

1

^{@2014} Fairchild Semiconductor Corporation

FGB3040G2_F085 / FGD3040G2_F085 / FGP3040G2_F085 Rev.C3

Devie	ce Marking	Device	Package F	Reel Size	Tape Widt	h Quantity		tity
FG	B3040G2	FGB3040G2_F085	TO-263AB	330mm	24mm		80	0
FG	D3040G2	FGD3040G2_F085	TO-252AA	330mm	16mm		250	0
FG	P3040G2	FGP3040G2_F085	TO-220AB	Tube	N/A		50)
Electr Symbol		racteristics T _A = 25° Parameter	C unless otherwise not		Min	Тур	Max	Unit
Cymbo		1 diameter	1631 001	lations		IJP	Max	Unit
Off Sta	te Charact	eristics						
BV _{CER}	Collector to E	Emitter Breakdown Voltage	$I_{CE} = 2mA, V_{GE} = 0,$ $R_{GE} = 1K\Omega,$ $T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		370	400	430	v
BV _{CES}	Collector to E	Emitter Breakdown Voltage	$I_{CE} = 10mA, V_{GE} = 0V$ $R_{GE} = 0,$ $T_{J} = -40 \text{ to } 150^{\circ}\text{C}$,	390	420	450	v
BV _{ECS}	Emitter to Co	ollector Breakdown Voltage	I _{CE} = -20mA, V _{GE} = 0\ T _J = 25°C	Ι,	28	-	-	V
BV _{GES}	Gate to Emit	ter Breakdown Voltage	I _{GES} = ±2mA		±12	±14	-	V
	Collector to F	Emitter Leakage Current	V _{CE} = 250V, R _{GE} = 1k			-	25	μA
CER				T _J = 150 ^o		-	1	mA
ECS	Emitter to Co	ollector Leakage Current	V _{EC} = 24V,	$T_J = 25^{\circ}C$ $T_J = 150^{\circ}C$		-	1 40	mA
R₁	Series Gate	Resistance		1 100	-	120	-	Ω
	Gate to Emit	ter Resistance			10K	-	30K	Ω
R_2					I		1	
	te Charact	eristics						
			I _{CE} = 6A, V _{GE} = 4V,	T _J = 25°0	c -	1.15	1.25	V

3040G2_F
=085 / FG
D3040G2_
F085 / FGF
3040G2_
F085

FGB

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case	-	-	1

 $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage I_{CE} = 15A, V_{GE} = 4.5V,

Self Clamped Inductive Switching

Notes:

E_{SCIS}

1: Self Clamping Inductive Switching Energy (E_{SCIS25}) of 300 mJ is based on the test conditions that starting Tj=25°C; L=3mHy, I_{SCIS}=14.2A,V_{CC}=100V during inductor charging and V_{CC}=0V during the time in clamp.

 $L = 3.0 \text{ mHy}, RG = 1K\Omega$,

VGE = 5V, (Note 1)

