Power LDMOS transistor

Rev. 2 — 20 June 2013

Product data sheet

1. Product profile

1.1 General description

A 600 W LDMOS RF power transistor for transmitter applications and industrial applications. The excellent ruggedness of this device makes it ideal for digital and analog transmitter applications.

Table 1. Application information

Test signal	f	P _{L(AV)}	P _{L(M)}	Gp	η_D	IMD3
	(MHz)	(W)	(W)	(dB)	(%)	(dBc)
RF performance in a c	ommon source 860 MHz r	narrowband	d test circ	cuit		
2-tone, class-AB	f ₁ = 860; f ₂ = 860.1	250	-	20.8	46	-32
pulsed, class-AB	860	-	600	19.8	58	-

1.2 Features and benefits

- Excellent ruggedness (VSWR ≥ 40 : 1 through all phases)
- Optimum thermal behavior and reliability, R_{th(i-c)} = 0.15 K/W
- High power gain
- High efficiency
- Designed for broadband operation (400 MHz to 1000 MHz)
- Internal input matching for high gain and optimum broadband operation
- Excellent reliability
- Easy power control
- Compliant to Directive 2002/95/EC, regarding Restriction of Hazardous Substances (RoHS)

1.3 Applications

- Communication transmitter applications
- Industrial applications

Power LDMOS transistor

2. Pinning information

BLF10H6600P (SOT539A)1drain12drain23gate14gate25source1drain12drain23gate14gate25source1drain23gate14gate25source1121413141415source114141415source11	Pin	Description		Simplified outline	Graphic symbol
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BLF10He	6600P (SOT539A)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	drain1			
3 gate1 3 4 gate2 3 4 5 3 4 5 5 source 11 3 4 4 2 5 5 source 11 1 1 1 2 5 5 5 5 5 5 5 5 5	2	drain2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	gate1		⊃⊆₅	
BLF10H6600PS (SOT539B) $1 drain1$ $2 drain2$ $3 gate1$ $4 gate2$ $1 drain4 drain5$	4	gate2		3 4	• I
sym117 BLF10H6600PS (SOT539B) 1 drain1 2 drain2 3 gate1 4 gate2	5	source	<u>[1]</u>		
1 drain1 2 drain2 3 gate1 4 gate2 drain2 1^2 3^4 3					_
$\begin{array}{cccc} 2 & drain2 \\ 3 & gate1 \\ 4 & gate2 \\ \end{array}$	BLF10H6	6600PS (SOT539B)			
$\begin{array}{cccc} 2 & drain2 \\ 3 & gate1 \\ 4 & gate2 \\ \end{array}$	1	drain1			4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	drain2			, L
4 gate2 3 4 4 5	3	gate1		5	
5 source [1] ⁴	4	gate2		3 4	• I
	5	source	<u>[1]</u>		

[1] Connected to flange.

3. Ordering information

Table 3.Ordering information

Type number	Packag	je	
	Name	Description	Version
BLF10H6600P	-	flanged balanced ceramic package; 2 mounting holes; 4 leads	SOT539A
BLF10H6600PS	-	earless flanged balanced ceramic package; 4 leads	SOT539B

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DS}	drain-source voltage			-	110	V
V _{GS}	gate-source voltage			-0.5	+11	V
T _{stg}	storage temperature			-65	+150	°C
Tj	junction temperature		[1]	-	225	°C

[1] Continuous use at maximum temperature will affect the reliability. For details refer to the on-line MTF calculator.

Power LDMOS transistor

5. Thermal characteristics

Table 5.	Thermal characteristics			
Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-c)}	thermal resistance from junction to case	$T_{case} = 80 \text{ °C}; P_{L(AV)} = 250 \text{ W}$	<u>[1]</u> 0.15	K/W
[1] R _{th(j-c)}	is measured under RF conditions.			

