

### Precision rail-to-rail input/output 3 MHz single operational amplifier

#### **Features**

■ Good precision: 800 µV max

Rail-to-rail input and output

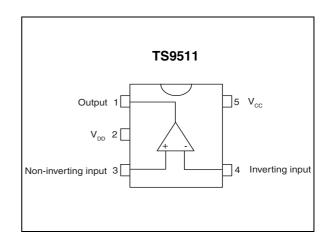
Wide supply voltage range: 2.7 to 12 V

■ High-speed (3 MHz, 1 V/µs)

■ Low consumption (900 µA at 3 V)

Supply voltage rejection ratio: 85 dB

■ Micropackage: SOT23-5


#### **Applications**

- Signal conditioning
- Automotive applications
- Laptop/notebook computers
- Transformer/line drivers
- Personal entertainment (CD players)
- Portable communication (cell phones, pagers)
- Digital-to-analog converter buffers
- Portable headphone speaker drivers

#### **Description**

The TS9511 is a single, precision rail-to-rail operational amplifier whose supply voltage range extends from 2.7 to 12 V.

Its high-precision performance associated with a SOT23-5 package makes it suitable for a wide range of demanding applications, such as industrial, automotive, consumer and computer applications.



#### Absolute maximum ratings and operating conditions 1

Table 1. Absolute maximum ratings

| Symbol            | Parameter                                                     | Value                                        | Unit |
|-------------------|---------------------------------------------------------------|----------------------------------------------|------|
| V <sub>CC</sub>   | Supply voltage (1)                                            | 14                                           | V    |
| V <sub>id</sub>   | Differential input voltage (2)                                | ±1                                           | V    |
| V <sub>in</sub>   | Input voltage (3)                                             | V <sub>DD</sub> -0.3 to V <sub>CC</sub> +0.3 | V    |
| T <sub>stg</sub>  | Storage temperature range                                     | -65 to +150                                  |      |
| T <sub>j</sub>    | Maximum junction temperature                                  | 150                                          | °C   |
| R <sub>thja</sub> | Thermal resistance junction to ambient <sup>(4)</sup> SOT23-5 | 250                                          | °C/W |
| R <sub>thjc</sub> | Thermal resistance junction to case <sup>(4)</sup> SOT23-5    | 81                                           | °C/W |
|                   | HBM: human body model <sup>(5)</sup>                          | 1                                            | kV   |
| ESD               | MM: machine model <sup>(6)</sup>                              | 100                                          | V    |
|                   | CDM: charged device model <sup>(7)</sup>                      | 1.5                                          | kV   |
|                   | Latch-up immunity                                             | 200                                          | mA   |
|                   | Lead temperature (soldering, 10sec)                           | 260                                          | °C   |

- 1. All voltage values, except differential voltage, are with respect to network ground terminal.
- Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If  $V_{id} > \pm 1$  V, the maximum input current must not exceed  $\pm 1$  mA. In this case  $(V_{id} > \pm 1)$ , an input series resistor must be added to limit input current.
- Do not exceed 14 V.
- ${\it 4.} \quad {\it Short-circuits\ can\ cause\ excessive\ heating\ and\ destructive\ dissipation.\ R_{th}\ are\ typical\ values.}$
- Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k $\Omega$  resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor  $< 5 \Omega$ ). This is done for all couples of connected pin combinations while the other pins are floating.
- Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2. Operating conditions

| Symbol            | Parameter                            | Value                          | Unit |
|-------------------|--------------------------------------|--------------------------------|------|
| V <sub>CC</sub>   | Supply voltage                       | 2.7 to 12                      | V    |
| V <sub>icm</sub>  | Common mode input voltage range      | $V_{DD}$ -0.2 to $V_{CC}$ +0.2 | V    |
| T <sub>oper</sub> | Operating free air temperature range | -40 to +125                    | °C   |

2/11 Doc ID 15707 Rev 2



## 2 Electrical characteristics

Table 3.  $V_{CC}$  = +3 V,  $V_{DD}$  = 0 V ,  $V_{icm}$  =  $V_{CC}/2$ ,  $R_L$  connected to  $V_{CC}/2$ ,  $T_{amb}$  = 25° C (unless otherwise specified)

