MULTI-RATE 10-GIGABIT SR-1XFP TRANSCEIVER WITH DIGITAL DIAGNOSTICS

TXP1XGDS1x

Product Description

The TXP1XGDS1x XFP multi-rate fiber optic transceivers with digital diagnostics monitoring functionality provide a quick and reliable interface for 10G short reach applications. The diagnostic functions, alarm and warning features as described in the XFP Multi-Source Agreement (MSA) are provided via standard I²C serial interface. The transceivers are compliant with the XFP Multi-Source Agreement and are designed to support SONET/SDH, 10G Ethernet, and 10G Fiber Channel data rates from 9.95Gb/s to 11.09Gb/s.

Each transceiver utilizes a 1310nm Distributed Feed Back (DFB) laser for up to 10km data transmission over single mode fiber. They satisfy Class I Laser Safety requirements in accordance with the U.S. FDA/CDRH and international IEC-60825 standards. The receiver features an InGaAs/InP PIN photodiode and a transimpedance amplifier IC optimized for high sensitivity and wide dynamic range. The transmitter and receiver DATA interfaces are AC-coupled Current Mode Logic (CML). LV-TTL Transmitter Disable control input and Loss of Signal output interfaces are also provided.

The transceivers connect to standard 30-pad XFP connectors for hot plug capability. This allows the system designer to make configuration changes or maintenance by simply plugging in different types of transceivers without removing the power supply from the host system.

The transceivers operate from a single +3.3V power supply over a operating temperature range of -5° C to $+70^{\circ}$ C (Commercial), -5° C to $+85^{\circ}$ C (Extended), or -40° C to $+85^{\circ}$ C (Industrial).

Features

- ☑ Lead Free Design & Fully RoHS Compliant
- ☑ Compliant with XFP MSA
- ☑ Compliant with OC-192/STM-64
- ☑ Compliant with IEEE802.3ae
- ☑ Compliant with ITU-T G.709
- ☑ Support 10G Fiber Channel Applications
- Digital Diagnostics Monitoring
- 1310nm DFB Laser
- ☑ Wide Case Operating Temperature Range
- ☑ Laser Classe 1 IEC/CDRH compliant
- ☑ Transmission Distance up to 10km

Paramete	r	Symbol	Minimum	Maximum	Units		
Storage Temperature Range		T _{ST}	- 40	+ 85	°C		
	Commercial		- 5	+ 70	°C		
Operating Case Temperature ¹	Extended	T _{OP}	- 5	+ 85			
	Industrial		- 40	+ 85			
Supply Voltage		V _{cc} 3	- 0.2	+ 3.6	V		
Input Voltage		V _{IN}	0	V _{cc}	V		

¹ Case temperature is measured on top side of XFP module.

Absolute Maximum Ratings

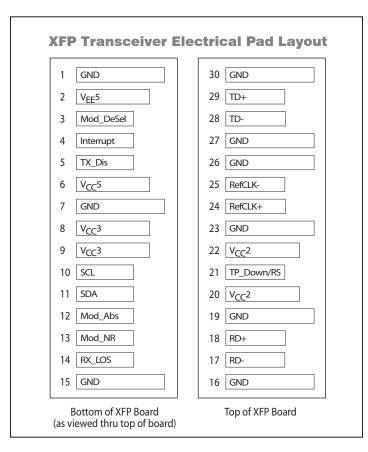
Parameter	Symbol	Minimum	Typical	Maximum	Units	
Operating Data Rate	В	9.95	-	11.09	Gb/s	
Average Optical Output Power (50% duty cycle)	Po	- 6.0	- 3.0	- 1.0	dBm	
Transmitter OFF Power	POFF	-	-	- 45.0	dBm	
Extinction Ratio	ER	6	-	-	dB	
Center Wavelength	С	1290	1310	1330	nm	
Spectral Width (-20dB)	20	-	-	1.0	nm	
Side Mode Suppression Ratio	SMSR	30	-	-	dB	
Relative Intensity Noise	RIN	-	-	- 125	dB/Hz	
Jitter Generation (peak-to-peakl) ¹	JG _{p-p}	-	-	0.1	UI	
Output Jitter Generation (RMS)	JG _{RMS}	-	-	0.01	UI	
Dispersion Penalty	DP	-	-	1.0	dB	
Dptical Output Eye Compliant with GR253-CORE, IEEE 803.3ae , and ITU-T G.693						
¹ Jitter generation is compliant with SONET OC-192	2 per GR-253 and	l OTU-2 per G.709.				