 $T_{.1} = 150^{\circ}C$

TJ = 25°C

-

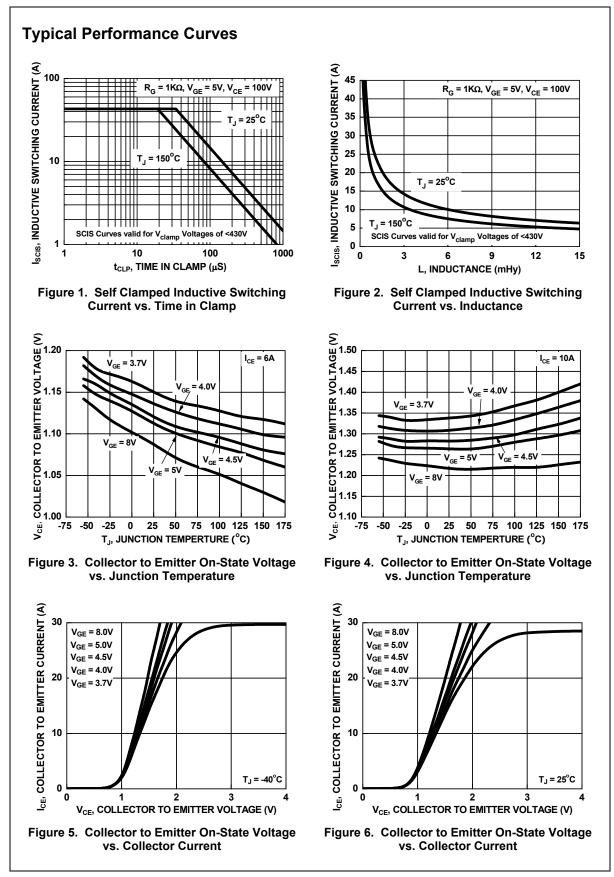
1.68

_

1.85

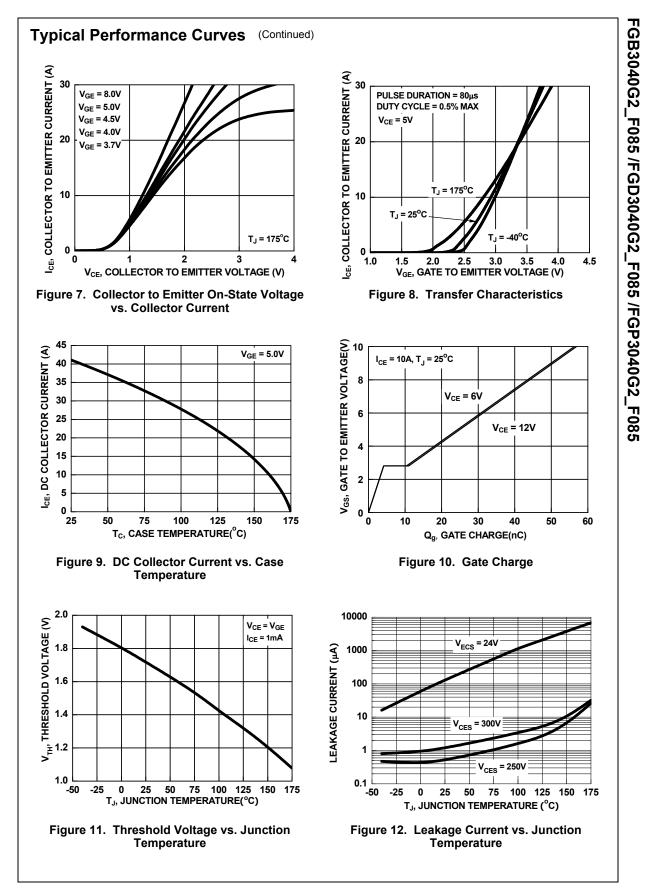
300

V

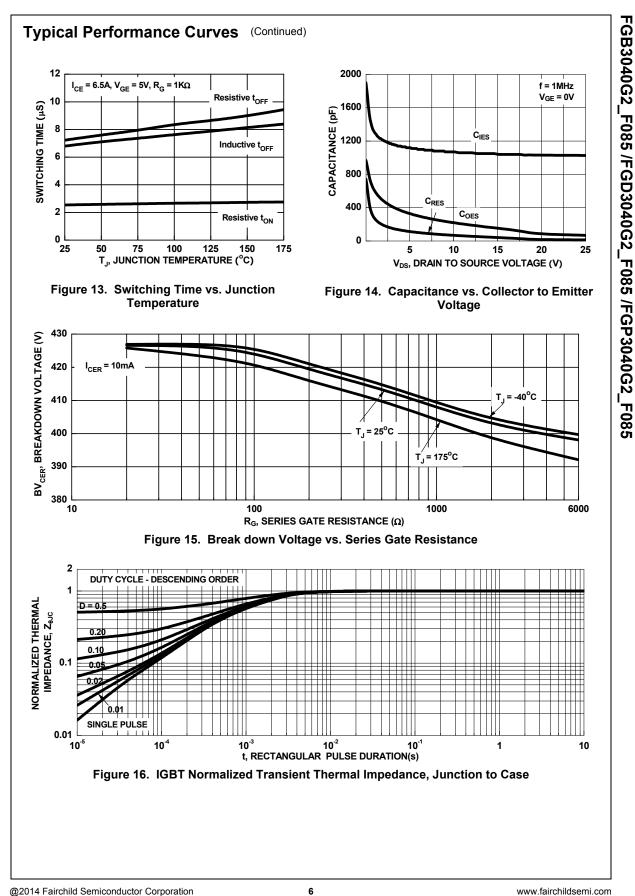

mJ

°C/W

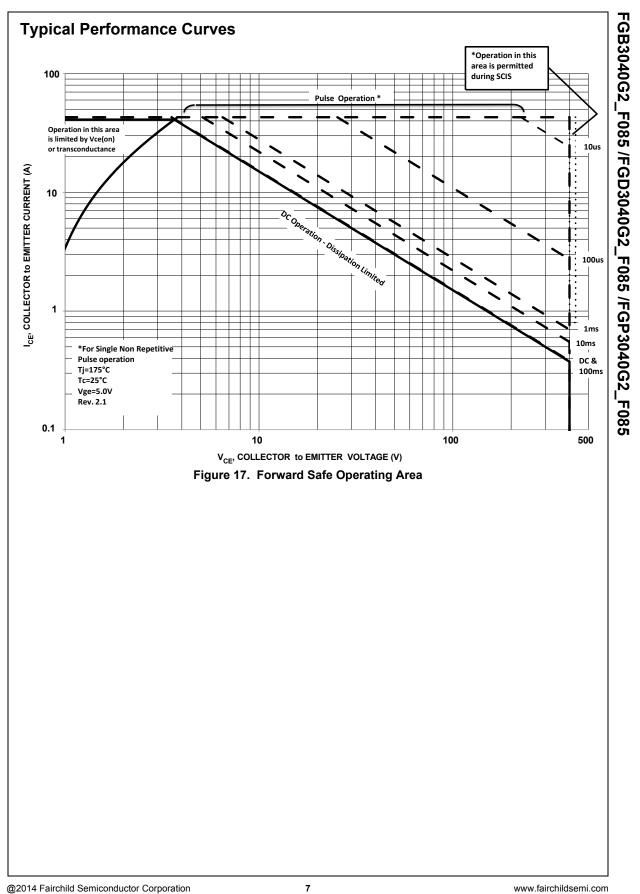
2: Self Clamping Inductive Switching Energy ($E_{SCIS150}$) of 170 mJ is based on the test conditions that starting Tj=150°C; L=3mHy, I_{SCIS}=10.8A,V_{CC}=100V during inductor charging and V_{CC}=0V during the time in clamp.