6. Characteristics

Table 6. DC characteristics

 $T_i = 25 \ ^{\circ}C$; per section unless otherwise specified.

arameter	Conditions					
			Min	Тур	Мах	Unit
rain-source breakdown voltage	V_{GS} = 0 V; I_D = 2.4 mA	<u>[1]</u>	110	-	-	V
ate-source threshold voltage	V_{DS} = 10 V; I_{D} = 240 mA	[1]	1.4	1.9	2.4	V
rain leakage current	$V_{GS} = 0 V; V_{DS} = 50 V$		-	-	2.8	μA
rain cut-off current	$\label{eq:VGS} \begin{array}{l} V_{GS} = V_{GS(th)} + 3.75 \; V; \\ V_{DS} = 10 \; V \end{array}$		-	36	-	A
ate leakage current	$V_{GS} = 10 \text{ V}; \text{ V}_{DS} = 0 \text{ V}$		-	-	280	nA
rain-source on-state resistance	$V_{GS} = V_{GS(th)} + 3.75 V;$ I _D = 8.5 A	<u>[1]</u>	-	143	-	mΩ
	ate-source threshold voltage rain leakage current rain cut-off current ate leakage current	ate-source threshold voltage $V_{DS} = 10 \text{ V}; I_D = 240 \text{ mA}$ rain leakage current $V_{GS} = 0 \text{ V}; V_{DS} = 50 \text{ V}$ rain cut-off current $V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $V_{DS} = 10 \text{ V}$ $V_{GS} = 10 \text{ V}; V_{DS} = 0 \text{ V}$ rate leakage current $V_{GS} = 10 \text{ V}; V_{DS} = 0 \text{ V}$ rain-source on-state resistance $V_{GS} = V_{GS(th)} + 3.75 \text{ V};$	ate-source threshold voltage $V_{DS} = 10 \text{ V}; \text{ I}_D = 240 \text{ mA}$ [1]rain leakage current $V_{GS} = 0 \text{ V}; \text{ V}_{DS} = 50 \text{ V}$ rain cut-off current $V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $V_{DS} = 10 \text{ V}$ ate leakage current $V_{GS} = 10 \text{ V}; \text{ V}_{DS} = 0 \text{ V}$ rain-source on-state resistance $V_{GS} = V_{GS(th)} + 3.75 \text{ V};$	ate-source threshold voltage $V_{DS} = 10 \text{ V}; \text{ I}_D = 240 \text{ mA}$ [1]1.4rain leakage current $V_{GS} = 0 \text{ V}; \text{ V}_{DS} = 50 \text{ V}$ -rain cut-off current $V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $V_{DS} = 10 \text{ V}$ -ate leakage current $V_{GS} = 10 \text{ V}; \text{ V}_{DS} = 0 \text{ V}$ -rain-source on-state resistance $V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ [1]	ate-source threshold voltage $V_{DS} = 10 \text{ V}; \text{ I}_D = 240 \text{ mA}$ [1]1.41.9rain leakage current $V_{GS} = 0 \text{ V}; \text{ V}_{DS} = 50 \text{ V}$ rain cut-off current $V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ -36 $V_{DS} = 10 \text{ V}$ $V_{GS} = 10 \text{ V}; \text{ V}_{DS} = 0 \text{ V}$ rain-source on-state resistance $V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ 11-	ate-source threshold voltage $V_{DS} = 10 \text{ V}; \text{ I}_D = 240 \text{ mA}$ [1]1.41.92.4rain leakage current $V_{GS} = 0 \text{ V}; \text{ V}_{DS} = 50 \text{ V}$ 2.8rain cut-off current $V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ -36- $V_{DS} = 10 \text{ V}$ V280rain-source on-state resistance $V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ 1-143

[1] I_D is the drain current.

