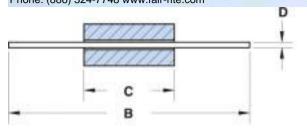
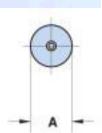


Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com


Fair-Rite Product's Catalog Part Data Sheet, 2761008112 Printed: 2010-11-09



Part Number: 2761008112

Frequency Range: Higher Frequencies 250-1000 MHz (61 material)

Description: 61 BEAD ON LEAD

Application: Suppression Components

Where Used: Board Component

Part Type: Beads-on-Leads

Mechanical Specifications

Weight: .700 (g)

Part Type Information

Ferrite suppression beads are supplied assembled on tinned copper wire for automated circuit board assembly.

-Parts with a '2' as the last digit of the part number are supplied taped and reeled per IEC 60286-1 and EIA RS-296-F standards. Taped and reeled parts are supplied 4500 pieces on a 14" reel. Taping details: Component pitch 5 mm. Inside tape spacing 52.5 mm. Tape width 6 mm.

-Beads-on-leads can be supplied bulk packed. The last digit of bulk packed parts is a '1'.

-Wires are oxygen free high conductivity copper with a lead-free tin coating. The resistance of the wire is 3.5 mOhm for the 22 AWG and 2.2 mOhm for the 20 AWG wire.

-Beads-on-leads are controlled for impedances only. The impedances listed are typical values. Minimum impedance values are specified for the + marked frequencies. The minimum guaranteed impedance is the listed impedance less 20%. The impedances of the 73 & 43 beads-on-leads are measured on the 4193A Vector Impedance Analyzer. The 61 beads-on-leads are tested for impedance on the 4191A RF Impedance Analyzer.

- -Preferred beads-on-leads are the suggested choice for new designs. Samples are readily available and orders have typically shorter lead times than other beads-on-leads. For any bead-on lead requirement not listed here, feel free to contact our customer service group for availability and pricing.
- -Our 'Bead-on-Lead Suppression Kit' (part number 0199000028) is available for prototype evaluation.
- -Explanation of Part Numbers: Digits 1&2 = product class, 3&4 = material grade and last digit 1 = bulk packed, 2 = taped and reeled.

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 2761008112 Printed: 2010-11-09

Mechanical Specifications

Dim	mm	mm	nominal	inch
		tol	inch	misc.
Α	3.50	±0.25	0.138	
В	62.00	±1.50	2.440	-
С	11.40	±0.40	0.450	-
D	0.65	-	-	22 AWG
Е	-	-	-	-
F	-	-	-	-
G	-	-	-	-
Н			-	-
J			-	-
K	-	-	-	-

Electrical Specifications

Typical Impedance (Ω)				
100 MHz	134			
250 MHz+	181			
500 MHz+	204			
1000 MHz	217			

Electrical Properties	

Land Patterns

V	W	Χ	Υ	Z
-	-			-

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
6	5	-	-	4500

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A ½ turn is defined as a single pass through a hole.

∠I/A - Core Constant

A_e: Effective Cross-Sectional Area

 A_{I} - Inductance Factor $\left(\frac{L}{N^{2}}\right)$

I $_{\rm e}$: Effective Path Length

Ve: Effective Core Volume

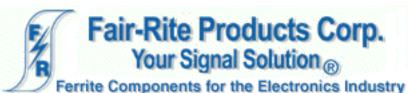
NI - Value of dc Ampere-turns

N/AWG - Number of Turns/Wire Size for Test Coil

Fair-Rite Product's Catalog Part Data Sheet, 2761008112 Printed: 2010-11-09

Ferrite Material Constants

Thermal Conductivity 10x10⁻³ cal/sec/cm/°C


Coefficient of Linear Expansion 8 - 10x10⁻⁶/°C

Young's Modulus 15x10³ kgf/mm²

Specific Gravity $\approx 4.7 \text{ g/cm}^3$

The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

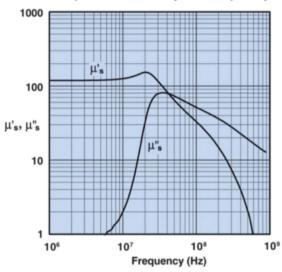
A high frequency NiZn ferrite developed for a range of inductive applications up to 25 MHz. This material is also used in EMI applications for suppression of noise frequencies above 200 MHz.