| Symbol           | Parameter                                                                                                      |            | Тур. | Max.        | Unit             |  |
|------------------|----------------------------------------------------------------------------------------------------------------|------------|------|-------------|------------------|--|
| V <sub>io</sub>  | Input offset voltage $T_{min} \le T_{amb} \le T_{max}$                                                         |            |      | 800<br>1500 | μV               |  |
| DV <sub>io</sub> | Input offset voltage drift                                                                                     |            | 2    |             | μV/°C            |  |
| I <sub>io</sub>  | Input offset current $T_{min} \le T_{amb} \le T_{max}$                                                         |            | 1    | 30<br>80    | nA               |  |
| l <sub>ib</sub>  | Input bias current $T_{min} \le T_{amb} \le T_{max}$                                                           |            | 30   | 70<br>150   | nA               |  |
| CMR              | Common mode rejection ratio $T_{min} \le T_{amb} \ \le T_{max}$                                                | 60<br>55   | 90   |             | dB               |  |
| SVR              | Supply voltage rejection ratio, $V_{CC} = 2.7$ to 3.3 V 65<br>$T_{min} \le T_{amb} \le T_{max}$ 60             |            | 90   |             | dB               |  |
| A <sub>vd</sub>  | Large signal voltage gain, $V_0 = 2 V_{pk-pk}$ , $R_L = 600 \Omega$ 70 80 $T_{min} \le T_{amb} \le T_{max}$ 65 |            |      | dB          |                  |  |
| V <sub>OH</sub>  | High level output voltage, $R_L = 600 \Omega$<br>$T_{min} \le T_{amb} \le T_{max}$                             | 2.8<br>2.8 | 2.9  |             | V                |  |
| V <sub>OL</sub>  | Low level output voltage, $R_L = 600 \ \Omega$<br>$T_{min} \le T_{amb} \ \le T_{max}$                          |            | 80   | 250<br>250  | mV               |  |
| I <sub>sc</sub>  | Output short-circuit current                                                                                   | 10         | 20   |             | mA               |  |
| I <sub>CC</sub>  | Supply current (per amplifier), No load, $V_{icm} = V_{CC}/2$<br>$T_{min} \le T_{amb} \le T_{max}$             |            | 0.8  | 1<br>1.2    | mA               |  |
| GBP              | Gain bandwidth product<br>$R_L = 10 \text{ k}\Omega$ , $C_L = 100 \text{pF}$                                   |            | 3    |             | MHz              |  |
| SR               | Slew rate $R_L = 10 \text{ k}\Omega$ , $C_L = 100 \text{pF}$                                                   |            | 1    |             | V/µs             |  |
| Øm               | Phase margin at unit gain $R_L = 10k \Omega$ , $C_L = 100 pF$                                                  |            | 58   |             | Degrees          |  |
| Gm               | Gain margin $R_L = 10k \Omega$ , $C_L = 100 pF$                                                                |            | 12   |             | dB               |  |
| e <sub>n</sub>   | Equivalent input noise voltage<br>f = 1 kHz                                                                    |            | 25   |             | <u>nV</u><br>√Hz |  |
| THD              | Total harmonic distortion $V_{out} = 4 \ V_{pk\text{-}pk}, \ F = 10 \ kHz, \ A_V = 2, \ R_L = 10 \ k\Omega$    |            | 0.01 |             | %                |  |

Electrical characteristics TS9511

Table 4.  $V_{CC}$  = +5 V,  $V_{DD}$  = 0 V,  $V_{icm}$  =  $V_{CC}/2$ ,  $R_L$  connected to  $V_{CC}/2$ ,  $T_{amb}$  = 25° C (unless otherwise specified)