Table 7. AC characteristics

 $T_i = 25$ °C; per section unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{iss}	input capacitance	$V_{GS} = 0 V; V_{DS} = 50 V; f = 1 MHz$ [1]	-	220	-	pF
C _{oss}	output capacitance	V_{GS} = 0 V; V_{DS} = 50 V; f = 1 MHz	-	74	-	pF
C _{rss}	reverse transfer capacitance	$V_{GS} = 0 V; V_{DS} = 50 V; f = 1 MHz$	-	1.2	-	pF

[1] Capacitance values without internal matching.

Table 8.RF characteristics

RF characteristics in NXP production narrowband test circuit; $T_{case} = 25$ °C unless otherwise specified.

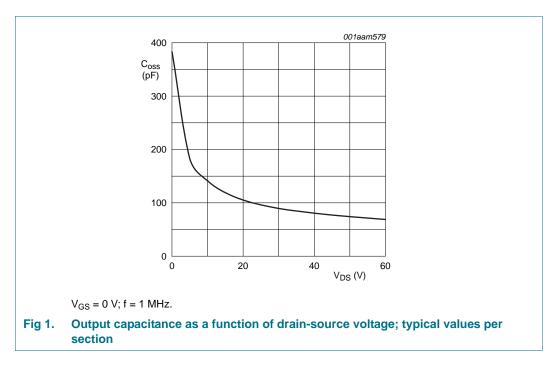

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
2-Tone, o	class-AB						
V _{DS}	drain-source voltage			-	50	-	V
I _{Dq}	quiescent drain current		[1]	-	1.3	-	А
P _{L(AV)}	average output power	$f_1 = 860 \text{ MHz}; f_2 = 860.1 \text{ MHz}$		250	-	-	W
G _p	power gain	$f_1 = 860 \text{ MHz}; f_2 = 860.1 \text{ MHz}$		19.8	20.8	-	dB
η_D	drain efficiency	$f_1 = 860 \text{ MHz}; f_2 = 860.1 \text{ MHz}$		42	46	-	%
IMD3	third-order intermodulation distortion	f ₁ = 860 MHz; f ₂ = 860.1 MHz		-	-32	-28	dBc

Table 8. RF characteristics ...continued

RF characteristics in NXP production narrowband test circuit; $T_{case} = 25$ °C unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Pulsed,	class-AB						
V _{DS}	drain-source voltage			-	50	-	V
I _{Dq}	quiescent drain current		[1]	-	1.3	-	А
P _{L(M)}	peak output power	f = 860 MHz		-	600	-	W
G _p	power gain	f = 860 MHz		17.2	19.8	-	dB
η_D	drain efficiency	f = 860 MHz		54	58	-	%
t _p	pulse duration			-	100	-	μS
δ	duty cycle			-	20	-	%

[1] I_{Dq} for total device

7. Test information

7.1 Ruggedness in class-AB operation

The BLF10H6600P and BLF10H6600PS are capable of withstanding a load mismatch corresponding to VSWR \geq 40 : 1 through all phases under the following conditions: V_{DS} = 50 V; I_{Dq} = 1.3 A; P_L = 600 W (pulsed); f = 860 MHz.

Power LDMOS transistor

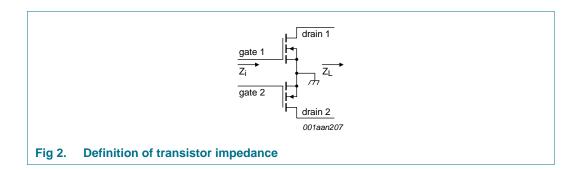

7.2 Impedance information

Table 9. Typical push-pull impedance

Simulated Z_i and Z_L device impedance; impedance info at $V_{DS} = 50$ V and $P_{L(AV)} = 600$ W (pulsed CW). See <u>Figure 2</u> for definition of transistor impedance.