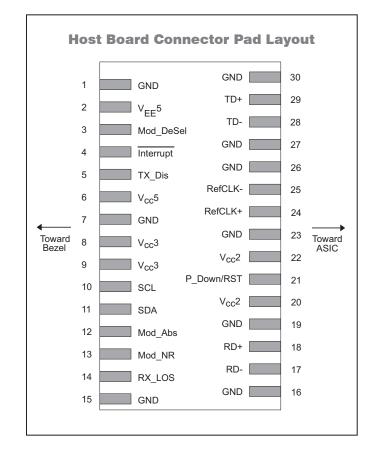
Transmitter Performance Characteristics (Over Operating Case Temperature Range)

Receiver Performance Characteristics (Over Operating Case Temperature Range)

Parameter		Symbol	Minimum	Typical	Maximum	Units	
Operating Data Rate		В	9.95	-	11.09	Gb/s	
Receiver Sensitivity (10	¹² BER, @10.5Gb/s)	Pmin	-	-	- 14.4	dBm	
Maximum Input Power		Pmax	+ 0.5	-	-	dBm	
LOS Thresholds	Increasing Light Input	Plos+	-	-	- 14.4	dBm	
	Decreasing Light Input	Plos-	- 28.0	-	-		
LOS Timing Delay	Increasing Light Input	t_loss_of	-	-	100	μs	
	Decreasing Light Input	t_loss_on	-	-	100		
LOS Hysteresis		-	0.5	-	-	dB	
Wavelength of Operation			1260	-	1355	nm	
Receiver Reflectance		-	-	-	- 14	dB	

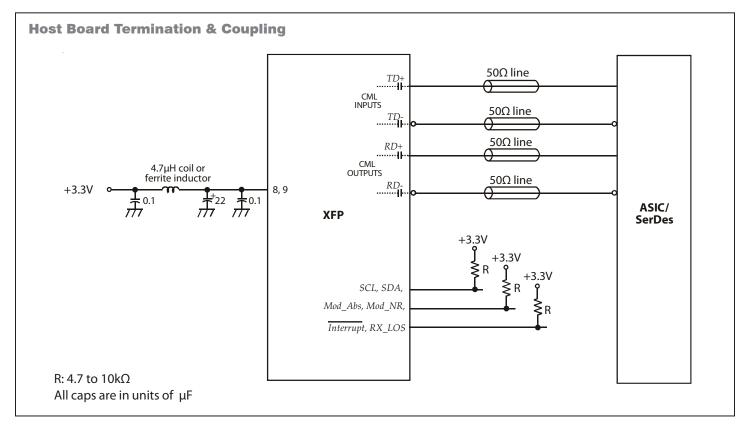
Laser Safety: All transceivers are Class I Laser products per FDA/CDRH and IEC-60825 standards. They must be operated under specified operating conditions.