$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol	Parameter	Test Cond	itions	Min	Тур	Max	Units
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U_{G(ON)}$ Gate Charge $V_{GE} = 5V$ $ 21$ $ 11C$ $V_{GE(TH)}$ Gate to Emitter Threshold Voltage $I_{CE} = 1mA, V_{CE} = V_{GE}$ $T_J = 25^{\circ}C$ 1.3 1.7 2.2 V V_{GEP} Gate to Emitter Plateau Voltage $V_{CE} = 12V, I_{CE} = 10A$ $ 2.8$ $ V$ Switching Characteristics $g_{(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ $ 0.9$ 4 μs v_{GE} Current Rise Time-Resistive $V_{CE} = 5V, R_G = 1K\Omega$ $ 1.9$ 7 μs $g_{(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ $ 4.8$ 15 μs $v_{GE} = 5V, R_G = 1K\Omega$ $V_{GE} = 5V, R_G = 1K\Omega$ $ 4.8$ 15 μs	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynam	ic Characteristics						
$V_{GE(TH)}$ Gate to Emitter Threshold Voltage $I_{CE} = 1MA, V_{CE} = V_{GE},$ $T_J = 150^{\circ}C$ 0.75 1.2 1.8 V V_{GEP} Gate to Emitter Plateau Voltage $V_{CE} = 12V, I_{CE} = 10A$ $ 2.8$ $ V$ Switching Characteristics $C_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ $ 0.9$ 4 μs C_{TR} Current Rise Time-Resistive $V_{CE} = 5V, R_G = 1K\Omega$ $ 1.9$ 7 μs $C_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ $ 4.8$ 15 μs $V_{GE} = 5V, R_G = 1K\Omega$ $V_{GE} = 5V, R_G = 1K\Omega$ $ 4.8$ 15 μs	VGE(TH)Gate to Emitter Threshold Voltage $I_{CE} = 1MA, V_{CE} = V_{GE},$ $T_J = 150^{\circ}C$ 0.75 1.2 1.8 VVGEPGate to Emitter Plateau Voltage $V_{CE} = 12V, I_{CE} = 10A$ - 2.8 -VSwitching Characteristics $t_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ - 0.9 4 μs t_{rR} Current Rise Time-Resistive $V_{CE} = 5V, R_G = 1K\Omega$ - 1.9 7 μs $t_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ - 4.8 15 μs $V_{GE} = 5V, R_G = 1K\Omega$ $V_{GE} = 5V, R_G = 1K\Omega$ - 4.8 15 μs	$V_{GE(TH)}$ Gate to Emitter Threshold Voltage $I_{CE} = 1MA, V_{CE} = V_{GE},$ $T_J = 150^{\circ}C$ 0.75 1.2 1.8 V_{CE} V_{GEP} Gate to Emitter Plateau Voltage $V_{CE} = 12V, I_{CE} = 10A$ $ 2.8$ $ V$ wwitching Characteristics $g(ON)_R$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ $ 0.9$ 4 μs R Current Rise Time-Resistive $V_{CE} = 5V, R_G = 1K\Omega$ $ 1.9$ 7 μs $g(OFF)_L$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ $ 4.8$ 15 μs VGE = 5V, $R_G = 1K\Omega$ $ 4.8$ 15 μs	VGE(TH)Gate to Emitter Threshold Voltage $I_{CE} = 1mA$, $V_{CE} = V_{GE}$, $T_J = 150^{\circ}C$ $T_J = 150^{\circ}C$ 0.75 1.2 1.8 V VGEPGate to Emitter Plateau Voltage $V_{CE} = 12V$, $I_{CE} = 10A$ $ 2.8$ $ V$ Switching Characteristicstd_{(ON)R}Current Turn-On Delay Time-Resistive $V_{CE} = 14V$, $R_L = 1\Omega$ $ 0.9$ 4 μs V_{TR} Current Rise Time-Resistive $V_{CE} = 5V$, $R_G = 1K\Omega$ $ 1.9$ 7 μs $t_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V$, $L = 1mH$, $V_{GE} = 5V$, $R_G = 1K\Omega$ $ 4.8$ 15 μs $V_{GE} = 5V$, $R_G = 1K\Omega$ $ 4.8$ 15 μs	Q _{G(ON)}	Gate Charge			-	21	-	nC
V_{GEP} Gate to Emitter Plateau Voltage $V_{CE} = 12V$, $I_{CE} = 10A$ -2.8-VSwitching Characteristics $G_{(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V$, $R_L = 1\Omega$ -0.94 μs $G_{(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 5V$, $R_G = 1K\Omega$ -1.97 μs $T_{T} = 25^{\circ}C$, $T_{J} = 25^{\circ}C$,-1.97 μs $G_{(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V$, $L = 1mH$,-4.815 μs $V_{GE} = 5V$, $R_G = 1K\Omega$ $V_{GE} = 5V$, $R_G = 1K\Omega$ -2.015 μs	V_{GEP} Gate to Emitter Plateau Voltage $V_{CE} = 12V$, $I_{CE} = 10A$ -2.8-VSwitching Characteristics $I_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V$, $R_L = 1\Omega$ -0.94 μs I_{rR} Current Rise Time-Resistive $V_{GE} = 5V$, $R_G = 1K\Omega$ -1.97 μs $I_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V$, $L = 1mH$,-4.815 μs $V_{GE} = 5V$, $R_G = 1K\Omega$ $V_{GE} = 5V$, $R_G = 1K\Omega$ -4.815 μs	V_{GEP} Gate to Emitter Plateau Voltage $V_{CE} = 12V$, $I_{CE} = 10A$ -2.8-VSwitching Characteristics $d_{(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V$, $R_L = 1\Omega$ -0.94 μs R_R Current Rise Time-Resistive $V_{GE} = 5V$, $R_G = 1K\Omega$ -1.97 μs $d_{(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V$, $L = 1mH$,-4.815 μs $G_{(OFF)L}$ Current Foll Time-Inductive $V_{GE} = 5V$, $R_G = 1K\Omega$ -4.815 μs	V_{GEP} Gate to Emitter Plateau Voltage $V_{CE} = 12V$, $I_{CE} = 10A$ -2.8-VSwitching Characteristics $I_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V$, $R_L = 1\Omega$ -0.94 μs I_{rR} Current Rise Time-Resistive $V_{CE} = 5V$, $R_G = 1K\Omega$ -1.97 μs $I_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V$, $L = 1mH$,-4.815 μs $V_{GE} = 5V$, $R_G = 1K\Omega$ $V_{GE} = 5V$, $R_G = 1K\Omega$ -4.815 μs	√ _{GE(TH)}	Gate to Emitter Threshold Voltage	I_{CE} = 1mA, V_{CE} = V_{GE} ,					V
$C_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ -0.94 μs T_{R} Current Rise Time-Resistive $V_{GE} = 5V, R_G = 1K\Omega$ -1.97 μs $T_J = 25^{\circ}C,$ $T_J = 25^{\circ}C,$ -1.97 μs $C_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ -4.815 μs $V_{GE} = 5V, R_G = 1K\Omega$ $V_{GE} = 5V, R_G = 1K\Omega$ -1.97 μs	$t_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ -0.94 μs t_{rR} Current Rise Time-Resistive $V_{GE} = 5V, R_G = 1K\Omega$ -1.97 μs $t_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ -4.815 μs $t_{d(OFF)L}$ Current Foll Time Inductive $V_{GE} = 5V, R_G = 1K\Omega$ -4.815 μs	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$t_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ -0.94 μs V_{TR} Current Rise Time-Resistive $V_{GE} = 5V, R_G = 1K\Omega$ -1.97 μs $t_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ -4.815 μs $V_{GE} = 5V, R_G = 1K\Omega$ $V_{GE} = 5V, R_G = 1K\Omega$ -2.015 μs	√ _{GEP}	Gate to Emitter Plateau Voltage	V _{CE} = 12V, I _{CE} = 10A	Ū			-	V
$C_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ -0.94 μs T_{R} Current Rise Time-Resistive $V_{GE} = 5V, R_G = 1K\Omega$ -1.97 μs $T_J = 25^{\circ}C,$ $T_J = 25^{\circ}C,$ -1.97 μs $C_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ -4.815 μs $V_{GE} = 5V, R_G = 1K\Omega$ $V_{GE} = 5V, R_G = 1K\Omega$ -1.97 μs	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Switchi	ing Characteristics						
$\frac{V_{GE} = 5V, R_G = 1K\Omega}{T_J = 25^{\circ}C,} - \frac{1.9}{7} \mu s$ $\frac{V_{GE} = 5V, R_G = 1K\Omega}{T_J = 25^{\circ}C,} - \frac{1.9}{7} \mu s$ $\frac{V_{GE} = 300V, L = 1mH,}{V_{GE} = 5V, R_G = 1K\Omega} - \frac{4.8}{15} \mu s$	$\frac{V_{GE} = 5V, R_G = 1K\Omega}{T_J = 25^{\circ}C,} - \frac{1.9}{7} \mu s$ $\frac{V_{GE} = 5V, R_G = 1K\Omega}{T_J = 25^{\circ}C,} - \frac{1.9}{7} \mu s$ $\frac{V_{GE} = 300V, L = 1mH,}{V_{GE} = 5V, R_G = 1K\Omega} - \frac{4.8}{15} \mu s$	$\begin{array}{c c} R & Current Rise Time-Resistive \\ \hline H_{G}(OFF)L \\ \hline Current Turn-Off Delay Time-Inductive \\ \hline H_{G}(OFF)L \\ \hline Current Foll Time Inductive \\ \hline V_{GE} = 5V, R_{G} = 1K\Omega \\ \hline \end{array}$	$\begin{array}{c c} & Current Rise Time-Resistive \\ \hline G_{I_{1}} = 25^{\circ}C, \\ \hline G_{I_{2}} = 25^{\circ}C, \\ \hline G_{I_{2}} = 25^{\circ}C, \\ \hline G_{I_{2}} = 300V, L = 1mH, \\ \hline G_{I_{2}} = 5V, R_{G} = 1K\Omega \\ \hline G_{I_{2}} = 1K\Omega \\ \hline G$					-	0.9	4	μS
$\frac{V_{G(OFF)L}}{V_{GE}} = \frac{V_{CE}}{1000} = \frac{1000}{1000} = \frac$	$\frac{V_{G(OFF)L}}{V_{GE}} = \frac{V_{CE}}{1000} = \frac{1000}{1000} = \frac$	$\frac{1}{D(OFF)L} Current Turn-Off Delay Time-Inductive}{\Gamma_{CE} = 300V, L = 1mH,} \qquad - 4.8 15 \mu s$	$\frac{V_{CE} = 300V, L = 1mH,}{V_{CE} = 5V, R_G = 1K\Omega}$		Current Rise Time-Resistive	$V_{GE} = 5V, R_G = 1K\Omega$ T ₁ = 25°C		-	1.9	7	μS
$V_{GE} = 5V, R_G = 1K\Omega$	$V_{GE} = 5V, R_G = 1K\Omega$	$V_{GE} = 5V, R_G = 1K\Omega$	$V_{GE} = 5V, R_G = 1K\Omega$	d(OFF)L	Current Turn-Off Delay Time-Inductive	V _{CE} = 300V, L = 1mH,		-	4.8	15	μS
ICE = 0.04, IJ = 20 0,				fL	Current Fall Time-Inductive	$V_{GE} = 5V, R_G = 1K\Omega$		-	2.0	15	μS