f	Zi	ZL
MHz	Ω	Ω
300	0.607 + j0	5.495 + j1.936
325	0.622 – j1.441	5.324 + j2.008
350	0.639 – j1.121	5.151 + j2.065
375	0.658 – j0.826	4.977 + j2.107
400	0.679 – j0.551	4.805 + j2.136
425	0.703 – j0.291	4.634 + j2.153
450	0.73 – j0.044	4.466 + j2.157
475	0.76 + j0.194	4.301 + j2.151
500	0.793 + j0.424	4.14 + j2.134
525	0.83 + j0.648	3.984 + j2.109
550	0.872 + j0.869	3.833 + j2.075
575	0.919 + j1.088	3.687 + j2.033
600	0.972 + j1.305	3.546 + j1.985
625	1.032 + j1.523	3.411 + j1.931
650	1.101 + j1.741	3.281 + j1.871
675	1.179 + j1.963	3.156 + j1.807
700	1.268 + j2.187	3.036 + j1.738
725	1.371 + j2.416	2.922 + j1.666
750	1.49 + j2.651	2.813 + j1.591
775	1.629 + j2.891	2.708 + j1.512
800	1.792 + j3.138	2.609 + j1.432
825	1.984 + j3.39	2.514 + j1.349
850	2.212 + j3.649	2.423 + j1.264
875	2.484 + j3.91	2.336 + j1.178
900	2.812 + j4.17	2.254 + j1.091
925	3.209 + j4.421	2.175 + j1.003
950	3.689 + j4.648	2.1 + j0.913
975	4.27 + j4.829	2.029 + j0.823
1000	4.967 + j4.927	1.96 + j0.733

Power LDMOS transistor

7.3 Test circuit information

Table 10. List of components

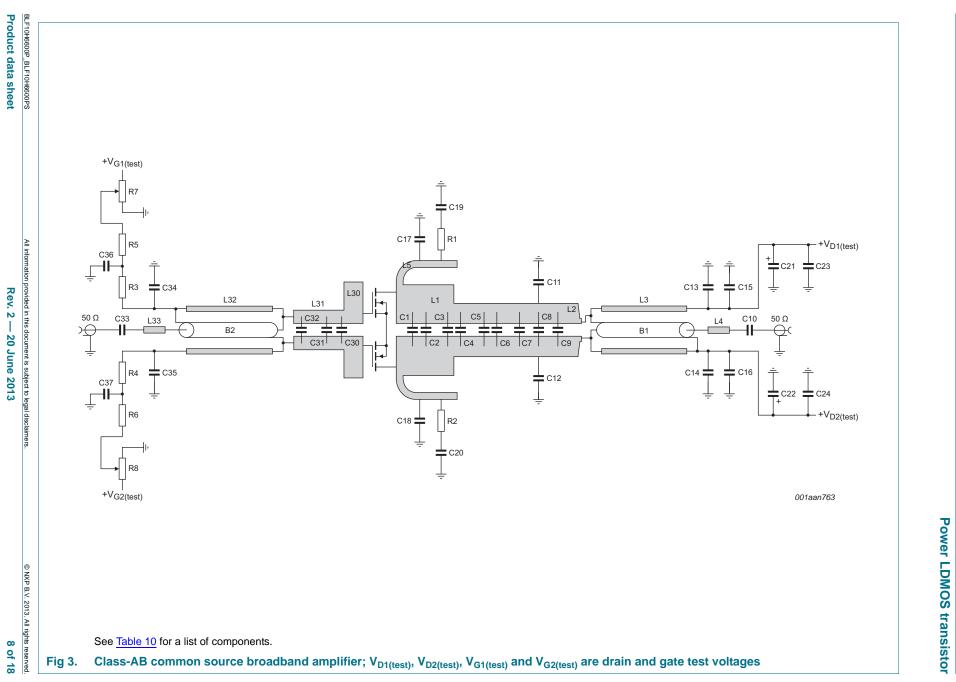
For test circuit, see Figure 3, Figure 4 and Figure 5.