| Symbol           | Parameter                                                                                                         | Min.       | Тур. | Max.        | Unit                                 |
|------------------|-------------------------------------------------------------------------------------------------------------------|------------|------|-------------|--------------------------------------|
| V <sub>io</sub>  | Input offset voltage $T_{min} \le T_{max}$                                                                        |            |      | 800<br>1500 | μV                                   |
| DV <sub>io</sub> | Input offset voltage drift                                                                                        |            | 2    |             | μV/°C                                |
| l <sub>io</sub>  | Input offset current $  V_{icm} = V_{CC}/2                                   $                                    |            | 1    | 30<br>80    | nA                                   |
| l <sub>ib</sub>  | Input bias current $T_{min} \le T_{amb} \le T_{max}$                                                              |            | 30   | 70<br>150   | nA                                   |
| CMR              | Common mode rejection ratio $T_{min} \le T_{amb} \ \le T_{max}$                                                   | 60<br>55   | 90   |             | dB                                   |
| SVR              | Supply voltage rejection ratio, $V_{CC}$ = 4 to 5 V<br>$T_{min} \le T_{amb} \le T_{max}$                          | 65<br>60   | 90   |             | dB                                   |
| A <sub>vd</sub>  | Large signal voltage gain, $V_0 = 2 V_{pk-pk}$ , $R_L = 600 \Omega$<br>$T_{min} \le T_{amb} \le T_{max}$          | 75<br>70   | 86   |             | dB                                   |
| V <sub>OH</sub>  | High level output voltage, $R_L = 600 \Omega$<br>$T_{min} \le T_{amb} \le T_{max}$                                | 4.7<br>4.7 | 4.8  |             | V                                    |
| V <sub>OL</sub>  | Low level output voltage, $R_L = 600 \Omega$<br>$T_{min} \le T_{amb} \le T_{max}$                                 |            | 80   | 300<br>300  | mV                                   |
| I <sub>sc</sub>  | Output short-circuit current                                                                                      | 10         | 20   |             | mA                                   |
| I <sub>CC</sub>  | Supply current (per amplifier), No load, $V_{icm} = V_{CC}/2$<br>$T_{min} \le T_{amb} \le T_{max}$                |            | 0.95 | 1.2<br>1.3  | mA                                   |
| GBP              | Gain bandwidth product $R_L = 10 \text{ k}\Omega$ , $C_L = 100 \text{ pF}$                                        |            | 3    |             | MHz                                  |
| SR               | Slew rate $R_L = 10 \text{ k}\Omega$ , $C_L = 100 \text{ pF}$                                                     |            | 1    |             | V/µs                                 |
| Øm               | Phase margin at unit gain $R_L = 10k \Omega$ , $C_L = 100 pF$                                                     |            | 61   |             | Degrees                              |
| Gm               | Gain margin $R_L = 10k \Omega$ , $C_L = 100 pF$                                                                   |            | 13   |             | dB                                   |
| e <sub>n</sub>   | Equivalent input noise voltage<br>f = 1 kHz                                                                       |            | 25   |             | $\frac{\text{nV}}{\sqrt{\text{Hz}}}$ |
| THD              | Total harmonic distortion $V_{out} = 4 V_{pk-pk}$ , $F = 10 \text{ kHz}$ , $A_V = 2$ , $R_L = 10 \text{ k}\Omega$ |            | 0.01 |             | %                                    |

Figure 1. Supply current vs. supply voltage Figure 2. Supply current vs. temperature

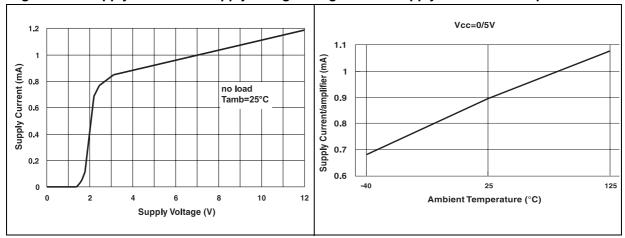



Figure 3. Output short circuit current vs. output voltage

Figure 4. Output short circuit current vs. temperature

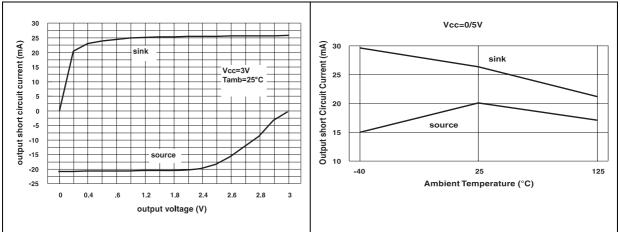



Figure 6.

Figure 5. Voltage gain and phase vs. frequency,  $R_L$  = 600  $\Omega$ ,  $C_L$  = 100 pF

Frequency (kHz)

Gain

Vcc=±1.5V

CL = 100pF

Tamb=25°C

 $RL=600\Omega$ 

frequency,  $R_L = 10 \text{ k}\Omega$ ,  $C_L = 100 \text{ pF}$ 40 120 30 Phase 80 20 40 Gain (dB) 0 Gain **-10** -40 -20 Vcc=5V, Vicm=2.5V -80 Cl=100pF, Rl=10kOhms, Vrl=Vcc/2 -30 Tamb=25°C -120 -40 10<sup>7</sup> Frequency (Hz)

Voltage gain and phase vs.

