Power MOSFET

20 V, 7.5 A, Common-Drain, Dual N-Channel TSSOP-8

Features

- Common Drain for Ease of Circuit Connection
- Low R_{DS(on)} Extending Battery Life
- ESD Protected Gate

Applications

- Li-Ion Battery Protection Circuit
- Power Management in Portable and Battery-Powered Products

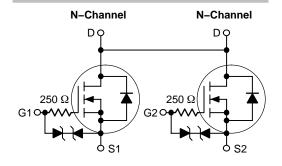
MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter Symbol Value Uni					
Farameter			Syllibol	value	Ullits
Drain-to-Source Voltage			V_{DSS}	20	V
Gate-to-Source Voltage			V_{GS}	±12	V
Continuous Drain	Steady	T _A = 25°C	I _D	7.5	Α
Current (Note 1)	State	T _A = 75°C		5.8	
Power Dissipation (Note 1)	T _A = 25°C		P _D	1.52	W
Continuous Drain	t ≤ 10 s	T _A = 25°C	I _D	9.8	Α
Current (Note 2)		T _A = 75°C		7.6	
Power Dissipation (Note 2)	t ≤ 10 s	T _A = 25°C	P _D	2.6	W
Pulsed Drain Current	tp =	10 μs	I _{DM}	30	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode)			IS	2.2	Α
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

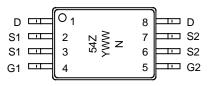
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Units
Junction-to-Ambient - Steady State	$R_{\theta JA}$	82	°C/W
Junction-to-Ambient - t ≤ 10 s	$R_{\theta JA}$	48	


- Mounted onto a 2" square FR-4 board (1" sq. 2 oz. cu. 0.06" thick single-sided), steady state.
- Mounted onto a 2" square FR-4 board (1" sq. 2 oz. cu. 0.06" thick single-sided), t ≤ 10 secs.

ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
20 V	15 mΩ @ 4.5 V	7.5 A	
20 V	21 mΩ @ 2.5 V	7.5 K	

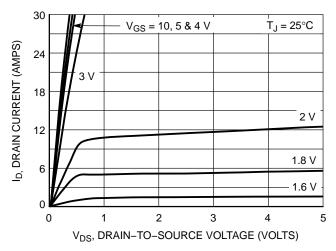
MARKING DIAGRAM & PIN ASSIGNMENT

Top View

54Z = Device Code Y = Year WW = Work Week N = MOSFET

ORDERING INFORMATION

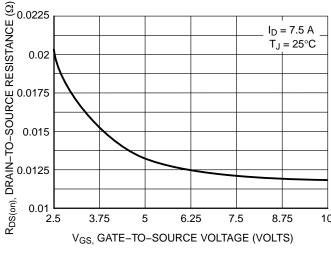
Device	Package	Shipping [†]
NTQD4154Z	TSSOP-8	100 Units/Rail
NTQD4154ZR2	TSSOP-8	4000/Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J=25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					-		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				12		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V},$ $V_{DS} = 16 \text{ V}$	T _J = 25°C			1.0	μΑ
			T _J = 125°C			25	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±4.5 V				±1.0	μΑ
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{E}$	ο = 250 μΑ	0.6		1.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.1		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 4.5 \text{ V},$	I _D = 7.5 A		15	19	mΩ
		V _{GS} = 2.5 V, I _D = 5.5 A			21	26	
Forward Transconductance	9FS	V _{GS} = 10 V, I _D = 7.5 A			46		S
CHARGES AND CAPACITANCES			•		1	•	•
Input Capacitance	C _{ISS}				1485		pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 16 \text{ V}$			220		7
Reverse Transfer Capacitance	C _{RSS}				175		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 10 \text{ V},$ $I_{D} = 7.5 \text{ A}$			21.5		nC
Threshold Gate Charge	Q _{G(TH)}				4.0		
Gate-to-Source Charge	Q_{GS}				6.0		
Gate-to-Drain Charge	Q_{GD}				5.5		
SWITCHING CHARACTERISTICS (No	ote 4)		•		*		•
Turn-On Delay Time	t _{d(ON)}				0.2		μs
Rise Time	t _r	V _{GS} = 4.5 V, V	/ _{DD} = 10 V.		0.5		
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 7.5 \text{ A}, R_G = 6.0 \Omega$			1.12		
Fall Time	t _f				0.86		
DRAIN-SOURCE DIODE CHARACTE	RISTICS (Note	3)	•		1	•	•
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V},$ $I_{S} = 6.5 \text{ A}$	T _J = 25°C		0.8	1.2	V
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V}, \text{ dI}_{SD}/\text{dt} = 100 \text{ A}/\mu\text{s}$ $I_{S} = 6.5 \text{ A}$			1.02		μS
	t _a				0.32		
	t _b				0.7		
	Q _{RR}				11.6		μC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.


TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

 $V_{DS} \ge 10 \text{ V}$ ID, DRAIN CURRENT (AMPS) 24 18 12 125°C 6 25°C $T_J = -55^{\circ}C$ 0 0.5 2.5 3 0 1.5 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

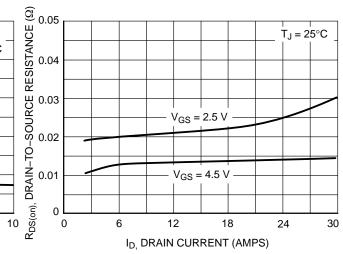



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On–Resistance vs. Drain Current and Gate Voltage



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted)

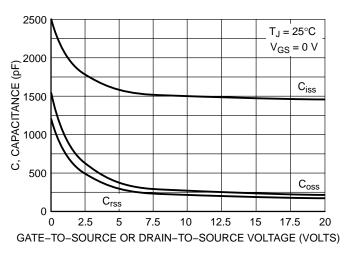
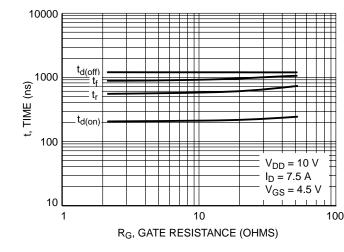



Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Total Gate Charge

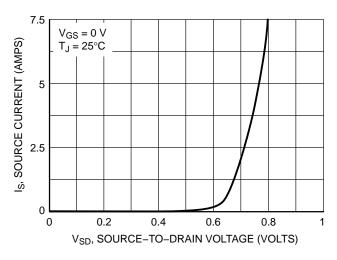


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

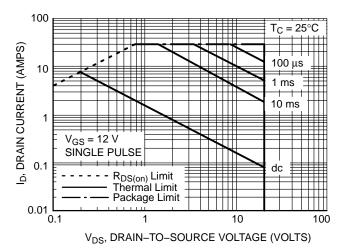
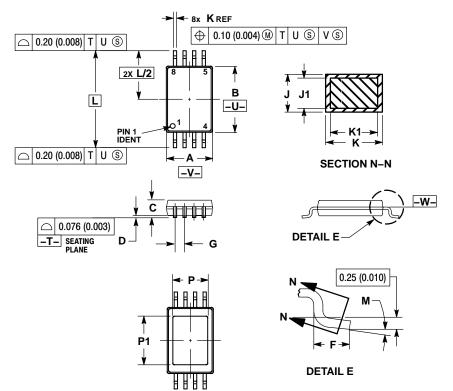



Figure 11. Maximum Rated Forward Biased Safe Operating Area

PACKAGE DIMENSIONS

TSSOP-8

CASE 948S-01 **PLASTIC** ISSUE O

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15
- (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	2.90	3.10	0.114	0.122		
В	4.30	4.50	0.169	0.177		
С		1.10		0.043		
D	0.05	0.15	0.002	0.006		
F	0.50	0.70	0.020	0.028		
G	0.65 BSC		0.026 BSC			
J	0.09	0.20	0.004	0.008		
J1	0.09	0.16	0.004	0.006		
K	0.19	0.30	0.007	0.012		
K1	0.19	0.25	0.007	0.010		
L	6.40 BSC		0.252	BSC		
M	0°	8°	0°	8°		
Р		2.20		0.087		
P1		3.20		0.126		

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free LISA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.