Component	Description	Value		Remarks
-	-			
B1, B2	semi rigid coax	25 Ω; 49.5 mm		UT-090C-25 (EZ 90-25)
C1	multilayer ceramic chip capacitor	12 pF	[1]	
C2, C3, C4, C5, C6	multilayer ceramic chip capacitor	8.2 pF	<u>[1]</u>	
C7	multilayer ceramic chip capacitor	6.8 pF	[2]	
C8	multilayer ceramic chip capacitor	2.7 pF	[2]	
C9	multilayer ceramic chip capacitor	2.2 pF	[2]	
C10, C13, C14	multilayer ceramic chip capacitor	100 pF	[3]	
C11, C12	multilayer ceramic chip capacitor	10 pF	[2]	
C15, C16	multilayer ceramic chip capacitor	4.7 μF, 50 V		Kemet C1210X475K5RAC-TU or capacitor of same quality.
C17, C18, C23, C24	multilayer ceramic chip capacitor	100 pF	[2]	
C19, C20	multilayer ceramic chip capacitor	10 μ F , 50 V		TDK C570X7R1H106KT000N or capacitor of same quality.
C21, C22	electrolytic capacitor	470 μF; 63 V		
C30	multilayer ceramic chip capacitor	10 pF	[4]	
C31	multilayer ceramic chip capacitor	9.1 pF	[4]	
C32	multilayer ceramic chip capacitor	3.9 pF	[4]	
C33, C34, C35	multilayer ceramic chip capacitor	100 pF	[4]	
C36, C37	multilayer ceramic chip capacitor	4.7 μF, 50 V		TDK C4532X7R1E475MT020U or capacitor of same quality.
L1	microstrip	-	[5]	(W \times L) 15 mm \times 13 mm
L2	microstrip	-	[5]	(W \times L) 5 mm \times 26 mm
L3, L32	microstrip	-	[5]	(W \times L) 2 mm \times 49.5 mm
L4	microstrip	-	[5]	(W \times L) 1.7 mm 3.5 mm
L5	microstrip	-	[5]	(W \times L) 2 mm \times 9.5 mm
L30	microstrip	-	[5]	(W \times L) 5 mm \times 13 mm
L31	microstrip	-	[5]	(W \times L) 2 mm \times 11 mm
L33	microstrip	-	[5]	(W \times L) 2 mm \times 3 mm
R1, R2	wire resistor	10 Ω		

Power LDMOS transistor

Table 10. List of components ...continued For test circuit, see Figure 3, Figure 4 and Figure 5.

Component	Description	Value	Remarks
R3, R4	SMD resistor	5.6 Ω	0805
R5, R6	wire resistor	100 Ω	
R7, R8	potentiometer	10 kΩ	

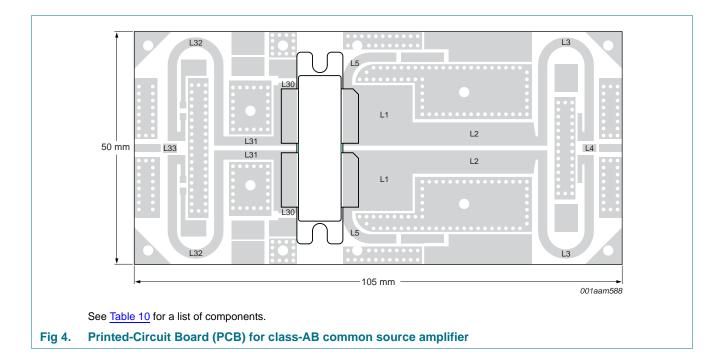

[1] American technical ceramics type 800R or capacitor of same quality.

