315.00 MHz SAW Filter

VANLONG

- Designed to Provide Front-end selectivity in 315.00 MHz
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Rugged, Hermetic, Low Profile TO-39 Package

SF315

Absolute Maximum Rating (Ta=25°C)						
Parameter		Rating	Unit			
CW RF Power Dissipation	Р	+10	dBm			
DC Voltage VDC Between Any Two Pins	V _{DC}	±30	V			
Operating Temperature Range	T _A	-10 ~ +60	°C			
Storage Temperature Range	$T_{\rm stg}$	-40 ~ +85	٥C			

Electronic Characteristics						
Parameter		Sym	Minimum	Typical	Maximum	Unit
Nominal Frequency (at 25°C) (Center frequency between 3dB point)		f _C	NS	315.00	NS	MHz
Insertion Loss		IL	-	3.0	4.5	dB
3dB Passband		BW ₃	-	600	800	KHz
Rejection	at f _c - 21.4 MHz (Image)	-	40	50	-	dB
	at f _c - 10.7 MHz (LO)	-	20	30	-	dB
	Ultimate	-	-	60	-	dB
Temperature Stability	Operating Temperature Range	T _C	-10	-	+60	°C
	Turnover Temperature	To	25	-	55	°C
	Turnover Frequency	f _O	-	f _C	-	MHz
	Frequency Temperature Coefficient	FTC	-	0.032	-	ppm/C ²
Frequency Aging Absolute Value during the First Year		fA	-	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	MΩ

NS = Not Specified

Notes:

- 1. The frequency $f_{\rm C}$ is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR \leq 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_c . Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

- 5. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$.
- 6. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery please contact our sales offices or email to sales@vanlong.com.

Fax: +86 10 6301 9167

Email: sales@vanlong.com

315.00 MHz SAW Filter

Package Dimensions (TO-39)

Marking

Ink Marking Color: Black or Blue

Electrical Connections

Terminals	Connection	
1	Input/Output	
2	Output/Input	
3	Case Ground	

Package Dimensions

Dimensions	Nom. (mm)	Tol. (mm)	
A	9.35	±0.10	
В	3.40	±0.10	
С	3.00	±0.20	
D	0.45	±0.10	
E	5.08	±0.10	
F	2.54	±0.20	
G	0.45		

Test Circuit

C = 13 pF* Ls1 = Ls2 = 80 nH

Typical Frequency Response