577

Open Loop Voltage Gain (dB)

30

20

10

-10

Figure 7. Slew rate vs. temperature

Figure 8. THD + noise vs. V<sub>out</sub>

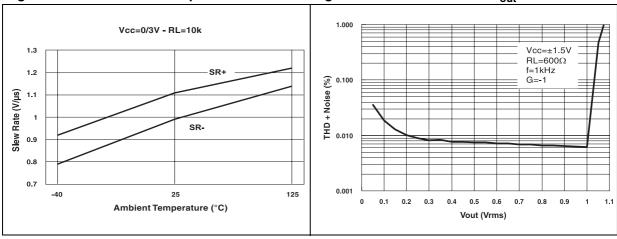



Figure 9. THD + noise vs. V<sub>out</sub>

Figure 10. THD + noise vs. frequency

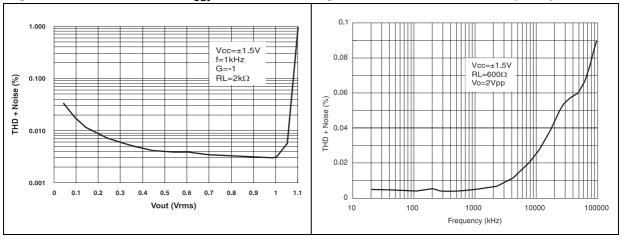
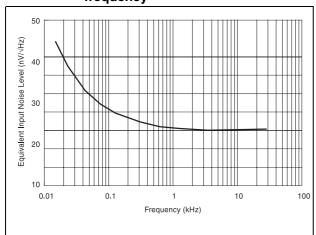




Figure 11. Equivalent input noise voltage vs. frequency



TS9511 Package information

## 3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: <a href="https://www.st.com">www.st.com</a>. ECOPACK<sup>®</sup> is an ST trademark.

Package information TS9511

### 3.1 SOT23-5 package information

Figure 12. SOT23-5 package mechanical drawing

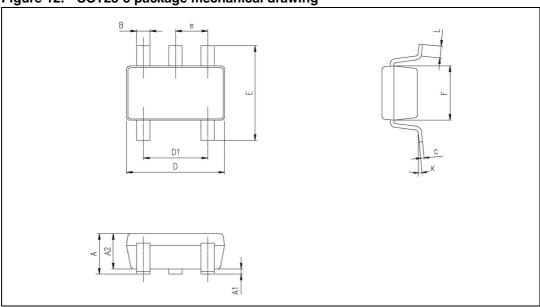



Table 5. SOT23-5 package mechanical data

|      |           | Dimensions  |            |       |        |       |
|------|-----------|-------------|------------|-------|--------|-------|
| Ref. |           | Millimeters |            |       | Inches |       |
|      | Min.      | Тур.        | Max.       | Min.  | Тур.   | Max.  |
| Α    | 0.90      | 1.20        | 1.45       | 0.035 | 0.047  | 0.057 |
| A1   |           |             | 0.15       |       |        | 0.006 |
| A2   | 0.90      | 1.05        | 1.30       | 0.035 | 0.041  | 0.051 |
| В    | 0.35      | 0.40        | 0.50       | 0.013 | 0.015  | 0.019 |
| С    | 0.09      | 0.15        | 0.20       | 0.003 | 0.006  | 0.008 |
| D    | 2.80      | 2.90        | 3.00       | 0.110 | 0.114  | 0.118 |
| D1   |           | 1.90        |            |       | 0.075  |       |
| е    |           | 0.95        |            |       | 0.037  |       |
| E    | 2.60      | 2.80        | 3.00       | 0.102 | 0.110  | 0.118 |
| F    | 1.50      | 1.60        | 1.75       | 0.059 | 0.063  | 0.069 |
| L    | 0.10      | 0.35        | 0.60       | 0.004 | 0.013  | 0.023 |
| K    | 0 degrees |             | 10 degrees |       |        |       |

## 4 Ordering information

Table 6. Order codes

| Order code                | Temperature range | Package                        | Packing     | Marking |
|---------------------------|-------------------|--------------------------------|-------------|---------|
| TS9511ILT                 |                   | SOT23-5L                       |             | K151    |
| TS9511IYLT <sup>(1)</sup> | -40° C to +125° C | SOT23-5L<br>(Automotive grade) | Tape & reel | K152    |

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.

Revision history TS9511

# 5 Revision history

Table 7. Document revision history

| Date        | Revision | Changes                                                                                                                 |
|-------------|----------|-------------------------------------------------------------------------------------------------------------------------|
| 25-Jun-2009 | 1        | Initial release.                                                                                                        |
| 17-Dec-2009 | 2        | Modified CMR, SVR, $A_{vd}$ , $V_{OH}$ , $V_{OL}$ , $I_{SC}$ and $I_{CC}$ values in <i>Table 3</i> and <i>Table 4</i> . |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