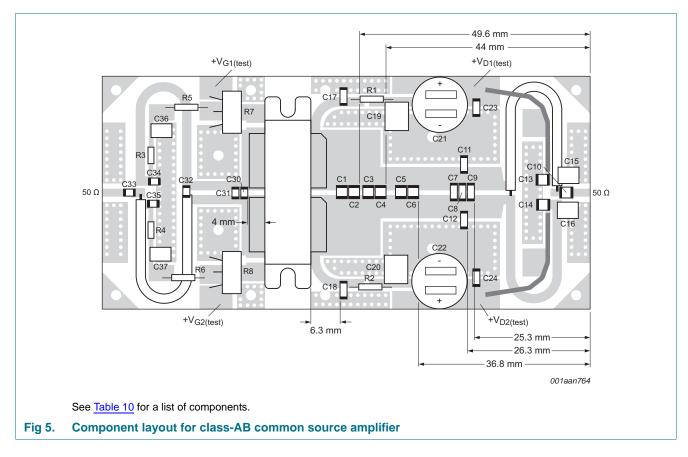
[2] American technical ceramics type 800B or capacitor of same quality.

[3] American technical ceramics type 180R or capacitor of same quality.

[4] American technical ceramics type 100A or capacitor of same quality.

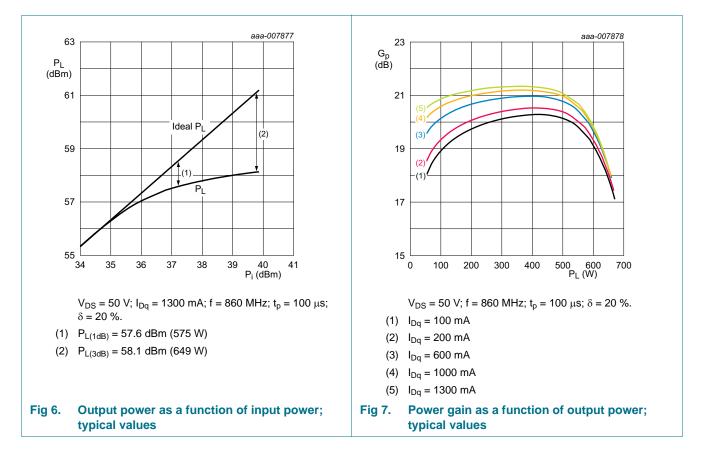
[5] Printed-Circuit Board (PCB): Taconic RF35; ε_r = 3.5 F/m; height = 0.762 mm; Cu (top/bottom metallization); thickness copper plating = 35 μ m.



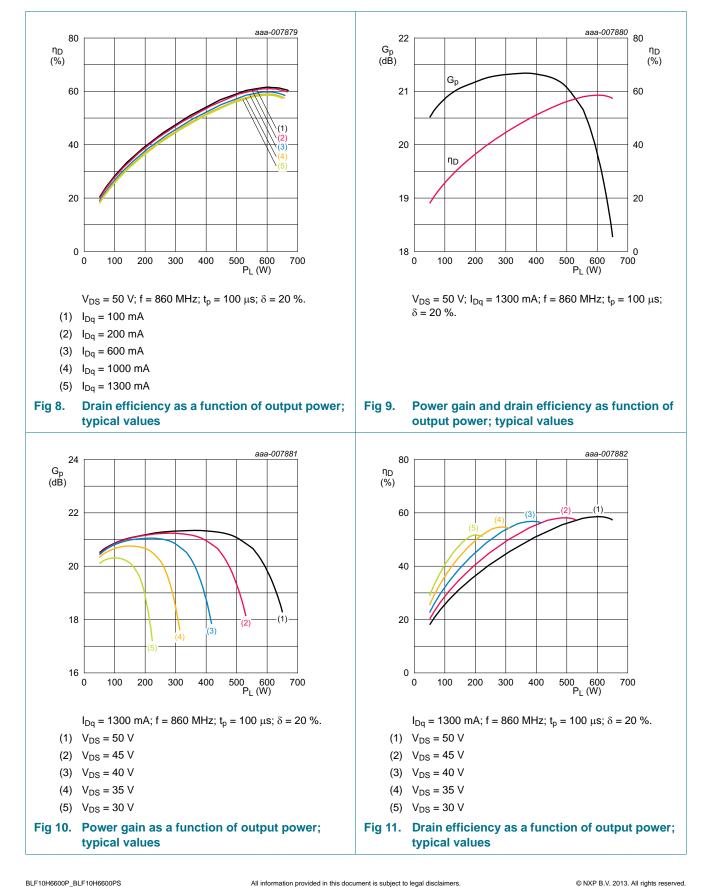

NXP Semiconductors

BLF10H6600P;