EMI suppression beads, beads on leads, SM beads, wound beads, multi-aperture cores, round cable snap-its, rods, antenna/RFID rods, and toroids are all available in 61 material.

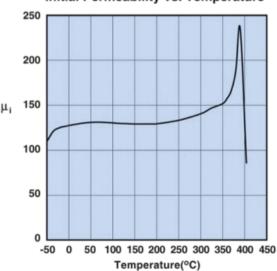
Strong magnetic fields or excessive mechanical stresses may result in irreversible changes in permeability and losses.

Fair-Rite Product's Catalog Part Data Sheet, 2761008112

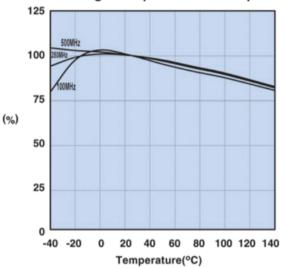
Printed: 2010-11-09



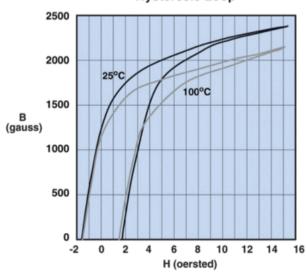
61 Material Characteristics:


Property	Unit	Symbol	Value
Initial Permeability @ B < 10 gauss		μ_i	125
Flux Density	gauss	В	2350
@ Field Strength	oersted	н	15
Residual Flux Density	gauss	B,	1200
Coercive Force	oersted	Hc	1.8
Loss Factor	10-6	tan δ/μ,	30
@ Frequency	MHz		1.0
Temperature Coefficient of Initial Permeability (20 -70°C)	%/°C		0.10
Curie Temperature	°C	Tc	>300
Resistivity	Ωcm	ρ	1x10 ⁸

Complex Permeability vs. Frequency


Measured on a 19/10/6mm toroid using the HP 4284A and the HP 4291A.

Initial Permeability vs. Temperature

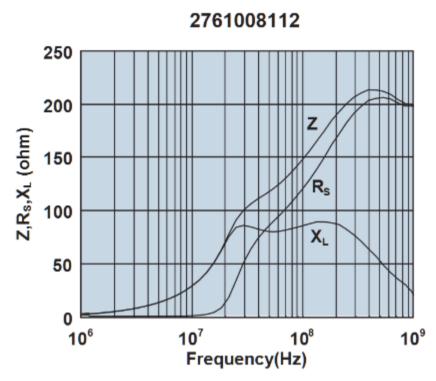

Measured on a 19/10/6mm toroid at 100kHz.

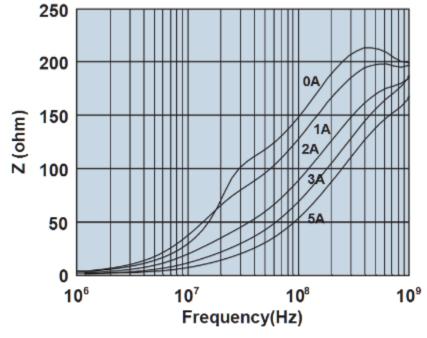
Percent of Original Impedance vs. Temperature

Measured on a 2661000301 using the HP4291A.

Hysteresis Loop

Measured on a 19/10/6mm toroid at 10kHz.


Fair-Rite Product's Catalog Part Data Sheet, 2761008112 Printed: 2010-11-09



Impedance, reactance, and resistance vs. frequency.

Impedance vs. frequency with dc bias.