	
Turn-On Delay Time	t _{d(ON)}				6.3	12.6		
Rise Time	t _r	$V_{GS} = 4.5 \text{ V},$ $V_{DD} = 16 \text{ V},$ $I_{D} = 1 \text{ A},$ $R_{G} = 3 \Omega$			7.3	13.5	ns	
Turn-Off Delay Time	t _{d(OFF)}				21.7	35.1		
Fall Time	t _f				9.7	17.6		
DRAIN-SOURCE DIODE CHARACTERIST	ics			•			•	
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 1.0 A	T _J = 25°C		0.7	1.2	V	
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ Vdc},$ $dI_{SD}/dt = 100 \text{ A}/\mu\text{s},$ $I_{S} = 1.0 \text{ A}$			20.4		ns	
Charge Time	t _a				8.1			
Discharge Time	t _b				11.6			
Reverse Recovery Charge	Q _{RR}				8.8		nC	

^{3.} Pulse Test: Pulse Width $\leq 300~\mu\text{s},$ Duty Cycle $\leq 2\%.$

^{4.} Switching characteristics are independent of operating junction temperature.