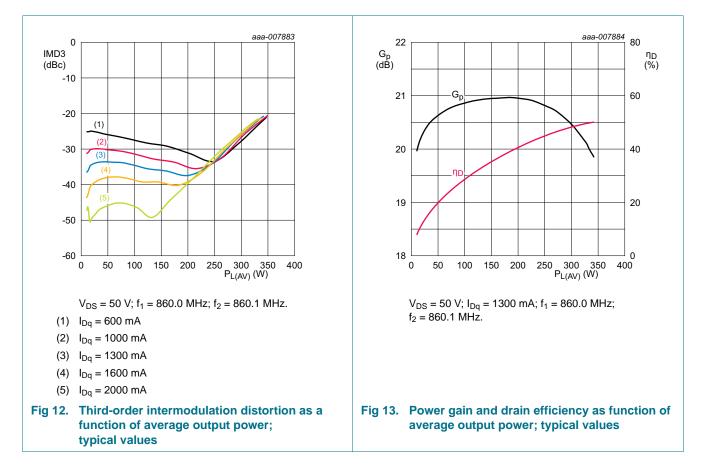
F10H6600PS


Power LDMOS transistor

Power LDMOS transistor

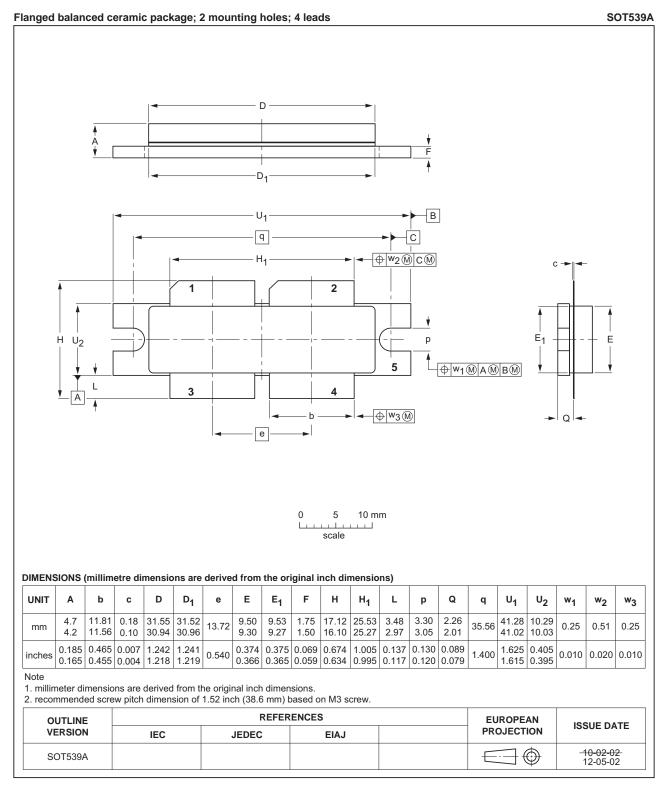

- 7.4 Graphical data
- 7.4.1 Pulsed

NXP Semiconductors


BLF10H6600P; BLF10H6600PS

Power LDMOS transistor

All information provided in this document is subject to legal disclaimers.