Electrical Interface (Over Operating Case Temperature Range)

Parameter	Symbol	Minimum	Typical	Maximum	Units	
Differential Impedance	Z _d	-	100	-	Ω	
Differential Input Voltage Swing	V _{p-p, dif}	120	-	820	mV	
Differential Output Voltage Swing	V _{p-p, dif}	340	550	850	mV	
Output Rise/Fall Time (20 to 80%)	T_r/T_f	24	-	-	ps	
	V _{IL}	- 0.3	-	0.8	V	
TX_Dis, P_Down/RST	$V_{_{I\!H}}$	2.0	-	V _{cc} + 0.3	v	
VED Interrupt Med ND DV LOS	V_{OL}	0	-	0.4	V	
XFP Interrupt, Mod_NR, RX_LOS	V _{OH}	$host_{CC}$ - 0.5	-	$host_{CC} + 0.3$	v	

Electrical Power Supply Characteristics (Over Operating Case Temperature Range)


Parameter	Symbol	Minimum	Typical	Maximum	Units
Power Supply Voltage	V _{cc} 3	3.13	3.3	3.47	V
Supply Current	I _{cc} 3	-	450	700	mA
Power Dissipation	PW	-	1.5	-	W
P_Down Power Dissipation	PDW	-	-	1.5	W

Module Pin Description

Pin	Logic	Symbol	Description			
1	-	GND	Module Ground			
2	-	$V_{EE}5$	Optional -5.2V Power Supply (Not Required)			
3	LVTTL-I	Mod_DeSel	Module De-select; When held low allows module to respond to 2-wire serial interface			
4	LVTTL-O	Interrupt	Interrupt; Indicates presence of an important condition which can be read over the 2-wire serial Interface			
5	LVTTL-I	TX_Dis	Transmitter Disable; Turns off transmitter laser output			
6	-	$V_{cc}5$	+5V Power Supply			
7	-	GND	Module Ground			
8	-	V _{cc} 3	+3.3V Power Supply			
9	-	V _{cc} 3	+3.3V Power Supply			
10	LVTTL-I/O	SCL	2-Wire Serial Interface Clock			
11	LVTTL-I/O	SDA	2-Wire Serial Interface Data Line			
12	LVTTL-O	Mod_Abs	Indicates Module is not present. Grounded in the Module			
13	LVTTL-O	Mod_NR	Module Not Ready; Indicating Module Operational Fault			
14	LVTTL-O	RX_LOS	leceiver Loss Of Signal Indicator			
15	-	GND	Aodule Ground			
16	-	GND	Module Ground			
17	CML-O	RD-	Receiver Inverted Data Output			
18	CML-O	RD+	Receiver Non-Inverted Data Output			
19	-	GND	Module Ground			
20	-	V _{cc} 2	+1.8V Power supply			
21	LVTTL-I	P_Down/RST	Power down; When high, requires the module to limit power consumption to 1.5W or below. 2-Wire serial interface must be functional in the low power mode.			
21	LVIIL-I	r_Down/K31	Reset; The falling edge initiates a complete reset of the module including the 2-wire serial interface, equivalent to a power cycle.			
22	-	V _{cc} 2	+1.8V Power supply			
23	-	GND	Module Ground			
24	PECL-I	RefCLK+	Reference Clock Non-Inverted Input (Not Required)			
25	PECL-I	RefCLK-	Reference Clock Inverted Input (Not Required)			
26	-	GND	Module Ground			
27	-	GND	Module Ground			
28	CML-I	TD-	Transmitter Inverted Data Input			
29	CML-I	TD+	Transmitter Non-Inverted Data Input			
30	-	GND	Module Ground			

Application Notes

Electrical Interface: All signal interfaces are compliant with the XFP MSA specification. The high speed DATA interface is differential AC-coupled internally and can be directly connected to a 3.3V SERDES IC.

RX_LOS: The Loss of Signal circuit monitors the level of the incoming optical signal and generates a logic HIGH when an insufficient photocurrent is produced.

TX_Dis: When the TX Disable pin is at logic HIGH, the transmitter optical output is disabled. (less than -45dBm).