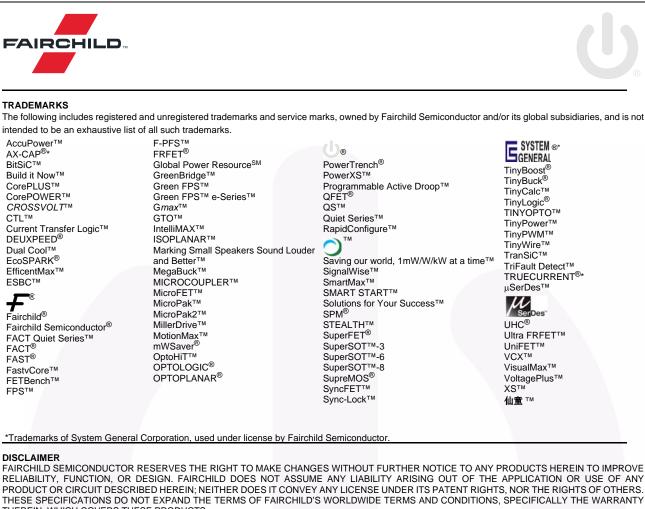

www.fairchildsemi.com

FGB3040G2_F085 / FGD3040G2_F085 / FGP3040G2_F085



@2014 Fairchild Semiconductor Corporation FGB3040G2_F085 / FGD3040G2_F085 / FGP3040G2_F085 Rev.C3

5



www.fairchildsemi.com

www.fairchildsemi.com

SYSTEM ®* TinyBoost® TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ 仙童™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2 system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.