Power LDMOS transistor

7.4.2 2-Tone CW

Power LDMOS transistor

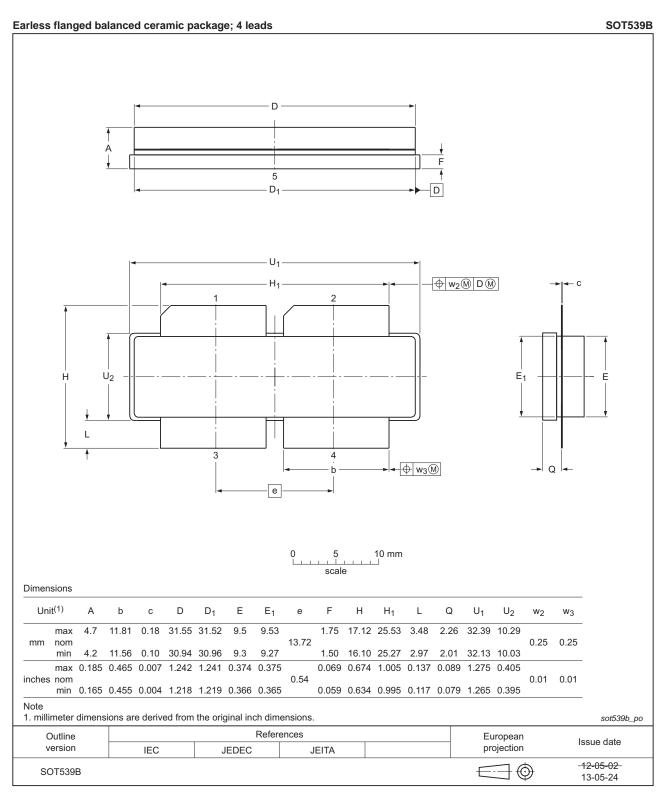

8. Package outline

Fig 14. Package outline SOT539A

All information provided in this document is subject to legal disclaimers.

Power LDMOS transistor

Fig 15. Package outline SOT539B

All information provided in this document is subject to legal disclaimers.

Power LDMOS transistor

9. Handling information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

10. Abbreviations

Acronym	Description
CCDF	Complementary Cumulative Distribution Function
CW	Continuous Wave
LDMOS	Laterally Diffused Metal-Oxide Semiconductor
SMD	Surface Mounted Device
VSWR	Voltage Standing-Wave Ratio

11. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
BLF10H6600P_BLF10H6600PS v.2	20130620	Product data sheet	-	BLF0510H6600P v.1	
Modifications:		ct has been renamed and BLF10H6600P and BLF10		h the eared and earless	
	Table 1 on	page 1: table updated			
	 <u>Section 1.2 on page 1</u>: list item number 5, 500 MHz changed to 400 MHz 				
	Table 2 on	page 2: table updated			
	 Table 3 on 	page 2: table updated			
	 Table 4 on 	page 2: table updated			
	 Table 8 on 	page 3: table updated			
	Section 7	on page 4: section update	d		
	Section 7.1	1 on page 4: section adde	d		
	Section 7.4	4 on page 10: section add	ed		
	• Figure 15	on page 14: figure added			
BLF0510H6600P v.1	20121009	Objective data sheet	-	-	

12. Legal information

12.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

12.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Power LDMOS transistor

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

13. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

14. Contents

1	Product profile 1
1.1	General description 1
1.2	Features and benefits 1
1.3	Applications 1
2	Pinning information 2
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 3
6	Characteristics 3
7	Test information 4
7.1	Ruggedness in class-AB operation
7.2	Impedance information
7.3	Test circuit information 6
7.4	Graphical data 10
7.4.1	Pulsed
7.4.2	2-Tone CW 12
8	Package outline 13
9	Handling information 15
10	Abbreviations 15
11	Revision history 15
12	Legal information 16
12.1	Data sheet status 16
12.2	Definitions
12.3	Disclaimers
12.4	Trademarks 17
13	Contact information 17
14	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 20 June 2013 Document identifier: BLF10H6600P_BLF10H6600PS