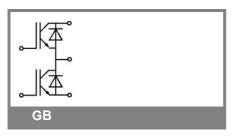


IGBT Module

SK35GB12T4

Target Data


Features

- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD

Typical Applications*

Remarks

• V_{CE,sat} , V_F = chip level value

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified					
Symbol	Conditions		Values		
IGBT					
V_{CES}	T _j = 25 °C		1200	V	
I _C	$T_j = 175 ^{\circ}\text{C}$ $T_s = 25 ^{\circ}$	C.	44	Α	
	T _s = 70 °	C	35	Α	
I _{CRM}	I _{CRM} = 3 x I _{Cnom}		105	Α	
$V_{\rm GES}$			± 20	V	
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V; T_j = 150 Vces < 1200 V	°C	10	μs	
Inverse D	iode			•	
I_{F}	$T_{j} = 175 ^{\circ}\text{C}$ $T_{s} = 25 ^{\circ}$		40	Α	
	T _s = 70 °	C	31	Α	
I_{FRM}	I _{FRM} = 3 x I _{Fnom}		105	Α	
I _{FSM}	t_p = 10 ms; half sine wave T_j = 150	°C	225	Α	
Module					
$I_{t(RMS)}$				Α	
T_{vj}			-40 + 175	°C	
T _{stg}			-40 + 125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics $T_s =$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT	•						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.2 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,005	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			120	nA	
		T _j = 125 °C T _j = 25 °C				nA	
V _{CE0}		T _j = 25 °C		1,1	1,3	V	
		T _j = 150 °C		1	1,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		21,4		mΩ	
		T _j = 150°C		35,7		mΩ	
V _{CE(sat)}	I _{Cnom} = 35 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,85	2,05	V	
		$T_j = 150^{\circ}C_{chiplev.}$		2,25	2,45	V	
C _{ies}				1,95		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,155		nF	
C _{res}				0,115		nF	
Q_G	V _{GE} = -7V+15V			189		nC	
t _{d(on)}				28		ns	
t _r	$R_{Gon} = 22 \Omega$	V _{CC} = 600V		25		ns	
E _{on}	D 00 0	I _C = 35A		3,27		mJ	
^t d(off)	$R_{Goff} = 22 \Omega$	T _j = 150 °C		303		ns	
t _f	di/dt = 2900 A/µs	V _{GE} = ±15 V		70		ns	
E _{off}				3,3		mJ	
$R_{th(j-s)}$	per IGBT			1,21		K/W	

SEMITOP® 2

IGBT Module

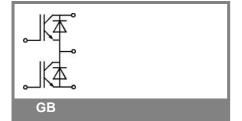
SK35GB12T4

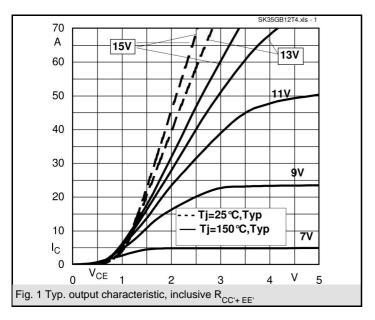
Target Data

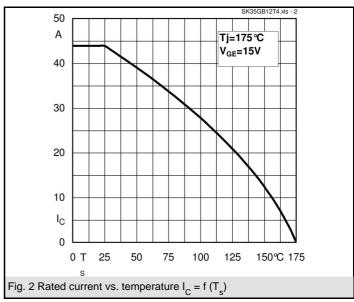
Features

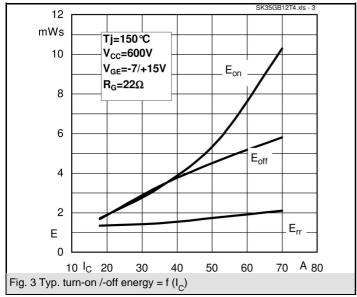
- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD

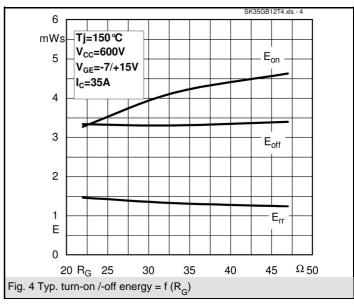
Typical Applications*

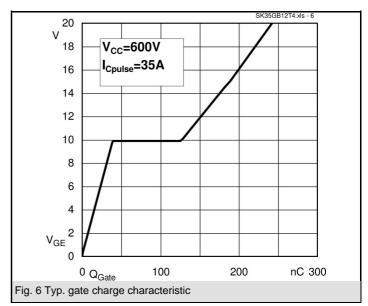

Remarks

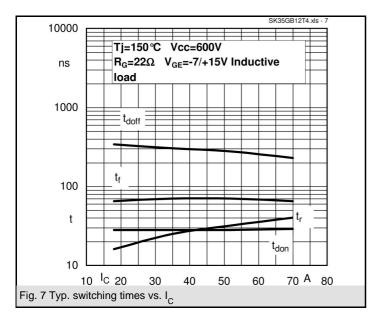

• V_{CE,sat} , V_F = chip level value

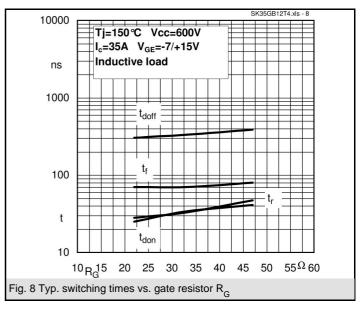

Characteristics										
Symbol	Conditions		min.	typ.	max.	Units				
Inverse D	Inverse Diode									
$V_F = V_{EC}$	I_{Fnom} = 35 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2,3	2,62	V				
		T_j = 150 °C _{chiplev} .		2,29	2,62	V				
V _{F0}		T _j = 25 °C		1,3	1,5	V				
		T _j = 150 °C		0,9	1,1	V				
r _F		T _j = 25 °C		27	32	mΩ				
		T _j = 150 °C		39,7	43,4	mΩ				
I _{RRM}	I _F = 35 A	T _i = 150 °C		30		Α				
Q_{rr}	di/dt = 2900 A/µs	,		2		μC				
E _{rr}	V _{CC} = 600V			1,46		mJ				
R _{th(j-s)D}	per diode			1,55		K/W				
M _s	to heat sink		2,25		2,5	Nm				
w				30		g				

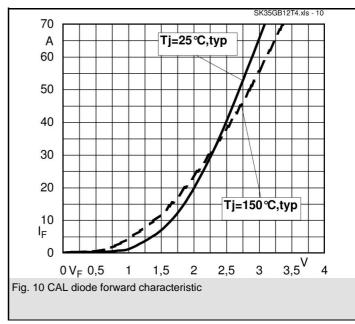

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

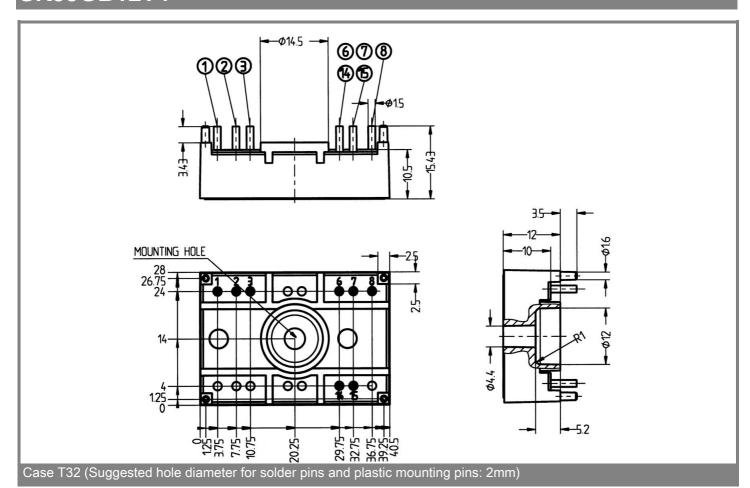

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

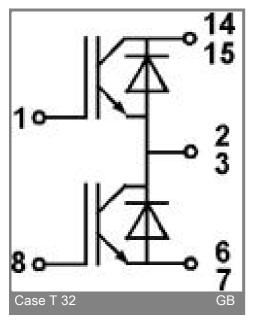












4 27-05-2009 DIL © by SEMIKRON