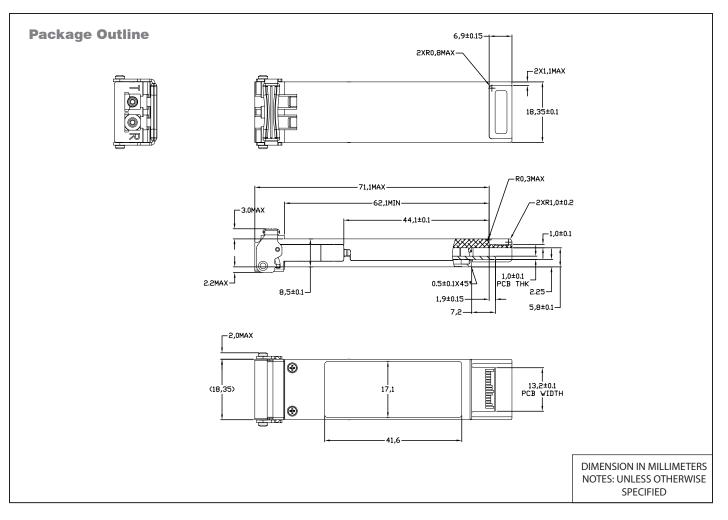
P_Down: The Power Down Function pin, when held High by the host, places the module in the standby (Low Power) mode with a maximum power dissipation of 1.5W. This protects hosts which are not capable of cooling higher power modules which may be accidentally inserted. The module's 2-wire serial interface and all laser safety functions must be fully functional in this low power mode. During P_Down, the module shall still support the completion of reset Interrupt, as well as maintain functionality of the variable power supply.

Mod_NR: The Mod_NR is an output pin that when High, indicates that the module has detected a condition that renders transmitter and or receiver data invalid, shall consist of logical OR of the following signals:

- Transmit Signal Conditioner Loss of Lock
- Transmitter Laser Fault
- Receiver Signal Conditioner Loss of Lock

Other conditions deemed valuable to the detection of fault may

be added to the Mod_NR. The Mod_NR output pin is an open collector and must be pulled to Host_Vcc on the host board.


P_Down/RST: The negative edge of Reset Function signal initiates a complete module reset.

Module Behavior During P_Down and RST: During execution of a reset (t_init) or while held in Power Down mode, a module may be unable to determine the correct value for Mod_NR and RX_LOS. These outputs as well as all interrupt related flags, except completion of Reset flag, shall be disregarded by the host. When the module completes a Reset and is not in Power Down mode, the module must represent the correct value of both signals on its outputs before posting a completion of reset interrupt to the host.

At no time shall a module cause spurious assertion of the Interrupt pin. When a host initially applies power to a module with the P_Down/RST signal asserted, a module comes up in power down mode. The module shall only assert the Interrupt signal pin to inform the host it has completed a reset. The completion of reset flag shall be the only interrupt source flag set during power down mode. The host is expected to clear this interrupt before releasing the module from the power down mode. The transition from power down mode to normal mode will trigger a reset of the module and result in a 2nd module reset and a 2nd reset completion interrupt to the host.

Power Supply and Grounding: The power supply line should be well-filtered. All 0.1μ F power supply bypass capacitors should be as close to the transceiver module as possible.

Ordering Information

Oplink can provide a remarkable range of customized optical solutions. For detail, please contact Oplink's Sales and Marketing for your requirements and ordering information (510) 933-7200 or Sales@oplink.com.

Model Name	Operating Temperature		Center Wavelength	Latch Color	Distance
TXP1XGDS1C000E2G	- 5°C to +70°C ¹	Commercial		Blue	
TXP1XGDS1E000E2G	- 5°C to +85°C ¹	Extended	1310 nm		10km
TXP1XGDS1I000E2G	- 40°C to +85°C ¹	Industrial			
¹ Case temperature					

Oplink Communications, Inc. reserves the right to make changes in equipment design or specifications without notice. Information supplied by Oplink Communications, Inc. is believed to be accurate and reliable. However, no responsibility is assumed by Oplink Communications, Inc. for its use nor for any infringements of third parties, which may result from its use. No license is granted by implication or otherwise under any patent right of Oplink Communications, Inc. © 2012, Oplink Communications, Inc. S0268. Rev.02. 2012-02-10 6